JP2014107119A - Fuel battery - Google Patents
Fuel battery Download PDFInfo
- Publication number
- JP2014107119A JP2014107119A JP2012259119A JP2012259119A JP2014107119A JP 2014107119 A JP2014107119 A JP 2014107119A JP 2012259119 A JP2012259119 A JP 2012259119A JP 2012259119 A JP2012259119 A JP 2012259119A JP 2014107119 A JP2014107119 A JP 2014107119A
- Authority
- JP
- Japan
- Prior art keywords
- cooling medium
- fuel
- flow path
- oxygen
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 418
- 239000002826 coolant Substances 0.000 claims abstract description 294
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 273
- 239000001301 oxygen Substances 0.000 claims abstract description 273
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 273
- 239000012528 membrane Substances 0.000 claims abstract description 30
- 238000007599 discharging Methods 0.000 claims description 26
- 239000003792 electrolyte Substances 0.000 claims description 17
- 238000007789 sealing Methods 0.000 claims description 5
- 238000010248 power generation Methods 0.000 abstract description 37
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000003014 reinforcing effect Effects 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 21
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- -1 that is Chemical compound 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 3
- 150000002429 hydrazines Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 2
- 239000012493 hydrazine sulfate Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- BIVUUOPIAYRCAP-UHFFFAOYSA-N aminoazanium;chloride Chemical compound Cl.NN BIVUUOPIAYRCAP-UHFFFAOYSA-N 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- PTYMQUSHTAONGW-UHFFFAOYSA-N carbonic acid;hydrazine Chemical compound NN.OC(O)=O PTYMQUSHTAONGW-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池に関し、より詳しくは、固体高分子形燃料電池に関する。 The present invention relates to a fuel cell, and more particularly to a polymer electrolyte fuel cell.
従来、固体高分子形の燃料電池として、メタノール、ジメチルエーテルまたはヒドラジンなどの液体燃料を使用する燃料電池が知られている。 Conventionally, a fuel cell using a liquid fuel such as methanol, dimethyl ether or hydrazine is known as a polymer electrolyte fuel cell.
このような燃料電池は、一般に、複数の発電セルが積層されることにより構成されている。発電セルは、高分子電解質膜からなる電解質層、燃料側電極および酸素側電極を一体的に有する膜電極接合体と、燃料側電極に対向配置される燃料側セパレータと、酸素側電極に対向配置される酸素側セパレータとを備えている。 Such a fuel cell is generally configured by stacking a plurality of power generation cells. The power generation cell includes an electrolyte layer composed of a polymer electrolyte membrane, a membrane electrode assembly integrally including a fuel side electrode and an oxygen side electrode, a fuel side separator disposed opposite to the fuel side electrode, and a position opposed to the oxygen side electrode. And an oxygen side separator.
このような燃料電池の発電セルとして、例えば、2つの電解質膜・電極構造体(第1電解質膜・電極構造体および第2電解質膜・電極構造体)と、3つのセパレータ(第1セパレータ、第2セパレータ、第3セパレータ)とを備えるセルユニットが提案されている(例えば、下記特許文献1参照。)。
As a power generation cell of such a fuel cell, for example, two electrolyte membrane / electrode structures (first electrolyte membrane / electrode structure and second electrolyte membrane / electrode structure) and three separators (first separator, first A cell unit including two separators and a third separator has been proposed (see, for example,
特許文献1に記載のセルユニットにおいて、各セパレータは、長手方向における一辺に、燃料ガス入口連通孔および酸化剤ガス入口連通孔が形成されており、また、その一辺に対向する他辺には、燃料ガス出口連通孔および酸化剤ガス出口連通孔が形成されており、燃料ガスおよび酸化剤ガスの供給および排出を可能としている。
In the cell unit described in
さらに、長手方向に直交する幅方向における一辺には冷却媒体入口連通孔が、他辺には冷却媒体出口連通孔が形成されており、冷却媒体の供給および排出を可能としている。 Further, a cooling medium inlet communication hole is formed on one side in the width direction orthogonal to the longitudinal direction, and a cooling medium outlet communication hole is formed on the other side, thereby enabling supply and discharge of the cooling medium.
また、このような各セパレータには、シール部材が一体成型されており、上記の各連通孔が、それぞれシールされている。 In addition, a seal member is integrally formed in each of such separators, and each of the communication holes is sealed.
一方、燃料電池としては、発電効率を低下させることなく小型化することが要求されている。 On the other hand, fuel cells are required to be miniaturized without reducing power generation efficiency.
また、上記のセルユニットでは、シール部材が一体成型されているので、セパレータの製造において工数およびコストがかかる。この点、セパレータとは別途シール部材を製造し、燃料電池の組み立て時においてシール部材をセパレータに組み付けること検討されるが、そのような場合には、簡易かつ確実にシール材をセパレータに組み付けることが要求される。 Further, in the above cell unit, since the seal member is integrally molded, man-hours and costs are required in manufacturing the separator. In this regard, it is considered that a sealing member is manufactured separately from the separator, and that the sealing member is assembled to the separator at the time of assembling the fuel cell. In such a case, the sealing material can be simply and reliably assembled to the separator. Required.
そこで、本発明の目的は、簡易に製造することができ、発電効率を低下させることなく小型化を図ることができる燃料電池を提供することにある。 Accordingly, an object of the present invention is to provide a fuel cell that can be easily manufactured and can be reduced in size without reducing power generation efficiency.
上記した目的を達成するために、本発明の燃料電池は、電解質層、前記電解質層を挟んで対向配置される燃料側電極および酸素側電極を備える膜電極接合体と、前記燃料側電極に隣接配置され、前記膜電極接合体に対向する表面には前記燃料側電極に燃料を供給する燃料流路が形成され、前記表面に対する裏面には冷却媒体が供給される冷却媒体流路が形成されるアノード側セパレータと、前記酸素側電極に隣接配置され、前記膜電極接合体に対向する表面には前記酸素側電極に酸素を供給する酸素流路が形成され、前記表面に対する裏面には冷却媒体が供給される冷却媒体流路が形成されるカソード側セパレータと、前記燃料流路および前記酸素流路をシールするシール部材とを備え、前記アノード側セパレータおよび前記カソード側セパレータは、燃料を前記燃料流路に対して給排するための第1燃料給排口、冷却媒体を前記冷却媒体流路に対して給排するための第1冷却媒体給排口、および、酸素を前記酸素流路に対して給排するための第1酸素給排口と、それらの外側において前記シール部材を固定するために形成される第1シール固定孔とを、一辺に沿って備えるとともに、燃料を前記燃料流路に対して給排するための第2燃料給排口、冷却媒体を前記冷却媒体流路に対して給排するための第2冷却媒体給排口、および、酸素を前記酸素流路に対して給排するための第2酸素給排口と、それらの外側において前記シール部材を固定するために形成される第2シール固定孔とを、前記一辺に対向する他辺に沿って備えることを特徴としている。 In order to achieve the above-described object, a fuel cell according to the present invention includes an electrolyte layer, a membrane electrode assembly including a fuel side electrode and an oxygen side electrode arranged opposite to each other with the electrolyte layer interposed therebetween, and adjacent to the fuel side electrode. A fuel flow path for supplying fuel to the fuel side electrode is formed on the surface facing the membrane electrode assembly, and a cooling medium flow path for supplying a cooling medium is formed on the back surface with respect to the front surface. An oxygen channel for supplying oxygen to the oxygen side electrode is formed on the surface opposite to the anode side separator and the oxygen side electrode and facing the membrane electrode assembly, and a cooling medium is formed on the back surface of the surface. A cathode-side separator in which a coolant flow path to be supplied is formed; and a seal member that seals the fuel flow path and the oxygen flow path, the anode-side separator and the cathode-side separator A first fuel supply / discharge port for supplying and discharging fuel to and from the fuel flow path, a first coolant supply and discharge port for supplying and discharging cooling medium to and from the cooling medium flow path, and A first oxygen supply / exhaust port for supplying / exhausting oxygen to / from the oxygen flow path and a first seal fixing hole formed for fixing the seal member on the outside thereof along one side A second fuel supply / discharge port for supplying and discharging fuel to and from the fuel flow path, a second cooling medium supply / discharge port for supplying and discharging cooling medium to and from the cooling medium flow path, and A second oxygen supply / exhaust port for supplying / exhausting oxygen to / from the oxygen flow path and a second seal fixing hole formed for fixing the seal member outside thereof are opposed to the one side. It is characterized by providing along the other side.
このような構成によれば、アノード側セパレータおよびカソード側セパレータの一辺に沿って第1燃料給排口、第1冷却媒体給排口および第1酸素給排口が備えられ、また、その一辺に対向する他辺に沿って、第2燃料給排口、第2冷却媒体給排口および第2酸素給排口が備えられる。 According to such a configuration, the first fuel supply / discharge port, the first cooling medium supply / discharge port, and the first oxygen supply / discharge port are provided along one side of the anode-side separator and the cathode-side separator. A second fuel supply / discharge port, a second cooling medium supply / discharge port, and a second oxygen supply / discharge port are provided along the opposite side.
そのため、長手方向における一辺に第1燃料給排口および第1酸素給排口が、他辺に第2燃料給排口および第2酸素給排口が備えられるとともに、長手方向に直交する幅方向における一辺に第1冷却媒体給排口が、他辺に第2冷却媒体給排口が形成される場合などに比べ、燃料流路、酸素流路および冷却媒体流路の形成面積を大きくとることができながら、セパレータの小型化を図ることができ、その結果、発電効率を低下させることなく燃料電池の小型化を図ることができる。 Therefore, the first fuel supply / discharge port and the first oxygen supply / discharge port are provided on one side in the longitudinal direction, the second fuel supply / discharge port and the second oxygen supply / discharge port are provided on the other side, and the width direction perpendicular to the longitudinal direction is provided. As compared with the case where the first cooling medium supply / discharge port is formed on one side and the second cooling medium supply / discharge port is formed on the other side, the formation area of the fuel flow path, the oxygen flow path, and the cooling medium flow path is increased. However, it is possible to reduce the size of the separator, and as a result, it is possible to reduce the size of the fuel cell without reducing the power generation efficiency.
また、このような構成によれば、第1シール固定孔および第2シール固定孔にシール部材を固定することにより、簡易かつ確実にシール部材を取り付けることができる。 Moreover, according to such a structure, a sealing member can be simply and reliably attached by fixing a sealing member to a 1st seal fixing hole and a 2nd seal fixing hole.
また、本発明の燃料電池は、冷却媒体を前記冷却媒体流路に流入させるための冷却媒体流入部と、冷却媒体を前記冷却媒体流路から流出させるための冷却媒体流出部とを備え、前記冷却媒体流路は、前記冷却媒体流入部から拡散するように延びる第1冷却媒体流路と、前記第1冷却媒体流路に連続して直線状に延び、互いに間隔を隔てて並列配置される複数の第2冷却媒体流路と、複数の前記第2冷却媒体流路に連続して前記の冷却媒体流出部へ向かって収束するように延びる第3冷却媒体流路とを備え、前記第1冷却媒体流路および前記第3冷却媒体流路には、前記冷却媒体流入部および前記冷却媒体流出部から断続的かつ放射状に延び、冷却媒体をガイドするリブが複数形成され、複数の前記リブの間には、冷却媒体の流量を調整するための突起が形成されていることが好適である。 The fuel cell of the present invention includes a cooling medium inflow portion for allowing a cooling medium to flow into the cooling medium flow path, and a cooling medium outflow portion for allowing the cooling medium to flow out of the cooling medium flow path, The cooling medium flow path extends linearly continuously from the first cooling medium flow path extending so as to diffuse from the cooling medium inflow portion, and is arranged in parallel with a space between each other. A plurality of second cooling medium flow paths, and a third cooling medium flow path extending so as to converge toward the cooling medium outflow portion continuously from the plurality of second cooling medium flow paths, The cooling medium flow path and the third cooling medium flow path are intermittently and radially extending from the cooling medium inflow portion and the cooling medium outflow portion, and a plurality of ribs for guiding the cooling medium are formed. In the meantime, adjust the flow rate of the cooling medium It is preferable that the protrusions are formed.
このような構成では、第1冷却媒体流路が冷却媒体流入部から拡散するように延び、その第1冷却媒体流路に連続して第2冷却媒体流路が延び、さらに、その第2冷却媒体流路に連続して第3冷却媒体流路が冷却媒体流出部へ向かって収束するように延びている。 In such a configuration, the first cooling medium flow path extends so as to diffuse from the cooling medium inflow portion, and the second cooling medium flow path extends continuously from the first cooling medium flow path. The third cooling medium flow path extends continuously from the medium flow path so as to converge toward the cooling medium outflow portion.
そして、第1冷却媒体流路および第3冷却媒体流路には、冷却媒体流入部および冷却媒体流出部から断続的かつ放射状に延び、冷却媒体をガイドするリブと、冷却媒体の流量を調整する突起とが形成されている。 The first cooling medium channel and the third cooling medium channel intermittently and radially extend from the cooling medium inflow portion and the cooling medium outflow portion, and adjust the flow rate of the cooling medium. A protrusion is formed.
そのため、冷却媒体流入部から流入された冷却媒体は、第1冷却媒体流路において突起により分散されるとともにリブにより案内されて、第2冷却媒体流路に流入された後、第3冷却媒体流路において、突起により分散されるとともにリブにより案内されて、冷却媒体流出部から流出される。 Therefore, the cooling medium flowing in from the cooling medium inflow portion is dispersed by the protrusions in the first cooling medium flow path, guided by the ribs, and flows into the second cooling medium flow path, and then the third cooling medium flow In the path, the coolant is dispersed by the protrusions, guided by the ribs, and discharged from the cooling medium outlet.
その結果、冷却媒体流路に冷却媒体を均一にかつ安定して流すことができ、燃料電池の発電効率を安定させることができる。 As a result, the cooling medium can flow uniformly and stably in the cooling medium flow path, and the power generation efficiency of the fuel cell can be stabilized.
本発明の燃料電池は、簡易に製造することができ、発電効率を低下させることなく小型化を図ることができる。 The fuel cell of the present invention can be easily manufactured and can be reduced in size without reducing the power generation efficiency.
図1および図2に示すように、燃料電池1は、発電セルSと、発電セルSを挟むように設けられる1対のカバーCとを備えている。なお、燃料電池1は、通常、1対のカバーC間に複数の発電セルSが積層された燃料電池スタックとして構成されているが、図1および図2では、便宜的に、発電セルSを1つだけ示している。
As shown in FIGS. 1 and 2, the
なお、以下の説明において、燃料電池1の方向に言及するときには、図1中の方向矢印を基準とする。すなわち、発電セルSの長手方向が上下方向であり、発電セルSの厚み方向が前後方向であり、発電セルSの幅方向が左右方向(並列方向)である。また、下側が上下方向一方側であり、上側が上下方向他方側である。また、前側が前後方向一方側であり、後側が前後方向他方側である。また、右側が左右方向一方側であり、左側が左右方向他方側である。
In the following description, when referring to the direction of the
発電セルSは、膜電極接合体2と、アノード側セパレータ3と、カソード側セパレータ4と、アノード側セパレータ3およびカソード側セパレータ4に密着するシール部材8とを備えている。
The power generation cell S includes a
膜電極接合体2は、上下方向に長手の略八角形の平板形状に形成されている。膜電極接合体2は、電解質層5と、電解質層5を挟んで対向配置される燃料側電極としてのアノード電極6、および、酸素側電極としてのカソード電極7とを備えている。
The
電解質層5は、アニオン交換型の高分子電解質膜から形成されている。電解質層5の膜厚は、例えば、10〜100μmである。
The
アノード電極6は、電解質層5の後面すべてにおいて、例えば、触媒を担持した触媒担体により形成されている。なお、触媒担体を用いずに、触媒を、直接、アノード電極6として形成することもできる。アノード電極6は、例えば、10〜200μm、好ましくは、20〜100μmの厚みで形成されている。
The anode electrode 6 is formed on the entire rear surface of the
カソード電極7は、電解質層5の前面すべてにおいて、例えば、アノード電極6と同様に、触媒を担持した触媒担体により形成されている。カソード電極7は、例えば、10〜300μm、好ましくは、20〜150μmの厚みで形成されている。
The cathode electrode 7 is formed on the entire front surface of the
アノード側セパレータ3は、図1および図2に示すように、膜電極接合体2の後側に対向配置されている。アノード側セパレータ3は、膜電極接合体2よりも大きな略矩形平板形状に形成されている。
As shown in FIGS. 1 and 2, the anode-
アノード側セパレータ3は、図1〜図3に示すように、燃料を後述する燃料流路23に対して給排するための第1燃料給排口としての燃料供給口11、冷却媒体を後述する冷却媒体流路30に対して給排するための第1冷却媒体給排口としての冷却媒体供給口12、および、酸素を後述する酸素流路68に対して給排するための第1酸素給排口としての酸素排出口13と、それらの外側においてシール部材8を固定するために形成される第1シール固定孔60とを、一辺(下辺)に沿って備えている。
As shown in FIGS. 1 to 3, the anode-
また、アノード側セパレータ3は、燃料を後述する燃料流路23に対して給排するための第2燃料給排口としての燃料排出口14、冷却媒体を後述する冷却媒体流路30に対して給排するための第2冷却媒体給排口としての冷却媒体排出口15、および、酸素を後述する酸素流路68に対して給排するための第2酸素給排口としての酸素供給口16と、それらの外側においてシール部材8を固定するために形成される第2シール固定孔61とを、一辺に対向する他辺(上辺)に沿って備えている。
The anode-
燃料供給口11は、後述する燃料流路23に燃料を供給するための開口部であって、アノード側セパレータ3の右下側端部に配置されている。燃料供給口11は、略矩形状に貫通形成されている。
The
冷却媒体供給口12は、後述する冷却媒体流路30に冷却媒体を供給するための開口部であって、アノード側セパレータ3の下端部の左右方向中央に配置されている。冷却媒体供給口12は、略矩形状に貫通形成されている。
The cooling
酸素排出口13は、後述する酸素流路68から酸素を排出させるための開口部であって、アノード側セパレータ3の左下側端部に配置されている。酸素排出口13は、略矩形状に貫通形成されている。
The
第1シール固定孔60は、アノード側セパレータ3の下側において、後述するシール部材8を嵌合させることによりアノード側セパレータ3の前面(表面)に密着固定するための貫通孔であって、アノード側セパレータ3の右下側端部および左下側端部にそれぞれ1つずつ配置されている。
The first
具体的には、右下の第1シール固定孔60は、燃料供給口11よりも右側において、アノード側セパレータ3の右下端部に沿うように、略L字形状に貫通形成されている。
Specifically, the lower right first
また、左下の第1シール固定孔60は、酸素排出口13よりも左側において、アノード側セパレータ3の左下端部に沿うように、略L字形状に貫通形成されている。
The lower left first
燃料排出口14は、後述する燃料流路23から燃料を排出させるための開口部であって、アノード側セパレータ3の左上側端部に配置されている。燃料排出口14は、略矩形状に貫通形成されている。
The
冷却媒体排出口15は、後述する冷却媒体流路30から冷却媒体を排出させるための開口部であって、アノード側セパレータ3の上端部の左右方向中央に配置されている。冷却媒体排出口15は、略矩形状に貫通形成されている。
The cooling
酸素供給口16は、後述する酸素流路68に酸素を供給するための開口部であって、アノード側セパレータ3の右上側端部に配置されている。酸素供給口16は、略矩形状に貫通形成されている。
The
第2シール固定孔61は、アノード側セパレータ3の上側において、後述するシール部材8を嵌合させることによりアノード側セパレータ3の前面(表面)に密着固定するための貫通孔であって、アノード側セパレータ3の右上側端部および左上側端部にそれぞれ1つずつ配置されている。
The second
具体的には、右上の第2シール固定孔61は、酸素供給口16よりも右側において、アノード側セパレータ3の右上端部に沿うように、略L字形状に貫通形成されている。
Specifically, the second
また、左上の第2シール固定孔61は、燃料排出口14よりも左側において、アノード側セパレータ3の左上端部に沿うように、略L字形状に貫通形成されている。
The upper left second
このようなアノード側セパレータ3は、アノード電極6に隣接配置されており、膜電極接合体2に対向する表面(前面(図1参照))にはアノード電極6に燃料を供給する流路としての燃料流路23が形成され、表面に対する裏面(後面(図2参照))には、冷却媒体が供給される冷却媒体流路30が形成されている。
Such an anode-
以下において、アノード側セパレータ3の燃料流路23および冷却媒体流路30について、図3(a)および図3(b)を参照して詳述する。
Hereinafter, the
このアノード側セパレータ3の前面には、図3(a)に示すように、燃料流路23を形成するための流路形成領域としての燃料流路形成領域A1が区画されている。
As shown in FIG. 3A, a fuel flow path forming region A1 as a flow path forming region for forming the
燃料流路形成領域A1は、アノード側セパレータ3の前面の中央に配置されている。燃料流路形成領域A1は、膜電極接合体2と略同じ大きさで、略同形状、具体的には上下方向に長手の略八角形状に形成されている。燃料流路形成領域A1には、複数の第1整流リブ17と、複数の第2整流リブ18と、複数の第3整流リブ19とが形成されている。
The fuel flow path forming region A1 is disposed in the center of the front surface of the
複数の第1整流リブ17は、燃料流路形成領域A1の下端部において、互いに左右方向に間隔を隔てて並列配置されている。複数の第1整流リブ17のそれぞれは、燃料流路形成領域A1の前面から前側へ突出し、燃料流路形成領域A1の右下側端部から、上側または左上側へ向かって延びている。また、複数の第1整流リブ17は、互いに隣接する2つの第1整流リブ17の間隔が上側または左上側へ向かうに従って拡がるように、放射状に形成されている。また、複数の第1整流リブ17は、より左側の第1整流リブ17の上端部が、より右側の第1整流リブ17の上端部よりも低くなるように形成されている。複数の第1整流リブ17のそれぞれの間が、それぞれ、燃料流路23に燃料を流す複数の第1流路としての複数の第1燃料流路20である。すなわち、第1燃料流路20は、後述する燃料流入部51から放射状に延びるように形成されている。
The plurality of first rectifying ribs 17 are arranged in parallel at intervals in the left-right direction at the lower end of the fuel flow path forming region A1. Each of the plurality of first rectifying ribs 17 protrudes from the front surface of the fuel flow path forming region A1 to the front side, and extends from the lower right end of the fuel flow path forming region A1 toward the upper side or the upper left side. The plurality of first rectifying ribs 17 are formed radially so that the interval between the two first rectifying ribs 17 adjacent to each other increases toward the upper side or the upper left side. The plurality of first rectifying ribs 17 are formed such that the upper end portion of the first rectifying rib 17 on the left side is lower than the upper end portion of the first rectifying rib 17 on the right side. Between each of the plurality of first flow straightening ribs 17 is a plurality of first
複数の第2整流リブ18は、燃料流路形成領域A1の上下方向中央部において、互いに左右方向に間隔を隔てて並列配置されている。複数の第2整流リブ18のそれぞれは、燃料流路形成領域A1の前面から前側へ突出し、上下方向に沿って延びている。複数の第2整流リブ18のそれぞれの間が、それぞれ、燃料流路23に燃料を流す複数の第2流路としての複数の第2燃料流路21である。すなわち、第2燃料流路21は、第1燃料流路20に連続して直線状に延びるように形成され、互いに間隔を隔てて並列配置されている。
The plurality of
また、複数の第2整流リブ18は、複数の第1整流リブ17の上側にわずかに間隔を隔てて配置されている。複数の第1整流リブ17と複数の第2整流リブ18との間は、第1燃料流路20と第2燃料流路21とを区画する第1の境界部分B1である。第1の境界部分B1は、第2燃料流路21が延びる方向に対して傾斜するように、具体的には、左側へ向かうに従って下側へ傾斜するように延びている。
The plurality of
複数の第3整流リブ19は、燃料流路形成領域A1の上端部において、互いに左右方向に間隔を隔てて並列配置されている。複数の第3整流リブ19のそれぞれは、燃料流路形成領域A1の前面から前側へ突出し、燃料流路形成領域A1の左上側端部へ向かうように、第2整流リブ18の上端部近傍から上側または左上側へ向かって延びている。また、複数の第3整流リブ19は、互いに隣接する2つの第3整流リブ19の間隔が上側または左上側へ向かうに従って狭くなる(収束する)ように形成されている。複数の第3整流リブ19のそれぞれの間が、それぞれ、複数の第3流路としての複数の第3燃料流路22である。すなわち、第3燃料流路22は、第2燃料流路21に連続して延び、後述する燃料流出部52に向かって収束するように形成されている。また、複数の第3燃料流路22は、複数の第1燃料流路20、および、複数の第2燃料流路21とともに、膜電極接合体2に供給される燃料を流すための流路としての燃料流路23を構成する。
The plurality of third rectifying ribs 19 are arranged in parallel at intervals in the left-right direction at the upper end of the fuel flow path forming region A1. Each of the plurality of third rectifying ribs 19 protrudes from the front surface of the fuel flow path forming region A1 to the front side and from the vicinity of the upper end portion of the
また、複数の第3整流リブ19は、複数の第2整流リブ18の上側にわずかに間隔を隔てて配置されている。複数の第2整流リブ18と複数の第3整流リブ19との間は、第2燃料流路21と第3燃料流路22とを区画する第2の境界部分B2である。第2の境界部分B2は、第2燃料流路21が延びる方向に対して傾斜するように、具体的には、左側へ向かうに従って下側へ傾斜するように、第1の境界部分B1と平行に延びている。
The plurality of third rectifying ribs 19 are arranged slightly above the plurality of
また、燃料流路形成領域A1には、第1の境界部分B1、および、第2の境界部分B2において、燃料の流量を調整するための複数の突起24が形成されている。
In the fuel flow path forming region A1, a plurality of
複数の突起24は、互いに左右方向に間隔を隔てて並列配置されている。突起24は、燃料流路形成領域A1の前面から前側へ突出する略円柱形状に形成されている。また、突起24は、右側の第1燃料流路20の上端部内、および、左側の第3燃料流路22の下端部内にも形成されている。
The plurality of
具体的には、第1の境界部分B1において、後述する燃料流入部51と第2燃料流路21とが近接する領域(図3(a)の右側)には、突起24が比較的多数形成されており、また、後述する燃料流入部51と第2燃料流路21とが遠隔される領域(図3(a)の左側)には、突起24は比較的少数形成されている。
Specifically, in the first boundary portion B1, a relatively large number of
また、第2の境界部分B2において、後述する燃料流出部52と第2燃料流路21とが近接する領域(図3(a)の左側)には、突起24が比較的多数形成されており、また、後述する燃料流出部52と第2燃料流路21とが遠隔される領域(図3(a)の右側)には比較的少数形成されている。
Further, in the second boundary portion B2, a relatively large number of
つまり、詳しくは後述するように、突起24の数および位置は、燃料の流れる距離と、燃料の流れを阻害する作用の強さとが調整され、燃料流路23に燃料を均一に流すことができように設定されている。
That is, as will be described in detail later, the number and position of the
燃料流路形成領域A1の面積は、アノード側セパレータ3の表面積(左右方向長さ×上下方向長さ)に対して、例えば、40%以上、好ましくは、50%以上、例えば、80%以下である。 The area of the fuel flow path forming region A1 is, for example, 40% or more, preferably 50% or more, for example, 80% or less, with respect to the surface area of the anode-side separator 3 (length in the horizontal direction × length in the vertical direction). is there.
また、燃料流路形成領域A1の面積のうち、複数の第1整流リブ17が形成されている部分(第1の境界部分B1より下側の領域)の面積の割合は、例えば、7%以上、例えば、20%以下、好ましくは、10%以下である。 Further, the ratio of the area of the portion where the plurality of first rectifying ribs 17 are formed (region below the first boundary portion B1) in the area of the fuel flow path forming region A1 is, for example, 7% or more For example, it is 20% or less, preferably 10% or less.
燃料流路形成領域A1の面積のうち、複数の第2整流リブ18が形成されている部分(第1の境界部分B1と、第2の境界部分B2との間の領域)の面積の割合は、例えば、70%以上、好ましくは、80%以上、例えば、90%以下である。
Of the area of the fuel flow path formation region A1, the ratio of the area of the portion where the plurality of
燃料流路形成領域A1の面積のうち、複数の第3整流リブ19が形成されている部分(第2の境界部分B2より上側の領域)の面積の割合は、例えば、7%以上、例えば、20%以下、好ましくは、10%以下である。 Of the area of the fuel flow path formation region A1, the ratio of the area of the portion where the plurality of third rectifying ribs 19 are formed (region above the second boundary portion B2) is, for example, 7% or more, for example, 20% or less, preferably 10% or less.
各領域の面積の割合、および、燃料流路23(第1燃料流路20、第2燃料流路21および第3燃料流路22)の面積の割合が上記範囲であれば、燃料を均一かつ安定して燃料流路23に流すことができ、優れた発電効率を確保することができる。
If the ratio of the area of each region and the ratio of the area of the fuel flow path 23 (the first
また、このアノード側セパレータ3の後面には、図3(b)に示すように、冷却媒体流路30を形成するための流路形成領域としての冷却媒体流路形成領域A3が区画されている。
Further, as shown in FIG. 3B, a cooling medium flow path forming region A3 as a flow path forming region for forming the cooling
冷却媒体流路形成領域A3は、アノード側セパレータ3の後面の中央に配置されている。冷却媒体流路形成領域A3の中央部は、略矩形状に形成されている。また、冷却媒体流路形成領域A3の上端部は、上側に向かうに従って幅狭となるテーパ状に形成された後、さらに左右方向中央部において、上方向に突出する形状に形成されている。また、冷却媒体流路形成領域A3の下端部は、下側に向かうに従って幅狭となるテーパ状に形成された後、さらに左右方向中央部において、下方向に突出する形状に形成されている。また、冷却媒体流路形成領域A3の下端部は冷却媒体供給口12に連通しており、上端部は冷却媒体排出口15に連通している。また、冷却媒体流路形成領域A3には、冷却媒体をガイドするリブとして、複数の第4整流リブ47、複数の第5整流リブ48、および、複数の第6整流リブ49が形成されている。
The cooling medium flow path forming region A <b> 3 is disposed at the center of the rear surface of the
複数の第4整流リブ47は、冷却媒体流路形成領域A3の下部において、互いに左右方向および上下方向に間隔を隔てて並列配置されている。複数の第4整流リブ47のそれぞれは、冷却媒体流路形成領域A3の後面から後側へ突出するように形成されている。
The plurality of
具体的には、冷却媒体流路形成領域A3の下部には、上下方向に間隔を隔てて、断続的に略V字状に延びる複数の第4整流リブ47が、後述する冷却媒体流入部53から放射状に配置されている。また、冷却媒体流路形成領域A3の最下端部には、上下方向に延びる複数の第4整流リブ47が形成されている。複数の第4整流リブ47のそれぞれの間が、それぞれ、第1冷却媒体流路27である。つまり、第1冷却媒体流路27は、後述する冷却媒体流入部53から拡散するように延び、また、その第1冷却媒体流路27には、第4整流リブ47が複数形成されている。
Specifically, a plurality of
複数の第5整流リブ48は、冷却媒体流路形成領域A3の上下方向中央部において、互いに左右方向に間隔を隔てて並列配置されている。複数の第5整流リブ48のそれぞれは、冷却媒体流路形成領域A3の後面から後側へ突出し、上下方向に沿って延びている。複数の第5整流リブ48のそれぞれの間が、それぞれ、複数の第2冷却媒体流路28である。すなわち、複数の第2冷却媒体流路28は、第1冷却媒体流路27に連続して直線状に延びるように形成され、互いに間隔を隔てて並列配置されている。
The plurality of
また、複数の第5整流リブ48は、複数の第4整流リブ47の上側にわずかに間隔を隔てて配置されている。複数の第4整流リブ47と複数の第5整流リブ48との間は、第1冷却媒体流路27と第2冷却媒体流路28とを区画する第3の境界部分B3である。第3の境界部分B3は、左右方向に沿って延びている。
In addition, the plurality of
複数の第6整流リブ49は、冷却媒体流路形成領域A3の上部において、互いに左右方向および上下方向に間隔を隔てて並列配置されている。複数の第6整流リブ49のそれぞれは、冷却媒体流路形成領域A3の後面から後側へ突出するように形成されている。
The plurality of
具体的には、冷却媒体流路形成領域A3の上部には、上下方向に間隔を隔てて、断続的に略V字状に延びる複数の第6整流リブ49が、後述する冷却媒体流出部54から放射状に配置されている。また、冷却媒体流路形成領域A3の最上端部には、上下方向に延びる複数の第6整流リブ49が形成されている。すなわち、複数の第6整流リブ49は、冷却媒体流路形成領域A3の第2冷却媒体流路28から、後述する冷却媒体流出部54へ向かって収束するように、断続的かつ放射状に延びている。複数の第6整流リブ49のそれぞれの間が、それぞれ、第3冷却媒体流路29である。つまり、第3冷却媒体流路29は、複数の第2冷却媒体流路28に連続して後述する冷却媒体流出部54へ向かって収束するように延び、また、その第3冷却媒体流路29には、第6整流リブ49が複数形成されている。また、複数の第3冷却媒体流路29は、複数の第1冷却媒体流路27、および、複数の第2冷却媒体流路28とともに、冷却媒体を流す流路としての冷却媒体流路30を構成する。
Specifically, a plurality of
また、複数の第6整流リブ49は、複数の第5整流リブ48の上側にわずかに間隔を隔てて配置されている。複数の第5整流リブ48と複数の第6整流リブ49との間は、第2冷却媒体流路28と第3冷却媒体流路29とを区画する第4の境界部分B4である。第2の境界部分B4は、左右方向に沿って、第3の境界部分B3と平行に延びている。
In addition, the plurality of
また、冷却媒体流路形成領域A3には、複数の第4整流リブ47の間、および、複数の第6整流リブ49の間において、冷却媒体の流量を調整するための複数の突起55が形成されている。
Further, in the cooling medium flow path forming region A3, a plurality of
複数の突起55は、具体的には、冷却媒体流路形成領域A3の左右方向略中央部および両端部において、互いに上下方向および左右方向に間隔を隔てて並列配置されている。突起55は、冷却媒体流路形成領域A3の後面から後側へ突出する略円柱形状に形成されている。
Specifically, the plurality of
また、冷却媒体流路形成領域A3の上端部および下端部には、補強リブ74が形成されている。
Reinforcing
補強リブ74は、冷却媒体供給口12および冷却媒体排出口15に臨むように配置されている。補強リブ74は、アノード側セパレータ3の後面から後側に突出し、上下方向に沿って延びるように形成されている。このような補強リブ74は、冷却媒体流路形成領域A3の上端部および下端部を補強するとともに、冷却媒体をガイド可能としている。
The reinforcing
冷却媒体流路形成領域A3の面積は、アノード側セパレータ3の表面積(左右方向長さ×上下方向長さ)に対して、例えば、40%以上、好ましくは、50%以上、例えば、80%以下である。 The area of the cooling medium flow path forming region A3 is, for example, 40% or more, preferably 50% or more, for example, 80% or less, with respect to the surface area of the anode-side separator 3 (length in the horizontal direction × length in the vertical direction). It is.
また、冷却媒体流路形成領域A3の面積のうち、複数の第4整流リブ47が形成されている部分(第3の境界部分B3より下側の領域)の面積の割合は、例えば、10%以上、例えば、20%以下、好ましくは、15%以下である。
In addition, the ratio of the area of the portion where the plurality of
冷却媒体流路形成領域A3の面積のうち、複数の第5整流リブ48が形成されている部分(第3の境界部分B3と、第4の境界部分B4との間の領域)の面積の割合は、例えば、60%以上、好ましくは、70%以上、例えば、90%以下である。
Ratio of the area of the portion (the region between the third boundary portion B3 and the fourth boundary portion B4) where the plurality of
冷却媒体流路形成領域A3の面積のうち、複数の第6整流リブ49が形成されている部分(第4の境界部分B4より上側の領域)の面積の割合は、例えば、10%以上、例えば、20%以下、好ましくは、15%以下である。
Of the area of the cooling medium flow path forming region A3, the ratio of the area of the portion where the plurality of
各領域の面積の割合、および、冷却媒体流路30(第1冷却媒体流路27、第2冷却媒体流路28および第3冷却媒体流路29)の面積の割合が上記範囲であれば、アノード側セパレータ3の剛性を確保しつつ、冷却媒体を均一かつ安定して冷却媒体流路30に流すことができ、優れた冷却効率を確保することができる。
If the area ratio of each region and the area ratio of the cooling medium flow path 30 (the first cooling
また、アノード側セパレータ3の後面には、薄肉部50が形成されている。
A
薄肉部50は、燃料流路形成領域A1をアノード側セパレータ3の厚み方向に投影した投影面の端縁と、燃料供給口11、酸素排出口13、燃料排出口14および酸素供給口16のそれぞれをアノード側セパレータ3の厚み方向に投影した投影面の端縁との間の領域の4箇所に形成されている。
The
薄肉部50は、アノード側セパレータ3の後面側から前面側に向かって凹むように厚みが薄肉化されている。薄肉部50は、燃料供給口11、酸素排出口13、燃料排出口14および酸素供給口16のそれぞれに臨むように形成されている。
The
また、アノード側セパレータ3においては、燃料供給口11に臨む薄肉部50、および、燃料排出口14に臨む薄肉部50には、燃料供給口11および燃料排出口14により給排される燃料を通過させるための燃料用貫通孔72が形成されている。
In the anode-
具体的には、燃料供給口11に臨む薄肉部50をアノード側セパレータ3の厚み方向に投影した投影面の端縁と、燃料流路形成領域A1をアノード側セパレータ3の厚み方向に投影した投影面の端縁との境界には、燃料供給口11によって供給される燃料を通過させるための燃料用貫通孔72が貫通形成されている。
Specifically, an edge of the projection surface in which the
また、燃料排出口14に臨む薄肉部50をアノード側セパレータ3の厚み方向に投影した投影面の端縁と、燃料流路形成領域A1をアノード側セパレータ3の厚み方向に投影した投影面の端縁との境界には、燃料排出口14によって排出される燃料を通過可能とする燃料用貫通孔72が貫通形成されている。
Further, an edge of the projection surface in which the
さらに、各薄肉部50には、薄肉部50を補強するための複数の補強リブ75が形成されている。
Further, each
複数の補強リブ75は、薄肉部50において、互いに左右方向に間隔を隔てて並列配置されている。複数の補強リブ75のそれぞれは、アノード側セパレータ3の薄肉部50の後面から後側に突出し、上下方向に沿って延びるように形成されている。このような補強リブ75は、燃料供給口11に臨む薄肉部50、および、燃料排出口14に臨む薄肉部50においては、薄肉部50を補強するとともに、燃料をガイド可能としている。
The plurality of reinforcing
カソード側セパレータ4は、図1および図2に示すように、膜電極接合体2の前側に対向配置されている。カソード側セパレータ4は、アノード側セパレータ3と同様に、膜電極接合体2よりも大きな略矩形平板形状に形成されている。
As shown in FIGS. 1 and 2, the
また、カソード側セパレータ4は、図4(a)および図4(b)に示すように、アノード側セパレータ3と同様に、燃料を燃料流路23に対して給排するための第1燃料給排口としての燃料供給口31、冷却媒体を冷却媒体流路30に対して給排するための第1冷却媒体給排口としての冷却媒体供給口32、および、酸素を酸素流路68に対して給排するための第1酸素給排口としての酸素排出口33と、それらの外側においてシール部材8を固定するために形成される第1シール固定孔70とを、一辺(下辺)に沿って備えている。
Further, as shown in FIGS. 4A and 4B, the
また、カソード側セパレータ4は、アノード側セパレータ3と同様に、燃料を燃料流路23に対して給排するための第2燃料給排口としての燃料排出口34、冷却媒体を冷却媒体流路30に対して給排するための第2冷却媒体給排口としての冷却媒体排出口35、および、酸素を後述する酸素流路68に対して給排するための第2酸素給排口としての酸素供給口36と、それらの外側においてシール部材8を固定するために形成される第2シール固定孔71とを、一辺に対向する他辺(上辺)に沿って備えている。
Similarly to the anode-
燃料供給口31は、燃料流路23に燃料を供給するための開口部であって、カソード側セパレータ4の右下側端部に配置されている。燃料供給口31は、略矩形状に貫通形成されている。
The
冷却媒体供給口32は、冷却媒体流路30に冷却媒体を供給するための開口部であって、カソード側セパレータ4の下端部の左右方向中央に配置されている。冷却媒体供給口32は、略矩形状に貫通形成されている。
The cooling
酸素排出口33は、後述する酸素流路68から酸素を排出させるための開口部であって、カソード側セパレータ4の左下側端部に配置されている。酸素排出口33は、略矩形状に貫通形成されている。
The
第1シール固定孔70は、カソード側セパレータ4の下側において、後述するシール部材8を嵌合させることによりカソード側セパレータ4の後面(表面)に密着固定するための貫通孔であって、カソード側セパレータ4の右下側端部および左下側端部にそれぞれ1つずつ配置されている。
The first
具体的には、右下の第1シール固定孔70は、燃料供給口31よりも右側において、カソード側セパレータ4の右下端部に沿うように、略L字形状に貫通形成されている。 また、左下の第1シール固定孔70は、酸素排出口33よりも左側において、カソード側セパレータ4の左下端部に沿うように、略L字形状に貫通形成されている。
Specifically, the lower right first
燃料排出口34は、燃料流路23から燃料を排出させるための開口部であって、カソード側セパレータ4の左上側端部に配置されている。燃料排出口34は、略矩形状に貫通形成されている。
The
冷却媒体排出口35は、冷却媒体流路30から冷却媒体を排出させるための開口部であって、カソード側セパレータ4の上端部の左右方向中央に配置されている。冷却媒体排出口35は、略矩形状に貫通形成されている。
The cooling
酸素供給口36は、後述する酸素流路68に酸素を供給するための開口部であって、カソード側セパレータ4の右上側端部に配置されている。酸素供給口36は、略矩形状に貫通形成されている。
The
第2シール固定孔71は、カソード側セパレータ4の上側において、後述するシール部材8を嵌合させることによりカソード側セパレータ4の後面(表面)に密着固定するための貫通孔であって、カソード側セパレータ4の右上側端部および左上側端部にそれぞれ1つずつ配置されている。
The second
具体的には、右上の第2シール固定孔71は、酸素供給口36よりも右側において、カソード側セパレータ4の右上端部に沿うように、略L字形状に貫通形成されている。
Specifically, the second
また、左上の第2シール固定孔71は、燃料排出口34よりも左側において、カソード側セパレータ4の左上端部に沿うように、略L字形状に貫通形成されている。
The upper left second
このようなカソード側セパレータ4は、カソード電極7に隣接配置されており、膜電極接合体2に対向する表面(後面(図2参照))にはカソード電極7に酸素を供給する酸素流路68が形成され、表面に対する裏面(前面(図1参照))には、冷却媒体が供給される冷却媒体流路30が形成されている。
Such a cathode-
以下において、カソード側セパレータ4の酸素流路68および冷却媒体流路30について、図4(a)および図4(b)を参照して詳述する。
Hereinafter, the
このカソード側セパレータ4の後面には、図4(a)に示すように、酸素流路68を形成するための流路形成領域としての酸素流路形成領域A2が区画されている。
As shown in FIG. 4A, an oxygen channel forming region A2 as a channel forming region for forming the
酸素流路形成領域A2は、カソード側セパレータ4の後面の中央に配置されている。酸素流路形成領域A2は、アノード側セパレータ3の燃料流路形成領域A1と同様に、膜電極接合体2と略同じ大きさで、略同形状、具体的には上下方向に長手の略八角形状に形成されている。
The oxygen flow path forming region A <b> 2 is disposed at the center of the rear surface of the
酸素流路形成領域A2は、第1酸素流路形成領域A21と、その第1酸素流路形成領域A21からカソード側セパレータ4の上下方向(長手方向)両側に突出するように区画される第2酸素流路形成領域A22とを備えている。
The oxygen channel forming region A2 is divided into a first oxygen channel forming region A21 and a second oxygen channel forming region A21 so as to protrude from the first oxygen channel forming region A21 to both sides in the vertical direction (longitudinal direction) of the
第1酸素流路形成領域A21は、酸素流路形成領域A2の上端部および下端部以外の領域として、略矩形状に形成されている。具体的には、第1酸素流路形成領域A21は、上辺が下側に向かって湾曲し、下辺が上側に向かって湾曲する歪んだ矩形状に区画されている。 The first oxygen channel forming region A21 is formed in a substantially rectangular shape as a region other than the upper end and the lower end of the oxygen channel forming region A2. Specifically, the first oxygen flow path forming region A21 is partitioned into a distorted rectangular shape in which the upper side is curved toward the lower side and the lower side is curved toward the upper side.
第1酸素流路形成領域A21には、複数の第7整流リブ57が形成されている。
A plurality of
複数の第7整流リブ57は、互いに間隔を隔てて並列配置されている。複数の第7整流リブ57のそれぞれは、第1酸素流路形成領域A21の後面から後側へ突出し、第1酸素流路形成領域A21のすべてにわたって、カソード側セパレータ4の上下方向(長手方向)と直交する左右方向(幅方向)に折り返されながら、上下方向(長手方向)に延びる葛折り形状に形成されている。複数の第7整流リブ57のそれぞれの間が、それぞれ、酸素を流すための第1流路としての第1酸素流路65である。すなわち、第1酸素流路形成領域A21には、左右方向に折り返されながら、上下方向に延びる葛折り形状の第1酸素流路65が形成されている。
The plurality of
第2酸素流路形成領域A22は、酸素流路形成領域A2の上端部および下端部であって、第1酸素流路形成領域A21から上方向および下方向のそれぞれに向かって略等脚台形状に突出する領域として区画されている。 The second oxygen channel formation region A22 is an upper end portion and a lower end portion of the oxygen channel formation region A2, and has a substantially isosceles trapezoidal shape upward and downward from the first oxygen channel formation region A21. It is divided as a region that protrudes.
この第2酸素流路形成領域A22には、複数の第8整流リブ58と、酸素の圧力損失を低減する圧力損失低減部として、複数の突起39とが形成されている。
In the second oxygen flow path forming region A22, a plurality of eighth rectifying ribs 58 and a plurality of
複数の第8整流リブ58は、互いに上下方向に間隔を隔てて並列配置されている。複数の第8整流リブ58のそれぞれは、第2酸素流路形成領域A22の後面から後側へ突出し、第2酸素流路形成領域A22の左右方向両端部を除く領域(左右方向中央部)において、左右方向(幅方向)に沿って延びるように形成されている。複数の第8整流リブ58のそれぞれの間が、それぞれ、酸素を流す第2流路としての第2酸素流路66である。すなわち、第2酸素流路形成領域A22には、左右方向に沿って延びる第2酸素流路66が形成されている。
The plurality of eighth rectifying ribs 58 are arranged in parallel at intervals in the vertical direction. Each of the plurality of eighth rectifying ribs 58 protrudes rearward from the rear surface of the second oxygen flow path forming region A22 and is in a region excluding both left and right ends of the second oxygen flow path forming region A22 (right and left central portion). , And so as to extend along the left-right direction (width direction). Between each of the plurality of eighth rectifying ribs 58 is a
複数の突起39は、第2酸素流路66の左右方向(幅方向)両側に形成されている。具体的には、複数の突起39は、酸素流路形成領域A2の四隅、すなわち、左上側端部、右上側端部、左下側端部および右下側端部において、互いに間隔を隔てて配置されている。突起39は、酸素流路形成領域A2の後面から後側へ突出する略円柱形状に形成されている。また、複数の突起39の間が、第3酸素流路67である。また、第3酸素流路67は、第1酸素流路65および第2酸素流路66とともに、膜電極接合体2に供給される酸素を流すための流路としての酸素流路68を構成する。
The plurality of
酸素流路形成領域A2の面積は、カソード側セパレータ4の表面積(左右方向長さ×上下方向長さ)に対して、例えば、40%以上、好ましくは、50%以上、例えば、80%以下である。 The area of the oxygen flow path forming region A2 is, for example, 40% or more, preferably 50% or more, for example, 80% or less, with respect to the surface area of the cathode-side separator 4 (length in the horizontal direction × length in the vertical direction). is there.
また、酸素流路形成領域A2の面積のうち、第1酸素流路形成領域A21の面積の割合は、例えば、80%以上、好ましくは、90%以上、例えば、98%以下である。 Further, the ratio of the area of the first oxygen channel forming region A21 in the area of the oxygen channel forming region A2 is, for example, 80% or more, preferably 90% or more, for example, 98% or less.
また、酸素流路形成領域A2の面積のうち、第2酸素流路形成領域A22の面積(合計)の割合は、例えば、4%以上、例えば、20%以下、好ましくは、8%以下である。 Further, the ratio of the area (total) of the second oxygen channel formation region A22 in the area of the oxygen channel formation region A2 is, for example, 4% or more, for example, 20% or less, preferably 8% or less. .
各領域の面積の割合、および、酸素流路68(第1酸素流路65、第2酸素流路66および第3酸素流路67)の面積の割合が上記範囲であれば、酸素を均一かつ安定して酸素流路68に流すことができ、優れた発電効率を確保することができる。
If the area ratio of each region and the area ratio of the oxygen flow path 68 (the first
また、このカソード側セパレータ4の前面には、アノード側セパレータ3の後面と同様に、図4(b)に示すように、冷却媒体流路形成領域A3が区画されており、複数の第4整流リブ47と、複数の第5整流リブ48と、複数の第6整流リブ49とが形成されている。そして、複数の第4整流リブ47のそれぞれの間が、それぞれ、第1冷却媒体流路27とされ、複数の第5整流リブ48のそれぞれの間が、それぞれ、第2冷却媒体流路28とされ、複数の第6整流リブ49のそれぞれの間が、それぞれ、第3冷却媒体流路29とされている。また、カソード側セパレータ4の冷却媒体流路形成領域A3には、アノード側セパレータ3と同様に、複数の第4整流リブ47の間、および、複数の第6整流リブ49の間において、冷却媒体の流量を調整するための複数の突起55が形成されている。
Further, like the rear surface of the
また、冷却媒体流路形成領域A3の上端部および下端部には、補強リブ74が形成されている。
Reinforcing
補強リブ74は、冷却媒体供給口32および冷却媒体排出口35に臨むように配置されている。補強リブ74は、カソード側セパレータ4の前面から前側に突出し、上下方向に沿って延びるように形成されている。このような補強リブ74は、冷却媒体流路形成領域A3の上端部および下端部を補強するとともに、冷却媒体をガイド可能としている。
The reinforcing
これらのカソード側セパレータ4の冷却媒体流路形成領域A3については、アノード側セパレータ3と同様であるため、その詳細な説明を省略する。
Since the cooling medium flow path forming region A3 of the
また、カソード側セパレータ4の前面には、アノード側セパレータ3の後面と同様に、薄肉部50が形成されている。
In addition, a
薄肉部50は、酸素流路形成領域A2をカソード側セパレータ4の厚み方向に投影した投影面の端縁と、燃料供給口31、酸素排出口33、燃料排出口34および酸素供給口36のそれぞれをカソード側セパレータ4の厚み方向に投影した投影面の端縁との間の領域の4箇所に形成されている。
The
薄肉部50は、カソード側セパレータ4の前面側から後面側に向かって凹むように厚みが薄肉化されている。薄肉部50は、燃料供給口31、酸素排出口33、燃料排出口34および酸素供給口36のそれぞれに臨むように形成されている。
The
また、カソード側セパレータ4においては、酸素排出口33に臨む薄肉部50、および、酸素供給口36に臨む薄肉部50には、酸素排出口33および酸素供給口36により給排される酸素を通過させるための酸素用貫通孔73が形成されている。
Further, in the
具体的には、酸素排出口33に臨む薄肉部50をカソード側セパレータ4の厚み方向に投影した投影面の端縁と、酸素流路形成領域A2をカソード側セパレータ4の厚み方向に投影した投影面の端縁との境界には、酸素排出口33によって排出される酸素を通過させるための酸素用貫通孔73が貫通形成されている。
Specifically, an edge of the projection surface in which the
また、酸素供給口36に臨む薄肉部50をカソード側セパレータ4の厚み方向に投影した投影面の端縁と、酸素流路形成領域A2をカソード側セパレータ4の厚み方向に投影した投影面の端縁との境界には、酸素供給口36によって供給される酸素を通過させるための酸素用貫通孔73が貫通形成されている。
Moreover, the edge of the projection surface which projected the
さらに、各薄肉部50には、アノード側セパレータ3と同様に、薄肉部50を補強するための複数の補強リブ75が形成されている。
Further, a plurality of reinforcing
複数の補強リブ75は、薄肉部50において、互いに左右方向に間隔を隔てて並列配置されている。複数の補強リブ75のそれぞれは、カソード側セパレータ4の薄肉部50の前面から前側に突出し、上下方向に沿って延びるように形成されている。このような補強リブ75は、酸素排出口33に臨む薄肉部50、および、酸素供給口36に臨む薄肉部50においては、薄肉部50を補強するとともに、酸素をガイド可能としている。
The plurality of reinforcing
シール部材8は、柔軟性を有する樹脂などから形成されており、アノード側セパレータ3およびカソード側セパレータ4において、燃料流路23、冷却媒体流路30および酸素流路68をそれぞれシールしている。
The seal member 8 is formed of a flexible resin or the like, and seals the
具体的には、シール部材8は、図1および図2に示すように、アノード側セパレータ3の前面、および、カソード側セパレータ4の後面のそれぞれにおいて、燃料供給口11、31と、冷却媒体供給口12、32と、酸素排出口13、33と、燃料排出口14、34と、冷却媒体排出口15、35と、酸素供給口16、36とを、それぞれ隔てるように設けられている。
Specifically, as shown in FIGS. 1 and 2, the seal member 8 includes
また、このシール部材8は、第1シール固定孔60、70と、第2シール固定孔61、71とに嵌合可能な凸部69を有している。そして、凸部69が第1シール固定孔60、70と第2シール固定孔61、71とに嵌合されることにより、アノード側セパレータ3およびカソード側セパレータ4のそれぞれに、密着固定されている。
Further, the seal member 8 has a
なお、このようなシール部材8は、詳しくは後述するが、燃料供給口11および燃料排出口14による燃料流路23への燃料の給排を許容し、また、酸素排出口13および酸素供給口16による酸素流路68への酸素の給排を許容する。
Although such a seal member 8 will be described later in detail, the
1対のカバーCは、アノード側セパレータ3やカソード側セパレータ4と同じ大きさの略矩形平板形状に形成されている。また、前側のカバーCには、燃料供給部41、冷却媒体供給部42、酸素排出部43、燃料排出部44、冷却媒体排出部45および酸素供給部46が形成されている。
The pair of covers C is formed in a substantially rectangular flat plate shape having the same size as the
燃料供給部41は、発電セルSに燃料を供給するために、前側のカバーCの右下側端部に配置されている。燃料供給部41は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。 The fuel supply unit 41 is disposed at the lower right end of the front cover C in order to supply fuel to the power generation cell S. The fuel supply unit 41 is formed in a substantially cylindrical shape so as to penetrate the front cover C forward and backward.
冷却媒体供給部42は、発電セルSに冷却媒体を供給するために、前側のカバーCの下端部の左右方向中央に配置されている。冷却媒体供給部42は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。
In order to supply the cooling medium to the power generation cell S, the cooling
酸素排出部43は、発電セルSから酸素を排出させるために、前側のカバーCの左下側端部に配置されている。酸素排出部43は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。
In order to discharge oxygen from the power generation cell S, the
燃料排出部44は、発電セルSから燃料を排出させるために、前側のカバーCの左上側端部に配置されている。燃料排出部44は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。
The
冷却媒体排出部45は、発電セルSから冷却媒体を排出させるために、前側のカバーCの上端部の左右方向中央に配置されている。冷却媒体排出部45は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。
In order to discharge the cooling medium from the power generation cell S, the cooling
酸素供給部46は、発電セルSに酸素を供給するために、前側のカバーCの右上側端部に配置されている。酸素供給部46は、前側のカバーCを前後に貫通するように、略円筒形状に形成されている。
The
なお、後側のカバーCとアノード側セパレータ3との間には、図示しないシール部材が介在されている。後側のカバーCとアノード側セパレータ3との間のシール部材(図示せず)は、少なくとも、燃料供給口11、酸素排出口13、燃料排出口14および酸素供給口16を囲むように設けられ、冷却媒体供給口12および冷却媒体排出口15による冷却媒体流路30への冷却媒体の通過を許容する。
A seal member (not shown) is interposed between the rear cover C and the
また、カソード側セパレータ4と前側のカバーCとの間にも、図示しないシール部材が介在されている。なお、カソード側セパレータ4と前側のカバーCとの間のシール部材(図示せず)は、少なくとも、燃料供給口31、酸素排出口33、燃料排出口34および酸素供給口36を囲むように設けられ、冷却媒体供給口32および冷却媒体排出口35による冷却媒体流路30への冷却媒体の通過を許容する。
A seal member (not shown) is also interposed between the
また、この燃料電池1は、さらに、膜電極接合体2およびアノード側セパレータ3の間と、膜電極接合体2およびカソード側セパレータ4の間とにおいて、図示しない拡散層が備えられており、燃料および酸素が、拡散層を介して膜電極接合体2に供給されるように構成されている。
The
また、この燃料電池1には、さらに、導電性材料によって形成される図示しない集電板が備えられており、集電板(図示せず)に備えられた端子から燃料電池1で発生した起電力を外部に取り出すことができるように構成されている。
Further, the
次いで、燃料電池1における発電について説明する。
Next, power generation in the
この燃料電池1においては、図1に示すように、燃料供給部41に燃料が供給され、酸素供給部46に酸素(例えば、空気)が供給され、冷却媒体供給部42に冷却媒体(例えば、水)が供給される。
In this
燃料としては、含水素液体燃料が挙げられる。 An example of the fuel is a hydrogen-containing liquid fuel.
含水素液体燃料は、分子中に水素原子を含有する液体燃料であって、例えば、アルコール類、ヒドラジン類などが挙げられ、好ましくは、ヒドラジン類が挙げられる。 The hydrogen-containing liquid fuel is a liquid fuel containing hydrogen atoms in the molecule, and examples thereof include alcohols and hydrazines, and preferably hydrazines.
ヒドラジン類として、具体的には、例えば、ヒドラジン(NH2NH2)、水加ヒドラジン(NH2NH2・H2O)、炭酸ヒドラジン((NH2NH2)2CO2)、塩酸ヒドラジン(NH2NH2・HCl)、硫酸ヒドラジン(NH2NH2・H2SO4)、モノメチルヒドラジン(CH3NHNH2)、ジメチルヒドラジン((CH3)2NNH2、CH3NHNHCH3)、カルボンヒドラジド((NHNH2)2CO)などが挙げられる。上記例示の燃料は、単独または2種類以上組み合わせて用いることができる。
Specific examples of hydrazines include hydrazine (NH 2 NH 2 ), hydrated hydrazine (NH 2 NH 2 .H 2 O), hydrazine carbonate ((NH 2 NH 2 ) 2 CO 2 ), hydrazine hydrochloride ( NH 2 NH 2 · HCl), hydrazine sulfate (NH 2 NH 2 · H 2 SO 4), monomethyl
上記した燃料化合物のうち、炭素を含まない化合物、すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジンなどは、COおよびCO2の生成がなく、触媒の被毒が生じないことから、耐久性の向上を図ることができ、実質的なゼロエミッションを実現することができる。 Among the above fuel compounds, compounds that do not contain carbon, that is, hydrazine, hydrated hydrazine, hydrazine sulfate, etc., do not generate CO and CO 2 , and do not cause catalyst poisoning. Can be achieved, and substantially zero emission can be realized.
また、上記例示の燃料としては、上記の燃料化合物をそのまま用いてもよいが、上記例示の燃料化合物を、例えば、水および/またはアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコールなど)などの溶液として用いることができる。この場合、溶液中の燃料化合物の濃度は、燃料化合物の種類によっても異なるが、例えば、1〜90質量%、好ましくは、1〜30質量%である。 Further, as the above exemplified fuel, the above fuel compound may be used as it is. However, the above exemplified fuel compound may be water and / or alcohol (for example, lower alcohol such as methanol, ethanol, propanol, isopropanol, etc.) ) And the like. In this case, the concentration of the fuel compound in the solution varies depending on the type of the fuel compound, but is, for example, 1 to 90% by mass, preferably 1 to 30% by mass.
さらに、燃料は、上記した燃料化合物をガス(例えば、蒸気)として用いることができる。 Further, as the fuel, the above-described fuel compound can be used as a gas (for example, vapor).
燃料供給部41に供給された燃料は、カソード側セパレータ4の燃料供給口31を通過してアノード側セパレータ3の燃料供給口11に供給され、その後、燃料流路形成領域A1の右下側端部に供給される。
The fuel supplied to the fuel supply unit 41 passes through the
具体的には、燃料供給口11からアノード側セパレータ3の後面(図3(b)参照)に供給された燃料は、燃料供給口11に臨む薄肉部50の補強リブ75に案内されて、燃料用貫通孔72に供給される。
Specifically, the fuel supplied from the
そして、燃料用貫通孔72を通過した燃料は、アノード側セパレータ3の前面(図3(a)参照)の燃料流路形成領域A1の右下側端部に供給される。すなわち、燃料流路形成領域A1の右下側端部が、燃料を燃料流路23に流入させるための流入部としての燃料流入部51である。燃料流入部51は、複数の第2燃料流路21の並列方向における中央部分よりも一方側(右側)に配置されている。
The fuel that has passed through the fuel through-
燃料流路形成領域A1の右下側端部に供給された燃料は、複数の第1燃料流路20内を上側および左上側へ流れて、第1の境界部分B1において一旦滞留された後、複数の第2燃料流路21に供給される。
The fuel supplied to the lower right end of the fuel flow path formation region A1 flows in the plurality of first
このとき、右側の第1燃料流路20内には突起24が設けられているので、右側の第1燃料流路20における燃料の流量を制限して、より左側の第2燃料流路21に確実に燃料を分配することができる。
At this time, since the
また、第1の境界部分B1において、突起24は、燃料流入部51に近接するに従って、その数が増加している。
In the first boundary portion B1, the number of
そのため、燃料流入部51と第2燃料流路21とが近接する領域(右側)では、燃料が第1燃料流路20内を流れる距離は短い一方、突起24が比較的多数形成されており、燃料の流れを阻害する作用が強くなっている。これに対して、燃料流入部51と第2燃料流路21とが遠隔される領域(左側)では、燃料が第1燃料流路20内を流れる距離は長いが、突起24が比較的少数形成されており、燃料の流れを阻害する作用が弱くなっている。
Therefore, in the region (right side) where the
つまり、第1燃料流路20内において、燃料の流れる距離が短い領域では、燃料の流れが強く阻害され、一方、燃料の流れる距離が長い領域では、燃料の流れを阻害する作用が弱くなっている。
In other words, in the first
このように、燃料の流れる距離と、その流れを阻害する作用の強さとが調整されることにより、燃料流路形成領域A1の右下側端部から複数の第1燃料流路20に供給された燃料は、複数の第2燃料流路21のそれぞれに均一に分配される。
Thus, the fuel flow distance and the strength of the action that inhibits the flow are adjusted, so that the fuel is supplied from the lower right end of the fuel flow path formation region A1 to the plurality of first
そして、複数の第2燃料流路21に供給された燃料は、複数の第2燃料流路21内を上側へ流れて、第2の境界部分B2において一旦滞留された後、複数の第3燃料流路22に供給される。
The fuel supplied to the plurality of
複数の第3燃料流路22に供給された燃料は、複数の第3燃料流路22内を上側および左上側へ流れて、燃料流路形成領域A1の左上側端部から燃料排出口14に排出される。
The fuel supplied to the plurality of third
具体的には、燃料流路形成領域A1の左上側端部に到達した燃料は、燃料用貫通孔72に供給され、その燃料用貫通孔72を通過し、アノード側セパレータ3の後面(図3(b)参照)に供給される。そして、燃料排出口14に臨む薄肉部50の補強リブ75に案内されて、燃料排出口14に排出される。すなわち、燃料流路形成領域A1の左上側端部が、燃料を燃料流路23から流出させるための流出部としての燃料流出部52である。燃料流出部52は、複数の第2燃料流路21の並列方向における中央部分よりも他方側(左側)に配置されている。
Specifically, the fuel that has reached the upper left end of the fuel flow path forming region A1 is supplied to the fuel through
このとき、左側の第3燃料流路22内には突起24が設けられているので、左側の第3燃料流路22における燃料の流量を制限して、より右側の第2燃料流路21からも確実に燃料を排出することができる。これにより、複数の第2燃料流路21における燃料の流量は、均一に調整される。
At this time, since the
また、第2の境界部分B2において、突起24は、燃料流出部52に近接するに従って、その数が増加している。
Further, in the second boundary portion B2, the number of the
そのため、燃料流出部52と第2燃料流路21とが近接する領域(左側)では、燃料が第3燃料流路22内を流れる距離は短い一方、突起24が比較的多数形成されており、燃料の流れを阻害する作用が強くなっている。これに対して、燃料流出部52と第2燃料流路21とが遠隔される領域(右側)では、燃料が第3燃料流路22内を流れる距離は長いが、突起24が比較的少数形成されており、燃料の流れを阻害する作用が弱くなっている。
Therefore, in the region (left side) where the
つまり、第3燃料流路22内において、燃料の流れる距離が短い領域では、燃料の流れが強く阻害され、一方、燃料の流れる距離が長い領域では、燃料の流れを阻害する作用が弱くなっている。
That is, in the third
このように、燃料の流れる距離と、その流れを阻害する作用の強さとが調整されることにより、複数の第2燃料流路21から排出された燃料は、複数の第3燃料流路22のそれぞれに均一に分配される。
As described above, the fuel flow distance and the strength of the action that inhibits the flow are adjusted, so that the fuel discharged from the plurality of
そして、燃料排出口14に排出された燃料は、カソード側セパレータ4の燃料排出口34を通過して燃料排出部44から排出される。
The fuel discharged to the
また、酸素供給部46に供給された酸素は、カソード側セパレータ4の前面(図4(b)参照)において、酸素供給部46に臨む薄肉部50の補強リブ75に案内されて、酸素用貫通孔73に供給される。なお、酸素の一部は、酸素用貫通孔73に供給されることなく、カソード側セパレータ4の酸素供給口36を通過する。
The oxygen supplied to the
そして、酸素用貫通孔73を通過した酸素は、カソード側セパレータ4の後面(図4(a)参照)の酸素流路形成領域A2の右上側端部に供給される。すなわち、酸素流路形成領域A2の右上側端部が、酸素を酸素流路68に流入させるための流入部としての酸素流入部63である。
The oxygen that has passed through the oxygen through
酸素流路形成領域A2の右上側端部に供給された酸素は、右上側の第3酸素流路67を下側へ流れ、複数の第1酸素流路65の右上側に供給される。
Oxygen supplied to the upper right end of the oxygen flow path formation region A2 flows downward through the third
また、これとともに、酸素流路形成領域A2の右上側端部に供給された酸素は、右上側の第3酸素流路67を左側へ流れ、複数の第2酸素流路66の内を左側へ流れて、左上側の第3酸素流路67を下側へ流れ、複数の第1酸素流路65の左上側に供給される。
At the same time, the oxygen supplied to the upper right end of the oxygen flow path forming region A2 flows to the left in the third
このとき、右上側および左上側の第3酸素流路67内には突起39が設けられているので、酸素の圧力損失を低減して、効率的に酸素を流すことができる。
At this time, since the
そして、複数の第1酸素流路65に供給された酸素は、複数の第1酸素流路65内を、左右方向に折り返されながら、上下方向に延びる葛折り状に流れて、左下側および右下側の複数の第3酸素流路67に供給される。
Then, the oxygen supplied to the plurality of
左下側の複数の第3酸素流路67に供給された酸素は、複数の第3酸素流路67内を下側へ流れて、酸素流路形成領域A2の左下側端部から酸素排出口33に排出される。
Oxygen supplied to the plurality of
また、右下側の複数の第3酸素流路67に供給された酸素は、右下側の第3酸素流路67を左側へ流れ、複数の第2酸素流路66の内を左側へ流れて、左下側の第3酸素流路67を下側へ流れて、酸素流路形成領域A2の左下側端部から酸素排出口33に排出される。
The oxygen supplied to the plurality of
具体的には、酸素流路形成領域A2の左下側端部に到達した酸素は、酸素用貫通孔73に供給され、その酸素用貫通孔73を通過し、カソード側セパレータ4の前面(図4(b)参照)に供給される。そして、酸素排出口33に臨む薄肉部50の補強リブ75に案内されて、酸素排出口33に排出される。すなわち、酸素流路形成領域A2の左下側端部が、酸素を酸素流路68から流出させるための流出部としての酸素流出部64である。
Specifically, the oxygen that has reached the lower left end of the oxygen flow path forming region A2 is supplied to the oxygen through
このとき、左下側および右下側の第3酸素流路67内には突起39が設けられているので、酸素の圧力損失を低減して、効率的に酸素を流すことができる。
At this time, since the
酸素排出口33に排出された酸素は、酸素排出部43から排出される。
The oxygen discharged to the
そして、上記したように燃料流路23内を流れる燃料は、図示しない拡散層を介してアノード電極6に供給される。また、上記したように酸素流路68内を流れる酸素は、図示しない拡散層を介してカソード電極7に供給される。
As described above, the fuel flowing in the
すると、アノード電極6においては、カソード電極7で生成し、電解質層5を通過した水酸化物イオン(OH−)と、燃料とが反応して、電子(e−)と水(H2O)とが生成する。なお、カソード電極7における水酸化物イオン(OH−)の発生については、後述する。
Then, in the anode electrode 6, the hydroxide ions (OH − ) generated at the cathode electrode 7 and passed through the
生成した電子(e−)は、アノード側セパレータ3から外部回路(図示せず)を介してカソード側セパレータ4に移動され、カソード電極7へ供給される。また、生成した水(H2O)は、電解質層5をアノード電極6からカソード電極7へ移動する。
The generated electrons (e − ) are moved from the
そして、カソード電極7において、電子(e−)と、水(H2O)と、酸素(O2)とが反応して、水酸化物イオン(OH−)を生成する。 In the cathode electrode 7, electrons (e − ), water (H 2 O), and oxygen (O 2 ) react to generate hydroxide ions (OH − ).
生成した水酸化物イオン(OH−)は、アニオン交換膜からなる電解質層5を、カソード電極7からアノード電極6へ移動する。
The generated hydroxide ions (OH − ) move from the cathode electrode 7 to the anode electrode 6 through the
このようなアノード電極6およびカソード電極7における電気化学的反応によって、起電力が生じ、発電が行われる。 An electromotive force is generated by the electrochemical reaction in the anode electrode 6 and the cathode electrode 7 and power is generated.
なお、この燃料電池1の運転条件は、特に限定されないが、アノード電極6側の加圧は、例えば、200kPa以下、好ましくは、100kPa以下であり、カソード電極7側の加圧は、例えば、200kPa以下、好ましくは、100kPa以下である。
Although the operating conditions of the
また、冷却媒体供給部42に供給された冷却媒体は、カソード側セパレータ4の前面(図4(b)参照)において、補強リブ74に案内されて、冷却媒体流路形成領域A3の左右方向中央下端部に供給される。
In addition, the cooling medium supplied to the cooling
また、冷却媒体は、カソード側セパレータ4の冷却媒体供給口32を通過して、アノード側セパレータ3の冷却媒体供給口12に供給され、アノード側セパレータ3の後面(図3(b)参照)において、補強リブ74に案内されて、冷却媒体流路形成領域A3の左右方向中央下端部に供給される。すなわち、冷却媒体流路形成領域A3の下端部が、冷却媒体を冷却媒体流路30に流入させるための流入部としての冷却媒体流入部53である。
Further, the cooling medium passes through the cooling
冷却媒体流路形成領域A3の下端部に供給された冷却媒体は、複数の突起55により流量調整されながら複数の第4整流リブ47に案内され、第1冷却媒体流路27内を、冷却媒体流入部53から放射状に、上側、左上側および右上側へ流れて、複数の第2冷却媒体流路28に供給される。
The cooling medium supplied to the lower end portion of the cooling medium flow path forming region A3 is guided to the plurality of
そして、複数の第2冷却媒体流路28に供給された冷却媒体は、複数の第5整流リブ49に案内され、複数の第2冷却媒体流路28内を上側へ流れて、第3冷却媒体流路29に供給される。
The cooling medium supplied to the plurality of second cooling
第3冷却媒体流路29に供給された冷却媒体は、複数の突起55により流量調整されながら複数の第6整流リブ48に案内され、第3冷却媒体流路29内を上側に流れるとともに、左右方向中央部に向かって収束するように流れて、冷却媒体流路形成領域A3の上端部から冷却媒体排出口15、35に排出される。すなわち、冷却媒体流路形成領域A3の上端部が、冷却媒体を冷却媒体流路30から流出させるための流出部としての冷却媒体流出部54である。
The cooling medium supplied to the third cooling
そして、このように冷却媒体流路30に冷却媒体が供給されることにより、発電セルSが冷却される。
The power generation cell S is cooled by supplying the cooling medium to the cooling
なお、発電セルSの温度は、例えば、−30〜120℃、好ましくは、20〜80℃に調整される。 The temperature of the power generation cell S is adjusted to, for example, -30 to 120 ° C, preferably 20 to 80 ° C.
このアノード側セパレータ3によれば、図3(a)に示すように、第1燃料流路20は、燃料流入部51から放射状に延びている。
According to this
そのため、燃料流入部51から燃料流路23に流入した燃料は、複数の第1燃料流路20によって、燃料流入部51から放射状に案内されて、複数の第2燃料流路21に流入される。
Therefore, the fuel flowing into the
つまり、燃料は、複数の第1燃料流路20によって、効率よく複数の第2燃料流路21に均一に分散される。
In other words, the fuel is efficiently and uniformly distributed to the plurality of
また、複数の第3燃料流路22は、燃料流出部52へ向かって収束するように延びている。
Further, the plurality of third
そのため、第2燃料流路21から流出した燃料を、効率よく、燃料流出部52へ収束させることができる。
Therefore, the fuel that has flowed out of the second
すなわち、このアノード側セパレータ3によれば、燃料を第1燃料流路20、第2燃料流路21および第3燃料流路22に効率良く流すことができ、その結果、燃料電池1の大型化を抑制しながら、燃料電池1の発電効率の増大を図ることができる。
That is, according to the
また、このアノード側セパレータ3によれば、図3(a)に示すように、第1の境界部分B1および第2の境界部分B2が第2燃料流路21に対して傾斜しているので、複数の第1燃料流路20、および、複数の第3燃料流路22が形成される部分の面積を小さくして、その分、複数の第2燃料流路21が形成される面積を大きくすることができる。
Further, according to the anode-
その結果、燃料電池1の大型化を抑制しながら、燃料電池1の発電効率の増大を図ることができる。
As a result, it is possible to increase the power generation efficiency of the
また、このアノード側セパレータ3によれば、第1の境界部分B1および第2の境界部分B2が第2燃料流路21に対して傾斜しているので、第1の境界部分B1および第2の境界部分B2において、燃料を一旦滞留させることができる。
Further, according to the anode-
そのため、複数の第2燃料流路21において、燃料の流速を均一化することができる。
Therefore, the fuel flow rate can be made uniform in the plurality of second
しかも、第1の境界部分B1および第2の境界部分B2が互いに平行に延びているので、複数の第2燃料流路21の長さを均一に設定することができる。
Moreover, since the first boundary portion B1 and the second boundary portion B2 extend in parallel with each other, the lengths of the plurality of second
そのため、複数の第2燃料流路21において、燃料を、略等しい流速で、略等しい距離流すことができる。
Therefore, in the plurality of second
その結果、燃料電池1の発電効率を安定させることができる。
As a result, the power generation efficiency of the
また、このアノード側セパレータ3によれば、図3(a)に示すように、第1の境界部分B1、および、第2の境界部分B2に、燃料の流量を調整するための突起24が形成されている。
Further, according to the anode-
そのため、突起24により、複数の第2燃料流路21のそれぞれに流入する燃料の流量、および、複数の第2燃料流路21のそれぞれから流出する燃料の流量を、より均一化することができる。
Therefore, the
その結果、燃料電池1の発電効率をより安定させることができる。
As a result, the power generation efficiency of the
また、このアノード側セパレータ3によれば、図3(a)に示すように、燃料流入部51が、燃料流路形成領域A1の右下側端部に配置され、燃料流出部52が、燃料流路形成領域A1の左上側端部に配置されている。
Further, according to this
そのため、燃料流入部51と燃料流出部52との距離をより大きく設定することができ、燃料流入部51と燃料流出部52との間において、燃料流路23をより長く確保することができる。
Therefore, the distance between the
その結果、燃料電池1の大型化を抑制しながら、燃料電池1の発電効率の増大をより図ることができる。
As a result, it is possible to further increase the power generation efficiency of the
また、このカソード側セパレータ4によれば、図4(a)に示すように、酸素を流すための酸素流路68が形成される酸素流路形成領域A2が、葛折り形状の第1酸素流路65が形成される第1酸素流路形成領域A21と、第2酸素流路66および突起39が形成される第2酸素流路形成領域A22とを備えている。
Further, according to this
そのため、カソード側セパレータ4が第1酸素流路形成領域A21のみを備える場合に比べ、より多くの酸素を酸素流路68(第1酸素流路65および第2酸素流路66)に流すことができる。
Therefore, more oxygen can flow through the oxygen channel 68 (the
また、このカソード側セパレータ4によれば、図4(a)に示すように、第2酸素流路形成領域A22には、第2酸素流路66の左右方向(幅方向)両側に突起39が形成されるため、優れた効率で酸素流路68に酸素を流すことができる。
Further, according to the
すなわち、このような構成によれば、酸素を酸素流路68に効率良く流すことができ、その結果、燃料電池1の大型化を抑制しながら、燃料電池1の発電効率の増大を図ることができる。
That is, according to such a configuration, oxygen can be efficiently flowed into the
また、このような燃料電池1によれば、図1および図2に示すように、アノード側セパレータ3およびカソード側セパレータ4の一辺(下辺)に沿って燃料供給口11、31、冷却媒体供給口12、32および酸素排出口13、33が備えられ、また、その一辺に対向する他辺(上辺)に沿って、燃料排出口14、34、冷却媒体排出口15、35および酸素供給口16、36が備えられる。
Further, according to such a
そのため、長手方向における一辺(下辺)に燃料供給口11、31および酸素排出口13、33が、他辺(上辺)に燃料排出口14、34および酸素供給口16、36が備えられるとともに、長手方向に直交する幅方向における一辺に冷却媒体供給口12、32が、他辺に冷却媒体排出口15、35が形成される場合などに比べ、燃料流路31、酸素流路68および冷却媒体流路30の形成面積を大きくとることができながら、アノード側セパレータ3およびカソード側セパレータ4の小型化を図ることができ、その結果、発電効率を低下させることなく燃料電池1の小型化を図ることができる。
Therefore, the
また、このような燃料電池1によれば、第1シール固定孔60、70および第2シール固定孔61、71にシール部材8を固定することにより、簡易かつ確実にシール部材8を取り付けることができる。
Further, according to such a
また、このような燃料電池1では、図3(b)および図4(b)に示すように、第1冷却媒体流路27が冷却媒体流入部53から拡散するように延び、その第1冷却媒体流路27に連続して第2冷却媒体流路28が延び、さらに、その第2冷却媒体流路28に連続して第3冷却媒体流路29が冷却媒体流出部54へ向かって収束するように延びている。
Further, in such a
そして、第1冷却媒体流路27および第3冷却媒体流路29には、冷却媒体流入部53および冷却媒体流出部54から断続的かつ放射状に延び、冷却媒体をガイドする第4整流リブ47および第6整流リブ49と、冷却媒体の流量を調整する突起55とが形成されている。
The first cooling
そのため、冷却媒体流入部53から流入された冷却媒体は、第1冷却媒体流路27において突起55により分散されるとともに第4整流リブ47により案内されて、第2冷却媒体流路28に流入された後、第3冷却媒体流路29において、突起55により分散されるとともに第6整流リブ49により案内されて、冷却媒体流出部54から流出される。
Therefore, the cooling medium flowing in from the cooling
その結果、冷却媒体流路30に冷却媒体を均一にかつ安定して流すことができ、燃料電池1の発電効率を安定させることができる。
As a result, the cooling medium can flow uniformly and stably in the cooling
また、上記した説明では、第1燃料給排口を燃料供給口11、31とし、第2燃料給排口を燃料排出口14、34としたが、例えば、第1燃料給排口を燃料排出口14、34とし、第2燃料給排口を燃料供給口11、31としてもよい。また、上記した説明では、第1冷却媒体給排口を冷却媒体供給口12、32とし、第2冷却媒体給排口を冷却媒体排出口15、35としたが、例えば、第1冷却媒体給排口を冷却媒体排出口15、35とし、第2冷却媒体給排口を冷却媒体供給口12、32としてもよい。また、上記した説明では、第1酸素給排口を酸素排出口13、33とし、第2酸素給排口を酸素供給口16、36としたが、例えば、第1酸素給排口を酸素供給口16、36とし、第2酸素給排口を酸素排出口13、33としてもよい。
In the above description, the first fuel supply / discharge port is the
さらに、上記した説明では、下辺に沿って、燃料供給口11、31、冷却媒体供給口12、32および酸素排出口13、33を順次形成し、また、上辺に沿って、燃料排出口14、34、冷却媒体排出口15、35および酸素供給口16、36を順次形成したが、これらの順序は上記に限定されず、任意の順序で配置することができる。
Further, in the above description, the
1 燃料電池
2 膜電極接合体
3 アノード側セパレータ
4 カソード側セパレータ
8 シール部材
11 燃料供給口
12 冷却媒体供給口
13 酸素排出口
14 燃料排出口
15 冷却媒体排出口
16 酸素供給口
23 燃料流路
30 冷却媒体流路
31 燃料供給口
32 冷却媒体供給口
33 酸素排出口
34 燃料排出口
35 冷却媒体排出口
36 酸素供給口
68 酸素流路
70 第1シール固定孔
71 第2シール固定孔
DESCRIPTION OF
Claims (2)
前記燃料側電極に隣接配置され、前記膜電極接合体に対向する表面には前記燃料側電極に燃料を供給する燃料流路が形成され、前記表面に対する裏面には冷却媒体が供給される冷却媒体流路が形成されるアノード側セパレータと、
前記酸素側電極に隣接配置され、前記膜電極接合体に対向する表面には前記酸素側電極に酸素を供給する酸素流路が形成され、前記表面に対する裏面には冷却媒体が供給される冷却媒体流路が形成されるカソード側セパレータと、
前記燃料流路および前記酸素流路をシールするシール部材とを備え、
前記アノード側セパレータおよび前記カソード側セパレータは、
燃料を前記燃料流路に対して給排するための第1燃料給排口、
冷却媒体を前記冷却媒体流路に対して給排するための第1冷却媒体給排口、および、
酸素を前記酸素流路に対して給排するための第1酸素給排口と、
それらの外側において前記シール部材を固定するために形成される第1シール固定孔とを、一辺に沿って備えるとともに、
燃料を前記燃料流路に対して給排するための第2燃料給排口、
冷却媒体を前記冷却媒体流路に対して給排するための第2冷却媒体給排口、および、
酸素を前記酸素流路に対して給排するための第2酸素給排口と、
それらの外側において前記シール部材を固定するために形成される第2シール固定孔とを、前記一辺に対向する他辺に沿って備える
ことを特徴とする、燃料電池。 A membrane electrode assembly comprising an electrolyte layer, a fuel-side electrode and an oxygen-side electrode disposed to face each other across the electrolyte layer;
A cooling medium that is arranged adjacent to the fuel side electrode and that supplies fuel to the fuel side electrode is formed on the surface facing the membrane electrode assembly, and a cooling medium is supplied to the back surface of the surface An anode separator in which a flow path is formed;
A cooling medium that is disposed adjacent to the oxygen side electrode and that has an oxygen flow path for supplying oxygen to the oxygen side electrode is formed on the surface facing the membrane electrode assembly, and a cooling medium is supplied to the back surface of the surface A cathode-side separator in which a flow path is formed;
A seal member for sealing the fuel flow path and the oxygen flow path,
The anode side separator and the cathode side separator are:
A first fuel supply / discharge port for supplying and discharging fuel to and from the fuel flow path;
A first cooling medium supply / discharge port for supplying and discharging the cooling medium to and from the cooling medium flow path; and
A first oxygen supply / exhaust port for supplying and discharging oxygen to and from the oxygen flow path;
A first seal fixing hole formed to fix the seal member outside thereof is provided along one side, and
A second fuel supply / discharge port for supplying and discharging fuel to and from the fuel flow path;
A second cooling medium supply / discharge port for supplying and discharging the cooling medium to and from the cooling medium flow path; and
A second oxygen supply / exhaust port for supplying and discharging oxygen to and from the oxygen flow path;
A fuel cell comprising a second seal fixing hole formed on the outside thereof for fixing the seal member along the other side facing the one side.
冷却媒体を前記冷却媒体流路から流出させるための冷却媒体流出部とを備え、
前記冷却媒体流路は、
前記冷却媒体流入部から拡散するように延びる第1冷却媒体流路と、
前記第1冷却媒体流路に連続して直線状に延び、互いに間隔を隔てて並列配置される複数の第2冷却媒体流路と、
複数の前記第2冷却媒体流路に連続して前記の冷却媒体流出部へ向かって収束するように延びる第3冷却媒体流路と
を備え、
前記第1冷却媒体流路および前記第3冷却媒体流路には、
前記冷却媒体流入部および前記冷却媒体流出部から断続的かつ放射状に延び、冷却媒体をガイドするリブが複数形成され、
複数の前記リブの間には、冷却媒体の流量を調整するための突起が形成されている
ことを特徴とする、請求項1に記載の燃料電池。 A cooling medium inflow portion for allowing the cooling medium to flow into the cooling medium flow path;
A cooling medium outflow part for flowing out the cooling medium from the cooling medium flow path,
The cooling medium flow path is
A first cooling medium flow path extending so as to diffuse from the cooling medium inflow portion;
A plurality of second cooling medium flow paths extending linearly continuously to the first cooling medium flow path and arranged in parallel at intervals from each other;
A third cooling medium flow path extending so as to converge toward the cooling medium outflow portion continuously to the plurality of second cooling medium flow paths,
In the first cooling medium flow path and the third cooling medium flow path,
A plurality of ribs extending intermittently and radially from the cooling medium inflow portion and the cooling medium outflow portion and guiding the cooling medium are formed,
The fuel cell according to claim 1, wherein a protrusion for adjusting a flow rate of the cooling medium is formed between the plurality of ribs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012259119A JP2014107119A (en) | 2012-11-27 | 2012-11-27 | Fuel battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012259119A JP2014107119A (en) | 2012-11-27 | 2012-11-27 | Fuel battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014107119A true JP2014107119A (en) | 2014-06-09 |
Family
ID=51028439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012259119A Pending JP2014107119A (en) | 2012-11-27 | 2012-11-27 | Fuel battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014107119A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170231115A1 (en) | 2016-02-10 | 2017-08-10 | Omron Automotive Electronics Co., Ltd. | Cooler and flow path unit |
-
2012
- 2012-11-27 JP JP2012259119A patent/JP2014107119A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170231115A1 (en) | 2016-02-10 | 2017-08-10 | Omron Automotive Electronics Co., Ltd. | Cooler and flow path unit |
DE102017202112A1 (en) | 2016-02-10 | 2017-08-10 | Omron Automotive Electronics Co., Ltd. | Radiator and flow path unit |
US10433457B2 (en) | 2016-02-10 | 2019-10-01 | Omron Corporation | Cooler and flow path unit |
DE102017202112B4 (en) | 2016-02-10 | 2024-01-18 | Omron Corporation | Radiator and flow path assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060154125A1 (en) | Stack for fuel cell and fuel cell system with the same | |
JP4562501B2 (en) | Fuel cell | |
CN108258336B (en) | Fuel cell stacks and pseudo cells | |
JP2009076294A (en) | Fuel cell separator | |
JP5304131B2 (en) | Fuel cell and fuel cell separator | |
US7951508B2 (en) | Fuel cell | |
JP2010073626A (en) | Fuel cell separator and fuel cell stack | |
US9673461B2 (en) | Fuel cell | |
EP4084160A1 (en) | Separator for fuel battery | |
JP2014107118A (en) | Anode side separator and fuel battery | |
KR102540924B1 (en) | Fuel cell stack | |
KR101759652B1 (en) | Polymer electrolyte membrane fuel cells, fuel cell stack and end plate | |
CN109935849B (en) | Fuel cell unit and fuel cell | |
CN100486021C (en) | Cell stack for direct liquid feed fuel cell | |
JP5653867B2 (en) | Fuel cell | |
JP2014107119A (en) | Fuel battery | |
KR102159489B1 (en) | Mold for manufacturing fuel cell gasket | |
KR101118666B1 (en) | Separator and fuel cell stack using thereof | |
JP5304130B2 (en) | Fuel cell and fuel cell separator | |
JP2014107120A (en) | Cathode side separator, and fuel cell | |
JP5624511B2 (en) | Fuel cell stack | |
JP2006100016A (en) | Fuel cell stack | |
JP2010086893A (en) | Stack structure of fuel cell | |
JP5233184B2 (en) | Fuel cell separator | |
CN114447360B (en) | A parallel fuel cell stack |