[go: up one dir, main page]

JP2014098535A - Air conditioning system for building utilizing geothermal heat and heat pump - Google Patents

Air conditioning system for building utilizing geothermal heat and heat pump Download PDF

Info

Publication number
JP2014098535A
JP2014098535A JP2013095291A JP2013095291A JP2014098535A JP 2014098535 A JP2014098535 A JP 2014098535A JP 2013095291 A JP2013095291 A JP 2013095291A JP 2013095291 A JP2013095291 A JP 2013095291A JP 2014098535 A JP2014098535 A JP 2014098535A
Authority
JP
Japan
Prior art keywords
heat
transfer fluid
fluid storage
heat transfer
storage pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095291A
Other languages
Japanese (ja)
Other versions
JP6120317B2 (en
Inventor
Mineo Sagara
峰雄 相良
Daisuke Asagiri
大介 朝桐
Masakazu Abiko
正和 吾孫子
Shohei Sugano
昇平 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Sekisui Chemical Hokkaido Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Sekisui Chemical Hokkaido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Sekisui Chemical Hokkaido Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013095291A priority Critical patent/JP6120317B2/en
Publication of JP2014098535A publication Critical patent/JP2014098535A/en
Application granted granted Critical
Publication of JP6120317B2 publication Critical patent/JP6120317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)

Abstract

【課題】地中熱採熱用の熱搬送流体貯留パイプの地中への埋設作業に係る日数を少なくできると共に、安価に構築できる地中熱及びヒートポンプ利用の建物用空調システムを提供すること。
【解決手段】ヒートポンプシステム6の第1の熱交換部11と地中熱利用のための熱搬送流体貯留パイプ16との間で熱搬送用流体が循環可能に設けられ、この熱搬送用流体を第1の熱交換部11と熱搬送流体貯留パイプ16との間で循環させる循環ポンプ22が設けられていると共に、熱搬送流体貯留パイプ16は建物3のべた基礎2の真下に位置させて地表面1aから浅い位置に水平方向に向けて埋設されている。
【選択図】 図1
To provide a building air conditioning system using geothermal heat and a heat pump that can reduce the number of days related to the undergrounding work of a heat transfer fluid storage pipe for underground heat collection and can be constructed at low cost.
A heat transfer fluid is circulated between a first heat exchanging portion 11 of a heat pump system 6 and a heat transfer fluid storage pipe 16 for use of underground heat, and the heat transfer fluid is A circulation pump 22 that circulates between the first heat exchanging section 11 and the heat transfer fluid storage pipe 16 is provided, and the heat transfer fluid storage pipe 16 is positioned directly below the solid foundation 2 of the building 3 to be grounded. The surface 1a is embedded in a shallow position in the horizontal direction.
[Selection] Figure 1

Description

この発明は、地中熱をヒートポンプで熱交換して建物内の空調に用いる地中熱及びヒートポンプ利用の建物用空調システムに関するものである。   The present invention relates to underground heat used for air conditioning in a building by exchanging heat with underground heat pump and an air conditioning system for buildings using a heat pump.

従来、建物用空調システムとしては、建物の室内を空調するためのヒートポンプと、地中に埋設された採熱杭と、ヒートポンプの熱交換器と採熱杭とを経由するように設けられた不凍液管と、不凍液管に満たされた不凍液と、不凍液管に不凍液を循環させるためのポンプを備え、循環により地盤と室内空気の熱との熱交換をする地中熱利用型のヒートポンプ利用の建物用空調システムが知られている(例えば、特許文献1参照)。   Conventionally, as an air conditioning system for buildings, a heat pump for air-conditioning the interior of the building, a heat collecting pile buried in the ground, an antifreeze liquid provided through a heat exchanger of the heat pump and the heat collecting pile Pipes, antifreeze filled in antifreeze liquid pipes, and pumps for circulating antifreeze liquids in antifreeze liquid pipes, for buildings using heat pumps that use geothermal heat to exchange heat between the ground and indoor air by circulation An air conditioning system is known (see, for example, Patent Document 1).

特開2012−47360号公報JP 2012-47360 A

しかしながら、この建物用空調システムでは、多数の杭挿入穴をボーリングマシンで地盤に形成し、この杭挿入穴に中空の採熱杭を挿入埋設するようにしているため、地盤に杭挿入穴を形成して採熱杭を杭挿入穴に埋設する作業に多くの日数が係るものであると共に、コスト高になるものであった。   However, in this building air conditioning system, a number of pile insertion holes are formed in the ground with a boring machine, and a hollow heat-collecting pile is inserted and buried in this pile insertion hole, so a pile insertion hole is formed in the ground. As a result, many days are involved in the work of burying the heat collection pile in the pile insertion hole, and the cost is high.

そこで、この発明は、地中熱採熱用の熱搬送流体貯留パイプの地中への埋設作業に係る日数を少なくできると共に、安価に構築できる地中熱及びヒートポンプ利用の建物用空調システムを提供することを目的とするものである。   Accordingly, the present invention provides an air conditioning system for buildings using geothermal heat and a heat pump that can reduce the number of days related to the undergrounding work of the heat transfer fluid storage pipe for underground heat collection and can be built at low cost. It is intended to do.

この目的を達成するため、この発明は、地盤上に平板状に設けられ且つ上部に建物が構築された基礎と、前記基礎の下方に位置させて地中に埋設された地中熱交換手段と、第1の熱交換部で熱交換される冷媒の熱を第2の熱交換部で前記建物内の空調に用いるヒートポンプと、前記第1の熱交換部と前記地中熱交換手段との間で熱搬送用流体を循環可能に前記第1の熱交換部と前記地中熱交換手段に接続された循環パイプと、前記熱搬送用流体を前記循環パイプを介して前記第1の熱交換部と前記地中熱交換手段との間で循環させる循環ポンプと、を備える地中熱及びヒートポンプ利用の建物用空調システムにおいて、前記地中熱交換手段は前記基礎の真下に位置させて地表面から浅い位置に水平方向に向けて埋設された熱搬送流体貯留パイプであることを特徴とする。   In order to achieve this object, the present invention comprises a foundation provided in a flat plate shape on the ground and a building is constructed on the upper part thereof, and an underground heat exchanging means buried below the foundation and buried in the ground. The heat pump that uses the heat of the refrigerant heat-exchanged in the first heat exchanging unit for air conditioning in the building in the second heat exchanging unit, and between the first heat exchanging unit and the underground heat exchanging means A circulation pipe connected to the first heat exchanging unit and the underground heat exchanging means so as to be able to circulate the heat transfer fluid, and the first heat exchanging unit via the circulation pipe. And a ground pump for circulating heat between the ground heat exchanging means and a ground heat and heat pump building air conditioning system, wherein the ground heat exchanging means is located directly below the foundation from the ground surface. Heat transfer fluid storage pie buried horizontally in a shallow position And characterized in that.

この構成によれば、地中熱採熱用の熱搬送流体貯留パイプの地中への埋設作業に係る日数を少なくできると共に、安価に構築できる。   According to this configuration, it is possible to reduce the number of days related to the operation of burying the heat transfer fluid storage pipe for underground heat collection into the ground, and it can be constructed at low cost.

この発明に係る実施例1の地中熱及びヒートポンプ利用の建物用空調システムの概略説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory diagram of a building air conditioning system using ground heat and a heat pump according to a first embodiment of the present invention. 図1に示した地中熱及びヒートポンプ利用の建物用空調システムの配管系統図である。It is a piping system diagram of the building air conditioning system using the underground heat and heat pump shown in FIG. 図1の熱搬送流体貯留パイプの拡大断面図である。It is an expanded sectional view of the heat carrier fluid storage pipe of FIG. 図1の熱搬送流体貯留パイプの他の例を示す説明図である。It is explanatory drawing which shows the other example of the heat conveyance fluid storage pipe of FIG. 図1の熱搬送流体貯留パイプの更に他の例を示す実施例2の説明図である。It is explanatory drawing of Example 2 which shows the further another example of the heat conveyance fluid storage pipe of FIG. この発明に係る地中熱及びヒートポンプ利用の建物用空調システムの他の例を示す概略説明図である。It is a schematic explanatory drawing which shows the other example of the building air-conditioning system using geothermal heat and heat pump concerning this invention. この発明に係る地中熱及びヒートポンプ利用の建物用空調システムの更に他の例を示す実施例3の概略説明図である。It is a schematic explanatory drawing of Example 3 which shows the further another example of the building air conditioning system using the geothermal heat and heat pump which concerns on this invention. 図7の地中熱及びヒートポンプ利用の建物用空調システムの配管系統図である。It is a piping system diagram of the building air conditioning system using the underground heat and heat pump of FIG. この発明に係る実施例4の地中熱及びヒートポンプ利用の建物用空調システムの概略説明図である。It is a schematic explanatory drawing of the building air-conditioning system using the ground heat and heat pump of Example 4 which concerns on this invention. 図9に示した熱搬送流体貯留パイプの説明図である。It is explanatory drawing of the heat conveyance fluid storage pipe shown in FIG.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[構成]
図1において、地盤1上には平板状の基礎としてべた基礎2が設けられている。ここで、地盤1とは地表面1aおよび地表面1aの下方の地中(地中部)1b含めたものを言う。
[Constitution]
In FIG. 1, a solid foundation 2 is provided on the ground 1 as a flat foundation. Here, the ground 1 includes the ground surface 1a and the ground (underground part) 1b below the ground surface 1a.

また、べた基礎2は、底板2aと、底板2aの周囲に一体に形成された起立する立ち上がり部2bを有する。この立ち上がり部2b上に建物3の床部3aの周縁部を設置することにより、立ち上がり部2b上には住宅等の建物3が構築されている。   The solid foundation 2 includes a bottom plate 2a and a rising portion 2b that is integrally formed around the bottom plate 2a. A building 3 such as a house is constructed on the rising portion 2b by installing the peripheral edge of the floor 3a of the building 3 on the rising portion 2b.

そして、建物3の床部3aとべた基礎2の底板2aとの間には床下空間4が形成されている。この床下空間4内には、べた基礎2の周縁部に沿わせた基礎断熱部材5が配設されている。この基礎断熱部材5は、立ち上がり部2bの内側面に固定した側面部5aと、側面部5aの下端部に連設され且つ底板2a上に設けた底面部5bを有する。この基礎断熱部材5には、グラスウール,発泡ウレタン,発泡スチロール等が使用される。   An underfloor space 4 is formed between the floor 3 a of the building 3 and the bottom plate 2 a of the solid foundation 2. In the underfloor space 4, a foundation heat insulating member 5 is disposed along the peripheral edge of the solid foundation 2. The basic heat insulating member 5 has a side surface portion 5a fixed to the inner surface of the rising portion 2b, and a bottom surface portion 5b provided on the bottom plate 2a and connected to the lower end portion of the side surface portion 5a. For this basic heat insulating member 5, glass wool, urethane foam, polystyrene foam or the like is used.

更に、床下空間4内にはヒートポンプシステム6が配設されている。このヒートポンプシステム(ヒートポンプ)6は、図1に示したように、べた基礎2の底板2a上に設置したヒートポンプユニット7および床下放熱器8と、このヒートポンプユニット7と床下放熱器8を接続する第1,第2接続パイプ9,10を備えている。この床下放熱器8は、図2に示したように、凝縮器(放熱部)8aと、この凝縮器8aに空気を送風する送風ファン8bを有する。尚、この第1,第2接続パイプ9,10内にはヒートポンプユニット7からの冷媒を床下放熱器8に循環させる冷媒流路が形成されている。   Furthermore, a heat pump system 6 is disposed in the underfloor space 4. As shown in FIG. 1, the heat pump system (heat pump) 6 includes a heat pump unit 7 and an underfloor radiator 8 installed on the bottom plate 2 a of the solid foundation 2, and a first connecting the heat pump unit 7 and the underfloor radiator 8. 1 and 2nd connection pipes 9 and 10 are provided. As shown in FIG. 2, the underfloor radiator 8 includes a condenser (heat radiating portion) 8a and a blower fan 8b that blows air to the condenser 8a. In the first and second connection pipes 9 and 10, a refrigerant flow path for circulating the refrigerant from the heat pump unit 7 to the underfloor radiator 8 is formed.

ヒートポンプユニット7は、図2に示したように、第1の熱交換部(一次側熱交換部)11を有する。この第1の熱交換部11は、蒸発器11aと、この蒸発器11aを収容する熱交換容器11bを有する。   As shown in FIG. 2, the heat pump unit 7 includes a first heat exchange unit (primary side heat exchange unit) 11. The first heat exchange unit 11 includes an evaporator 11a and a heat exchange container 11b that accommodates the evaporator 11a.

また、ヒートポンプユニット7は、蒸発器11aの両端に接続された第1,第2冷媒流路12,13と、第1冷媒流路12の途中に介装されたコンプレッサ14と、第2冷媒流路13の途中に介装された膨張弁15を有する。尚、第1,第2冷媒流路12,13は、複数のパイプから形成されている。   Further, the heat pump unit 7 includes first and second refrigerant flow paths 12 and 13 connected to both ends of the evaporator 11a, a compressor 14 interposed in the middle of the first refrigerant flow path 12, and a second refrigerant flow. An expansion valve 15 interposed in the middle of the passage 13 is provided. In addition, the 1st, 2nd refrigerant flow paths 12 and 13 are formed from the some pipe.

そして、第1,第2冷媒流路12,13には、上述した第1,第2接続パイプ9,10を介して床下放熱器8の凝縮器8aが接続されている。これにより、第1,第2接続パイプ9,10,蒸発器11a,第1,第2冷媒流路12,13,コンプレッサ14,膨張弁15,凝縮器8a等は一連の冷媒環流路を形成している。   The condenser 8 a of the underfloor radiator 8 is connected to the first and second refrigerant flow paths 12 and 13 via the first and second connection pipes 9 and 10 described above. Thus, the first and second connection pipes 9 and 10, the evaporator 11a, the first and second refrigerant flow paths 12 and 13, the compressor 14, the expansion valve 15, the condenser 8a and the like form a series of refrigerant ring flow paths. ing.

コンプレッサ14は蒸発器11aからの気体状の冷媒を圧縮して凝縮器8aに供給させ、膨張弁15は凝縮器8aで放熱させられて液化した冷媒を膨張させて蒸発器11aに供給させるように配設されている。   The compressor 14 compresses the gaseous refrigerant from the evaporator 11a and supplies it to the condenser 8a, and the expansion valve 15 expands the refrigerant that has been radiated and liquefied by the condenser 8a and supplies it to the evaporator 11a. It is arranged.

図1において、地中1b内にはべた基礎2の底板2aの真下に位置させて熱搬送流体貯留パイプ16が水平に埋設されている。この熱搬送流体貯留パイプ16は、底板2aに近接した位置に配置されている。この熱搬送流体貯留パイプ16には、例えば安価な塩化ビニール製の樹脂パイプが用いられるが、必ずしも塩化ビニール製の樹脂パイプを用いる必要はない。   In FIG. 1, a heat transfer fluid storage pipe 16 is horizontally embedded in the underground 1 b so as to be positioned directly below the bottom plate 2 a of the solid foundation 2. The heat transfer fluid storage pipe 16 is disposed at a position close to the bottom plate 2a. For example, an inexpensive vinyl chloride resin pipe is used as the heat transfer fluid storage pipe 16, but it is not always necessary to use a vinyl chloride resin pipe.

この熱搬送流体貯留パイプ16の地中1bへの埋設には例えばバックホウが用いられる。このバックホウは、油圧ショベルと総称される建設機械のうち、ショベル(バケット)をオペレータ側向きに取り付けた形態のもので、オペレータ側向きのショベルでオペレータは自分に引き寄せる(抱え込む)方向に操作するようになっている。このバックホウでは、地表面1aより低い場所の掘削に適している。   For example, a backhoe is used to embed the heat transfer fluid storage pipe 16 in the underground 1b. This backhoe is a construction machine in which a shovel (bucket) is attached to the operator side among the construction machines collectively referred to as a hydraulic excavator. It has become. This backhoe is suitable for excavation at a place lower than the ground surface 1a.

また、バックホウはべた基礎2のための基礎工事の際に地盤1を掘り下げるのに用いられ、この基礎工事の際に掘り下げた地盤1の凹所にバックホウ(ユンボ)で掘れる幅・深さに熱搬送流体貯留パイプ16を埋設する。   Also, the backhoe is used to dig the ground 1 during foundation work for the solid foundation 2 and heats up to the width and depth that can be dug by the backhoe in the recess of the ground 1 dug during the foundation work. The carrier fluid storage pipe 16 is embedded.

ここで熱搬送流体貯留パイプ16を埋設するパイプ埋設用溝とすると、パイプ16の埋設の上限や下限の施工条件としては、例えば次のように設定する。
<パイプ埋設用溝の深さの上限>
(a).熱搬送流体貯留パイプ16を地中に埋設したとき、べた基礎2の基礎砕石(図示せず)の下端から10cmの深さの位置が熱搬送流体貯留パイプ16の上端になるように、熱搬送流体貯留パイプ16を埋設するパイプ埋設用溝の深さを設定する必要がある。即ち、熱搬送流体貯留パイプ16の上部に10cm程度の被り厚の覆土が必要である。
(b).また、熱搬送流体貯留パイプ16の下には10cm程度の管基礎を設ける。
Here, assuming that the groove for burying the heat transfer fluid storage pipe 16 is buried, the upper and lower construction conditions for burying the pipe 16 are set as follows, for example.
<Upper limit of depth of pipe burial groove>
(A). When the heat transfer fluid storage pipe 16 is buried in the ground, the heat transfer is performed so that the position at a depth of 10 cm from the lower end of the foundation crushed stone (not shown) of the solid foundation 2 becomes the upper end of the heat transfer fluid storage pipe 16. It is necessary to set the depth of the groove for burying the fluid storage pipe 16. That is, a covering soil having a covering thickness of about 10 cm is required on the upper part of the heat transfer fluid storage pipe 16.
(B). Further, a pipe foundation of about 10 cm is provided under the heat transfer fluid storage pipe 16.

従って、例えば、熱搬送流体貯留パイプ16の直径Dを15cmとしたとき、バックホウ(ユンボ)で掘るパイプ埋設用溝の掘削深さの上限は35cm(直径15cm+管基礎10cm+被り厚(覆土厚)10cm=35cm)とする。   Therefore, for example, when the diameter D of the heat transfer fluid storage pipe 16 is 15 cm, the upper limit of the excavation depth of the pipe burying groove dug by the backhoe is 35 cm (diameter 15 cm + tube foundation 10 cm + covering thickness (covering thickness) 10 cm). = 35 cm).

このようなバックホウ(ユンボ)で掘るパイプ埋設用溝の深さの上限は一例であって、必ずしも上述した数値に限定されるものではない。例えば、熱搬送流体貯留パイプ16の直径Dに応じて管基礎+被り厚の施工条件が変わる場合、パイプ埋設用溝の深さの上限は直径D,管基礎,被り厚に応じて変える。
<パイプ埋設用溝の深さの下限>
また、例えば、建物3の土留めを設ける必要がある場合、バックホウ(ユンボ)で掘る掘削深さの下限は例えば1.1m(管基礎10cm+管径15cm+管上部85cm)とする。
The upper limit of the depth of the pipe burying groove dug by such a backhoe is an example, and is not necessarily limited to the above-described numerical values. For example, when the construction condition of the pipe foundation + cover thickness changes according to the diameter D of the heat transfer fluid storage pipe 16, the upper limit of the depth of the pipe burying groove changes according to the diameter D, the pipe foundation, and the cover thickness.
<Lower limit of depth of pipe burial groove>
In addition, for example, when it is necessary to provide earth retaining for the building 3, the lower limit of the excavation depth dug by the backhoe (yumbo) is, for example, 1.1 m (tube foundation 10 cm + tube diameter 15 cm + tube upper portion 85 cm).

このようなバックホウ(ユンボ)で掘るパイプ埋設用溝の深さは一例であって、必ずしもこの数値に限定されるものではない。   The depth of the pipe burying groove dug by such a backhoe is an example, and is not necessarily limited to this value.

このように基礎工事で用いるバックホウを考えると、バックホウ(ユンボ)で掘れる幅・深さに熱搬送流体貯留パイプ16を埋設する仕様とすれば、安価に施工できる。一般的なバックホウはバケット幅が550mmであるので、埋め戻し作業に必要な幅は熱搬送流体貯留パイプ16の左右に形成される部分である。この埋め戻し作業に必要な幅は、例えば150〜200mm程度、若しくは200mm〜300mm程度となるように熱搬送流体貯留パイプ16の直径Dを設定すると良い。   Considering the backhoe used in the foundation construction in this way, if the heat carrier fluid storage pipe 16 is embedded in a width and depth that can be dug by the backhoe, it can be constructed at low cost. Since a general backhoe has a bucket width of 550 mm, the width necessary for the backfilling operation is a portion formed on the left and right sides of the heat transfer fluid storage pipe 16. The diameter D of the heat transfer fluid storage pipe 16 may be set so that the width required for this backfilling operation is, for example, about 150 to 200 mm, or about 200 mm to 300 mm.

従って、建物3の床部3aの床面積が例えば8m×8m程度の場合、熱搬送流体貯留パイプ16には例えば次のような仕様のものを用いると良い。即ち、熱搬送流体貯留パイプ16には、例えば直径Dが150φ〜250φで且つ長さLが20〜40m程度のものを用いると良い。尚、この数値は一例を示したもので、これに限定されるものではない。   Therefore, when the floor area of the floor 3a of the building 3 is about 8 m × 8 m, for example, the heat transfer fluid storage pipe 16 having the following specifications may be used. That is, for the heat transfer fluid storage pipe 16, for example, a pipe having a diameter D of 150 to 250 φ and a length L of about 20 to 40 m may be used. In addition, this numerical value shows an example and is not limited to this.

また、図3に示したように熱搬送流体貯留パイプ16は、大径のパイプ本体17と、パイプ本体17の両端部をそれぞれ閉成するキャップ状の蓋体18,19を有する。この蓋体18,19の中央部には、小径の接続パイプ部18a,19aが外方に向けて突出するように一体に形成されている。   As shown in FIG. 3, the heat transfer fluid storage pipe 16 includes a large-diameter pipe body 17 and cap-shaped lids 18 and 19 that respectively close both ends of the pipe body 17. Small-diameter connecting pipe portions 18a and 19a are integrally formed at the central portions of the lids 18 and 19 so as to protrude outward.

そして、接続パイプ部18a,19aには、図2,図3に示したように、循環パイプ20,21の一端部がそれぞれ気密に接続されている。この循環パイプ20,21の他端部は図2に示したように第1の熱交換部11の熱交換容器11bにそれぞれ接続されている。また、循環パイプ20の途中には循環ポンプ22が介装されている。この熱交換容器11b,熱搬送流体貯留パイプ16,循環パイプ20,21内には不凍液が熱搬送用流体として充填されている。   Then, as shown in FIGS. 2 and 3, one end portions of the circulation pipes 20 and 21 are airtightly connected to the connection pipe portions 18a and 19a, respectively. The other end portions of the circulation pipes 20 and 21 are connected to the heat exchange vessel 11b of the first heat exchange unit 11 as shown in FIG. A circulation pump 22 is interposed in the middle of the circulation pipe 20. The heat exchange container 11b, the heat transfer fluid storage pipe 16, and the circulation pipes 20 and 21 are filled with antifreeze as a heat transfer fluid.

この循環パイプ20,21には、床暖房付ヒートポンプの温水系を採熱用途に置換えるとすると、直径dが例えば20mmのものが一般的ある。従って、上述した熱搬送流体貯留パイプ16の直径Dは、循環パイプ20,21の直径d15〜25倍となっている。ここで、床暖房付ヒートポンプとは、床部3aにパイプ(図示せず)を敷設して、このパイプの中をヒートポンプユニット7で加熱された温水を循環させるようにした構成を言う。この床部3aの暖房を行うことで、床部3a上の室内の空気の暖房を行うことができる。   The circulation pipes 20 and 21 generally have a diameter d of, for example, 20 mm if the hot water system of the heat pump with floor heating is replaced with a heat collection application. Therefore, the diameter D of the heat transfer fluid storage pipe 16 described above is 15 to 25 times the diameter d of the circulation pipes 20 and 21. Here, the heat pump with floor heating refers to a configuration in which a pipe (not shown) is laid on the floor portion 3a and hot water heated by the heat pump unit 7 is circulated through the pipe. By heating the floor portion 3a, the indoor air on the floor portion 3a can be heated.

また、図2に示したように、床下放熱器8の送風ファン8b,コンプレッサ14,循環ポンプ22は、制御手段(制御部)としての制御回路23により動作制御させられるようになっている。   Further, as shown in FIG. 2, the blower fan 8b, the compressor 14, and the circulation pump 22 of the underfloor radiator 8 are controlled by a control circuit 23 as a control means (control unit).

[作用]
次に、このような構成の地中熱及びヒートポンプ利用の建物用空調システムの作用を説明する。
このような構成において、床部3aおよび建物3の暖房を行う場合には、冬期に制御回路23により送風ファン8b,コンプレッサ14,循環ポンプ22を駆動制御させる。これに伴い、循環ポンプ22は、不凍液を循環パイプ20,21を介して熱搬送流体貯留パイプ16と第1の熱交換部11の熱交換容器11b内との間で循環させる。また、コンプレッサ14は、蒸発器11aからの冷媒を圧縮して凝縮器8a,膨張弁15,蒸発器11aの順に循環させる。
[Action]
Next, the operation of the building air conditioning system using the geothermal heat and heat pump having such a configuration will be described.
In such a configuration, when the floor 3a and the building 3 are heated, the blower fan 8b, the compressor 14, and the circulation pump 22 are driven and controlled by the control circuit 23 in winter. Along with this, the circulation pump 22 circulates the antifreeze liquid between the heat transfer fluid storage pipe 16 and the heat exchange container 11 b of the first heat exchange unit 11 via the circulation pipes 20 and 21. The compressor 14 compresses the refrigerant from the evaporator 11a and circulates the condenser 8a, the expansion valve 15, and the evaporator 11a in this order.

この冷媒の循環に伴い熱交換容器11b内では、循環ポンプ22で循環させられる熱搬送流体貯留パイプ16内の不凍液からの地中熱と蒸発器11a内の冷媒との間で熱交換が行われ、蒸発器11a内の冷媒が加熱されて温度が上昇する。   As the refrigerant circulates, heat is exchanged between the underground heat from the antifreeze liquid in the heat transfer fluid storage pipe 16 circulated by the circulation pump 22 and the refrigerant in the evaporator 11a in the heat exchange vessel 11b. The refrigerant in the evaporator 11a is heated and the temperature rises.

この温度が上昇した冷媒は、コンプレッサ14で圧縮されることにより更に加熱されて、高温・高圧の冷媒となる。この圧縮加熱された冷媒は、第2の熱交換部である凝縮器8aに供給される。   The refrigerant whose temperature has risen is further heated by being compressed by the compressor 14, and becomes a high-temperature and high-pressure refrigerant. The compression-heated refrigerant is supplied to the condenser 8a that is the second heat exchange unit.

この際、床下放熱器8の送風ファン8bは駆動されている。従って、この送風ファン8bにより送風される空気は、凝縮器8aの周囲を流れて加熱されて床下空間4内に送風され、床下空間4を暖房する。これにより、床部3aが暖房される。尚、床部3aに空調の為のガラリ(図示せず)が設けられている場合には、床下空間4内の空調された空気をガラリを介して建物3内に供給して、建物3内を暖房することができる。   At this time, the blower fan 8b of the underfloor radiator 8 is driven. Accordingly, the air blown by the blower fan 8b flows around the condenser 8a and is heated and blown into the underfloor space 4 to heat the underfloor space 4. Thereby, the floor 3a is heated. In addition, when the louver (not shown) for air conditioning is provided in the floor part 3a, the air | conditioned air in the underfloor space 4 is supplied in the building 3 via a louver, and the inside of the building 3 Can be heated.

上述したように、ヒートポンプシステムすなわち地中熱及びヒートポンプ利用の建物用空調システムは、床下空調システムであって、ヒートポンプユニット7の熱源に地中に埋設された地中埋設管(熱搬送流体貯留パイプ16)内の循環液としての不凍液を用いて、この不凍液が地中埋設管(熱搬送流体貯留パイプ16)とヒートポンプユニット7の第1の熱交換部11との間で循環する構成としている。しかも、地中埋設管(熱搬送流体貯留パイプ16)は、基礎断熱された住宅の基礎(べた基礎2)の下に埋設されている。また、地中埋設管(熱搬送流体貯留パイプ16)には、一般的な部材として安価な塩ビ管を用いている。この地中埋設管(熱搬送流体貯留パイプ16)は、循環液(不凍液)を漏らさずに保持できれば、素材・形状にはこだわらない。しかし、地中埋設管(熱搬送流体貯留パイプ16)の素材・形状としては、塩化ビニール製の管であれば、ヒートポンプユニット7の能力にあわせて埋設長さを調整する事で、建物(住宅)3の暖冷房負荷に対応できる。   As described above, the heat pump system, that is, the building air conditioning system using the underground heat and the heat pump is an underfloor air conditioning system, and is an underground pipe (heat transfer fluid storage pipe) embedded in the heat source of the heat pump unit 7. 16) Using the antifreeze liquid as the circulating liquid in the inside, the antifreeze liquid circulates between the underground pipe (heat transfer fluid storage pipe 16) and the first heat exchange unit 11 of the heat pump unit 7. Moreover, the underground pipe (heat transfer fluid storage pipe 16) is buried under the foundation (solid foundation 2) of the house that has been thermally insulated. In addition, an inexpensive PVC pipe is used as a general member for the underground pipe (heat transfer fluid storage pipe 16). This underground pipe (heat carrier fluid storage pipe 16) does not stick to the material and shape as long as the circulating liquid (antifreeze) can be held without leaking. However, if the material and shape of the underground pipe (heat transfer fluid storage pipe 16) is a pipe made of vinyl chloride, the length of the buried pipe can be adjusted according to the capacity of the heat pump unit 7 to construct a building (house ) Can cope with 3 heating / cooling loads.

このように、建物(住宅)3の基礎(べた基礎2)に近接させて基礎(べた基礎2)の真下に地中埋設管(熱搬送流体貯留パイプ16)を水平に埋設して、この地中埋設管(熱搬送流体貯留パイプ16)を一次側熱源としたヒートポンプシステムとすることで、地中熱を利用できるのに加え、住宅基礎(べた基礎2)の下へ逃げる熱も利用できる。これにより、ヒートポンプユニット7の能力や効率を左右する外気条件に関わらず、安定的に高効率で運転することができる。また、一般の地中熱ヒートポンプシステムの地中杭よりも安価な一次側熱源となる。
また、建物(住宅)3の基礎(ベタ基礎2)の真下は、外気温の影響を受けにくいため、地中埋設管(熱搬送流体貯留パイプ16)は浅い位置であっても地中熱を吸収しやすい。このため、地中埋設管(熱搬送流体貯留パイプ16)を地中1bに容易に埋設できるようにするために、地中埋設管(熱搬送流体貯留パイプ16)を地表面1aから浅い位置に埋設しても、地中熱利用の熱エネルギー効率を高くすることができる。
In this way, a buried underground pipe (heat transfer fluid storage pipe 16) is horizontally buried directly below the foundation (solid foundation 2) in the vicinity of the foundation (solid foundation 2) of the building (house) 3. By using a heat pump system in which the buried pipe (heat transfer fluid storage pipe 16) is the primary heat source, in addition to being able to use the underground heat, it is also possible to use the heat that escapes under the housing foundation (solid foundation 2). Thereby, it is possible to stably operate with high efficiency irrespective of the outside air condition that affects the capacity and efficiency of the heat pump unit 7. Moreover, it becomes a primary side heat source cheaper than the underground pile of a general underground heat pump system.
In addition, the area directly under the foundation (solid foundation 2) of the building (house) 3 is not easily affected by the outside air temperature, so that the underground underground pipe (heat transfer fluid storage pipe 16) does not generate ground heat even if it is shallow. Easy to absorb. For this reason, in order to make it easy to embed the underground pipe (heat transfer fluid storage pipe 16) in the underground 1b, the underground pipe (heat transfer fluid storage pipe 16) is placed at a shallow position from the ground surface 1a. Even if buried, the thermal energy efficiency of the use of underground heat can be increased.

(変形例1)
また、実施例1では、熱搬送流体貯留パイプ16が一つの場合を示したが、必ずしもこれに限定されるものではない。例えば、図4に示したように、熱搬送流体貯留パイプ16を複数平行に配設して、複数の熱搬送流体貯留パイプ16を接続パイプ24で接続するようにした構成としても良い。
(Modification 1)
Moreover, in Example 1, although the case where the heat conveyance fluid storage pipe 16 was one was shown, it is not necessarily limited to this. For example, as shown in FIG. 4, a plurality of heat transfer fluid storage pipes 16 may be arranged in parallel, and the plurality of heat transfer fluid storage pipes 16 may be connected by connection pipes 24.

また、図5に示したように、熱搬送流体貯留パイプ16を複数平行に配設して、複数の熱搬送流体貯留パイプ16を円弧状あるいはU字状の接続パイプ25で接続するようにした構成としても良い。尚、接続パイプ25の径は、熱搬送流体貯留パイプ16の外周面に嵌合する値、又は熱搬送流体貯留パイプ16の内周面に嵌合する値のいずれであっても良い。   Further, as shown in FIG. 5, a plurality of heat transfer fluid storage pipes 16 are arranged in parallel, and the plurality of heat transfer fluid storage pipes 16 are connected by connection pipes 25 having an arc shape or a U shape. It is good also as a structure. The diameter of the connection pipe 25 may be either a value that fits to the outer peripheral surface of the heat transfer fluid storage pipe 16 or a value that fits to the inner peripheral surface of the heat transfer fluid storage pipe 16.

(実施例2)
図6はこの発明に係る地中熱及びヒートポンプ利用の建物用空調システムの実施例2を示した概略説明図、図7は図6の地中熱及びヒートポンプ利用の建物用空調システムの配管系統図である。
(Example 2)
FIG. 6 is a schematic explanatory view showing a second embodiment of a building air-conditioning system using geothermal heat and heat pump according to the present invention, and FIG. 7 is a piping diagram of the building air-conditioning system using geothermal heat and heat pump of FIG. It is.

この実施例2では、図1のヒートポンプシステム(ヒートポンプ)6の地中熱利用のヒートポンプユニット7を図6のように建物3の外部に室外機として設置すると共に、外気利用のヒートポンプユニット7aを建物3の外部に室外機として設置して、外気と地中熱のうち効率が良い方を利用する構成としたものである。このヒートポンプユニット7aの構成は、ヒートポンプユニット7の構成と同じであるので、配管の詳細な図示および説明は省略する。また、ヒートポンプユニット7aは、図2の床下放熱器8の凝縮器(放熱部)8aにヒートポンプユニット7と同様に接続される。   In the second embodiment, the heat pump unit 7 using the ground heat of the heat pump system (heat pump) 6 of FIG. 1 is installed as an outdoor unit outside the building 3 as shown in FIG. 6, and the heat pump unit 7a using the outside air is installed in the building. The outdoor unit 3 is installed as an outdoor unit so that the more efficient of the outside air and the underground heat is used. Since the configuration of the heat pump unit 7a is the same as that of the heat pump unit 7, detailed illustration and description of the piping are omitted. Further, the heat pump unit 7a is connected to the condenser (heat radiating portion) 8a of the underfloor radiator 8 in FIG.

この実施例において制御回路23は、図1と同様に、ヒートポンプユニット7のコンプレッサ14,循環ポンプ22のON・OFFおよび床下放熱器8のON・OFF(送風ファン8bのON・OFF)をするようになっている。しかも、制御回路23は、床下放熱器8の送風ファン(図示せず)のON・OFF制御をするようになっている。   In this embodiment, the control circuit 23 turns ON / OFF the compressor 14 and the circulation pump 22 of the heat pump unit 7 and ON / OFF of the underfloor radiator 8 (ON / OFF of the blower fan 8b) as in FIG. It has become. In addition, the control circuit 23 performs ON / OFF control of a blower fan (not shown) of the underfloor radiator 8.

また、制御回路23には、外気温度センサ26からの外気温信号,室内温度センサ27からの室内温度信号,地中熱温度センサ28からの地中温度信号が入力されるようになっている。外気温度センサ26は建物3の外部に設けられ,室内温度センサ27は建物3内の居室等に設けられる。また、地中熱温度センサ28は、熱搬送流体貯留パイプ16内の温度を検出可能に、熱搬送流体貯留パイプ16内またはその外面に設けられる。   In addition, an outside air temperature signal from the outside air temperature sensor 26, an indoor temperature signal from the indoor temperature sensor 27, and a ground temperature signal from the ground heat temperature sensor 28 are input to the control circuit 23. The outside air temperature sensor 26 is provided outside the building 3, and the indoor temperature sensor 27 is provided in a room in the building 3. The underground heat temperature sensor 28 is provided in the heat transfer fluid storage pipe 16 or on the outer surface thereof so that the temperature in the heat transfer fluid storage pipe 16 can be detected.

このような構成において制御回路23は、外気温度センサ26からの外気温信号から外気温度を求め,室内温度センサ27からの室内温度信号から室内温度を求め,地中熱温度センサ28からの地中温度信号から熱搬送流体貯留パイプ16内の温度を地中熱温度として求める。   In such a configuration, the control circuit 23 obtains the outside air temperature from the outside air temperature signal from the outside air temperature sensor 26, obtains the room temperature from the room temperature signal from the room temperature sensor 27, and subsurface from the underground heat temperature sensor 28. The temperature in the heat transfer fluid storage pipe 16 is obtained from the temperature signal as the underground heat temperature.

そして、冬期において制御回路23は、外気温度センサ26により得られた外気温度,室内温度センサ27により得られた室内温度,地中熱温度センサ28により得られた地中熱温度等から、ヒートポンプユニット7,7aのうち建物3の室内の暖房に効率が良い方を選択して作動させると共に、床下放熱器8のON・OFF(送風ファン8bのON・OFF)をさせるようになっている。   In winter, the control circuit 23 calculates the heat pump unit from the outside air temperature obtained by the outside air temperature sensor 26, the room temperature obtained by the room temperature sensor 27, the underground heat temperature obtained by the underground heat temperature sensor 28, and the like. 7 and 7a are selected and operated to be more efficient for heating the room in the building 3, and the under-floor radiator 8 is turned ON / OFF (the blower fan 8b is turned ON / OFF).

(実施例3)
図7はこの発明に係る地中熱及びヒートポンプ利用の建物用空調システムの実施例3を示し、図8は図7の地中熱及びヒートポンプ利用の建物用空調システムの配管を示した説明図である。
(Example 3)
FIG. 7 shows a third embodiment of a building air-conditioning system using geothermal heat and heat pump according to the present invention, and FIG. 8 is an explanatory diagram showing piping of the building air-conditioning system using geothermal heat and heat pump of FIG. is there.

この実施例3では、実施例1の構成において、更に、図7に示したように太陽熱集熱装置30を建物3の屋根3bに設置し、この太陽熱集熱装置30で冬期の昼間に集熱された熱搬送流体貯留パイプ16内の不凍液を暖めておき、太陽熱で暖められた熱搬送流体貯留パイプ16の不凍液を冬期の夜間にヒートポンプシステム6に循環させて、実施例1と同様な暖房を行うようにしたものである。   In the third embodiment, in the configuration of the first embodiment, the solar heat collecting device 30 is further installed on the roof 3b of the building 3 as shown in FIG. 7, and the solar heat collecting device 30 collects heat during the daytime in winter. The antifreeze in the heat transfer fluid storage pipe 16 thus heated is warmed, and the antifreeze in the heat transfer fluid storage pipe 16 heated by the solar heat is circulated to the heat pump system 6 at night in winter to perform heating similar to that in the first embodiment. It is what I do.

この実施例3では、図7,図8に示したように太陽熱集熱装置30に循環パイプ31,32の一端部を接続し、図8に示したように循環ポンプ22と熱交換容器11bとの間に位置させて循環パイプ20に流路切換弁33を接続している。しかも、図8に示したように循環パイプ31の他端部は流路切換弁33を介して循環パイプ20に接続され、循環パイプ32の他端部は循環パイプ21に接続されている。尚、流路切換弁33には電磁切換弁が用いられている。   In the third embodiment, as shown in FIGS. 7 and 8, one end portions of the circulation pipes 31 and 32 are connected to the solar heat collecting device 30, and the circulation pump 22 and the heat exchange vessel 11b are connected to each other as shown in FIG. The flow path switching valve 33 is connected to the circulation pipe 20 so as to be positioned between them. In addition, as shown in FIG. 8, the other end of the circulation pipe 31 is connected to the circulation pipe 20 via the flow path switching valve 33, and the other end of the circulation pipe 32 is connected to the circulation pipe 21. An electromagnetic switching valve is used as the flow path switching valve 33.

この流路切換弁33は、循環ポンプ22と循環パイプ31を連通させ且つ循環ポンプ22と第1の熱交換部11の熱交換容器11bとの連通を遮断させる第1流路切換位置(図示せず)と、循環ポンプ22と循環パイプ31の連通を遮断させ且つ循環ポンプ22と第1の熱交換部11の熱交換容器11bとを連通させる第2流路切換位置(図示せず)を有する。第1流路切換位置は、太陽熱集熱装置30で集熱された熱で熱搬送流体貯留パイプ16内の不凍液(熱搬送流体)を加熱する加熱モードの切換位置である。また、第2流路切換位置は、熱搬送流体貯留パイプ16内の不凍液(熱搬送流体)をヒートポンプシステム6に用いる蓄熱利用モードの切換位置である。   The flow path switching valve 33 communicates the circulation pump 22 and the circulation pipe 31 and blocks the communication between the circulation pump 22 and the heat exchange container 11b of the first heat exchange section 11 (not shown). And a second flow path switching position (not shown) that cuts off the communication between the circulation pump 22 and the circulation pipe 31 and allows the circulation pump 22 and the heat exchange container 11b of the first heat exchange unit 11 to communicate with each other. . The first flow path switching position is a heating mode switching position in which the antifreeze liquid (heat carrier fluid) in the heat carrier fluid storage pipe 16 is heated by the heat collected by the solar heat collector 30. Further, the second flow path switching position is a switching position of a heat storage utilization mode in which the antifreeze liquid (heat carrier fluid) in the heat carrier fluid storage pipe 16 is used for the heat pump system 6.

また、制御回路23には太陽熱集熱装置30に設けた集熱温度検出センサ34からの集熱温度検出信号が入力されると共に、地中熱温度検出センサ34からの地中熱温度検出信号が入力されるようになっている。しかも、この制御回路23は、集熱温度検出センサ34からの集熱温度検出信号および地中熱温度検出センサ35からの地中熱温度検出信号に基づいて、太陽熱集熱装置30で集熱される集熱温度が地中熱温度よりも高いと判断したときに、流路切換弁33を加熱モードの第1流路切換位置に切換制御するようになっている。   In addition, the control circuit 23 receives a heat collection temperature detection signal from a heat collection temperature detection sensor 34 provided in the solar heat collector 30, and receives a ground heat temperature detection signal from the geothermal heat temperature detection sensor 34. It is designed to be entered. In addition, the control circuit 23 collects heat by the solar heat collector 30 based on the heat collection temperature detection signal from the heat collection temperature detection sensor 34 and the underground heat temperature detection signal from the underground heat temperature detection sensor 35. When it is determined that the heat collection temperature is higher than the underground heat temperature, the flow path switching valve 33 is switched to the first flow path switching position in the heating mode.

そして、制御回路23は、冬期の昼間、太陽熱集熱装置30で集熱される集熱温度が地中熱温度よりも高い場合、流路切換弁33で循環パイプ31を循環ポンプ22に連通させると共に、流路切換弁33で循環ポンプ22と熱交換容器11bとの連通を遮断させて、循環ポンプ22を駆動させることにより、循環パイプ20,21,31,32及び流路切換弁33を介して太陽熱集熱装置30と熱搬送流体貯留パイプ16との間で不凍液を循環させて、熱搬送流体貯留パイプ16内の不凍液を加熱させ、熱搬送流体貯留パイプ16内の不凍液に太陽熱を蓄熱させる。   The control circuit 23 communicates the circulation pipe 31 with the circulation pump 22 through the flow path switching valve 33 when the collected heat temperature collected by the solar heat collecting device 30 is higher than the underground heat temperature during the daytime in winter. Then, the communication between the circulation pump 22 and the heat exchange container 11b is blocked by the flow path switching valve 33 and the circulation pump 22 is driven, so that the circulation pipe 20, 21, 31, 32 and the flow path switching valve 33 are connected. The antifreeze liquid is circulated between the solar heat collecting device 30 and the heat transfer fluid storage pipe 16 to heat the antifreeze liquid in the heat transfer fluid storage pipe 16, and solar heat is stored in the antifreeze liquid in the heat transfer fluid storage pipe 16.

一方、制御回路23は、冬期の夜間、流路切換弁33で循環パイプ31と循環ポンプ22との連通を遮断させると共に、流路切換弁33で循環ポンプ22と熱交換容器11bとを連通させた状態で、制御回路23により送風ファン8b,コンプレッサ14,循環ポンプ22を駆動制御させる。これにより、循環ポンプ22により熱搬送流体貯留パイプ16と熱交換容器11bとの間で不凍液が循環させられて、第1の熱交換部11の蒸発器11a内の冷媒は太陽熱で暖められて地中熱よりも温度の高い熱搬送流体貯留パイプ16内の不凍液の熱により加熱される。この加熱されて暖められた冷媒は、膨張弁15を介して膨張させられた後に凝縮器8aに供給され、送風ファン8bで凝縮器8aの周囲に送風される空気を暖める。この暖められた空気は床下空間4内に送風されて床下空間4内を暖房する。   On the other hand, the control circuit 23 cuts off the communication between the circulation pipe 31 and the circulation pump 22 with the flow path switching valve 33 at night in winter, and causes the circulation pump 22 and the heat exchange container 11b to communicate with each other with the flow path switching valve 33. In this state, the control circuit 23 drives and controls the blower fan 8b, the compressor 14, and the circulation pump 22. Thereby, the antifreeze liquid is circulated between the heat transfer fluid storage pipe 16 and the heat exchange container 11b by the circulation pump 22, and the refrigerant in the evaporator 11a of the first heat exchange unit 11 is warmed by solar heat to It is heated by the heat of the antifreeze liquid in the heat transfer fluid storage pipe 16 having a temperature higher than the intermediate heat. The heated and warmed refrigerant is supplied to the condenser 8a after being expanded through the expansion valve 15, and warms the air blown around the condenser 8a by the blower fan 8b. The warmed air is blown into the underfloor space 4 to heat the underfloor space 4.

尚、制御回路23にタイマー設定機能を持たせておいて、冬期の昼間や夜間の設定をタイマー設定機能を用いて制御回路23に設定しておくことで、制御回路23は昼間と夜間の上述した制御を実行するようにしておくと良い。   The control circuit 23 is provided with a timer setting function, and the daytime and nighttime settings in winter are set in the control circuit 23 using the timer setting function, so that the control circuit 23 can be used for daytime and nighttime. It is advisable to execute such control.

このように地中埋設管(熱搬送流体貯留パイプ16)には太陽熱集熱装置30などの熱源がつながれているので、冬期の日中に太陽熱集熱装置で集熱を行い、地中埋設管(熱搬送流体貯留パイプ16)の中の循環液(不凍液)を温めておくことができ、冬期の夜間に高効率な暖房を行う事ができる。尚、熱源は、電気ヒーターやボイラーなどでも良いが、太陽熱などの自然エネルギーや廃熱などとすることで、経済的・環境的に優れたシステムとすることができる。   In this way, since the underground pipe (heat transfer fluid storage pipe 16) is connected to a heat source such as the solar heat collector 30, heat is collected by the solar heat collector during the winter day, and the underground pipe is collected. The circulating fluid (antifreeze) in the (heat carrier fluid storage pipe 16) can be kept warm, and highly efficient heating can be performed at night in winter. The heat source may be an electric heater, a boiler, or the like, but by using natural energy such as solar heat or waste heat, an economical and environmentally superior system can be obtained.

尚、実施例3では、太陽熱集熱装置30の集熱温度と地中熱温度を検出して第1,第2流路切換位置の制御を行うようにしているが、この温度検出は必ずしも必要ではない。上述したタイマー設定機能で設定された昼間と夜間の制御のみで、第1,第2流路切換位置の制御を行うようにしても良い。   In the third embodiment, the heat collecting temperature and the underground heat temperature of the solar heat collecting device 30 are detected to control the first and second flow path switching positions. However, this temperature detection is always necessary. is not. The first and second flow path switching positions may be controlled only by daytime and nighttime control set by the timer setting function described above.

(変形例2)
また、実施例3では、流路切換弁33で第1,第2流路切換位置の切換制御を行うようにしているが、必ずしもこれに限定されるものではない。例えば、流路切換弁33を設けずに、太陽熱集熱装置30と熱搬送流体貯留パイプ16を循環パイプ31,32で直接接続して、循環パイプ31,32の一方に循環ポンプ(図示せず)を設け、この循環ポンプ(図示せず)を昼間に作動させ、夜間に循環ポンプ22を作動させる構成としても良い。
(Modification 2)
In the third embodiment, the switching control of the first and second channel switching positions is performed by the channel switching valve 33, but the present invention is not necessarily limited to this. For example, without providing the flow path switching valve 33, the solar heat collecting device 30 and the heat transfer fluid storage pipe 16 are directly connected by the circulation pipes 31 and 32, and a circulation pump (not shown) is connected to one of the circulation pipes 31 and 32. ), The circulation pump (not shown) is operated during the daytime, and the circulation pump 22 is operated at night.

(実施例4)
図9は、この発明に係る実施例4の地中熱及びヒートポンプ利用の建物用空調システムの概略説明図である。図10は、図9に示した熱搬送流体貯留パイプの説明図である。
この実施例4では、図1のヒートポンプユニット7を室外機として図9に示したように建物3の外側に設置している。また、この実施例4では、熱搬送流体貯留パイプ16に代えて図10に示した熱搬送流体貯留パイプ16′を用いている。この熱搬送流体貯留パイプ16′は、20mmの管径の塩化ビニール製パイプを蛇行する形状に形成したもので、ベタ基礎2の全範囲に対応するように配置されている。尚、循環ポンプ22は、ヒートポンプユニット7内に組み込むこともできる。
このようなヒートポンプユニット7の配置や蛇行する熱搬送流体貯留パイプの形状以外の構成は、実施例1と同じであるので、説明は省略する。
この構成によれば、ベタ基礎2の略全範囲の真下の地中熱を有効利用できる。
(Example 4)
FIG. 9 is a schematic explanatory diagram of a building air conditioning system using geothermal heat and a heat pump according to a fourth embodiment of the present invention. FIG. 10 is an explanatory diagram of the heat transfer fluid storage pipe shown in FIG.
In the fourth embodiment, the heat pump unit 7 of FIG. 1 is installed outside the building 3 as shown in FIG. 9 as an outdoor unit. In the fourth embodiment, the heat transfer fluid storage pipe 16 ′ shown in FIG. 10 is used instead of the heat transfer fluid storage pipe 16. This heat transfer fluid storage pipe 16 ′ is formed by meandering a vinyl chloride pipe having a diameter of 20 mm so as to correspond to the entire range of the solid foundation 2. The circulation pump 22 can also be incorporated in the heat pump unit 7.
Since the configuration other than the arrangement of the heat pump unit 7 and the shape of the meandering heat transfer fluid storage pipe is the same as that of the first embodiment, the description thereof is omitted.
According to this configuration, it is possible to effectively use the underground heat just below the entire range of the solid foundation 2.

(発明の実施の形態の作用・効果)
(1).以上説明したように、この発明の実施の形態の地中熱及びヒートポンプ利用の建物用空調システムは、地盤1上に平板状に設けられ且つ上部に建物3が構築された基礎(べた基礎2)と、前記基礎(べた基礎2)の下方に位置させて地中に埋設された地中熱交換手段を備えている。また、この地中熱及びヒートポンプ利用の建物用空調システムは、第1の熱交換部11で熱交換される冷媒の熱を第2の熱交換部(床下放熱器8)で前記建物3内の空調に用いるヒートポンプ(ヒートポンプシステム6)を備えている。更に、地中熱及びヒートポンプ利用の建物用空調システムは、前記第1の熱交換部11と前記地中熱交換手段との間で熱搬送用流体を循環可能に前記第1の熱交換部11と前記地中熱交換手段に接続された循環パイプ20,21と、前記熱搬送用流体を前記循環パイプ20,21を介して前記第1の熱交換部11と前記地中熱交換手段との間で循環させる循環ポンプ22と、を備えている。しかも、前記地中熱交換手段は、前記基礎(べた基礎2)の真下に位置させて地表面1aから浅い位置に水平方向に向けて埋設された熱搬送流体貯留パイプ16である。
この構成によれば、地中熱採熱用の熱搬送流体貯留パイプ16の地中への埋設作業に係る日数を少なくできると共に、安価に構築できる。
(Operations and effects of the embodiment of the invention)
(1). As described above, the building air-conditioning system using the underground heat and heat pump according to the embodiment of the present invention is provided with a flat plate shape on the ground 1 and the building 3 is constructed on the top (solid foundation 2). And an underground heat exchanging means buried below the foundation (solid foundation 2). In addition, the building air conditioning system using the underground heat and the heat pump uses heat from the refrigerant exchanged in the first heat exchange unit 11 in the building 3 in the second heat exchange unit (underfloor radiator 8). A heat pump (heat pump system 6) used for air conditioning is provided. Furthermore, the building air conditioning system using geothermal heat and a heat pump is capable of circulating the heat transfer fluid between the first heat exchanging unit 11 and the underground heat exchanging means. And circulation pipes 20, 21 connected to the underground heat exchange means, and the heat transfer fluid between the first heat exchange section 11 and the underground heat exchange means via the circulation pipes 20, 21. And a circulation pump 22 that circulates between them. Moreover, the underground heat exchanging means is a heat transfer fluid storage pipe 16 that is located directly below the foundation (solid foundation 2) and is buried in a horizontal direction from a ground surface 1a to a shallow position.
According to this configuration, it is possible to reduce the number of days related to the operation of burying the heat transfer fluid storage pipe 16 for underground heat collection into the ground, and it can be constructed at low cost.

(1).また、この発明の実施の形態の地中熱及びヒートポンプ利用の建物用空調システムにおいて、前記熱搬送流体貯留パイプ16の直径Dは前記循環パイプ20,21の直径dよりも大きく形成されていると共に、前記ヒートポンプシステム6の空調能力に応じた地中熱を利用可能な熱搬送流体(循環液である不凍液)の量を地中熱利用流体貯留量としたとき、前記熱搬送流体貯留パイプ16の長さLおよび直径Dは前記地中熱利用流体貯留量の熱搬送流体を貯留可能な容積を確保可能な直径および長さが設定されている。
この構成によれば、建物3の床部3aの面積や床下空間4の容積に応じた空調能力(暖房能力)のヒートポンプシステム6を採用することができる。しかも、建物3の建設現場の基礎工事をする際に、ヒートポンプシステム6の空調能力に応じた地中熱利用流体貯留量の熱搬送流体を貯留可能な直径および長さの熱搬送流体貯留パイプ16を選択して、この熱搬送流体貯留パイプ16を地表面に近接させて地中に水平に埋設するのみで、建物3に用いられるヒートポンプシステム6の空調能力(暖房)に応じて利用できる地中熱エネルギーを簡易な構成で充分に確保できる。
(1). In the building air conditioning system using the geothermal heat and heat pump according to the embodiment of the present invention, the diameter D of the heat transfer fluid storage pipe 16 is formed larger than the diameter d of the circulation pipes 20 and 21. When the amount of the heat transfer fluid that can use the underground heat according to the air conditioning capability of the heat pump system 6 (the antifreeze liquid that is the circulating fluid) is the amount of the underground heat use fluid storage amount, the heat transfer fluid storage pipe 16 The length L and the diameter D are set to a diameter and a length that can secure a volume capable of storing the heat transfer fluid of the underground heat utilization fluid storage amount.
According to this configuration, the heat pump system 6 having an air conditioning capability (heating capability) according to the area of the floor 3a of the building 3 and the volume of the underfloor space 4 can be employed. Moreover, when carrying out the foundation work at the construction site of the building 3, the heat transfer fluid storage pipe 16 having a diameter and a length capable of storing the heat transfer fluid of the underground heat utilization fluid storage amount according to the air conditioning capability of the heat pump system 6. The underground can be used according to the air-conditioning capability (heating) of the heat pump system 6 used in the building 3 only by placing the heat transfer fluid storage pipe 16 close to the ground surface and burying it horizontally in the ground. Thermal energy can be sufficiently secured with a simple configuration.

(1).また、この発明の実施の形態の地中熱及びヒートポンプ利用の建物用空調システムにおいて、建物3に太陽熱集熱装置30が設けられ、前記太陽熱集熱装置30と前記熱搬送流体貯留パイプ16が循環パイプ31,32で接続されていると共に、前記太陽熱集熱装置30で集熱された熱で前記熱搬送流体貯留パイプ16内の熱搬送流体を加熱して蓄熱可能に、前記太陽熱集熱装置30と前記熱搬送流体貯留パイプ16との間で熱搬送流体を循環させる循環ポンプ(実施例3の循環ポンプ22、又は変形例2の図示しない循環ポンプ)が設けられている。 (1). Further, in the building air conditioning system using the geothermal heat and heat pump according to the embodiment of the present invention, a solar heat collecting device 30 is provided in the building 3, and the solar heat collecting device 30 and the heat transfer fluid storage pipe 16 circulate. The solar heat collecting device 30 is connected to the pipes 31 and 32 and is capable of storing heat by heating the heat carrying fluid in the heat carrying fluid storage pipe 16 with the heat collected by the solar heat collecting device 30. A circulation pump (circulation pump 22 of the third embodiment or a circulation pump (not shown) of the second modification) that circulates the heat transfer fluid between the heat transfer fluid storage pipe 16 and the heat transfer fluid storage pipe 16 is provided.

このように熱搬送流体貯留パイプ16には太陽熱集熱装置30などの熱源がつながれているので、冬期の日中に太陽熱集熱装置で集熱を行い、熱搬送流体貯留パイプ16の中の循環液(不凍液)を温めておくことができ、冬期の夜間に高効率な暖房を行う事ができる。   Thus, since the heat transfer fluid storage pipe 16 is connected to a heat source such as the solar heat collector 30, heat collection is performed by the solar heat collector during the winter day, and the heat transfer fluid storage pipe 16 circulates in the heat transfer fluid storage pipe 16. Liquid (antifreeze) can be kept warm, and high-efficiency heating can be performed at night in winter.

1 地盤
1a 地表面
2 べた基礎(基礎)
3 建物
6 ヒートポンプシステム(ヒートポンプ)
8 床下放熱器(第2の熱交換部)
11 第1の熱交換部
16 熱搬送流体貯留パイプ
16′ 熱搬送流体貯留パイプ
20 循環パイプ
21 循環パイプ
22 循環ポンプ
30 太陽熱集熱装置
31 循環パイプ
32 循環パイプ
d 直径(循環パイプの径)
L 長さ(流体貯留パイプの長さ)
D 直径(流体貯留パイプの径)
1 ground 1a ground surface 2 solid foundation (foundation)
3 Building 6 Heat pump system (heat pump)
8 Underfloor radiator (second heat exchanger)
DESCRIPTION OF SYMBOLS 11 1st heat exchange part 16 Heat transfer fluid storage pipe 16 'Heat transfer fluid storage pipe 20 Circulation pipe 21 Circulation pipe 22 Circulation pump 30 Solar thermal collector 31 Circulation pipe 32 Circulation pipe d Diameter (diameter of circulation pipe)
L length (length of fluid storage pipe)
D Diameter (diameter of fluid storage pipe)

Claims (3)

地盤上に平板状に設けられ且つ上部に建物が構築された基礎と、
前記基礎の下方に位置させて地中に埋設された地中熱交換手段と、
第1の熱交換部で熱交換される冷媒の熱を第2の熱交換部で前記建物内の空調に用いるヒートポンプと、
前記第1の熱交換部と前記地中熱交換手段との間で熱搬送用流体を循環可能に前記第1の熱交換部と前記地中熱交換手段に接続された循環パイプと、
前記熱搬送用流体を前記循環パイプを介して前記第1の熱交換部と前記地中熱交換手段との間で循環させる循環ポンプと、を備える地中熱及びヒートポンプ利用の建物用空調システムにおいて、
前記地中熱交換手段は前記基礎の真下に位置させて地表面から浅い位置に水平方向に向けて埋設された熱搬送流体貯留パイプであることを特徴とする地中熱及びヒートポンプ利用の建物用空調システム。
A foundation which is provided in a flat plate shape on the ground and a building is constructed at the top;
Underground heat exchange means buried below the foundation,
A heat pump that uses the heat of the refrigerant that is heat-exchanged in the first heat exchange unit for air conditioning in the building in the second heat exchange unit;
A circulation pipe connected to the first heat exchanging unit and the underground heat exchanging means so that a heat transfer fluid can be circulated between the first heat exchanging unit and the underground heat exchanging unit;
In a building air conditioning system using ground heat and a heat pump, comprising: a circulation pump that circulates the heat transfer fluid between the first heat exchange unit and the underground heat exchange means via the circulation pipe ,
The underground heat exchanging means is a heat transfer fluid storage pipe that is located directly below the foundation and is buried in a horizontal direction in a shallow position from the ground surface. Air conditioning system.
請求項1に記載の地中熱及びヒートポンプ利用の建物用空調システムにおいて、前記熱搬送流体貯留パイプの径は前記循環パイプの径よりも大きく形成されていると共に、前記ヒートポンプシステムの空調能力に応じた地中熱を利用可能な熱搬送流体の量を地中熱利用流体貯留量としたとき、前記熱搬送流体貯留パイプの長さおよび径は前記地中熱利用流体貯留量の熱搬送流体を貯留可能な容積を確保可能な径および長さが設定されていることを特徴とする地中熱及びヒートポンプ利用の建物用空調システム。   The building air conditioning system using geothermal heat and heat pump according to claim 1, wherein a diameter of the heat transfer fluid storage pipe is formed larger than a diameter of the circulation pipe and depends on an air conditioning capability of the heat pump system. When the amount of the heat transfer fluid that can use the underground heat is defined as the ground heat utilization fluid storage amount, the length and diameter of the heat transfer fluid storage pipe is the heat transfer fluid of the ground heat utilization fluid storage amount. An air conditioning system for buildings using geothermal and heat pumps, characterized in that a diameter and a length capable of securing a storable volume are set. 請求項1または2に記載の地中熱及びヒートポンプ利用の建物用空調システムにおいて、建物に太陽熱集熱装置が設けられ、前記太陽熱集熱装置と前記流体貯留パイプが循環パイプで接続されていると共に、前記太陽熱集熱装置で集熱された熱で前記熱搬送流体貯留パイプ内の熱搬送流体を加熱して蓄熱可能に、前記太陽熱集熱装置と前記熱搬送流体貯留パイプとの間で熱搬送流体を循環させる循環ポンプが設けられていることを特徴とする地中熱及びヒートポンプ利用の建物用空調システム。   In the building air-conditioning system using geothermal heat and heat pump according to claim 1 or 2, a solar heat collector is provided in the building, and the solar heat collector and the fluid storage pipe are connected by a circulation pipe. Heat transfer between the solar heat collector and the heat transfer fluid storage pipe so that the heat transfer fluid in the heat transfer fluid storage pipe is heated by the heat collected by the solar heat collector and can be stored. A building air conditioning system using geothermal and heat pumps, characterized in that a circulation pump for circulating fluid is provided.
JP2013095291A 2012-10-18 2013-04-30 Building air conditioning system using geothermal and heat pumps Active JP6120317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095291A JP6120317B2 (en) 2012-10-18 2013-04-30 Building air conditioning system using geothermal and heat pumps

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012230613 2012-10-18
JP2012230613 2012-10-18
JP2013095291A JP6120317B2 (en) 2012-10-18 2013-04-30 Building air conditioning system using geothermal and heat pumps

Publications (2)

Publication Number Publication Date
JP2014098535A true JP2014098535A (en) 2014-05-29
JP6120317B2 JP6120317B2 (en) 2017-04-26

Family

ID=50940679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095291A Active JP6120317B2 (en) 2012-10-18 2013-04-30 Building air conditioning system using geothermal and heat pumps

Country Status (1)

Country Link
JP (1) JP6120317B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105629A1 (en) * 2016-12-05 2018-06-14 久生 山野辺 Large-tube horizontally-inclined convection-type ground heat exchanger, large-tube horizontally-inclined convection-type ground heat exchanging device, and installation method therefor
KR101861092B1 (en) * 2016-10-13 2018-07-05 한국에너지기술연구원 Heat pump system having underground heat reservoir pipes
JP2019219159A (en) * 2018-06-19 2019-12-26 株式会社 トラストプラン Waste hot water heat regenerator and waste hot water heat regeneration system using the same
CN111928383A (en) * 2020-07-31 2020-11-13 华中科技大学 A ground source heat pump and energy storage composite air conditioning system and its control method
KR20240083616A (en) * 2022-12-05 2024-06-12 한국에너지기술연구원 Heat supply system using PVT and central heating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025822U (en) * 1983-07-29 1985-02-21 阪根産業株式会社 heating device
JP2006234340A (en) * 2005-02-28 2006-09-07 Kimura Kohki Co Ltd Heat transfer tube for underground heat exchange
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure
JP4926306B1 (en) * 2011-06-27 2012-05-09 紘 室井 Building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025822U (en) * 1983-07-29 1985-02-21 阪根産業株式会社 heating device
JP2006234340A (en) * 2005-02-28 2006-09-07 Kimura Kohki Co Ltd Heat transfer tube for underground heat exchange
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure
JP4926306B1 (en) * 2011-06-27 2012-05-09 紘 室井 Building

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861092B1 (en) * 2016-10-13 2018-07-05 한국에너지기술연구원 Heat pump system having underground heat reservoir pipes
WO2018105629A1 (en) * 2016-12-05 2018-06-14 久生 山野辺 Large-tube horizontally-inclined convection-type ground heat exchanger, large-tube horizontally-inclined convection-type ground heat exchanging device, and installation method therefor
JP2018091559A (en) * 2016-12-05 2018-06-14 山野辺 久生 Thick tube lateral installation inclination convection current type underground heat exchanger, thick tube lateral installation inclination convection current type underground heat exchanging device and their installation method
JP2019219159A (en) * 2018-06-19 2019-12-26 株式会社 トラストプラン Waste hot water heat regenerator and waste hot water heat regeneration system using the same
CN111928383A (en) * 2020-07-31 2020-11-13 华中科技大学 A ground source heat pump and energy storage composite air conditioning system and its control method
KR20240083616A (en) * 2022-12-05 2024-06-12 한국에너지기술연구원 Heat supply system using PVT and central heating system
KR102716643B1 (en) * 2022-12-05 2024-10-15 한국에너지기술연구원 Heat supply system using PVT and central heating system

Also Published As

Publication number Publication date
JP6120317B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
JP6120317B2 (en) Building air conditioning system using geothermal and heat pumps
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
KR101535384B1 (en) Heating system of heat pump using solar energy and underground heat storage
JP6062498B1 (en) Temperature control equipment for agricultural facilities
JP2009250581A (en) Heating and cooling system using underground heat
JP6249387B1 (en) Floor air conditioning system
EP2619509B1 (en) System for storing thermal energy, heating assembly comprising said system and method of manufacturing said system
JP5550850B2 (en) Heat utilization system and heat utilization method
WO2009063184A1 (en) Improvements in or relating to heat pumps for hot water and heating systems
JP6442712B2 (en) Heat utilization device
JP6087711B2 (en) Hot water supply exhaust heat utilization air conditioning system
JP2007292445A (en) Cooling and heating system utilizing geothermal heat
JP5351210B2 (en) Thermal storage air conditioning system
JP3148898U (en) Geothermal building
JP2006207919A (en) Cooling/heating device and method using underground heat
JP2014040989A (en) Underground heat utilization system
JP5833064B2 (en) Thermal storage air conditioning system
JP5883685B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
KR101631503B1 (en) Heating and cooling and hot water supplying apparatus using geothermy
JP5809786B2 (en) Geothermal heat pump system
JP2003302121A (en) Air conditioner using natural energy and method for installing the same
JP2009085553A (en) Geothermal system for building
JP4471164B2 (en) Heat exchange system
EP4056923A1 (en) Geothermal system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6120317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250