[go: up one dir, main page]

JP2014111271A - エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法 - Google Patents

エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法 Download PDF

Info

Publication number
JP2014111271A
JP2014111271A JP2012266683A JP2012266683A JP2014111271A JP 2014111271 A JP2014111271 A JP 2014111271A JP 2012266683 A JP2012266683 A JP 2012266683A JP 2012266683 A JP2012266683 A JP 2012266683A JP 2014111271 A JP2014111271 A JP 2014111271A
Authority
JP
Japan
Prior art keywords
electroslag remelting
optical fiber
temperature
melting
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012266683A
Other languages
English (en)
Other versions
JP5697105B2 (ja
Inventor
Taku Yamamoto
卓 山本
Toshiya Nonaka
俊也 野中
Yoshikazu Momoi
義和 百井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012266683A priority Critical patent/JP5697105B2/ja
Publication of JP2014111271A publication Critical patent/JP2014111271A/ja
Application granted granted Critical
Publication of JP5697105B2 publication Critical patent/JP5697105B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】エレクトロスラグ再溶解における溶融スラグプールや溶融金属プールの温度を正確かつ安全に測定することができるエレクトロスラグ再溶解温度測定装置及びエレクトロスラグ再溶解温度測定方法を提供する。
【解決手段】エレクトロスラグ再溶解電極に通電しつつ溶解をして鋳塊を得るエレクトロスラグ再溶解における溶解部の温度を測定するエレクトロスラグ再溶解温度測定装置において、溶解部(溶融スラグプール4、溶融金属プール5)の放射光を入射させて伝送する光ファイバー10と、光ファイバー10が接続され、光ファイバー10で伝送される放射光を受けて溶解部の温度を検出する放射温度測定器11と、エレクトロスラグ再溶解電極1に固定され、光ファイバー10を前記エレクトロスラグ再溶解電極1の軸方向に連続するように位置させてガイドするガイド部材(ガイド管12)を備える。
【選択図】図1

Description

本発明は、エレクトロスラグ再溶解における溶解部の温度、例えば溶解中の溶融スラグや溶融金属の温度を測定するエレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法に関するものである。
エレクトロスラグ再溶解法は、消耗電極を介してスラグに大電流を流し、このとき発生するジュール熱でスラグを溶融させ、その溶融スラグ中で消耗電極を連続的に溶解するプロセスである。このプロセスでは、エレクトロスラグ再溶解炉内の溶融スラグや溶融金属の温度は、得られる鋳塊の化学成分や非金属介在物の組成や量、鋳塊の凝固組織などに影響を及ぼすため、溶融スラグプールや溶融金属プールの温度管理は鋳塊の品質管理において重要である。したがって、これら溶融プール温度を継続してモニタリングできれば品質の向上に役立つ。
特許文献1では、溶融物を保持する容器の炉壁を貫通して先端が前記溶融物に接触するようにノズルを配置し、該ノズル内に隙間を設けてガイド管を内蔵させ、該ガイド管に金属管で被覆した金属管被覆光ファイバーを通過させ、光ファイバーを通して導波される放射光を受けた放射温度測定器により前記溶融物の温度を測定する装置が提案されている。しかし、この測定装置では、炉壁の一定の位置でしか温度を測定することができず、エレクトロスラグ再溶解法のように、溶解の進行に伴って溶解部の位置が上昇していく溶解法では溶解部表層の温度上昇を測定することはできない。
一方、特許文献2では、光ファイバーに金属管を被覆して、炉の上方に配置したファイバ搬送手段によって該光ファイバーの先端とともに金属管を下方に送り出して溶融金属内に挿入し、光ファイバーを通して導波される放射光を受けた放射温度測定器により溶融金属の温度を測定する装置が提案されている。この測定装置では、光ファイバーの送り出し量によって溶解部の位置変動に対応することが可能となる。
特開平9−159534号公報 特開平5−248960号公報
ところで、エレクトロスラグ再溶解法では、図3に示すように、電源3によるエレクトロスラグ再溶解電極1と鋳型2への電圧印加によって、エレクトロスラグ再溶解電極1から流れる溶解電流の経路は、溶融スラグプール4→溶融金属プール5→鋳塊6に流れる電流通過経路A1と、溶融スラグプール4→鋳型2に流れる電流通過経路A2とに分けることができる。一般に測定に用いられる光ファイバーは、SiO製などのファイバを保護するために、ステンレスなどの金属で被覆されているものが一般的であり、このため光ファイバーは導電性を有しているのが通常である。
エレクトロスラグ溶解中の溶融スラグプール4や溶融金属プール5の温度を測定するために、特許文献2に示すようにこれらのプール内に光ファイバーを送り出して浸漬する場合、エレクトロスラグ再溶解炉内は温度分布が一定ではない。例えば、鋳型2の近傍には固体のスラグ殻7が形成されているため、その周辺の溶融スラグの温度のばらつきが大きく、固体スラグ殻7近傍では正確な温度を測定することが困難である。このため溶解部の温度を測定するためには、測定位置を考慮する必要がある。しかも、エレクトロスラグ再溶解法ではエレクトロスラグ再溶解電極1に流れる溶解電流によってエレクトロスラグ再溶解電極1の周囲に磁場が生じており、金属で被覆された光ファイバー線にはこの磁場の影響で力が働く。大型のエレクトロスラグ再溶解炉では、鋳型の深さが数メートルから数十メートルとなる。このような磁場の影響下で光ファイバが所定位置に確実に固定されなければ、測定位置のずれが生じて正確な温度を測定することが困難になってしまうという問題がある。
また、光ファイバーの姿勢が不安定であると、導電性を有する光ファイバーがエレクトロスラグ再溶解電極に接触したり、鋳型に接触したりするおそれがあり、該接触に際しては、光ファイバーが対地接地されていると、エレクトロスラグ再溶解電極に流れている溶解電流が挿入した光ファイバーを介して直ちに接地側に流れ、エレクトロスラグ再溶解がストップする(短絡する)おそれがある。
本発明は、上記事情を背景としてなされたものであり、エレクトロスラグ再溶解における溶解部の温度を正確かつ安全に測定することができるエレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法を提供することを目的とする。
すなわち、本発明のエレクトロスラグ再溶解温度測定装置のうち、第1の本発明は、エレクトロスラグ再溶解電極に通電しつつ溶解をして鋳塊を得るエレクトロスラグ再溶解における溶解部の温度を測定するエレクトロスラグ再溶解温度測定装置であって、
前記溶解部の放射光を入射させて伝送する光ファイバーと、前記光ファイバーが接続され、前記光ファイバーで伝送される放射光を受けて前記溶解部の温度を検出する放射温度測定器と、前記エレクトロスラグ再溶解電極に固定され、前記光ファイバを前記エレクトロスラグ再溶解電極の軸方向に連続するように位置させてガイドするガイド部材とを備えることを特徴とする。
第2の本発明のエレクトロスラグ再溶解温度測定装置は、前記第1の本発明において、前記ガイド部材が金属またはセラミック製であることを特徴とする。
第3の本発明のエレクトロスラグ再溶解温度測定装置は、前記第1または第2の本発明において、前記ガイド部材でガイドされる前記光ファイバーを前記溶解部に向けて送り出す送り出し装置を備えることを特徴とする。
第4の本発明のエレクトロスラグ再溶解温度測定装置は、前記第1から第3の本発明において、前記光ファイバーまたはガイド部材が電気的に接触し、または/および操業時に接触する可能性のある電気機器が接地に対し電気的に絶縁されていることを特徴とする。
第5の本発明のエレクトロスラグ再溶解温度測定方法は、エレクトロスラグ再溶解電極に通電しつつ溶解をして鋳塊を得るエレクトロスラグ再溶解法における溶解部の温度を測定するエレクトロスラグ再溶解温度測定方法であって、
前記エレクトロスラグ再溶解電極にガイド部材を固定し、前記ガイド部材により光ファイバーを前記エレクトロスラグ再溶解電極の軸方向に連続するように位置させ、前記光ファイバーを前記ガイド部材でガイドしつつ前記溶解部に向けて連続的または一時的に送り出し、前記光ファイバーの先端位置に応じた溶解部の放射光を前記光ファイバーに入射させて伝送し、前記光ファイバーで伝送される放射光に基づいて前記溶解部の温度を検出することを特徴とする。
第6の本発明のエレクトロスラグ再溶解温度測定方法は、前記第5の本発明において、前記溶解部が、溶融スラグプールおよび溶融金属プールの一方または両方であることを特徴とする。
光ファイバー線は、通常は剛性が低いため、光ファイバーを送り出すのみでは所定の測定位置へ安定して導くことは難しい。
本発明によれば、エレクトロスラグ再溶解電極に固定されたガイド部材によって光ファイバーの姿勢が保持され、また、光ファイバーを測定位置に的確に位置させることができる。ガイド部材には剛性が高い金属やセラミック製のものを用いることが望ましい。セラミック製のガイド部材は、さらに酸化物系のものを用いることが望ましい。またエレクトロスラグ再溶解電極近傍の雰囲気温度は非常に高温であり、熱衝撃によるガイド部材の割れや欠けの懸念があることから、ガイド部材は金属製のものを用いることがさらに望ましい。ガイド部材は、パイプ状のものとすることができるが、光ファイバーをスラグ再溶解電極の軸方向に連続するように位置させてガイドできるものであれば良く、特にその形状が限定されるものではない。
また、ガイド部材は、光ファイバーをエレクトロスラグ再溶解電極の軸方向に連続するように位置させることができるものであればよく、ガイド部材の配置が前記軸方向に沿って直線状に配置されていることが必要とされるものではない。例えば、エレクトロスラグ再溶解電極の周囲にガイド部材が螺旋状に配置されているようなものであってもよい。
ガイド部材は、エレクトロスラグ再溶解電極の下降および溶解によって下方に移動し、エレクトロスラグ再溶解電極、光ファイバーとともに溶解する。この場合、ガイド部材は、エレクトロスラグ再溶解電極の体積に比べて僅かな量であるため、鋳塊に対する影響は無視することができる。このためガイド部材は、エレクトロスラグ再溶解電極の測定開始ポイントにまで伸長するように配置するのが望ましく、当初からエレクトロスラグ再溶解電極の先端に位置するように配置することもできる。
なお、ガイド部材は、通常はエレクトロスラグ再溶解電極の外周面に固定されるが、エレクトロスラグ再溶解電極が筒状の形状を有するなどして軸方向に沿って孔を有する場合には、該孔内にガイド部材を固定するようにしてもよい。
また、光ファイバーは、送り出し装置を用いて溶解部側に向けて送り出すことができる。光ファイバーを送り出して溶解部内に挿入することで溶解部材の温度を測定することができる。光ファイバーの送り出しは、連続的に行ってもよく、また、一時的(例えば間欠的)に行うようにしてもよい。光ファイバーは溶解部内に挿入されると、溶解部の高い温度によって短い時間で溶解するため、送り長さと送り速度を適宜調整することで、溶解部の所定深さから溶解部の表面に至る温度を連続的に測定することができる。
一般に、エレクトロスラグ再溶解法では、スラグの発熱量を確保するため電気抵抗が大きくなるようにスラグの配合を選定しており、光ファイバーが対地接地されていない場合においても、光ファイバーにおいて対地との抵抗が小さい場合には、エレクトロスラグ再溶解電極に流れる電流の一部が光ファイバーを介して地面に流れる。このような電流の流れがあると炉内で流れる電流量が変動し、溶融スラグや溶融金属の温度が変化し、鋳塊の化学成分や非金属介在物の組成や量が変化し、また鋳塊の凝固組織にも不均一が生じるため、品質上好ましくない。
上記電流の流れを確実に回避するため、光ファイバーまたはガイド部材が電気的に接触したり、操業時に接触する可能性のある電気機器は、接地に対し電気的に絶縁するのが望ましい。
電気機器としては、放射温度測定器、送り出し装置などが挙げられるが、本発明としてはこれらに限定されるものではない。接地に対して電気的に絶縁する方法としては、例えば、電気機器への電力供給を絶縁トランスを介して行う方法がある。
以上のように、本発明によれば、エレクトロスラグ再溶解における溶解部の温度を正確かつ安定して測定することができ、鋳塊の化学成分や凝固組織といった内部品質を向上させることが可能になる。
本発明の一実施形態の構成図を示す図である。 同じく実施例の温度測定値と溶解電流値等の推移を示す図である。 一般的なエレクトロスラグ再溶解法における溶解電流の電流通過経路を示す図である。
以下に、本発明の一実施形態のエレクトロスラグ再溶解温度測定装置を図1を用いて説明する。
本実施形態の測定対象となるエレクトロスラグ再溶解炉は、エレクトロスラグ再溶解電極1、鋳型2、電源3を備えている。なお、この実施形態では電源3は交流電源からなるものであるが、本発明としては、これに限定されるものではなく、直流電源などであってもよい。
エレクトロスラグ再溶解電極1は鋳型2内の中央部に沿って上下移動可能に設置されており、その一端は電源3の出力端の一方に電気的に接続されている。また電源3の出力端の他方は鋳型2に接続されており、電源3によってエレクトロスラグ再溶解電極1と鋳型2間に電圧印加することができる。
本実施形態のエレクトロスラグ再溶解温度測定装置は、エレクトロスラグ再溶解電極1の外周面に軸方向に沿って固定されるガイド管12を有している。ガイド管12は、内部に光ファイバー10を挿通して光ファイバー10が円滑に送り出され、かつ光ファイバーの姿勢を安定して保持できる内径を有している。なお、ガイド管12は、光ファイバー10をエレクトロスラグ再溶解電極1の軸方向に連続して位置させるようにガイドできるものであればよく、エレクトロスラグ再溶解電極1の軸方向に沿って直線状に配置されることが必要とされるものではないが、光ファイバー10を円滑に送り出すためにはガイド管12を直線状に配置してエレクトロスラグ再溶解電極1に固定するのが望ましい。ガイド管12は、金属またはセラミックにより構成することができる。ガイド管12は、本発明のガイド部材に相当するものである。
ガイド管12の先端は、温度測定開始位置に達するようにエレクトロスラグ再溶解電極1の外周面に固定されるものであってもよく、また、エレクトロスラグ再溶解電極1の先端にまでガイド管12の先端が達するものであってもよい。さらに、ガイドする光ファイバー10を安定支持できれば、光ファイバー10が突き出す形でガイド管12が配置されるものであってよい。ガイド管12の固定は、溶接やリベットなどの固定具によって行うことができ、本発明としては固定方法が特に限定されるものではない。
また、ガイド管12の上方近傍にはガイド管12でガイドされる光ファイバー10を下方に向けて送り出す送り出し装置13が設置される。送り出し装置13は、CPU、記憶部などを備える制御部により制御して、送り出し速度や送り出し量を設定することができる。また、送り出し装置13には、後述する電源装置15から電力が供給される。
光ファイバー10は、SiOなどを芯線にし、該芯線を保護するためにステンレスなどの金属が被覆されている。光ファイバー10は一端が放射温度測定器11に接続され、送り出し装置13を介してガイド管10内に挿通される。光ファイバー10は、当初より先端がガイド管12内の所定位置に位置するように挿通してもよく、また、送り出し装置13によって所定位置にまで送り出しするようにしてもよい。
放射温度測定器11は、既知のものを用いることができ、放射光の強度検出などにより放射光発生部での温度を測定する。放射温度測定器11には、記録計14が接続されており、測定結果を画面や用紙、記憶部などに記録することができる。
放射温度測定器11および記録計14は、電源装置15の出力端に接続されており、出力端は絶縁トランス15aの二次側に接続されている。絶縁トランス15aの一次側には2線式の商用電源16が接続されており、その1線側は接地されている。また、図示していないが、送り出し装置13も、電源装置15の出力端に接続され、電源装置15から電力供給がなされる。
なお、送り出し装置13、放射温度測定器11、記録器14は、光ファイバー10またはガイド部材12が電気的に接触し、または/および操作時に接触する可能性のある電気機器に相当する。
次に、本実施形態の動作について説明する。
エレクトロスラグ再溶解の開始に伴って、鋳型2内で溶解したスラグを通して通電がなされ、溶融スラグプール4にエレクトロスラグ再溶解電極1が浸漬された状態になる。
エレクトロスラグ再溶解電極1は、溶融スラグプール4のジュール熱により溶解し、溶滴は溶融スラグプール4内を下降しつつ鋳型2の底に至り、溶融金属プール5を形成する。溶融スラグプール4および溶融金属プール5は、溶解部に相当する。
鋳型2は、図示しない冷却手段により冷却され、溶融金属プール5の下方に鋳塊6が得られ、鋳型2の内壁付近に固体スラグ殻7が形成される。
エレクトロスラグ再溶解電極1は、その消耗度合いと溶融スラグプール4の液面高さにに応じて下方に移動させて溶融スラグプール4への挿入状態を維持し、エレクトロスラグ再溶解電極1の溶解が連続して行われる。
エレクトロスラグ再溶解電極1の溶解、下降に際しては、これに連れてガイド管12と光ファイバー10とが下降し、溶融スラグプール4内に浸漬されたガイド管12と光ファイバー10の先端側は溶解して消失する。この際に、光ファイバー10を所定量送り出すことで、その先端を溶融スラグプール4または溶融金属プール5に位置させることができる。光ファーバー10には、溶融スラグプール4または溶融金属プール5の温度に応じて放射される放射光が入射されており、該放射光は、光ファイバー10内で伝送され、放射温度測定器11に至る。放射温度測定器11では、受光した放射光の強度などにより、放射光が放射された溶解部の温度を検出し、記録計14に記録することができる。
溶解部中に送り出された光ファイバー10は、先端側から溶解し、次第に溶解部中の長さが小さくなり、遂には溶解部液面に光ファイバー10の先端が位置するに至る。この際に、光ファイバー10には、溶解部において、深さが次第に小さくなる位置から放射光が入射されるため、溶解部での異なる深さ位置での温度を測定することができる。
この際に図示しない制御部によって送り出し装置13を制御することで、予め設定された送り出し速度や送り出し量などによって光ファイバー10を連続的に、または間欠的に送り出すことができ、溶融スラグプール4や溶融金属プール5の温度を継続的に測定でき、測定結果を溶解制御にフィードバックすることができる。
上記測定に際しては、光ファイバー10がガイド管12で安定的に支持されてガイドされるため、ガイド管12で案内される位置において溶解部の温度を正確に測定することができ、また、光ファイバー10などが不意に鋳型2などに接触することもない。
また、光ファイバー10やガイド管12が電気的に接続されている送り出し装置13、放射温度測定器11、記録計14は、接地に対し電気的に絶縁されているため、光ファイバー10などを通してエレクトロスラグ再溶解用の電流が漏れ流れることもなく、エレクトロスラグ再溶解を安定した状態で操業することができる。
以下に、上記実施形態のエレクトロスラグ再溶解温度測定装置を用いた本発明の実施例について説明する。
本実施例では、放射温度測定器には市販のものを用い、光ファイバーはSiOからなり、内径2mmでSUS304で被覆されたものを用いた。光ファイバ送り出し装置には送り出し速度および量を一定に制御可能なワイヤフィーダーを用いた。送り出しは、間欠的に行うものとし、送り長さ15mm/1送り出し、送り速度15mm/秒、15秒間隔の条件とした。
測定の際のエレクトロスラグ再溶解の条件は、エレクトロスラグ再溶解電極の組成:18Mn−18Cr−N−残Fe、径:40mm、鋳型に対する充填率:0.5、雰囲気:空気、スラグ組成:CaF−Al−CaO系、スラグ質量:600g、溶解スタート法:ホットスタート法、設定電流:700A、設定電圧:26Vとした。
上記条件によるエレクトロスラグ再溶解に際しエレクトロスラグ再溶解温度測定装置によって測定した結果を図2に示す。図2に示すように、操業中の溶解部の温度は、安定して測定することができた。なお、温度測定値は、光ファイバー10の送り出しに伴って測定値が上がり、その後、次第に下がって定常状態になっている。測定値の上限は、送り出された光ファイバーの最下点の位置における溶解部温度を示しており、定常状態の温度は、溶解部の液面の温度を示している。なお、この実施例では、溶融スラグプールの温度測定を行っているが、光ファイバーの送り出し量によっては溶融金属プールの温度を測定することも可能である。
以上、本発明について上記実施形態および実施例に基づいて説明したが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
1 エレクトロスラグ再溶解電極
2 鋳型
3 電源
4 溶融スラグプール
5 溶融金属プール
6 鋳塊
7 固体スラグ殻
10 光ファイバー
11 放射温度測定器
12 ガイド管
13 送り出し装置
14 記録計
15 電源装置
15a 絶縁トランス
16 商用電源

Claims (6)

  1. エレクトロスラグ再溶解電極に通電しつつ溶解をして鋳塊を得るエレクトロスラグ再溶解における溶解部の温度を測定するエレクトロスラグ再溶解温度測定装置であって、
    前記溶解部の放射光を入射させて伝送する光ファイバーと、前記光ファイバーが接続され、前記光ファイバーで伝送される放射光を受けて前記溶解部の温度を検出する放射温度測定器と、前記エレクトロスラグ再溶解電極に固定され、前記光ファイバを前記エレクトロスラグ再溶解電極の軸方向に連続するように位置させてガイドするガイド部材とを備えることを特徴とするエレクトロスラグ再溶解温度測定装置。
  2. 前記ガイド部材が金属またはセラミック製であることを特徴とする請求項1記載のエレクトロスラグ再溶解温度測定装置。
  3. 前記ガイド部材でガイドされる前記光ファイバーを前記溶融部に向けて送り出す送り出し装置を備えることを特徴とする請求項1または2に記載のエレクトロスラグ再溶解温度測定装置。
  4. 前記光ファイバーまたはガイド部材が電気的に接触し、または/および操業時に接触する可能性のある電気機器が接地に対し電気的に絶縁されていることを特徴とする請求項1〜3のいずれかに記載のエレクトロスラグ再溶解温度測定装置。
  5. エレクトロスラグ再溶解電極に通電しつつ溶解をして鋳塊を得るエレクトロスラグ再溶解法における溶解部の温度を測定するエレクトロスラグ再溶解温度測定方法であって、
    前記エレクトロスラグ再溶解電極にガイド部材を固定し、前記ガイド部材により光ファイバーを前記エレクトロスラグ再溶解電極の軸方向に連続するように位置させ、前記光ファイバーを前記ガイド部材でガイドしつつ前記溶解部に向けて連続的または一時的に送り出し、前記光ファイバーの先端位置に応じた溶解部の放射光を前記光ファイバーに入射させて伝送し、前記光ファイバーで伝送される放射光に基づいて前記溶解部の温度を検出することを特徴とするエレクトロスラグ再溶解温度測定方法。
  6. 前記溶解部が、溶融スラグプールおよび溶融金属プールの一方または両方であることを特徴とする請求項5記載のエレクトロスラグ再溶解温度測定方法。
JP2012266683A 2012-12-05 2012-12-05 エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法 Expired - Fee Related JP5697105B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266683A JP5697105B2 (ja) 2012-12-05 2012-12-05 エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266683A JP5697105B2 (ja) 2012-12-05 2012-12-05 エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法

Publications (2)

Publication Number Publication Date
JP2014111271A true JP2014111271A (ja) 2014-06-19
JP5697105B2 JP5697105B2 (ja) 2015-04-08

Family

ID=51168829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266683A Expired - Fee Related JP5697105B2 (ja) 2012-12-05 2012-12-05 エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法

Country Status (1)

Country Link
JP (1) JP5697105B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855509A (zh) * 2016-09-22 2018-03-30 宝山钢铁股份有限公司 钢包烘烤中的在线测温控制装置及方法
CN112301231A (zh) * 2020-09-22 2021-02-02 江苏隆达超合金航材有限公司 一种高温合金短电极电渣炉的加渣及造渣方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457244A (en) * 1977-10-14 1979-05-08 Hitachi Ltd Method of electronically melting slag
JPS6219727A (ja) * 1985-07-18 1987-01-28 Japan Sensor Corp:Kk 溶融金属の浸漬温度計
JP2009167511A (ja) * 2008-01-21 2009-07-30 Sumitomo Metal Ind Ltd エレクトロスラグ再溶解法による鋳塊の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457244A (en) * 1977-10-14 1979-05-08 Hitachi Ltd Method of electronically melting slag
JPS6219727A (ja) * 1985-07-18 1987-01-28 Japan Sensor Corp:Kk 溶融金属の浸漬温度計
JP2009167511A (ja) * 2008-01-21 2009-07-30 Sumitomo Metal Ind Ltd エレクトロスラグ再溶解法による鋳塊の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855509A (zh) * 2016-09-22 2018-03-30 宝山钢铁股份有限公司 钢包烘烤中的在线测温控制装置及方法
CN112301231A (zh) * 2020-09-22 2021-02-02 江苏隆达超合金航材有限公司 一种高温合金短电极电渣炉的加渣及造渣方法
CN112301231B (zh) * 2020-09-22 2022-04-12 江苏隆达超合金航材有限公司 一种高温合金短电极电渣炉的加渣及造渣方法

Also Published As

Publication number Publication date
JP5697105B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP6692789B2 (ja) 溶湯浴の温度の測定方法
TWI493161B (zh) 用於測量熔融金屬之溫度的方法或裝置
JP5188603B2 (ja) 溶融金属温度の測定装置
RU2589271C1 (ru) Устройство для измерения температуры расплавленного металла
JP5697105B2 (ja) エレクトロスラグ再溶解温度測定装置およびエレクトロスラグ再溶解温度測定方法
JP3158839B2 (ja) 溶融金属の温度測定装置および温度測定方法
US3763704A (en) Apparatus for continuously measuring the temperature of molten metal
KR20230096012A (ko) 용융 금속욕의 온도 값을 결정하기 위한 방법 및 시스템
JP4920061B2 (ja) 溶融金属用電磁ポンプとその運転方法
JP4616456B2 (ja) 溶融金属温度測定用の浸漬型光ファイバ放射温度計及び溶融金属の温度測定方法
JP4765517B2 (ja) 連続鋳造用モールドパウダー自動供給装置
CA1311358C (en) Fiber forming bushing
JP2883447B2 (ja) 電気炉電極の先端の位置調整方法及び装置
JP4618555B2 (ja) 連続鋳造における湯面制御方法及び湯面制御装置
JPH11160155A (ja) 溶融金属の温度測定方法及び装置
US3643056A (en) Flux depth indicator
JP2019184191A (ja) 誘導加熱溶解装置における出湯方法、及び、誘導加熱溶解装置
JP2018069252A (ja) ダイレクトヒートはんだ付けパイプ
JP3191780B2 (ja) 溶融金属の温度測定方法と温度測定装置と金属管被覆光ファイバと連続鋳造機とモールド及びタンディシュ
JP2006220380A (ja) アーク炉の溶鋼レベル検知方法および溶鋼レベル検知装置
EP2554955A1 (en) Method and apparatus for measuring liquid metal height and the thickness of a slag layer in a metallurgical vessel
SU1675369A1 (ru) Устройство дл электрошлакового переплава
JP2971788B2 (ja) ガラス固化処理装置におけるガラス接触検知方法
EP2737285A1 (en) Method and apparatus for measuring liquid metal height and the thickness of a slag layer in a metallurgical vessel
JPH08259252A (ja) 光ファイバの線引き方法および線引き装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5697105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees