[go: up one dir, main page]

JP2014102197A - Magnetic induction rail flow detection method, and magnetic induction rail flow detection device - Google Patents

Magnetic induction rail flow detection method, and magnetic induction rail flow detection device Download PDF

Info

Publication number
JP2014102197A
JP2014102197A JP2012255333A JP2012255333A JP2014102197A JP 2014102197 A JP2014102197 A JP 2014102197A JP 2012255333 A JP2012255333 A JP 2012255333A JP 2012255333 A JP2012255333 A JP 2012255333A JP 2014102197 A JP2014102197 A JP 2014102197A
Authority
JP
Japan
Prior art keywords
rail
flaw
detection
coil
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255333A
Other languages
Japanese (ja)
Inventor
Toshifumi Uchida
利文 打田
Hiroyuki Kuroda
広之 黒田
Noriyuki Shinoda
憲幸 篠田
Kosaku Shiono
幸策 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIELEC KK
ACT Electronics Corp
Original Assignee
MEIELEC KK
ACT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIELEC KK, ACT Electronics Corp filed Critical MEIELEC KK
Priority to JP2012255333A priority Critical patent/JP2014102197A/en
Publication of JP2014102197A publication Critical patent/JP2014102197A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect in an early stage a surface flaw and an internal lateral laceration so as to take measures for repairing and replacement of a rail, ensuring a safe travelling.SOLUTION: An exciting coil and two detection coils arranged apart in a longitudinal direction of an inspection rail by sandwiching the exciting coil are arranged above a head part of the inspection rail by a liftoff. Both of the detection coils are reversely wound and connected in series, and an AC magnetic flux generated from the exiting coil is applied to the inspection rail so as to generate an eddy current in the inspection rail. An amplitude of the induced voltage generated based on the eddy current is detected by the two detection coils regardless of whether the flaw exists or not, and an amplitude difference between the detected amplitude in the case that no flaw exists and the amplitude of the fluctuating induced voltage based on the eddy current fluctuated by receiving the influence of the flaw in the case that the flaw exists is subtracted and detected by the reversely wound detection coils, and the presence or absence of the flaw is detected from this amplitude difference, and the surface flaw and the lateral laceration of the inspection rail is detected.

Description

本発明は、鉄道用のレール、その他の車両用レール(以下「レール」という。)の表面傷も頭部の内部傷、亀裂等も検出できる磁気誘導式レール探傷方法及びそれに使用される磁気誘導式レール探傷装置に関するものである。   The present invention relates to a magnetic induction rail flaw detection method capable of detecting both surface flaws of rails for railroads and other vehicle rails (hereinafter referred to as “rails”), internal flaws of the head, cracks, and the like, and a magnetic induction type used therein. The present invention relates to a rail flaw detector.

レールは長期間の使用により、表面に傷が付き、レール内部に亀裂が入ることがある。表面傷の一つとしてシェリングがある。内部の亀裂(横裂傷あるいは横裂)は、雨水がシェリングからレール内部に侵入して、傷がレール横幅方向あるいは底部に向かって成長したものと考えられている。   The rail may be scratched and cracked inside the rail after long-term use. One of the surface scratches is shelling. Internal cracks (lateral fissures or lateral fissures) are thought to be caused by rainwater penetrating the inside of the rail from the shelling and the flaw growing toward the lateral width of the rail or toward the bottom.

レールの傷、特に、横裂傷はレールの破断に結びつき易く、列車の安全走行上、非常に危険である。列車の安全走行を確保するためには、レールの破断を未然に防止する必要がある。そのためにはレールの表面傷は勿論のこと、内部の横裂傷もできるだけ早期に発見することが重要である。   Rail scratches, particularly lateral tears, tend to lead to rail breakage and are extremely dangerous for safe driving of the train. In order to ensure the safe traveling of the train, it is necessary to prevent the rail from breaking. For this purpose, it is important to detect not only the surface flaws on the rails but also the internal lateral fissures as early as possible.

金属の傷を非接触、非破壊で探傷する方法として磁気誘導式探傷方法、超音波探傷方法等がある。磁気誘導式探傷方法は被検査物の付近に磁界を発生させて磁気誘導作用により被検査物に渦電流を発生させ、その渦電流の出力レベルの変化を検出して探傷する方法である。超音波探傷方法は被検査物に超音波を照射させて反射波を検出し、傷の影響を受けたときと受けないときの反射波の時間差から探傷する方法である。   There are a magnetic induction type flaw detection method, an ultrasonic flaw detection method, etc. as a method for flawlessly detecting a metal flaw. The magnetic induction type flaw detection method is a method in which a magnetic field is generated in the vicinity of an inspection object, an eddy current is generated in the inspection object by a magnetic induction action, and a change in the output level of the eddy current is detected to detect a flaw. The ultrasonic flaw detection method is a method in which a reflected wave is detected by irradiating an object to be inspected with ultrasonic waves, and flaw detection is performed from the time difference between the reflected wave when it is affected and when it is not affected.

磁気誘導式探傷方法の例として特許文献1、2がある。これらは、金属パイプ、金属板等の表面傷、建物内に埋設されている金属部材、例えば鉄骨等の被検査物の探を探傷するものであり、鉄道レールの探傷に応用されている例は少なく、従来のレール探傷方法は主として超音波探傷方法であった。   Patent Documents 1 and 2 are examples of magnetic induction type flaw detection methods. These are used to detect surface defects such as metal pipes and metal plates, metal parts embedded in buildings, for example, inspection objects such as steel frames, etc. However, the conventional rail flaw detection methods are mainly ultrasonic flaw detection methods.

特開平10−288605号公報JP-A-10-288605 特開2007−127600号公報JP 2007-127600 A

従来から使用されているレール探傷方法は超音波探傷方法である。この方法はレール上を走行する自走式の探傷車或いは手押し式の探傷車に超音波探傷器を搭載し、探傷車の移動中に、探傷車からレール表面に水を散布しながら、その水を透過してレール1の表面に超音波を照射し、レールから反射する超音波(傷がある場合は傷の影響を受ける)を検知して探傷する方法である。この場合、図11のように、探傷するレール(検測レール)1の上面に、超音波発生器2から発生される超音波を垂直(0度)、40度、70度といった各種角度で照射し、その反射波を検出して探傷する。   The rail flaw detection method conventionally used is an ultrasonic flaw detection method. In this method, an ultrasonic flaw detector is mounted on a self-propelled flaw detection vehicle or a hand-held flaw detection vehicle that runs on the rail, and while the flaw detection vehicle is moving, water is sprayed from the flaw detection vehicle onto the rail surface. In this method, the surface of the rail 1 is irradiated with ultrasonic waves, and ultrasonic waves reflected from the rails (if there are flaws, are affected by the flaws) are detected for flaw detection. In this case, as shown in FIG. 11, the ultrasonic wave generated from the ultrasonic generator 2 is irradiated on the upper surface of the rail (detection rail) 1 for flaw detection at various angles such as perpendicular (0 degree), 40 degrees, and 70 degrees. Then, the reflected wave is detected and flaw detection is performed.

前記超音波探傷法は次のような難点があった。
1.レールに表面傷があると、超音波がその傷で跳ね返ってしまい、表面傷の下にある内部の傷を検出することができず、レール破断に結びつく横裂傷を見逃がすことがある。
2.超音波式レール探傷器の探触子が固定であることから、レールに対する角度を変えたり首振り操作や往復操作ができず、検知もれを起こすことがある。
3.レール探傷車は高価であり(1台数億円)、手軽に導入することはできない。
4.探触子とレールの間に大量の水を供給するため、長距離に亘ってレール探傷を行うためには大量の水が必要になり、大きなサイズの貯水タンクが必要になる。しかし、大きなサイズの貯水タンクをレール探傷車に搭載するにしても限度があるため、水を補給しながら長距離に亘って連続探傷するには限度がある。また、北海道のような寒冷地にあっては、水が凍結して使用できない場合もある。
The ultrasonic flaw detection method has the following difficulties.
1. If there is a surface flaw on the rail, the ultrasonic wave will bounce off the flaw, the internal flaw below the surface flaw cannot be detected, and a lateral fissure that leads to rail breakage may be missed.
2. Since the probe of the ultrasonic rail flaw detector is fixed, the angle with respect to the rail cannot be changed, the swinging operation and the reciprocating operation cannot be performed, and detection may be lost.
3. Rail flaw detectors are expensive (one billion yen) and cannot be easily installed.
4). Since a large amount of water is supplied between the probe and the rail, a large amount of water is required to perform rail flaw detection over a long distance, and a large-sized water storage tank is required. However, since there is a limit even if a large-sized water storage tank is mounted on a rail flaw detection vehicle, there is a limit to continuous flaw detection over a long distance while replenishing water. In cold regions such as Hokkaido, water may freeze and not be used.

現在は、レール探傷車で検知しきれなかった表面傷の下にある内部横裂傷を探傷するため、二次探傷(再度の探傷)を行っている。二次探傷法の一つとして、一次探傷で水平傷が検出された箇所(横裂傷がありそうな箇所)の頭部1aの側面に、図12のように作業員が手作業で二つの探触子3をあてがい、一方の探触子3から頭部1aの側面に超音波を照射し、頭部1aを透過した超音波を他方の探触子3で検知して探傷する方法(透過法:2極探傷法:手検測)がある。しかし、この透過法は次のような難点があった。   Currently, secondary flaw detection (re-flaw detection) is performed to detect internal transverse lacerations under surface flaws that could not be detected by rail flaw detection vehicles. As one of the secondary flaw detection methods, an operator manually performs two inspections on the side surface of the head 1a where a horizontal flaw is detected in the first flaw detection (a portion where a transverse flaw is likely) as shown in FIG. A method of applying flaws 3, irradiating ultrasonic waves from one probe 3 to the side surface of the head 1 a, detecting the ultrasonic waves transmitted through the head 1 a with the other probe 3, and performing flaw detection (transmission method) : Bipolar flaw detection method: manual inspection). However, this transmission method has the following difficulties.

1.頭部1aの側面が図12のように摩耗したり欠損したりしていると、頭部1aの側面の欠損部4に探触子3を密接に面接触させることができないため、頭部1aの側面と探触子3の間に隙間できて空気が介在し、探触子3から出力される超音波が頭部内を伝搬し難くなり、探傷ができない箇所がある。
2.頭部1aの側面と探触子3の接触を良好にするためには、頭部1aの側面の油や汚れを除去する清掃作業が必要となり、前作業が面倒である。
3.前記隙間を少なくするために、頭部1aの側面にオイルを塗布したりグリスを塗ったりしており、これら作業も面倒である。
4.作業員の手作業であるため検測スピードが遅く、作業性が悪い。
5.一次探傷の表面傷の存在箇所が多い時、又は長い場合は二次探傷で横裂傷を確実に見つけ出すためには、手検測での二次探傷範囲が長くなり、作業性が悪い。
6.探触子で頭部1aの側面を挟む必要があるため、踏切・遊間前後等の箇所は検測ができない。
7.横裂傷を探傷するためには熟練した作業員が必要となる。
1. If the side surface of the head 1a is worn or missing as shown in FIG. 12, the probe 3 cannot be brought into close surface contact with the missing portion 4 on the side surface of the head 1a. There is a space between the side surface of the probe and the probe 3 so that air is interposed, and the ultrasonic wave output from the probe 3 is difficult to propagate through the head, and there are places where flaws cannot be detected.
2. In order to improve the contact between the side surface of the head 1a and the probe 3, a cleaning operation for removing oil and dirt on the side surface of the head 1a is necessary, and the previous operation is troublesome.
3. In order to reduce the gap, oil is applied or grease is applied to the side surface of the head 1a, and these operations are also troublesome.
4). The inspection speed is slow due to manual work by the workers, and workability is poor.
5. When there are many or many surface flaws in the primary flaw detection, the secondary flaw detection range in the manual inspection becomes long and the workability is poor in order to reliably find the transverse laceration by the second flaw detection.
6). Since it is necessary to sandwich the side surface of the head 1a with a probe, it is impossible to perform inspections at places such as before and after level crossings and gaps.
7). Skilled workers are required to detect transverse lacerations.

二次探傷法の他の方法としてフェーズドアレイ超音波法がある。これは図13にように、一次探傷で表面傷が検出された箇所(横裂傷がありそうな箇所)の頭部1aの裏側に送信側の探触子3aを配置し、探触子3aに配列されている複数の振動子からの超音波の送信タイミングを制御して、超音波ビームをレール1に照射し、レール1から反射する超音波(傷がある場合は傷の影響を受けている)を頭部裏側に配置した受信側の探触子3bで受信して探傷する方法である。この探傷方法によれば検測レール1の広範囲に亘って探傷可能であるが、前記透過法と同様の難点がある。   There is a phased array ultrasonic method as another method of the secondary flaw detection method. As shown in FIG. 13, a probe 3a on the transmitting side is arranged on the back side of the head 1a where a surface flaw is detected by primary flaw detection (a place where a transverse laceration is likely to occur). The transmission timing of ultrasonic waves from a plurality of arranged transducers is controlled to irradiate the rail 1 with an ultrasonic beam and to be reflected from the rail 1 (if there is a flaw, it is affected by the flaw. ) Is received by the probe 3b on the receiving side arranged on the back side of the head and the flaw is detected. According to this flaw detection method, flaw detection can be performed over a wide range of the inspection rail 1, but there are the same problems as the transmission method.

本発明の解決課題は、表面傷の下にある内部傷を検知できるようにし、表面傷の浅い段階では、レール表面を削正しレールの寿命を延ばすことができ、レールの破断につながり易いレール内部の横裂傷を早期発見してレールの寿命推定、補修、交換等の対策をとることができ、安全走行を確保できるようにすることにある。   The problem to be solved by the present invention is to detect an internal flaw under a surface flaw, and at a shallow stage of the surface flaw, it is possible to correct the rail surface and extend the life of the rail, and to easily break the rail. It is intended to be able to ensure safe driving by detecting the internal lateral laceration at an early stage and taking measures such as rail life estimation, repair, and replacement.

前記課題を解決するため、本発明は非接触、非破壊で表面傷の探傷ができ、シェリングの下に存在する横裂傷(レール頭部から約1/2の深さ:レール頭部表面から約20mmの深さまでにあって目視困難な横裂傷)をも探傷できるレール探傷方法と、それに使用できるレール探傷装置を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention can perform surface flaw detection in a non-contact and non-destructive manner, and a lateral laceration (about 1/2 the depth from the rail head: about a half from the rail head surface) exists under the shelling. An object of the present invention is to provide a rail flaw detection method capable of flawing lateral cracks that are difficult to visually observe up to a depth of 20 mm, and a rail flaw detection device that can be used therefor.

(探傷方法1)
本発明の磁気誘導式レール探傷方法は、探傷するレール(検測レール)の表面傷や横裂傷(以下これらを「傷」という)を電磁誘導式で検出するレール探傷方法であり、励磁コイルと、その励磁コイルを挟んで検測レールの長手方向に離して配置された二つの検出コイルとを検測レールの頭部上方にリフトオフを持って配置し、両検出コイルは逆巻きにして直列接続し、前記励磁コイルから発生する交流磁束を検測レールに加えて当該検測レールに渦電流を発生させ、渦電流に基づいて生ずる検測レールの磁束の変化を傷がない場合もある場合も前記二つの検出コイルで検出し、傷がない場合の検出振幅と、傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅との振幅差(レベル差)を、前記逆巻き検出コイルで検出し、この振幅差から検測レールの傷の有無を検出する方法である。この場合、前記励磁コイルと二つの検出コイルは前記配列で一つのセンサユニットにし、そのセンサユニットを検測レールの頭部上方にリフトオフを持って配置することもできる。
(Flaw detection method 1)
The magnetic induction rail flaw detection method of the present invention is a rail flaw detection method for detecting surface flaws and lateral fissures (hereinafter referred to as “flaws”) of a rail to be flawed (inspection rail) by electromagnetic induction. The two detection coils that are spaced apart in the longitudinal direction of the test rail across the excitation coil are placed with a lift-off above the head of the test rail, and both detection coils are wound in reverse and connected in series. In addition, the AC magnetic flux generated from the exciting coil is added to the measurement rail to generate an eddy current in the measurement rail, and the change in the magnetic flux of the measurement rail caused by the eddy current may not be damaged. The amplitude difference (level difference) between the detection amplitude when there is no flaw detected by the two detection coils and the amplitude of the fluctuation induced voltage based on the eddy current that fluctuates due to the flaw when there is a flaw, The reverse winding detection coil Detecting a method of detecting the presence or absence of scratches gage rails from the amplitude difference. In this case, the excitation coil and the two detection coils may be arranged as one sensor unit in the arrangement, and the sensor unit may be arranged with a lift-off above the head of the measurement rail.

(探傷方法2)
本発明の磁気誘導式レール探傷方法では、励磁コイルと検出コイルが同軸巻きされ、両検出コイルが逆巻きされた二つのセンサコイルを備えたセンサユニットの一方のセンサコイルを検測レールの頭部上方にリフトオフを持って配置し、他方のセンサコイルを無傷の基準レールの頭部上方にリフトオフを持って配置し、検測レール上方の励磁コイルから発生する交流磁束を検測レールに加え、基準レール上方の励磁コイルから発生する交流磁束を基準レールに加えて検測レールと基準レールの夫々に渦電流を発生させ、夫々の渦電流に基づいて生ずる誘起電圧の振幅を前記二つのセンサコイルで検出し、検測レールに傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅と基準レールの誘起電圧の振幅(一定)との振幅差を、前記逆巻き検出コイルで減算して検出し、この振幅差から検測レールの傷の有無を検出するようにすることもできる。前記二つの励磁コイルを励磁する駆動電圧は共通の同一駆動信号とする。
(Flaw detection method 2)
In the magnetic induction type rail flaw detection method of the present invention, one sensor coil of a sensor unit having two sensor coils in which an excitation coil and a detection coil are coaxially wound and both detection coils are wound in reverse is connected to the top of the head of the measurement rail. The other sensor coil is placed above the head of the intact reference rail with the lift-off, and the AC magnetic flux generated from the excitation coil above the inspection rail is added to the inspection rail. The AC magnetic flux generated from the upper excitation coil is applied to the reference rail to generate eddy currents in the measurement rail and the reference rail, and the amplitude of the induced voltage generated based on each eddy current is detected by the two sensor coils. If the inspection rail has a flaw, the amplitude of the fluctuation induced voltage based on the eddy current that fluctuates due to the flaw and the amplitude of the induced voltage of the reference rail (constant) The amplitude difference, detected and subtracted in the reverse winding detection coil, can also be adapted to detect the presence or absence of scratches gage rails from the amplitude difference. The driving voltage for exciting the two exciting coils is the same common driving signal.

(探傷方法3)
本発明の磁気誘導式レール探傷方法では、励磁コイルと検出コイルが同軸巻きされ、両検出コイルが逆巻きされたセンサコイル二つを検測レールの長手方向に離して且つ検測レールの頭部上方にリフトオフを持って配置し、夫々のセンサコイルの検出コイルを検測レールの長手方向の異なる二箇所に対向させ、前記二つのセンサコイルの検出コイルは逆巻きにして直列接続し、前記励磁コイルから発生する交流磁束を検測レールに加えて当該検測レールに渦電流を発生させ、渦電流に基づいて生ずる検測レールの前記二箇所の誘起電圧の振幅を傷がない場合もある場合も前記二つのセンサコイルの検出コイルで検出し、傷がない場合の振幅と、傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅差を、前記逆巻き検出コイルで減算して検出し、この振幅差から検測レールの傷の有無を検出することもできる。この場合、前記同軸巻きされた励磁コイルも前記配列で一つのセンサユニットにし、そのセンサユニットを検測レールの頭部上方にリフトオフを持って配置することもできる。
(Flaw detection method 3)
In the magnetic induction type rail flaw detection method of the present invention, the excitation coil and the detection coil are coaxially wound, and the two sensor coils having both detection coils wound in reverse are separated in the longitudinal direction of the measurement rail and above the head of the measurement rail. Are arranged with lift-off, the detection coils of the respective sensor coils are opposed to two different locations in the longitudinal direction of the measurement rail, the detection coils of the two sensor coils are reversely wound and connected in series, and from the excitation coil The generated AC magnetic flux is applied to the inspection rail to generate an eddy current in the inspection rail, and the amplitude of the induced voltage at the two locations of the inspection rail generated based on the eddy current may not be damaged. The difference between the amplitude when there is no flaw and the fluctuation induced voltage based on the eddy current that fluctuates under the influence of the flaw when there is a flaw is detected by the detection coils of the two sensor coils. Detected by subtracting the detection coils, it is also possible to detect the presence or absence of scratches gage rails from the amplitude difference. In this case, it is also possible to arrange the coaxially wound excitation coils as one sensor unit in the arrangement, and arrange the sensor unit above the head of the measurement rail with a lift-off.

本願発明者らの実験によれば、前記いずれの探傷方法においても、検測レールに傷があるときは前記誘起電圧の振幅差が検出され、傷の大きさ、深さにより、その振幅差が変動することが判明した(図6(a)、(b))。従って、誘起電圧の振幅差を検出することにより傷の有無のみならず、傷の大きさ、深さをも検出することができる(探傷できる)。本願発明者らの実験によれば、本発明では、超音波式探傷方法で検出された傷と同じ箇所で傷を検出することができた。さらには、超音波式探傷方法では検出できなかった傷も検出することができた。また、本発明で検出された箇所を切断してみたところ、実際に傷が確認された。   According to the experiments by the present inventors, in any of the flaw detection methods, when there is a flaw on the inspection rail, the amplitude difference of the induced voltage is detected, and the amplitude difference depends on the size and depth of the flaw. It was found that it fluctuated (FIGS. 6A and 6B). Therefore, not only the presence or absence of a flaw but also the size and depth of the flaw can be detected (flaw detection is possible) by detecting the amplitude difference of the induced voltage. According to the experiments by the present inventors, in the present invention, it was possible to detect a flaw at the same location as the flaw detected by the ultrasonic flaw detection method. Furthermore, it was possible to detect scratches that could not be detected by the ultrasonic flaw detection method. Moreover, when the location detected by this invention was cut | disconnected, the damage | wound was actually confirmed.

(位相差検出と併用の探傷方法1)
前記いずれの磁気誘導式レール探傷方法も、誘起電圧の振幅差から傷の有無を検出する方法であるが、本発明では、傷の有無をより確実に検出するために、励起電圧の位相と検出コイルによって検出された誘起電圧の位相との差を検出する方法(位相差検出方法)を併用することもできる。本発明の磁気誘導式レール探傷方法では、検測レールに傷があると誘起電圧の位相も影響を受けてずれる。そのため、検測レールの探傷前に、励起電圧の位相と、無傷のレールを探傷したときの誘起電圧の位相を調整して位相差を零にし、この位相差零を基準位相として設定し、この基準位相と、検測レールの傷を検出したときの誘起電圧の位相との差を求めることができる。本願発明者らの実験によれば、検測レールに傷があるとき(探傷されたとき)には位相差が検出され、同時に、前記誘起電圧の振幅差も検出されることが判明した(図6(a)、(b))。従って、前記振幅差と位相差の双方を同時に検出することにより、傷の有無をより一層確実に検出することができる。この場合も前記と同様の検出ができ、傷の存在を確認することができた。
(Flaw detection method 1 combined with phase difference detection)
Any of the above magnetic induction type rail flaw detection methods is a method for detecting the presence or absence of a flaw from the amplitude difference of the induced voltage. In the present invention, in order to detect the presence or absence of a flaw more reliably, the phase and detection of the excitation voltage are detected. A method of detecting a difference from the phase of the induced voltage detected by the coil (phase difference detection method) can also be used in combination. In the magnetic induction rail flaw detection method of the present invention, if the inspection rail has a flaw, the phase of the induced voltage is also affected and shifted. Therefore, before flaw detection of the inspection rail, the phase of the excitation voltage and the phase of the induced voltage when the flawless rail is flawed are adjusted to make the phase difference zero, and this phase difference zero is set as the reference phase. The difference between the reference phase and the phase of the induced voltage when a flaw on the inspection rail is detected can be obtained. According to the experiments by the present inventors, it has been found that when the inspection rail has a flaw (when flaw detection is performed), a phase difference is detected, and at the same time, an amplitude difference of the induced voltage is also detected (see FIG. 6 (a), (b)). Therefore, by detecting both the amplitude difference and the phase difference at the same time, the presence or absence of a flaw can be detected more reliably. Also in this case, the same detection as described above could be performed, and the presence of scratches could be confirmed.

(移動探傷方法1)
前記いずれの磁気誘導式レール探傷方法でも、前記センサユニットの他に、探傷に必要な磁気誘導式探傷装置を、自走車或いはトロッコ等の移動車両に搭載し、移動車両を、検測レール上を移動させながら、検測レールの探傷を行うこともできる。
(Mobile flaw detection method 1)
In any of the magnetic induction type rail flaw detection methods, in addition to the sensor unit, a magnetic induction type flaw detection device necessary for flaw detection is mounted on a mobile vehicle such as a self-propelled vehicle or a truck, and the mobile vehicle is mounted on the inspection rail. The inspection rail can be flawed while moving.

(傷の有無と傷位置の検出)
前記いずれの磁気誘導式レール探傷方法においても、検出された傷がレールの長手方向のどの位置にあるか(存在箇所)を検出することもできる。そのためには、距離計測の基準点を設定し、その基準点から検測地点までの距離を計測する必要がある。距離計測方法には各種方法が考えられるが、本発明では、例えばレーザドップラ方式の計測方法或いはロータリエンコーダ方式とすることができる。この場合、検測レール上を走行できる移動車両に、磁気誘導式探傷装置の他に、移動距離計測装置としてレーザドップラ方式の計測装置或いはロータリエンコーダをも搭載し、その探傷装置で探傷すると共にその計測装置で移動車両の移動距離をも計測し、その移動距離から検測レールの探傷位置(傷存在箇所)を検知することができる。
(Detection of flaws and flaw position)
In any of the magnetic induction type rail flaw detection methods, it is also possible to detect where the detected flaw is in the longitudinal direction of the rail (existing location). For this purpose, it is necessary to set a reference point for distance measurement and measure the distance from the reference point to the inspection point. Various methods are conceivable as the distance measuring method. In the present invention, for example, a laser Doppler type measuring method or a rotary encoder method can be used. In this case, in addition to the magnetic induction type flaw detection device, a laser Doppler type measurement device or a rotary encoder as a moving distance measurement device is mounted on a moving vehicle that can travel on the inspection rail, and the flaw detection device detects the flaw. The moving distance of the moving vehicle is also measured by the measuring device, and the flaw detection position (scratch location) of the inspection rail can be detected from the moving distance.

(定量化)
本発明の電磁誘導式レール探傷方法では、前記両検出コイルの減算出力と、励磁コイルを駆動する駆動電圧との位相差も同時に測定し、この位相差及び前記検出信号の振幅差から傷の定量化を行うことができる。定量化は所定形状、所定位置に傷を付けたレール(傷付きテストピース)を探傷した場合の探傷量と対照して行うことができる。
(Quantification)
In the electromagnetic induction rail flaw detection method of the present invention, the phase difference between the subtraction output of the two detection coils and the drive voltage for driving the excitation coil is also measured at the same time, and the quantification of the flaw is determined from the phase difference and the amplitude difference of the detection signal. Can be made. Quantification can be performed in contrast to the amount of flaw detection when a rail (a test piece with a flaw) with a predetermined shape and a predetermined position is damaged.

(探傷装置1)
本発明の電磁誘導式レール探傷装置は、レールの傷を電磁誘導式で検出するものであり、レール探傷時に検測レールの頭部上方にリフトオフを持って配置可能なセンサユニットと、そのセンサユニットの励磁コイルに励磁電圧を供給する励磁電圧供給部と、センサユニットで検出した検出信号を処理する信号処理部を備え、センサユニットは励磁コイルとそれを挟んでレールの長手方向両外側に配置した二つの検出コイルとを備え、励磁コイルは交流磁束を検測レールに加えて当該検測レールに渦電流を発生させることができ、二つの検出コイルは互いに逆巻きであり且つ直列接続され、前記渦電流に基づいて生ずる誘起電圧の振幅差を検知することができ、前記信号処理部は前記センサユニットの検出コイルで検出された振幅差を処理して、振幅信号を外部に出力できるようにしてある。
(Flaw detection device 1)
The electromagnetic induction type rail flaw detector of the present invention detects a rail flaw by an electromagnetic induction type, and can be arranged with a lift-off above the head of the measurement rail during rail flaw detection, and the sensor unit An excitation voltage supply unit that supplies an excitation voltage to the excitation coil and a signal processing unit that processes the detection signal detected by the sensor unit are arranged on both outer sides in the longitudinal direction of the rail across the excitation coil. Two detection coils, the excitation coil can apply an alternating magnetic flux to the measurement rail to generate an eddy current in the measurement rail, the two detection coils are reversely wound with each other and connected in series, and the vortex An amplitude difference of the induced voltage generated based on the current can be detected, and the signal processing unit processes the amplitude difference detected by the detection coil of the sensor unit. It is also available outputs an amplitude signal to the outside.

(探傷装置2)
本発明の磁気誘導式レール探傷装置は、検測レールの頭部上方にリフトオフを持って対向配置できるセンサコイルと、無傷の基準レールの頭部上方にリフトオフを持って対向配置できるセンサコイルを備え、夫々のセンサコイルは共通のコアに巻かれた(同軸巻きされた)励磁コイルと検出コイルを備え、一方のセンサコイルの励磁コイルは交流磁束を検測レールに加えて当該レールに渦電流を発生させることができ、他方のセンサコイルの励磁コイルは先のセンサコイルの励磁コイルと同相の電圧で駆動され、交流磁束を基準レールに加えて当該レールに渦電流を発生させることができ、前記両検出コイルは逆巻きされ且つ直列接続され、検測レールの上方に配置された検出コイルは検測レールの渦電流により生ずる励起電圧の振幅を検出でき、基準レールの上方に配置された検出コイルは基準レールの渦電流により生ずる励起電圧の振幅を検出でき、検測レールに傷があるときはその傷の影響を受けて変動する渦電流に基づいて変化する誘起電圧の振幅と、基準レール上方の検出コイルで検出された誘起電圧の振幅(一定)との振幅差が、逆巻きされた両検出コイルで減算されて検出されるようにすることもできる。
(Flaw detection device 2)
The magnetic induction type rail flaw detector of the present invention includes a sensor coil that can be placed opposite to the inspection rail with a lift-off above the head of the inspection rail, and a sensor coil that can be placed opposite to the head of an intact reference rail with a lift-off. Each sensor coil includes an excitation coil and a detection coil wound around a common core (coaxially wound), and the excitation coil of one sensor coil applies an alternating magnetic flux to the measurement rail to generate an eddy current in the rail. The excitation coil of the other sensor coil is driven with a voltage in phase with the excitation coil of the previous sensor coil, and an eddy current can be generated in the rail by applying an alternating magnetic flux to the reference rail. Both detection coils are reversely wound and connected in series, and the detection coil placed above the detection rail detects the amplitude of the excitation voltage generated by the eddy current in the detection rail The detection coil placed above the reference rail can detect the amplitude of the excitation voltage generated by the eddy current of the reference rail. When the measurement rail has a flaw, it is based on the eddy current that fluctuates due to the flaw. The difference in amplitude between the amplitude of the induced voltage that changes and the amplitude of the induced voltage detected by the detection coil above the reference rail (constant) may be subtracted and detected by the two reverse-wound detection coils. it can.

(探傷装置3)
本発明の磁気誘導式レール探傷装置は、検測レールの長手方向の二箇所に対向配置できるように横に離して配置されるセンサユニットを少なくとも二つ備え、夫々のセンサユニットは同軸巻きされた励磁コイルと検出コイルを備え、それら両検出コイルは互いに逆巻きされ且つ直列接続されて、前記渦電流の影響を受けて生ずる検測レールの前記二箇所の誘起電圧を検出し、検測レールに傷があるときはその傷の影響を受けて変動する渦電流により生ずる誘起電圧の振幅と、傷のないときの渦電流により生ずる誘起電圧の振幅との振幅差を検出することができるようにすることもできる。
(Flaw detection device 3)
The magnetic induction type rail flaw detector according to the present invention includes at least two sensor units arranged laterally so as to be opposed to each other in two positions in the longitudinal direction of the measurement rail, and each sensor unit is coaxially wound. An excitation coil and a detection coil are provided, and both the detection coils are reversely wound with each other and connected in series to detect the induced voltage at the two positions of the measurement rail caused by the influence of the eddy current, and the measurement rail is damaged. To detect the amplitude difference between the amplitude of the induced voltage caused by the eddy current that fluctuates under the influence of the flaw and the amplitude of the induced voltage caused by the eddy current when there is no flaw You can also.

(傷の有無、大きさの探傷)
本願発明者らの実験によれば、前記いずれの探傷装置を使用しても、検測レールに傷があるときは前記振幅差が検出され、傷の大きさ或いは深さにより振幅差が大きくなることが判明した(図6(a)、(b))。従って、磁気誘導式レール探傷装置は、前記振幅差を検出して、傷の有無のみならず、傷の大きさも検出することができる。
(Scratch detection, size inspection)
According to the experiments by the inventors of the present application, even if any of the flaw detection devices is used, the amplitude difference is detected when the inspection rail has a flaw, and the amplitude difference increases depending on the size or depth of the flaw. (FIGS. 6A and 6B). Therefore, the magnetic induction type rail flaw detector can detect not only the presence / absence of a flaw but also the size of the flaw by detecting the amplitude difference.

(位相差検出との併用による探傷)
前記いずれの磁気誘導式レール探傷装置も、誘起電圧の振幅差から傷の有無を検出することができるが、前記信号処理部を、励起電圧と検出コイルで検出された誘起電圧の位相とを比較して位相差を検出し、その位相差を外部に出力できるようにすることもできる。この信号処理部を備えた磁気誘導式レール探傷装置を使用すれば、検測レールに傷があるときは、前記振幅差のみならず位相差をも同時に検出することができ、傷の有無をより一層確実に検出することができる。
(Flaw detection combined with phase difference detection)
Any of the magnetic induction type rail flaw detectors can detect the presence or absence of a flaw from the amplitude difference of the induced voltage, but the signal processing unit compares the excitation voltage with the phase of the induced voltage detected by the detection coil. Thus, it is possible to detect the phase difference and output the phase difference to the outside. If a magnetic induction rail flaw detector equipped with this signal processing unit is used, when the inspection rail has a flaw, not only the amplitude difference but also the phase difference can be detected at the same time. It can detect more reliably.

(検測レールにおける傷位置の特定)
前記いずれの磁気誘導式レール探傷装置も、移動車両に搭載することにより、移動車両を検測レールの上を移動させながら検測レールを探傷することもできる。前記いずれの磁気誘導式レール探傷装置でも、レーザドップラ式又はロータリエンコーダによる位置計測装置を併用して、検出された傷が検測レール上の長手方向のどの位置にあるか(傷の存在箇所)をも検出することができる。移動距離計測装置を併用した場合は、磁気誘導式レール探傷装置と共にこれら移動距離計測装置を移動車両に搭載し、その移動車両を、検測レール上を移動させて探傷する。このとき、前記移動距離計測装置によって、移動車両の移動距離を計測することにより、その移動距離から検測レールの傷存在箇所を検知することもできる。この場合は、前記信号処理部において、移動距離計測装置からの信号を処理して、移動距離(探傷位置)を外部に出力する。
(Identification of scratch position on inspection rail)
By mounting any of the magnetic induction type rail flaw detectors on a moving vehicle, the inspection rail can be detected while moving the moving vehicle on the inspection rail. In any of the above magnetic induction type rail flaw detectors, the position where the detected flaw is located on the measurement rail in the longitudinal direction by using the position measuring device using the laser Doppler type or the rotary encoder (where the flaw is present) Can also be detected. When the moving distance measuring device is used in combination, the moving distance measuring device is mounted on the moving vehicle together with the magnetic induction type rail flaw detecting device, and the moving vehicle is moved on the measurement rail to detect the flaw. At this time, by measuring the moving distance of the moving vehicle by the moving distance measuring device, it is also possible to detect a flaw location on the inspection rail from the moving distance. In this case, the signal processing unit processes a signal from the moving distance measuring device and outputs the moving distance (flaw detection position) to the outside.

(表示装置)
前記いずれの磁気誘導式レール探傷装置でも、信号処理部からの出力を表示できる表示装置を備え、その表示装置の同一画面に振幅波と位相波の波形図を同時に表示することもできる。この場合、横軸を計測位置、縦軸を振幅差、位相差とすることにより、傷の有無、大きさ、深さを目視することができる。その画面には、左右のレールの振幅波と位相波の波形図を同時表示することができる。
(Display device)
Any of the magnetic induction type rail flaw detectors can be provided with a display device capable of displaying the output from the signal processing unit, and the waveform diagrams of the amplitude wave and the phase wave can be simultaneously displayed on the same screen of the display device. In this case, the presence / absence, size, and depth of a flaw can be visually observed by setting the horizontal axis to the measurement position and the vertical axis to the amplitude difference and phase difference. On the screen, the waveform diagram of the amplitude wave and phase wave of the left and right rails can be displayed simultaneously.

本発明は次のような効果がある。
1.超音波式探傷方法では探傷できなかった僅かなシェリングやその他の表面傷は勿論のこと、シェリングの下に存在する表面に近い内部傷が検知できる。レール頭部から約1/2の深さ(レール頭部の表面から約20mmの深さ)にある内部の横裂傷も見落とすことなくほぼ確実に探傷できる。
2.傷の有無のみならず、レールの長手方向の傷の存在箇所(基点から傷存在箇所までの距離)、深さもほぼ判明し、シェリングの範囲も判明するため、二次探傷の必要がほとんどない。必要があるとしても、表面傷の探傷が確実で、二次探傷箇所が特定されるので、二次探傷距離が短くてすみ、探傷時間が大幅に短縮できる。
3.トロッコ等に搭載して探傷することができるため、保線区ごとで、レール探傷を簡易に行うことができる。
4.操作が簡単で、熟練作業者でなくとも探傷できる。
5.レールと非接触、非破壊で探傷できる。
6.測定測度が数km/h〜10km/hもの高速で探傷できる。
7.左右のレールの探傷を同時に行うことができる。
8.自走車に搭載して探傷できるのは勿論のこと、トロッコに取付けて手押し移動しながらでも探傷できる。
9.水やグリスが不要である。
10.小型・軽量で低価格な探傷装置となる。
The present invention has the following effects.
1. Internal scratches close to the surface existing under the shelling can be detected as well as slight shelling and other surface scratches that cannot be detected by the ultrasonic flaw detection method. An internal transverse laceration at a depth of about 1/2 from the rail head (about 20 mm from the surface of the rail head) can be detected almost certainly without overlooking.
2. Not only the presence or absence of scratches, but also the location of the scratch in the longitudinal direction of the rail (distance from the base point to the location of the scratch), the depth are almost known, and the range of shelling is also known, so there is almost no need for secondary flaw detection. Even if necessary, since the surface flaw detection is reliable and the secondary flaw detection location is specified, the secondary flaw detection distance can be shortened and the flaw detection time can be greatly shortened.
3. Since it can be mounted on a truck or the like for flaw detection, rail flaw detection can be easily performed in each track maintenance section.
4). It is easy to operate and can detect flaws without being a skilled worker.
5. Non-destructive and non-destructive flaw detection with rails.
6). The flaw detection can be performed at a high speed of several km / h to 10 km / h.
7). The right and left rails can be detected at the same time.
8). It can be mounted on a self-propelled vehicle for flaw detection, as well as flaw detection while attached to a trolley and pushed by hand.
9. No water or grease is required.
10. A small, lightweight and low cost flaw detector.

本発明のレール探傷装置のブロック説明図。The block explanatory view of the rail flaw detector of the present invention. 図1のブロック説明図の詳細図。FIG. 2 is a detailed diagram of the block explanatory diagram of FIG. 本発明におけるセンサユニットAとレールとの関係を示すもので、(a)は平面図、(b)はセンサユニットAの励磁コイルと検出コイルの磁気結合による誘起電圧との関係を示す説明図、(c)は(a)の側面図。The relationship between the sensor unit A and the rail in the present invention is shown, (a) is a plan view, (b) is an explanatory diagram showing the relationship between the excitation voltage of the sensor unit A and the induced voltage due to magnetic coupling of the detection coil, (C) is a side view of (a). (a)は本発明におけるセンサユニットBの励磁コイルと検出コイルの関係を示す結線説明図、(b)は同軸巻きしたセンサユニットBの励磁コイルと検出コイルの磁気結合による誘起電圧との関係を示す説明図、(c)は(b)のセンサユニット二つを検測レールの上方にリフトオフを持って配置した状態の平面図。(A) is connection explanatory drawing which shows the relationship between the excitation coil of the sensor unit B in this invention, and a detection coil, (b) is the relationship between the induced voltage by the magnetic coupling of the excitation coil of the sensor unit B coaxially wound, and a detection coil. Explanatory drawing which shows, (c) is a top view of the state which has arrange | positioned two sensor units of (b) with the lift-off above the measurement rail. 本発明におけるセンサユニットBの励磁コイル及び検出コイルとレールとの関係を示すもので、(a)は平面図、(b)は側面図、(c)は基準レールの上方にセンサユニットBを配置固定した状態の平面説明図、(d)は(c)の側面図。The relationship between the excitation coil and detection coil of the sensor unit B and the rail in the present invention is shown, (a) is a plan view, (b) is a side view, and (c) is a sensor unit B arranged above the reference rail. Plan explanatory drawing of the state fixed, (d) is a side view of (c). (a)、(b)は本発明の電磁誘導式レール探傷方法による左右のレールの探傷データの波形図の一例であり、いずれの場合も、傷がある場合の振幅変動と位相差変動が対応していることを示す説明図。(A), (b) is an example of the waveform chart of the flaw detection data of the left and right rails by the electromagnetic induction type rail flaw detection method of the present invention, and in either case, the amplitude fluctuation and the phase difference fluctuation when there is a flaw correspond. Explanatory drawing which shows having done. レーザドップラ方式による探傷位置検出方法の説明図。Explanatory drawing of the flaw detection position detection method by a laser Doppler system. 電磁誘導の原理説明図であり、(a)は導体とセンサユニットと磁界との関係を示す概要図、(b)はレールに生ずる渦電流と傷との関係を示す説明図。It is principle explanatory drawing of electromagnetic induction, (a) is a schematic diagram which shows the relationship between a conductor, a sensor unit, and a magnetic field, (b) is explanatory drawing which shows the relationship between the eddy current which arises in a rail, and a damage | wound. (a)は電磁誘導における磁束の導体表面における説明図、(b)は導体表面に傷がある場合の磁束線と漏洩磁束の説明図。(A) is explanatory drawing in the conductor surface of the magnetic flux in electromagnetic induction, (b) is explanatory drawing of a magnetic flux line and leakage flux in case a conductor surface has a damage | wound. 電磁誘導式レール探傷方法の原理説明図。The principle explanatory drawing of the electromagnetic induction type rail flaw detection method. 超音波によるレール探傷方法の一例である斜角探傷法の説明図。Explanatory drawing of the bevel flaw detection method which is an example of the rail flaw detection method by an ultrasonic wave. 超音波によるレール探傷方法の一例である二探触子法の説明図。Explanatory drawing of the two probe method which is an example of the rail flaw detection method by an ultrasonic wave. 超音波によるレール探傷方法の一例であるフェーズドアレイ法の説明図。Explanatory drawing of the phased array method which is an example of the rail flaw detection method by an ultrasonic wave.

(実施例1)
本発明の磁気誘導式レール探傷方法(以下「レール探傷方法」という)は電磁誘導の原理を利用したものである。磁束線と導体の傷との関係は図9(a)に示すように、傷のない導体に磁界を加えると、磁束線は導体内を乱れることなく透過するが、導体に傷があると図9(b)に示すように、磁束線は傷のある箇所では漏洩磁束となって導体を透過する。この磁束線の変化に伴う誘起電圧の変化の大きさを検出することにより、導体の傷の有無、傷の大きさを検知することができる。導体に交流磁界を加えると導体に渦電流が発生する。渦電流は導体の透磁率と電気導電率及び交流電源の周波数が高くなるほど導体の表面に発生する(表皮効果)。このため、渦電流は導体表面の傷の影響は受け易い(傷による変動が大きい)が、導体内の深い箇所にある傷ほどその影響を受けにくい(傷による変動が小さい)。このため、渦電流に基づいて誘起される誘起電圧の変動も、浅い傷がある場合は大きいが、深い傷の場合は小さい。誘起電圧の変動を検出して傷を検知する場合(電磁誘導による探傷)は、導体の表面傷は検出し易いが、深い内部傷ほど検出しにくくなる。
従って、図10に示すように、傷のあるレール1にセンサコイルを接近させると、レールの傷のない箇所では所定の誘起電圧が得られるが、傷のある箇所では、磁束がその傷の影響を受けて誘起電圧が変動する。本発明はこの差を検出して傷の有無を検出するようにした探傷方法である。その実施例を図1〜図7を参照して以下に説明する。
Example 1
The magnetic induction rail flaw detection method of the present invention (hereinafter referred to as “rail flaw detection method”) uses the principle of electromagnetic induction. As shown in FIG. 9A, when a magnetic field is applied to a conductor without a flaw, the magnetic flux lines pass through the conductor without being disturbed, but the conductor has a flaw. As shown in FIG. 9 (b), the magnetic flux lines pass through the conductor as a leakage magnetic flux in a damaged part. By detecting the magnitude of the change in the induced voltage that accompanies the change in the magnetic flux lines, it is possible to detect the presence or absence of the conductor and the size of the damage. When an AC magnetic field is applied to the conductor, an eddy current is generated in the conductor. Eddy currents are generated on the surface of the conductor as the magnetic permeability and electrical conductivity of the conductor and the frequency of the AC power supply increase (skin effect). For this reason, eddy currents are easily affected by flaws on the conductor surface (variation due to flaws), but flaws deeper in the conductor are less likely to be affected (fluctuation due to flaws is small). For this reason, the fluctuation of the induced voltage induced based on the eddy current is large when there is a shallow flaw, but is small when there is a deep flaw. When a flaw is detected by detecting a change in the induced voltage (flaw detection by electromagnetic induction), a surface flaw on the conductor is easy to detect, but a deeper internal flaw is harder to detect.
Therefore, as shown in FIG. 10, when the sensor coil is brought close to the damaged rail 1, a predetermined induced voltage can be obtained at a position where there is no damage on the rail, but the magnetic flux is affected by the damage at the position where there is a damage. In response, the induced voltage fluctuates. The present invention is a flaw detection method in which this difference is detected to detect the presence or absence of a flaw. The embodiment will be described below with reference to FIGS.

(レール探傷方法の実施例1:センサユニットA使用の場合)
このレール探傷方法は図1、図2に示すセンサユニットAを使用する場合の例である。これらセンサユニットAは図3(a)、(b)に示すように、励磁コイル6を中心にして二つの検出コイル7a、7bが検測レール1の長手方向に離して配置されている。二つの検出コイル7a、7bは励磁コイル6が巻かれているコアとは別のコアに同じ回数逆巻きされており、互いに直列接続されている。
(Example of rail flaw detection method 1: using sensor unit A)
This rail flaw detection method is an example when the sensor unit A shown in FIGS. 1 and 2 is used. In these sensor units A, as shown in FIGS. 3A and 3B, two detection coils 7 a and 7 b are arranged apart from each other in the longitudinal direction of the measurement rail 1 with the excitation coil 6 as the center. The two detection coils 7a and 7b are reversely wound the same number of times on a core different from the core around which the exciting coil 6 is wound, and are connected in series.

本発明では、このセンサユニットAを図3(a)、(c)に示すように、左右の検測レール1の夫々の頭部1aの上方に、頭部1aから所望間隔(10〜30mm程度)離して(リフトオフを持って)配置して、二つの検出コイル7a、7bを検測レール1の長手方向に離れた二箇所に対向配置させる。この状態で、励磁コイル6に図1、図2に示す探傷信号処理器10の励起電圧供給部11(図2)から励起電圧を供給して、励磁コイル6から発生される磁界を検測レール1に加えて当該検測レール1に渦電流を発生させる。この渦電流は検測レール1に表面傷或いは内部の横裂傷(以下「傷」という)があると変化する。この変化に伴って、検出コイル7a、7bに戻る磁界が変化し、検出コイル7a、7bに誘起される誘起電圧が変化する(図8(a)、(b))。本発明ではこの誘起電圧の振幅変化(レベル変化)を二つの検出コイル7a、7bで検出する。この場合、検出コイル7a、7bで検出される振幅は、両コイル7a、7bの巻き方向が逆であることから、減算された差分となる。   In the present invention, as shown in FIGS. 3A and 3C, the sensor unit A is disposed above the heads 1a of the left and right inspection rails 1 at a desired distance (about 10 to 30 mm) from the head 1a. ) Separated (with lift-off), the two detection coils 7a, 7b are arranged opposite to each other at two positions separated in the longitudinal direction of the measurement rail 1. In this state, an excitation voltage is supplied to the excitation coil 6 from the excitation voltage supply unit 11 (FIG. 2) of the flaw detection signal processor 10 shown in FIGS. 1 and 2, and the magnetic field generated from the excitation coil 6 is measured. In addition to 1, an eddy current is generated in the inspection rail 1. This eddy current changes when the inspection rail 1 has a surface flaw or an internal lateral fissure (hereinafter referred to as “flaw”). With this change, the magnetic field returning to the detection coils 7a and 7b changes, and the induced voltage induced in the detection coils 7a and 7b changes (FIGS. 8A and 8B). In the present invention, the amplitude change (level change) of the induced voltage is detected by the two detection coils 7a and 7b. In this case, the amplitude detected by the detection coils 7a and 7b is a subtracted difference because the winding directions of the coils 7a and 7b are opposite.

前記差分信号を図1、図2に示す探傷信号処理器10の出力処理部12(図2)のロ―パスフィルタ(LPF)を通して高周波成分(主として、ノイズ)を除去し、増幅器(AMP)12aで増幅し、演算器12bで演算処理して、振幅信号を探傷信号処理器10の外部の表示器(例えば、LCD:液晶表示器)13に出力して、この表示器13の画面に図6(a)、(b)のように表示する。   A high-frequency component (mainly noise) is removed from the differential signal through a low-pass filter (LPF) of the output processing unit 12 (FIG. 2) of the flaw detection signal processor 10 shown in FIGS. 1 and 2, and an amplifier (AMP) 12a The amplitude signal is output to a display (for example, LCD: liquid crystal display) 13 outside the flaw detection signal processor 10 and displayed on the screen of the display 13 as shown in FIG. Displayed as (a), (b).

本発明では、前記振幅のみでなく、励磁電圧と検出コイル7a、7bで検出された検出信号の位相差を検出することもできる。検測レール1に傷があると誘起電圧の位相も影響を受けて位相がずれる。そのため、この実施例では、検測レールの探傷開始前に、励起電圧の位相と無傷のレール(基準レール)を探傷したときの誘起電圧の位相差を零(位相差零)に調整して、この零位相差を基準位相として設定しておく。この基準位相と検測レール1の傷を検出したときの誘起電圧の位相との差を求めて位相差を検出する。位相差検出は演算器12b(図2)で行われ、それを位相出力として図1、図2の表示器13に出力し、表示器13の画面に図6(a)、(b)のように表示する。図6(a)、(b)の横軸は移動距離(基準点から探傷装置が移動した距離)であり、縦軸は振幅と、位相差である。図6(a)には右レールの探傷波形図を、(b)には左レールの探傷波形図の振幅差と位相差を示す。   In the present invention, not only the amplitude but also the phase difference between the excitation voltage and the detection signal detected by the detection coils 7a and 7b can be detected. If the inspection rail 1 is damaged, the phase of the induced voltage is also affected and the phase is shifted. Therefore, in this embodiment, before starting the flaw detection of the inspection rail, the phase difference between the excitation voltage and the induced voltage when the flawless rail (reference rail) is flawed is adjusted to zero (zero phase difference), This zero phase difference is set as a reference phase. A phase difference is detected by obtaining a difference between this reference phase and the phase of the induced voltage when a flaw on the measuring rail 1 is detected. The phase difference detection is performed by the arithmetic unit 12b (FIG. 2), which is output as a phase output to the display unit 13 of FIGS. 1 and 2, and displayed on the display unit 13 as shown in FIGS. 6 (a) and 6 (b). To display. 6A and 6B, the horizontal axis represents the moving distance (the distance traveled by the flaw detector from the reference point), and the vertical axis represents the amplitude and the phase difference. FIG. 6A shows the flaw detection waveform diagram of the right rail, and FIG. 6B shows the amplitude difference and phase difference of the flaw detection waveform diagram of the left rail.

本願発明者らの実験によれば、前記いずれの探傷方法においても、検測レール1に傷があるときは前記誘起電圧の振幅差が検出され、誘起電圧差は傷の大きさ或いは深さにより変動することが判明した。図6(a)、(b)の振幅波形、位相波形に大きく変化した部分が見られ、図6(a)、(b)の波形図を見るだけで誘起電圧差、すなわち、傷の存在を検知することができ、更には、その波形変化の大きさから、傷の大きさも検知することができる。また、前記探傷結果は、超音波式探傷方法での探傷結果よりも傷を見落とさないことも確認できた。   According to the experiments by the present inventors, in any of the flaw detection methods described above, when the inspection rail 1 has a flaw, the amplitude difference of the induced voltage is detected, and the induced voltage difference depends on the size or depth of the flaw. It was found to fluctuate. 6 (a) and 6 (b) are greatly changed in the amplitude waveform and the phase waveform, and only by looking at the waveform diagrams of FIGS. 6 (a) and 6 (b), the induced voltage difference, that is, the presence of a flaw is observed. In addition, it is possible to detect the size of the scratch from the magnitude of the waveform change. It was also confirmed that the flaw detection results did not overlook flaws as compared to flaw detection results obtained by the ultrasonic flaw detection method.

本願発明者らの実験によれば、検測レール1に傷があるとき(探傷された時)には位相差が検出され、同時に、前記誘起電圧差も検出されることが判明した(図6(a)、(b))。従って、図6(a)、(b)の波形を見るだけで傷の有無、大きさをより一層明確に検知することができる。   According to the experiments by the present inventors, it was found that when the inspection rail 1 is flawed (when flaw detection is performed), a phase difference is detected, and at the same time, the induced voltage difference is also detected (FIG. 6). (A), (b)). Therefore, it is possible to more clearly detect the presence / absence and size of a flaw by simply looking at the waveforms in FIGS. 6 (a) and 6 (b).

(レール探傷方法の実施例2:センサユニットBを使用の場合)
本発明の磁気誘導式レール探傷方法では、前記センサユニットAとは異なるセンサユニットB(図4(a)、(b))を使用してレール探傷することもできる。このセンサユニットBはそれら図に示すように、励磁コイル6a、6bと検出コイル7a、7bが夫々一つのコアに巻かれ(同軸巻きされ)、検出コイル7a、7bが互いに逆巻きされたセンサコイル(検測レール用)8aとセンサコイル(基準レール用)8bを直列接続したものである。このセンサユニットBを使用して探傷するには次のようにすることができる。
(Example 2 of rail flaw detection method: when sensor unit B is used)
In the magnetic induction type rail flaw detection method of the present invention, rail flaw detection can also be performed using a sensor unit B (FIGS. 4A and 4B) different from the sensor unit A. In this sensor unit B, as shown in these drawings, the excitation coils 6a and 6b and the detection coils 7a and 7b are wound around one core (coaxially wound), and the detection coils 7a and 7b are wound around each other in a reverse direction (see FIG. An inspection rail) 8a and a sensor coil (reference rail) 8b are connected in series. The flaw detection using this sensor unit B can be performed as follows.

センサユニットBの一方のセンサコイル(検測レール用センサコイル)8aを図5(a(b)のように検測レール1の頭部1aの上方にリフトオフを持って配置し、センサユニットBの他方のセンサコイル(基準レール用センサコイル)8bを図5(c)、(d)のように傷のない基準レール(長さ約数十cm)15に固定する。このセンサユニットBの励磁コイル6(図4(a)、(b))に、図2に示す探傷信号処理器10の励起電圧供給部11(図2)から励起電圧を供給して、励磁コイル6から発生される磁界を検測レール1の頭部1aと基準レール15の頭部15aに加えて、検測レール1と基準レール15に渦電流を発生させる。検測レール1に傷があっても、傷がなくても、渦電流に応じて二つの検出コイル7a、7bに生ずる誘起電圧を検出する。検測レール1に傷がない場合は二つの検出コイル7a、7bで検出される誘起電圧の振幅差は零であるが、傷がある場合は渦電流が変化し、その変化に伴って誘起電圧が変化し、振幅差が生ずる。振幅差は傷の大きさや深さ等により異なる。このとき検出される振幅も、両コイル7a、7bの巻き方向が逆であることから、減算された差分が検出される。この差分信号を図2に示す探傷信号処理器10の出力処理部12のローパスフィルタ(LPF)を通し、増幅器(AMP)12aで増幅し、演算器12bで演算処理して、振幅信号を外部の表示器13に出力してその画面に探傷波形を表示する。この場合、実施例1の場合と同様に位相差も検出して位相差も同一画面に同時に表示することができる。これら波形の変化から検測レール1の傷を検知することができる。   One sensor coil (sensor coil for inspection rail) 8a of the sensor unit B is arranged with a lift-off above the head 1a of the inspection rail 1 as shown in FIG. The other sensor coil (reference rail sensor coil) 8b is fixed to a scratch-free reference rail (about several tens of centimeters) 15 as shown in FIGS. 6 (FIGS. 4A and 4B), an excitation voltage is supplied from the excitation voltage supply unit 11 (FIG. 2) of the flaw detection signal processor 10 shown in FIG. In addition to the head 1a of the inspection rail 1 and the head 15a of the reference rail 15, an eddy current is generated in the inspection rail 1 and the reference rail 15. Even if the inspection rail 1 is damaged, there is no damage. However, it does not occur in the two detection coils 7a and 7b according to the eddy current. When there is no flaw in the measuring rail 1, the amplitude difference between the induced voltages detected by the two detection coils 7a and 7b is zero, but when there is a flaw, the eddy current changes, The induced voltage changes with the change, resulting in an amplitude difference, which varies depending on the size and depth of the scratch, etc. The detected amplitude is also the reverse of the winding direction of the coils 7a and 7b. 2 is passed through a low-pass filter (LPF) of the output processing unit 12 of the flaw detection signal processor 10 shown in Fig. 2, amplified by an amplifier (AMP) 12a, and calculated by an arithmetic unit 12b. An arithmetic process is performed to output the amplitude signal to the external display 13 and display the flaw detection waveform on the screen, in which case the phase difference is detected and the phase difference is simultaneously displayed on the same screen as in the first embodiment. Can be displayed. It is possible to detect the flaws of gage rails 1 from reduction.

(レール探傷方法の実施例3:センサユニットBの他の使用例)
実施例3はセンサユニットBを使用する場合であるが、実施例2とは異なり、二つのセンサコイル8a、8bを共に図4(c)のように検測レール1の上方にリフトオフを持って配置し、それらセンサコイル8a、8bの励磁コイル6から発生する交流磁束により検測レール1に渦電流を発生させる。夫々の渦電流の影響を受けて生ずる誘起電圧を両センサコイル8a、8bの検出コイル7a、7bの夫々で別々に検出する。一方の検出コイル(7aまたは7b)で傷が検出され、他方の検出コイル(7bまたは7a)で傷が検出されないときは、両検出コイル7a、7bで誘起電圧の振幅差が検出される。この差分信号を図2のローパスフィルタ(LPF)を通し、増幅器(AMP)12aで増幅し、演算器12bで演算処理して、振幅信号を探傷信号処理器10の外部の表示器13に出力してその画面に探傷波形表示することもできる。この場合、実施例2の場合と同様に位相差も検出して同一画面に同時に位相差も表示することができる。これら波形の変化から検測レール1の傷を検知することができる。
(Example 3 of rail flaw detection method: other usage example of sensor unit B)
In the third embodiment, the sensor unit B is used, but unlike the second embodiment, the two sensor coils 8a and 8b are both lifted off above the inspection rail 1 as shown in FIG. 4C. The eddy current is generated in the measurement rail 1 by the alternating magnetic flux generated from the excitation coils 6 of the sensor coils 8a and 8b. Induced voltages generated under the influence of the respective eddy currents are separately detected by the detection coils 7a and 7b of both sensor coils 8a and 8b. When a flaw is detected by one detection coil (7a or 7b) and no flaw is detected by the other detection coil (7b or 7a), an amplitude difference between the induced voltages is detected by both detection coils 7a and 7b. The differential signal is passed through the low-pass filter (LPF) of FIG. 2, amplified by the amplifier (AMP) 12 a, processed by the calculator 12 b, and the amplitude signal is output to the display device 13 outside the flaw detection signal processor 10. The flaw detection waveform can also be displayed on the screen. In this case, the phase difference can also be detected and the phase difference can be simultaneously displayed on the same screen as in the second embodiment. A flaw on the inspection rail 1 can be detected from the change in these waveforms.

(定量化)
前記いずれの実施形態のレール探傷方法でも、二つの検出コイル7a、7bで検出された励起電圧の振幅差及び位相差(減算出力)と、所定位置に所定形状の傷を付けたレール(傷付きテストピース)を探傷した場合に検出された励起電圧の振幅差及び位相差とを対照して、傷の定量化を行うこともできる。しかし、前記実施例1、3の探傷方法では、両検出コイル7a、7bが一つの大きな傷に跨った場合、又は、検出コイル7a、7bが別々の傷に同時にさしかかった場合は、傷の定量化が難しくなり、正確な探傷が困難になる。この場合は、実施例2のようにセンサユニットBを図5(c)、(d)に示すように、無傷の基準レール15に固定することにより定量化することができるようになる。
(Quantification)
In the rail flaw detection method of any of the above-described embodiments, the amplitude difference and phase difference (subtraction output) of the excitation voltage detected by the two detection coils 7a and 7b, and a rail with a scratch of a predetermined shape at a predetermined position (scratched The scratch can be quantified by comparing the amplitude difference and the phase difference of the excitation voltage detected when the test piece is detected. However, in the flaw detection methods of the first and third embodiments, when both the detection coils 7a and 7b straddle one large flaw, or when the detection coils 7a and 7b reach different flaws at the same time, the quantification of the flaws is performed. It becomes difficult to make accurate flaw detection. In this case, the sensor unit B can be quantified by fixing it to the intact reference rail 15 as shown in FIGS. 5C and 5D as in the second embodiment.

(傷の有無と傷位置の検出)
前記いずれの磁気誘導式レール探傷方法でも、前記センサユニットA或いはBの他に、探傷に必要な探傷信号処理器や他の機器を、自走車或いはトロッコ等の移動車両に搭載し、移動車両を検測レール1の上を移動させながら検測レール1の探傷を行うことができる。この場合、移動車両が移動開始する地点を移動距離計測の基準点として設定し、その基準点から探傷地点までの距離を計測すれば、探傷位置(検測レール上の傷存在箇所)を検出することもできる。
(Detection of flaws and flaw position)
In any of the magnetic induction type rail flaw detection methods, in addition to the sensor unit A or B, a flaw detection signal processor and other devices necessary for flaw detection are mounted on a mobile vehicle such as a self-propelled vehicle or a truck. The inspection rail 1 can be flawed while moving on the inspection rail 1. In this case, if a point where the moving vehicle starts moving is set as a reference point for moving distance measurement, and the distance from the reference point to the flaw detection point is measured, the flaw detection position (flaw existing point on the measurement rail) is detected. You can also.

探傷位置を計測する方法には各種方法が考えられるが、一例としてドップラ信号処理器14(図2)を採用することができる。このドップラ信号処理器14を移動車両に、前記センサユニットA、B等と共に搭載して、探傷と同時に移動車両の移動距離をも計測し、その移動距離から検測レールの傷存在箇所(探傷位置)を特定することができる。ドップラ信号処理器14に代えてロータリエンコーダや、他の距離計測器を使用することもできる。   Various methods are conceivable as a method for measuring the flaw detection position. As an example, the Doppler signal processor 14 (FIG. 2) can be employed. This Doppler signal processor 14 is mounted on a moving vehicle together with the sensor units A, B, etc., and the moving distance of the moving vehicle is measured simultaneously with the flaw detection. ) Can be specified. Instead of the Doppler signal processor 14, a rotary encoder or other distance measuring device can be used.

(レーザドップラセンサの原理)
ドップラ信号処理器14は図7に示すように、レーザ光源LDからレーザ光をビームスプリッタで二分して、一方のレーザ光はそのまま直進させ、他方のレーザ光はシフト信号fmで駆動される音響光学素子(Acousto Optical Modulator)AOMにより照射光の周波数をシフトして、周波数の異なる照射光を二方向から交差角φで、移動する被測定物に照射すると、被測定物からの散乱光が受光レンズ等の光学系を介して光電変換素子(例えばAPD:Avalanche Photo Diode)に受光され、ヘテロダイン検波される。このとき光電変換素子APDから得られるドップラ信号の周波数Fdは次式で示される。
Fd=fm±(2V/λ)・sin(φ/2)・cos(Δθ)
V:被測定物の表面速度
λ:レーザの波長
φ:ビ−ム交差角
Δθ:ビ−ム法線と被測定物の直角からのずれ角
前記式のように、ドップラ周波数Fdは移動する被測定物の表面速度Vに比例した周波数となる。このため、ある時間におけるドップラ周波数Fdの波数(パルスpの数)を積算すれば、その時間における被測定物の長さを求めることができる。前記パルス間隔はビ−ム交差角φとレーザの波長λとにより定まる。前記のようにAOMで照射光の周波数をシフトすることにより被測定物の距離や移動速度を精度よく測定することができる。
(Principle of laser Doppler sensor)
As shown in FIG. 7, the Doppler signal processor 14 divides the laser light from the laser light source LD into two by a beam splitter, one laser light goes straight as it is, and the other laser light is driven by a shift signal fm. When the frequency of irradiation light is shifted by an element (Acousto Optical Modulator) AOM and irradiation light with different frequencies is irradiated onto the moving measurement object at an intersection angle φ from two directions, scattered light from the measurement object is received by the light receiving lens. The light is received by a photoelectric conversion element (for example, APD: Avalanche Photo Diode) via an optical system such as heterodyne detection. At this time, the frequency Fd of the Doppler signal obtained from the photoelectric conversion element APD is expressed by the following equation.
Fd = fm ± (2V / λ) · sin (φ / 2) · cos (Δθ)
V: Surface speed of the object to be measured
λ: Laser wavelength
φ: beam crossing angle Δθ: angle of deviation between the beam normal and the object to be measured from the right angle As shown in the above formula, the Doppler frequency Fd is a frequency proportional to the surface velocity V of the object to be measured that moves. For this reason, if the wave number (number of pulses p) of the Doppler frequency Fd at a certain time is integrated, the length of the object to be measured at that time can be obtained. The pulse interval is determined by the beam crossing angle φ and the laser wavelength λ. As described above, the distance and moving speed of the object to be measured can be accurately measured by shifting the frequency of the irradiation light with the AOM.

(移動車両の位置検知)
移動車両に搭載されたレーザドップラセンサ(以下「ドップラセンサ」という。)により移動車両の位置を検知するには、検測レール敷設側にレーザ光を照射し、その敷設側からの散乱光(反射光)を前記ドップラセンサで受光し、その反射光を電気変換してドップラ信号を出力し、そのドップラ信号を処理して検測レール上における移動車両の位置(在線位置)を検知する。この列車位置検知方法では、予め、検測レール敷設側に距離基準子を設置しておき、ドップラセンサから出射されたレーザ光をこの距離基準子にも照射し、この距離基準子からの反射光を含むレール敷設側からの反射光をドップラセンサで受光し、そのドップラ信号に基づいてドップラピッチ信号を出力する。このドップラピッチ信号を積算して列車の移動距離を算出することができる。ここで、レール敷設側とはレール、枕木、踏切、前記距離基準子等が設けられた軌道敷設面(通常、砂利路面)側であり、前記反射光にはこれらレール、踏切、線路判別子等からの反射光に基づく各種信号も含まれている。
(Mobile vehicle position detection)
In order to detect the position of a moving vehicle by means of a laser Doppler sensor (hereinafter referred to as “Doppler sensor”) mounted on the moving vehicle, laser light is irradiated on the inspection rail laying side, and scattered light (reflected from the laying side). Light) is received by the Doppler sensor, the reflected light is electrically converted and a Doppler signal is output, and the Doppler signal is processed to detect the position of the moving vehicle on the measurement rail (position position). In this train position detection method, a distance reference is installed on the inspection rail laying side in advance, and the laser beam emitted from the Doppler sensor is also applied to the distance reference, and the reflected light from this distance reference The Doppler sensor receives reflected light from the rail laying side including and outputs a Doppler pitch signal based on the Doppler signal. The travel distance of the train can be calculated by integrating the Doppler pitch signals. Here, the rail laying side is a track laying surface (usually gravel road surface) side provided with rails, sleepers, railroad crossings, the distance reference, etc., and the reflected light includes these rails, railroad crossings, track discriminators, etc. Various signals based on the reflected light from are also included.

(レール探傷装置の実施例)
本発明の磁気誘導式レール探傷装置の一例を図1〜図7に基づいて説明する。このレール探傷装置は図1に示すように、二つのセンサユニットAと、探傷信号処理器10と、ドップラ信号処理器14と、表示器13を備える。本発明の磁気誘導式レール探傷装置はこれ以外のものであってもよく、図示したものはあくまでも一例であり、本発明の解決課題を解決でき、目的を達成できるものであればこれ以外であってもよい。
(Example of rail flaw detector)
An example of the magnetic induction rail flaw detector according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the rail flaw detector includes two sensor units A, a flaw detection signal processor 10, a Doppler signal processor 14, and a display 13. The magnetic induction type rail flaw detector of the present invention may be other than this, and the illustrated one is only an example, and other than this, as long as the problem to be solved of the present invention can be solved and the object can be achieved. May be.

図1の二つのセンサユニットAは図2のように励磁コイル6と二つの検出コイル7a、7bを備えている。励磁コイル6と二つの検出コイル7a、7bの夫々は別のコアに巻かれている。二つの検出コイル7a、7bは巻き数は同じであるが、互いに逆巻きにして、両検出コイル7a、7bで検出される振幅値が減算値(振幅差)で出力されるようにしてある。   The two sensor units A in FIG. 1 are provided with an exciting coil 6 and two detection coils 7a and 7b as shown in FIG. The exciting coil 6 and the two detection coils 7a and 7b are wound around different cores. The two detection coils 7a and 7b have the same number of turns but are reversely wound so that the amplitude values detected by both the detection coils 7a and 7b are output as a subtraction value (amplitude difference).

前記検出コイル7a、7bに作用する現象は、渦電流、漏洩磁束、空中電磁結合の3種類の原理が複合された結果となっている。いずれの現象も、検測レール1の傷の有無、大きさ、深さ等に反応し、検出コイル7a、7bに微小量であるが出力されている。検測レール1に表面傷も横裂傷もないときの検出コイル出力(減算出力)は理論的には零となり、どちらか一方の検出コイルが傷のある位置に差し掛かると、両検出コイル7a、7bのバランスが崩れて出力が発生する。これを増幅して振幅出力とし、励磁コイルの駆動電圧と検出コイルの差動出力の位相を測定し、位相出力とする。   The phenomenon acting on the detection coils 7a and 7b is a result of a combination of three types of principles of eddy current, leakage magnetic flux, and air electromagnetic coupling. Any phenomenon reacts to the presence / absence, size, depth, etc. of the inspection rail 1 and is output to the detection coils 7a, 7b although it is a minute amount. The detection coil output (subtraction output) when the inspection rail 1 has neither a surface flaw nor a lateral fissure theoretically becomes zero, and when either one of the detection coils reaches a flawed position, both detection coils 7a, 7b The balance is lost and output is generated. This is amplified and used as an amplitude output, and the phase of the drive voltage of the excitation coil and the differential output of the detection coil is measured to obtain the phase output.

図1の探傷信号処理器10は図2に示すように励起電圧供給部11、出力処理部12、移相器17を備える。図1、図2では、探傷情報を表示する液晶ディスプレイ等の表示器(モニタ)13をも備える。   The flaw detection signal processor 10 of FIG. 1 includes an excitation voltage supply unit 11, an output processing unit 12, and a phase shifter 17 as shown in FIG. 1 and 2, a display device (monitor) 13 such as a liquid crystal display for displaying flaw detection information is also provided.

前記励起電圧供給部11は図2のように、基準信号を発振する発振器11a、分周器(DIV)、書き込み専用記憶素子(ROM)、デジタル/アナログ変換器(D/A)、正弦波変換部11b、可変抵抗器VR1、増幅器11cを備えている。 As shown in FIG. 2, the excitation voltage supply unit 11 includes an oscillator 11a that oscillates a reference signal, a frequency divider (DIV), a write-only memory element (ROM), a digital / analog converter (D / A), and a sine wave converter. A section 11b, a variable resistor VR 1 , and an amplifier 11c are provided.

前記出力処理部12は検出コイル7a、7bで検出される検出信号(振幅、位相)から高周波雑音成分を除去するローパスフィルタ(LPF)、可変抵抗器VR2、増幅器12a、演算器12b、中央演算処理装置(CPU)を備える。 The output processing unit 12 is a detection signal detected by the detection coil 7a, 7b (amplitude, phase) low-pass filter for removing high frequency noise components from (LPF), a variable resistor VR 2, amplifiers 12a, calculator 12b, a central A processing device (CPU) is provided.

前記演算器12bは検出コイル7a、7bで検出される検出信号、ドップラ信号処理器14からの信号を処理して、振幅出力信号、位相出力信号、移動距離出力信号を出力可能なものである。   The arithmetic unit 12b can process the detection signals detected by the detection coils 7a and 7b and the signal from the Doppler signal processor 14, and output an amplitude output signal, a phase output signal, and a movement distance output signal.

前記CPUは、演算器12bを制御するものである。CPUは演算器12bと一体化されている場合もある。   The CPU controls the computing unit 12b. The CPU may be integrated with the calculator 12b.

図2では操作パネル16を備える。操作パネル16はCPUを操作して、種々の条件設定、条件変更、削除等をするものである。   In FIG. 2, an operation panel 16 is provided. The operation panel 16 operates the CPU to set various conditions, change conditions, and delete.

移相器17は検測レール1の探傷開始前に、励起電圧供給部11(図2)から供給される励起電圧の位相と、無傷のレール(基準レール)を探傷したときの誘起電圧の位相差を零に調整し、この零位相を基準位相として設定するものである。   The phase shifter 17 determines the phase of the excitation voltage supplied from the excitation voltage supply unit 11 (FIG. 2) and the level of the induced voltage when the intact rail (reference rail) is detected before the inspection rail 1 starts flaw detection. The phase difference is adjusted to zero, and this zero phase is set as a reference phase.

図2では電源18を備える。電源18は探傷信号処理器10を駆動する電源であり、探傷信号処理器10の駆動に必要な各種電圧を供給できる。電源安定化装置とかその他の電源関連機器を備えることもできる。   In FIG. 2, a power source 18 is provided. The power source 18 is a power source for driving the flaw detection signal processor 10 and can supply various voltages necessary for driving the flaw detection signal processor 10. A power stabilization device or other power-related equipment can also be provided.

ドップラ信号処理器14はレーザドップラセンサの原理を応用したものであり、前記した構成、機能のものを使用することができる。ドップラ信号処理器14を使用することにより、検測レール1の傷が検出された場合、その傷が検測レール1の長手方向どの位置(基準位置から何キロ先)にあるかを計測することができる。   The Doppler signal processor 14 is an application of the principle of a laser Doppler sensor, and the above-described configuration and function can be used. By using the Doppler signal processor 14, when a flaw on the inspection rail 1 is detected, the position in the longitudinal direction of the inspection rail 1 (how many kilometers away from the reference position) is measured. Can do.

図4にセンサユニットBの例を示す。このセンサユニットBは、検測レール1の長手方向に離して、励磁コイル6を中心にして一つの検出コイル7aと基準レール用の検出コイル7bが配置されている。基準コイルの検出コイル7bは基準レール15(図5(c)、(d))からの誘起電流を検出するためのものである。基準レール15は表面傷も横裂傷もない無傷のレールであり、所望長、例えば、数十cm程度の長さであり、材質、磁気特性等は検測レール1と同じものである。   FIG. 4 shows an example of the sensor unit B. In this sensor unit B, one detection coil 7a and a reference rail detection coil 7b are arranged centering on the excitation coil 6 apart from each other in the longitudinal direction of the inspection rail 1. The detection coil 7b of the reference coil is for detecting an induced current from the reference rail 15 (FIGS. 5C and 5D). The reference rail 15 is an intact rail with no surface scratches or lateral lacerations, has a desired length, for example, a length of about several tens of centimeters, and has the same material and magnetic characteristics as those of the inspection rail 1.

センサユニットBを使用する場合は、それを基準レール15に固定して、基準レール15、励磁コイル6、基準レール用の検出コイル7bの位置関係を一定に保持して、基準レール用の検出コイル7bが検測レール1の傷に差し掛かることがないようにする。この場合は、傷の定量化を行うことができ、正確な探傷ができる。   When the sensor unit B is used, the sensor unit B is fixed to the reference rail 15, the positional relationship among the reference rail 15, the exciting coil 6, and the reference coil detection coil 7b is kept constant, and the reference coil detection coil is used. 7b should not reach the inspection rail 1 scratch. In this case, scratches can be quantified and accurate flaw detection can be performed.

センサユニットBを使用する場合の励磁コイル6と検出コイル7aは、同じコアに同軸巻きにして、漏れ磁束を減らして磁束鎖交率を高め、検出感度を高めることができる。   When the sensor unit B is used, the excitation coil 6 and the detection coil 7a can be coaxially wound around the same core to reduce the leakage magnetic flux, increase the flux linkage rate, and increase the detection sensitivity.

センサユニットAもセンサユニットBも、図2の探傷信号処理器、表示器13、ドップラ信号処理器14、その他の必要な機器と共に、移動車両に搭載して検測レール上を走行させることができる。センサユニットAとセンサユニットBは共に一台の移動車両に搭載して、測定環境や条件に応じて、両センサユニットA、Bを切り替え使用することができる。   Both the sensor unit A and the sensor unit B can be mounted on a moving vehicle together with the flaw detection signal processor, the display unit 13, the Doppler signal processor 14, and other necessary devices shown in FIG. . Both the sensor unit A and the sensor unit B can be mounted on one moving vehicle, and the two sensor units A and B can be switched and used according to the measurement environment and conditions.

本発明の探傷方法は、レール以外の導体の探傷に利用することもできる。   The flaw detection method of the present invention can also be used for flaw detection of conductors other than rails.

1 検測レール
1a 検測レールの頭部
2 超音波発生器
3 探触子
3a 送信側の探触子
3b 受信側の探触子
4 レール頭部の欠損部
6 励磁コイル
6a、6b 励磁コイル
7a、7b 検出コイル
8a 検測レール用センサコイル
8b 基準レール用センサコイル
10 探傷信号処理器
11 励起電圧供給部
11a 発振器
11b 正弦波変換部
11c 増幅器
12 出力処理部(検出コイル出力信号処理部)
12a 増幅器
12b 演算器
13 表示器
14 ドップラ信号処理器
15 基準レール
15a 基準レールの頭部
16 操作パネル
17 移相器
18 電源
AMP 増幅器
DIV 分周器
LPF ロ―パスフィルタ
ROM 書き込み専用記憶素子
D/A 、デジタル/アナログ変換器
VR1、VR2 可変抵抗器
CPU 中央演算処理装置
DESCRIPTION OF SYMBOLS 1 Inspection rail 1a Inspection rail head 2 Ultrasonic generator 3 Probe 3a Transmission side probe 3b Reception side probe 4 Rail head missing part 6 Excitation coil 6a, 6b Excitation coil 7a 7b, detection coil 8a, sensor coil for inspection rail, 8b, sensor coil for reference rail, 10 flaw detection signal processor, 11 excitation voltage supply unit, 11a oscillator, 11b, sine wave conversion unit, 11c amplifier, 12 output processing unit (detection coil output signal processing unit)
12a amplifier 12b arithmetic unit 13 display unit 14 Doppler signal processor 15 reference rail 15a head of reference rail 16 operation panel 17 phase shifter 18 power supply AMP amplifier DIV frequency divider LPF low pass filter ROM write-only storage element D / A , Digital / analog converter VR 1 , VR 2 variable resistor CPU central processing unit

Claims (14)

検測レールの表面傷や横裂傷(以下これらを「傷」という)を電磁誘導方式で検出するレール探傷方法において、
励磁コイルと、その励磁コイルを挟んで検測レールの長手方向に離して配置された二つの検出コイルを検測レールの頭部上方にリフトオフを持って配置し、
両検出コイルは逆巻きにして直列接続し、
前記励磁コイルから発生する交流磁束を検測レールに加えて当該検測レールに渦電流を発生させ、
渦電流に基づいて生ずる誘起電圧の振幅を傷がない場合もある場合も前記二つの検出コイルで検出し、
傷がない場合の検出振幅と、傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅差から検測レールの傷の有無を検出する、
ことを特徴とする磁気誘導式レール探傷方法。
In the rail flaw detection method for detecting surface flaws and lateral fissures (hereinafter referred to as “scratches”) of the inspection rail by electromagnetic induction,
An excitation coil and two detection coils that are arranged apart from each other in the longitudinal direction of the measurement rail across the excitation coil are arranged with a lift-off above the head of the measurement rail,
Both detection coils are wound in reverse and connected in series.
Add AC magnetic flux generated from the exciting coil to the inspection rail to generate eddy current in the inspection rail,
The amplitude of the induced voltage generated based on the eddy current may be detected by the two detection coils even when there is no scratch,
Detects the presence or absence of flaws on the measurement rail from the amplitude difference between the detection amplitude when there is no flaw and the fluctuation induced voltage based on the eddy current that fluctuates due to the flaw when there is a flaw,
A magnetic induction rail flaw detection method characterized by the above.
請求項1記載の磁気誘導式レール探傷方法において、
励磁コイルと二つの検出コイルは前記配列で一つのセンサユニットにし、そのセンサユニットを検測レールの頭部上方にリフトオフを持って配置する、
ことを特徴とする磁気誘導式レール探傷方法。
The magnetic induction rail flaw detection method according to claim 1,
The excitation coil and the two detection coils form one sensor unit in the arrangement, and the sensor unit is arranged with a lift-off above the head of the measurement rail.
A magnetic induction rail flaw detection method characterized by the above.
検測レールの傷を電磁誘導方式で検出するレール探傷方法において、
励磁コイルと検出コイルが同軸に逆巻きされたセンサコイル二つを備えたセンサユニットの一方のセンサコイルを検測レールの頭部上方にリフトオフを持って配置し、他方のセンサコイルを無傷の基準レールの頭部上方にリフトオフを持って配置して、検測レール上方の励磁コイルから発生する交流磁束を検測レールに加え、基準レール上方の励磁コイルから発生する交流磁束を基準レールに加えて、検測レールと基準レールの夫々に渦電流を発生させ、
夫々の渦電流の影響を受けて生ずる誘起電圧の振幅を前記二つのセンサコイルで検出し、
検測レールに傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅と基準レールの誘起電圧の振幅との振幅差を、前記逆巻き検出コイルで減算して検出し、
この振幅差から検測レールの傷の有無を検出する、
ことを特徴とする磁気誘導式レール探傷方法。
In the rail flaw detection method that detects flaws on the inspection rail by electromagnetic induction,
Place one sensor coil of the sensor unit with two sensor coils with the excitation coil and the detection coil reversely wound coaxially with a lift-off above the head of the measurement rail, and the other sensor coil with an intact reference rail Is placed with a lift-off above the head, and the AC magnetic flux generated from the excitation coil above the measurement rail is added to the measurement rail, and the AC magnetic flux generated from the excitation coil above the reference rail is added to the reference rail, Generate eddy currents on the inspection and reference rails,
The two sensor coils detect the amplitude of the induced voltage generated by the influence of each eddy current,
If there is a flaw on the inspection rail, the difference between the amplitude of the fluctuation induced voltage based on the eddy current that fluctuates due to the flaw and the amplitude of the induced voltage of the reference rail is subtracted by the reverse winding detection coil and detected. And
Detecting the presence or absence of scratches on the inspection rail from this amplitude difference,
A magnetic induction rail flaw detection method characterized by the above.
検測レールの傷を電磁誘導方式で検出するレール探傷方法において、
励磁コイルと検出コイルが同軸に逆巻きされたセンサコイル二つを検測レールの長手方向に離して且つ検測レールの頭部上方にリフトオフを持って配置し、夫々のセンサコイルの検出コイルを検測レールの長手方向の異なる二箇所に対向させ、
二つのセンサコイルの検出コイルは直列接続され、
前記励磁コイルから発生する交流磁束を検測レールに加えて当該検測レールに渦電流を発生させ、
渦電流に応じて生ずる検測レールの前記二箇所の誘起電圧の振幅を傷がない場合もある場合も前記二つのセンサコイルの検出コイルで検出し、
傷がない場合の検出振幅と、傷がある場合にその傷の影響を受けて変動した渦電流に基づく変動誘起電圧の振幅差を、前記逆巻き検出コイルで減算して検出し、
この振幅差から検測レールの傷の有無を検出する、
ことを特徴とする磁気誘導式レール探傷方法。
In the rail flaw detection method that detects flaws on the inspection rail by electromagnetic induction,
Two sensor coils, in which the excitation coil and the detection coil are coaxially wound in reverse, are placed apart from each other in the longitudinal direction of the measurement rail and with a lift-off above the head of the measurement rail, and the detection coil of each sensor coil is detected. Opposing to two different places in the longitudinal direction of the measuring rail,
The detection coils of the two sensor coils are connected in series,
Add AC magnetic flux generated from the exciting coil to the inspection rail to generate an eddy current in the inspection rail,
Detecting the amplitude of the induced voltage at the two positions of the measurement rail generated according to the eddy current may be detected by the detection coils of the two sensor coils in some cases.
A detection amplitude when there is no flaw and a difference between amplitudes of fluctuation-induced voltages based on eddy currents fluctuated under the influence of the flaw when there is a flaw is detected by subtracting with the reverse winding detection coil,
Detecting the presence or absence of scratches on the inspection rail from this amplitude difference,
A magnetic induction rail flaw detection method characterized by the above.
請求項1から請求項4のいずれか1項に記載の磁気誘導式レール探傷方法において、
検測レールの探傷前に、励起電圧の位相と、無傷のレールを探傷したときの誘起電圧の位相を調整して位相差を零にし、この位相差零を基準位相として設定し、この基準位相と、検測レールの傷を検出したときの誘起電圧の位相との差をも求める、
ことを特徴とする磁気誘導式レール探傷方法。
In the magnetic induction type rail flaw detection method according to any one of claims 1 to 4,
Before the inspection rail flaw detection, the phase of the excitation voltage and the phase of the induced voltage when the flawless rail is flawed are adjusted to make the phase difference zero, and this phase difference is set as the reference phase. And the difference between the phase of the induced voltage when a flaw on the inspection rail is detected,
A magnetic induction rail flaw detection method characterized by the above.
請求項1から請求項5のいずれか1項に記載の磁気誘導式レール探傷方法において、
検測レールの探傷に必要な機器を移動車両に搭載し、
移動車両を、検測レール上を移動させながら、検測レールの探傷を行う、
ことを特徴とする磁気誘導式レール探傷方法。
In the magnetic induction type rail flaw detection method according to any one of claims 1 to 5,
The equipment necessary for flaw detection of inspection rails is mounted on moving vehicles,
Detecting the inspection rail while moving the moving vehicle on the inspection rail,
A magnetic induction rail flaw detection method characterized by the above.
請求項6記載の磁気誘導式レール探傷方法において、
移動車両に移動距離計測装置を搭載し、
その移動距離計測装置により、探傷時の移動車両の移動距離を計測して、
探傷箇所の位置も検知する、
ことを特徴とする磁気誘導式レール探傷方法。
The magnetic induction rail flaw detection method according to claim 6,
A moving distance measuring device is installed in a moving vehicle,
With the movement distance measuring device, measure the movement distance of the moving vehicle at the time of flaw detection,
Detects the position of the flaw detection location,
A magnetic induction rail flaw detection method characterized by the above.
請求項1から請求項7のいずれか1項に記載の磁気誘導式レール探傷方法において、
両検出コイルの減算出力と、励磁コイルを駆動する駆動電圧との位相差も測定し、
検出された位相差及び振幅差を、所定位置に傷を付けた傷付きテストピースを探傷した場合の探傷量と対照して、傷を定量化する、
ことを特徴とする磁気誘導式レール探傷方法。
In the magnetic induction type rail flaw detection method according to any one of claims 1 to 7,
Measure the phase difference between the subtraction output of both detection coils and the drive voltage that drives the excitation coil,
The detected phase difference and amplitude difference are compared with the amount of flaw detection when a flawed test piece with a flaw in a predetermined position is detected, and the flaw is quantified.
A magnetic induction rail flaw detection method characterized by the above.
検測レールの傷を電磁誘導式で検出するレール探傷装置において、
レール探傷時に検測レールの頭部上方にリフトオフを持って配置可能なセンサユニットと、そのセンサユニットの励磁コイルに励磁電圧を供給する励磁電圧供給部と、センサユニットで検出した検出信号を処理する信号処理部を備え、
前記センサユニットは励磁コイルと、それを挟んでレールの長手方向に配置した二つの検出コイルとを備え、
前記励磁コイルは交流磁束を検測レールに加えて当該検測レールに渦電流を発生させることができ、
前記二つの検出コイルは互いに逆巻きであり且つ直列接続されて、前記渦電流に基づいて生ずる誘起電圧の振幅差を検知することができ、
前記信号処理部は前記センサユニットの検出コイルで検出された振幅差を処理して、振幅信号を外部に出力できるようにした、
ことを特徴とする電磁誘導式レール探傷装置。
In rail flaw detectors that detect flaws in inspection rails using electromagnetic induction,
A sensor unit that can be placed with a lift-off above the head of the measurement rail during rail flaw detection, an excitation voltage supply unit that supplies an excitation voltage to the excitation coil of the sensor unit, and a detection signal detected by the sensor unit A signal processing unit,
The sensor unit includes an excitation coil and two detection coils arranged in the longitudinal direction of the rail across the excitation coil,
The excitation coil can generate an eddy current in the inspection rail by applying an alternating magnetic flux to the inspection rail.
The two detection coils are reversely wound with each other and are connected in series to detect an amplitude difference between induced voltages based on the eddy current,
The signal processing unit is configured to process an amplitude difference detected by a detection coil of the sensor unit and output an amplitude signal to the outside.
An electromagnetic induction rail flaw detector characterized by the above.
検測レールの傷を電磁誘導式で検出するレール探傷装置において、
検測レールの頭部上方にリフトオフを持って対向配置できるセンサコイルと、無傷の基準レールの頭部上方にリフトオフを持って対向配置できるセンサコイルを備え、
夫々のセンサコイルは共通のコアに同軸巻きされた励磁コイルと検出コイルを備え、一方のセンサコイルの励磁コイルは交流磁束を検測レールに加えて当該レールに渦電流を発生させることができ、他方のセンサコイルの励磁コイルは交流磁束を基準レールに加えて当該レールに渦電流を発生させることができ、
前記両検出コイルは逆巻きされ且つ直列接続され、
検測レールの上方に配置された検出コイルは検測レールの渦電流により生ずる励起電圧の振幅を検出でき、基準レールの上方に配置された検出コイルは基準レールの渦電流により生ずる励起電圧の振幅を検出でき、
検測レールに傷があるときはその傷の影響を受けて変動する渦電流に基づいて変化する誘起電圧の振幅と、基準レール上方の検出コイルで検出された誘起電圧の振幅との振幅差を、逆巻きされた両検出コイルで減算されて検出できるようにした、
ことを特徴とする電磁誘導式レール探傷装置。
In rail flaw detectors that detect flaws in inspection rails using electromagnetic induction,
It has a sensor coil that can be placed opposite to the head of the inspection rail with a lift-off, and a sensor coil that can be placed opposite to the head of an intact reference rail with a lift-off,
Each sensor coil includes an excitation coil and a detection coil that are coaxially wound around a common core, and the excitation coil of one sensor coil can generate an eddy current in the rail by applying AC magnetic flux to the measurement rail, The excitation coil of the other sensor coil can apply an alternating magnetic flux to the reference rail to generate an eddy current in the rail,
Both detection coils are reversely wound and connected in series;
The detection coil arranged above the detection rail can detect the amplitude of the excitation voltage caused by the eddy current of the measurement rail, and the detection coil arranged above the reference rail can detect the amplitude of the excitation voltage caused by the eddy current of the reference rail. Can be detected,
When there is a flaw on the inspection rail, the amplitude difference between the amplitude of the induced voltage that changes based on the eddy current that fluctuates due to the flaw and the amplitude of the induced voltage detected by the detection coil above the reference rail , Subtracted by both detection coils that were wound in reverse, so that it can be detected,
An electromagnetic induction rail flaw detector characterized by the above.
検測レールの傷を電磁誘導式で検出するレール探傷装置において、
検測レールの長手方向の二箇所に対向配置できるようにその長手方向に離して配置されたセンサユニットを少なくとも二つ備え、
夫々のセンサユニットは共通のコアに同軸巻きされた励磁コイルと検出コイルを備え、
それら両検出コイルは互いに逆巻きされ且つ直列接続されて、前記渦電流の影響を受けて生ずる検測レールの前記二箇所の誘起電圧を検出し、検測レールに傷があるときはその傷の影響を受けて変動する渦電流により生ずる誘起電圧の振幅と、傷のないときの渦電流により生ずる誘起電圧の振幅との振幅差を検出することができるようにした、
ことを特徴とする電磁誘導式レール探傷装置。
In rail flaw detectors that detect flaws in inspection rails using electromagnetic induction,
At least two sensor units arranged apart from each other in the longitudinal direction so that they can be opposed to each other in two places in the longitudinal direction of the inspection rail,
Each sensor unit includes an excitation coil and a detection coil that are coaxially wound around a common core.
These two detection coils are wound in reverse and connected in series to detect the induced voltage at the two points of the test rail that is generated by the influence of the eddy current. The difference between the amplitude of the induced voltage caused by the eddy current that fluctuates in response to the amplitude of the induced voltage caused by the eddy current when there is no flaw can be detected.
An electromagnetic induction rail flaw detector characterized by the above.
請求項9から請求項11のいずれか1項に記載の電磁誘導式レール探傷装置において、
信号処理部を、励起電圧の位相と検出コイルで検出された誘起電圧の位相差を外部に出力できるようにして、振幅差と位相差の双方により傷の有無を探傷できるようにした、
ことを特徴とする電磁誘導式レール探傷装置。
In the electromagnetic induction type rail flaw detector according to any one of claims 9 to 11,
The signal processing unit can output the phase difference between the excitation voltage phase and the induced voltage detected by the detection coil to the outside so that the presence or absence of a flaw can be detected by both the amplitude difference and the phase difference.
An electromagnetic induction rail flaw detector characterized by the above.
請求項9から請求項12のいずれか1項に記載の電磁誘導式レール探傷装置において、
前記電磁誘導式レール探傷装置が移動車両に搭載され、
移動車両を検測レールの上を移動させながら検測レールを探傷するとともに、移動車両の移動位置も検出できるようにし、
信号処理部に、移動距離計測装置からの信号を処理して、移動距離(探傷位置)を外部に出力して検出された傷の検測レール上の位置も確認できる機能をも設けた、
ことを特徴とする電磁誘導式レール探傷装置。
In the electromagnetic induction type rail flaw detector according to any one of claims 9 to 12,
The electromagnetic induction rail flaw detector is mounted on a moving vehicle,
While detecting the inspection rail while moving the moving vehicle on the inspection rail, the moving position of the moving vehicle can be detected,
The signal processing unit is also equipped with a function that processes the signal from the moving distance measuring device and outputs the moving distance (flaw detection position) to the outside to check the position of the detected flaw on the measurement rail.
An electromagnetic induction rail flaw detector characterized by the above.
請求項9から請求項13のいずれか1項に記載の電磁誘導式レール探傷装置において、
信号処理部からの出力を表示できる表示装置を備え、その表示装置の同一画面に振幅波と位相波の波形図を同時に表示できるようにし、
表示画面は横軸を計測位置、縦軸に振幅、位相差として前記波形図を表示できる、
ことを特徴とする電磁誘導式レール探傷装置。
In the electromagnetic induction type rail flaw detector according to any one of claims 9 to 13,
Provided with a display device that can display the output from the signal processing unit, so that the waveform diagram of the amplitude wave and the phase wave can be displayed simultaneously on the same screen of the display device,
The display screen can display the waveform diagram with the horizontal axis as the measurement position, the vertical axis as the amplitude, and the phase difference.
An electromagnetic induction rail flaw detector characterized by the above.
JP2012255333A 2012-11-21 2012-11-21 Magnetic induction rail flow detection method, and magnetic induction rail flow detection device Pending JP2014102197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255333A JP2014102197A (en) 2012-11-21 2012-11-21 Magnetic induction rail flow detection method, and magnetic induction rail flow detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255333A JP2014102197A (en) 2012-11-21 2012-11-21 Magnetic induction rail flow detection method, and magnetic induction rail flow detection device

Publications (1)

Publication Number Publication Date
JP2014102197A true JP2014102197A (en) 2014-06-05

Family

ID=51024810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255333A Pending JP2014102197A (en) 2012-11-21 2012-11-21 Magnetic induction rail flow detection method, and magnetic induction rail flow detection device

Country Status (1)

Country Link
JP (1) JP2014102197A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603451C2 (en) * 2014-08-29 2016-11-27 Закрытое акционерное общество "Фирма ТВЕМА" Flaw detector of combined noncontact magnetic and ultrasonic testing of rail track
WO2017006589A1 (en) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ Rail inspection device and rail inspection system
JP2017161324A (en) * 2016-03-09 2017-09-14 東京計器株式会社 Flaw detector and flaw detection method
CN108051500A (en) * 2018-02-24 2018-05-18 才楠 A kind of vehicle carrying out flaw detection device and its detection method
WO2018116546A1 (en) * 2016-12-21 2018-06-28 株式会社日立ハイテクファインシステムズ Rail inspection system
JP2020003288A (en) * 2018-06-27 2020-01-09 矢崎エナジーシステム株式会社 Degradation detection method and degradation detection device
CN113970709A (en) * 2021-10-27 2022-01-25 徐州中矿传动轨道科技有限公司 A method and system for locating local insulation damage points of subway rails to the ground
KR20220126040A (en) * 2021-03-08 2022-09-15 김봉택 Eddy cuttent sensing device and independent measurement type eddy current examination system
RU222475U1 (en) * 2023-10-24 2023-12-27 Акционерное общество "Фирма ТВЕМА" Device for ultrasonic inspection of rails
EP4303093A1 (en) 2022-06-13 2024-01-10 Hitachi, Ltd. Rail state monitoring apparatus and rail state monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722961A (en) * 1980-07-18 1982-02-06 Japan National Railway Device and method of measuring defect of head top surface of rail
JPH09269316A (en) * 1996-03-29 1997-10-14 Railway Technical Res Inst Eddy current flaw detection method and eddy current flaw detector
JP2001153845A (en) * 1999-11-24 2001-06-08 Kyosan Electric Mfg Co Ltd Wire rope flaw detector
JP2001318080A (en) * 2000-05-09 2001-11-16 Kaisei Engineer Kk Detection coil and inspecting device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722961A (en) * 1980-07-18 1982-02-06 Japan National Railway Device and method of measuring defect of head top surface of rail
JPH09269316A (en) * 1996-03-29 1997-10-14 Railway Technical Res Inst Eddy current flaw detection method and eddy current flaw detector
JP2001153845A (en) * 1999-11-24 2001-06-08 Kyosan Electric Mfg Co Ltd Wire rope flaw detector
JP2001318080A (en) * 2000-05-09 2001-11-16 Kaisei Engineer Kk Detection coil and inspecting device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENGLU SONG ET AL.: "Detection of Damage and Crack in Railhead by Using Eddy Current Testing", JOURNAL OF ELECTROMAGNETIC ANALYSIS AND APPLICATIONS, vol. 3, JPN6016033147, 2011, pages 546 - 550, ISSN: 0003388285 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603451C2 (en) * 2014-08-29 2016-11-27 Закрытое акционерное общество "Фирма ТВЕМА" Flaw detector of combined noncontact magnetic and ultrasonic testing of rail track
WO2017006589A1 (en) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ Rail inspection device and rail inspection system
JP2017020862A (en) * 2015-07-09 2017-01-26 株式会社日立ハイテクノロジーズ Rail inspection system, and rail inspection system
US10591442B2 (en) 2015-07-09 2020-03-17 Hitachi High-Technologies Corporation Rail check device and rail check system
JP2017161324A (en) * 2016-03-09 2017-09-14 東京計器株式会社 Flaw detector and flaw detection method
EP3561501A4 (en) * 2016-12-21 2020-08-12 Hitachi High-tech Fine Systems Corporation RAIL INSPECTION SYSTEM
WO2018116546A1 (en) * 2016-12-21 2018-06-28 株式会社日立ハイテクファインシステムズ Rail inspection system
JP2018100942A (en) * 2016-12-21 2018-06-28 株式会社日立ハイテクファインシステムズ Rail inspection system
US10989694B2 (en) 2016-12-21 2021-04-27 Hitachi High-Tech Fine Systems Corporation Rail inspection system
CN108051500A (en) * 2018-02-24 2018-05-18 才楠 A kind of vehicle carrying out flaw detection device and its detection method
JP2020003288A (en) * 2018-06-27 2020-01-09 矢崎エナジーシステム株式会社 Degradation detection method and degradation detection device
JP7204291B2 (en) 2018-06-27 2023-01-16 矢崎エナジーシステム株式会社 Deterioration detection method and deterioration detection device
KR20220126040A (en) * 2021-03-08 2022-09-15 김봉택 Eddy cuttent sensing device and independent measurement type eddy current examination system
KR102554403B1 (en) 2021-03-08 2023-07-11 김봉택 Eddy cuttent sensing device and independent measurement type eddy current examination system
CN113970709A (en) * 2021-10-27 2022-01-25 徐州中矿传动轨道科技有限公司 A method and system for locating local insulation damage points of subway rails to the ground
EP4303093A1 (en) 2022-06-13 2024-01-10 Hitachi, Ltd. Rail state monitoring apparatus and rail state monitoring method
RU222475U1 (en) * 2023-10-24 2023-12-27 Акционерное общество "Фирма ТВЕМА" Device for ultrasonic inspection of rails

Similar Documents

Publication Publication Date Title
JP2014102197A (en) Magnetic induction rail flow detection method, and magnetic induction rail flow detection device
Wang et al. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR
CN101219672B (en) Non-contact dynamic measurement method of wheel diameter based on laser
US20170176389A1 (en) Method and system for non-destructive rail inspection
WO2017006589A1 (en) Rail inspection device and rail inspection system
US7521917B2 (en) Method and apparatus for testing material integrity
CN105259254A (en) Scanning device for steel rail bottom transverse cracks
KR101356751B1 (en) Noncontact inspection equipment for internal flaw of rail
JP5647746B1 (en) Steel pipe column diagnostic device and steel pipe column diagnostic method
JP6826738B2 (en) Non-destructive inspection equipment
CN100573045C (en) Automatic detection method for track span and straightness of hoisting and transporting machinery
US12246762B2 (en) System and method for rail scanning using electromagnetic engines
US10705054B2 (en) Method for ultrasonically inspecting an aluminothermically welded rail joint
Tanaka et al. Development and verification of monitoring tools for realizing effective maintenance of rail corrugation
Yasuda et al. Applicability of non-contact inspection using laser ablation-induced vibration in a reinforced concrete tunnel lining
KR100614141B1 (en) Plate thickness measuring device of cylindrical tank bottom plate
RU2487809C2 (en) Method of track and rolling stock diagnostics
RU2586090C1 (en) Method for magnetic inspection of weld joints of rails
CN119086716A (en) A method and device for detecting cracks in turnout point rails based on nonlinear ultrasonic guided waves
JP3960782B2 (en) Tank steel plate welding inspection equipment
CN110672722B (en) Locomotive wheel tread defect online detection system and method based on electromagnetic ultrasound
CN113533513A (en) A real-time monitoring method and monitoring device for rail damage
RU2652511C1 (en) Method of micro cracks on the rail head rolling surface ultrasonic detection
CN203275369U (en) System for measuring steel rail crack abrasion on basis of surface wave method
JP2012107919A (en) Steel plate deck inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314