[go: up one dir, main page]

JP2014097051A - Bacteriolytic reagent for acid-fast bacteria and method of detecting acid-fast bacteria with the same - Google Patents

Bacteriolytic reagent for acid-fast bacteria and method of detecting acid-fast bacteria with the same Download PDF

Info

Publication number
JP2014097051A
JP2014097051A JP2013059705A JP2013059705A JP2014097051A JP 2014097051 A JP2014097051 A JP 2014097051A JP 2013059705 A JP2013059705 A JP 2013059705A JP 2013059705 A JP2013059705 A JP 2013059705A JP 2014097051 A JP2014097051 A JP 2014097051A
Authority
JP
Japan
Prior art keywords
acid
fast bacteria
rna
reagent
fast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013059705A
Other languages
Japanese (ja)
Other versions
JP6064722B2 (en
Inventor
Takashi Ichii
敬 市居
Takaya Tawarada
隆哉 俵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013059705A priority Critical patent/JP6064722B2/en
Publication of JP2014097051A publication Critical patent/JP2014097051A/en
Application granted granted Critical
Publication of JP6064722B2 publication Critical patent/JP6064722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】 特殊な装置や煩雑な操作を必要とせず、簡便かつ短時間に試料中に含まれる抗酸菌を溶菌して核酸(特にRNA)を抽出可能な試薬、および前記試薬を用いた試料中に含まれる抗酸菌を検出する方法を提供すること。
【解決手段】 アルキルベンゼンスルホン酸と前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液からなる抗酸菌を溶菌しRNAを抽出するための試薬、前記試薬を抗酸菌を含む試料に添加し加熱処理することで抗酸菌を溶菌しRNAを抽出する方法、および前記方法で得られた抗酸菌由来RNAを当該RNAに特異的なプライマー・プローブを用いて増幅・検出することで試料中に含まれる抗酸菌を検出する方法により、前記課題を解決する。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a reagent capable of lysing acid-fast bacteria contained in a sample and extracting nucleic acid (particularly RNA) easily and in a short time without requiring a special apparatus or complicated operation, and a sample using the reagent To provide a method for detecting acid-fast bacteria contained therein.
[MEANS FOR SOLVING PROBLEMS] A reagent for lysing acid-fast bacteria comprising an aqueous solution containing a neutralizing agent that does not produce a metal salt of the acid by reaction of alkylbenzene sulfonic acid and the acid, and extracting the RNA; A method for lysing acid-fast bacteria by extracting the RNA and extracting RNA by heat treatment and adding the sample to the sample, and amplifying the acid-fast bacteria-derived RNA obtained by the above method using a primer / probe specific to the RNA The said subject is solved by the method of detecting the acid-fast bacterium contained in a sample by detecting.
[Selection figure] None

Description

本発明は、抗酸菌を溶菌し核酸を抽出するための試薬、および当該試薬を用いて試料中に含まれる抗酸菌を検出する方法に関する。   The present invention relates to a reagent for lysing acid-fast bacteria and extracting a nucleic acid, and a method for detecting acid-fast bacteria contained in a sample using the reagent.

結核および非結核性抗酸菌症は世界的に蔓延する細菌性疾患であり、当該疾患の根絶が世界的に取り組まれている中、当該疾患であることを迅速に診断することが非常に重要となってきている。また結核と非結核性抗酸菌症とでは感染防護や治療戦略が異なるため、結核菌群と非結核性抗酸菌とを区別して検出することは極めて重要である。   Tuberculosis and non-tuberculous mycobacterial disease are bacterial diseases that are widespread worldwide, and it is very important to quickly diagnose the disease as the disease is being eradicated worldwide. It has become. In addition, since tuberculosis and non-tuberculous mycobacteria have different infection protection and treatment strategies, it is extremely important to distinguish between tuberculosis groups and non-tuberculous mycobacteria.

結核および非結核性抗酸菌(以下あわせて抗酸菌とする)検査の公定法は培養法である。しかしながら抗酸菌(特に結核菌群)の増殖速度は極めて遅く、確定が出るまでに時間を要するため、培養法のみで検査する場合、二次感染の発生や拡大のリスクを有していた。そこで実際の抗酸菌検査業務では、時間のかかる培養法と迅速に抗酸菌の有無を検査可能な方法とを併用して検査している。   The official method for testing tuberculosis and non-tuberculous mycobacteria (hereinafter collectively referred to as acid-fast bacteria) is the culture method. However, the growth rate of mycobacteria (particularly Mycobacterium tuberculosis group) is extremely slow, and it takes time to be confirmed. Therefore, when examining only by the culture method, there is a risk of occurrence or spread of secondary infection. Therefore, in actual acid-fast bacteriological examination work, it is inspected using both a time-consuming culture method and a method capable of quickly examining the presence or absence of acid-fast bacilli.

迅速に抗酸菌の有無を検査可能な方法として、最近注目されている方法は、抗酸菌特異的な核酸(DNA/RNA)を増幅し検出する方法である。具体的には検査対象の抗酸菌由来の核酸(DNA/RNA)に特異的なプライマー・プローブを用い、当該核酸を増幅・検出することで、試料中に前記抗酸菌が含まれているか否かを検出する。本方法は、結核菌群由来の核酸に特異的なプライマー・プローブと、非結核性抗酸菌由来の核酸に特異的なプライマー・プローブとを用いることで、結核菌群と非結核性抗酸菌とを区別して検出できるため、迅速な検査方法として好ましい。   As a method capable of rapidly examining the presence or absence of acid-fast bacteria, a method that has recently attracted attention is a method for amplifying and detecting acid-fast bacteria-specific nucleic acid (DNA / RNA). Specifically, by using a primer / probe specific to the nucleic acid (DNA / RNA) derived from the acid-fast bacterium to be tested, whether the acid-fast bacterium is contained in the sample by amplifying and detecting the nucleic acid Detect whether or not. This method uses a primer / probe specific to a nucleic acid derived from a Mycobacterium tuberculosis group and a primer / probe specific to a nucleic acid derived from a non-tuberculous mycobacteria to produce a Mycobacterium tuberculosis group and a nontuberculous antiacid. Since it can be distinguished and detected from bacteria, it is preferable as a rapid inspection method.

抗酸菌特異的な核酸を増幅し検出する方法では、あらかじめ、抗酸菌を溶菌して核酸を抽出する必要がある。抗酸菌を溶菌する方法としては、従来より、有機溶媒等を用いた化学的方法、酵素を用いる生物学的方法、および超音波処理または微粒子存在下での超音波破砕や凍結・融解の繰り返し等の物理的方法等が知られている。また特許文献1には、抗酸菌を含む試料を、非イオン性界面活性剤を含む液体中で加熱処理することで、抗酸菌からDNAを抽出する方法を開示しており、非特許文献1には、有機溶媒や遠心操作を多用することで、抗酸菌からRNAを抽出する方法を開示しており、特許文献2には、抗酸菌を含む試料を界面活性剤を含む液体中で加熱処理後、前記抗酸菌を分離し、当該分離した抗酸菌にジルコニア微粒子を添加して超音波破砕することで、抗酸菌を溶菌しRNAを抽出する方法を開示している。   In the method for amplifying and detecting acid-fast bacterium-specific nucleic acid, it is necessary to lyse the acid-fast bacterium and extract the nucleic acid in advance. Conventional methods of lysing mycobacteria include chemical methods using organic solvents, biological methods using enzymes, and ultrasonic treatment or repeated ultrasonic disruption, freezing and thawing in the presence of fine particles. The physical method etc. are known. Patent Document 1 discloses a method for extracting DNA from acid-fast bacteria by heat-treating a sample containing acid-fast bacteria in a liquid containing a nonionic surfactant. 1 discloses a method of extracting RNA from acid-fast bacteria by using many organic solvents and centrifugal operations. Patent Document 2 discloses a sample containing acid-fast bacteria in a liquid containing a surfactant. After the heat treatment, a method is disclosed in which the acid-fast bacterium is separated, zirconia fine particles are added to the separated acid-fast bacterium, and ultrasonically disrupted to lyse the acid-fast bacterium and extract RNA.

WO2003/097816号WO2003 / 097816 WO2007/094506号WO2007 / 094506

Nucleic Acids Research,25(3),675−676(1997)Nucleic Acids Research, 25 (3), 675-676 (1997)

抗酸菌を溶菌して核酸を抽出しようとした場合、抗酸菌は強固な細胞壁を有しているため、処理条件が過酷であったり、処理時間が長くなったり、操作が煩雑であったり、特別な装置を使用する必要があった。またそれに伴いコンタミネーションのリスクもあった。さらに抽出する核酸がRNAの場合、DNAに比べてアルカリ加水分解に対して脆弱であるため、アルカリ加熱法による簡便な抽出が適用できないという問題もあった。   When an acid-fast bacterium is lysed and nucleic acid is extracted, the acid-fast bacterium has a strong cell wall, so the processing conditions are severe, the processing time is long, and the operation is complicated. There was a need to use special equipment. Along with this, there was a risk of contamination. Further, when the nucleic acid to be extracted is RNA, it is more vulnerable to alkaline hydrolysis than DNA, so that there is a problem that simple extraction by an alkali heating method cannot be applied.

そこで本発明は、特殊な装置や煩雑な操作を必要とせず、簡便かつ短時間に試料中に含まれる抗酸菌を溶菌して核酸(特にRNA)を抽出可能な試薬、および前記試薬を用いた試料中に含まれる抗酸菌を検出する方法を提供することを目的とする。   Therefore, the present invention uses a reagent that can lyse acid-fast bacteria contained in a sample and extract nucleic acid (particularly RNA) easily and in a short time without requiring a special device or complicated operation, and the reagent. It is an object of the present invention to provide a method for detecting acid-fast bacteria contained in a sample.

本発明者らは、上記目的に鑑みて鋭意検討した結果、本発明を完成するに至った。   As a result of intensive studies in view of the above object, the present inventors have completed the present invention.

すなわち本発明の第一の態様は、アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液からなる、抗酸菌を溶菌しRNAを抽出するための試薬である。   That is, the first aspect of the present invention is a method for lysing acid-fast bacteria and extracting RNA, comprising an aqueous solution containing an alkylbenzene sulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by reaction with the acid. It is a reagent.

また本発明の第二の態様は、アルキルベンゼンスルホン酸がドデシルベンゼンスルホン酸である、前記第一の態様に記載の試薬である。   The second aspect of the present invention is the reagent according to the first aspect, wherein the alkylbenzenesulfonic acid is dodecylbenzenesulfonic acid.

また本発明の第三の態様は、中和剤がトリスヒドロキシメチルアミノメタンである、前記第一または第二の態様に記載の試薬である。   A third aspect of the present invention is the reagent according to the first or second aspect, wherein the neutralizing agent is trishydroxymethylaminomethane.

また本発明の第四の態様は、さらに非イオン性界面活性剤を含む、前記第一から第三の態様のいずれかに記載の試薬である。   The fourth aspect of the present invention is the reagent according to any one of the first to third aspects, further comprising a nonionic surfactant.

また本発明の第五の態様は、さらに水溶性有機溶媒を含む、前記第一から第四の態様のいずれかに記載の試薬である。   The fifth aspect of the present invention is the reagent according to any one of the first to fourth aspects, further comprising a water-soluble organic solvent.

さらに本発明の第六の態様は、アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液を、抗酸菌を含む試料に添加後、加熱処理することで、抗酸菌を溶菌しRNAを抽出する方法である。   Furthermore, the sixth aspect of the present invention is a method in which an aqueous solution containing an alkylbenzene sulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by the reaction with the acid is added to a sample containing acid-fast bacteria and then heat-treated. This is a method for lysing acid-fast bacteria and extracting RNA.

また本発明の第七の態様は、ドデシルベンゼンスルホン酸とトリスヒドロキシメチルアミノメタンを含む水溶液を、ドデシルベンゼンスルホン酸の終濃度が0.05%(w/v)以上となるよう、抗酸菌を含む試料に添加後、70℃から90℃で5分間から60分間加熱処理することで、抗酸菌を溶菌しRNAを抽出する方法である。   The seventh aspect of the present invention provides an acid-fast bacterium that contains an aqueous solution containing dodecylbenzenesulfonic acid and trishydroxymethylaminomethane so that the final concentration of dodecylbenzenesulfonic acid is 0.05% (w / v) or more. Is added to a sample containing, and then heat-treated at 70 to 90 ° C. for 5 to 60 minutes to lyse acid-fast bacteria and extract RNA.

さらに本発明の第八の態様は、
アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液を、抗酸菌を含む試料に添加後、加熱処理することで、抗酸菌を溶菌しRNAを抽出する工程と、
前記工程で抽出した抗酸菌由来RNAを当該RNAに特異的なプライマー・プローブを用いて、増幅・検出する工程とを含む、
試料中に含まれる抗酸菌を検出する方法である。
Furthermore, an eighth aspect of the present invention provides
After adding an aqueous solution containing an alkylbenzene sulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by reaction with the acid to a sample containing acid-fast bacteria, the acid-fast bacteria are lysed by RNA treatment. Extracting the
Amplifying and detecting the mycobacteria-derived RNA extracted in the above step using a primer / probe specific to the RNA,
This is a method for detecting acid-fast bacteria contained in a sample.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の、抗酸菌を溶菌しRNAを抽出するための試薬(以下、単に本発明の試薬とする)は、アルキルベンゼンスルホン酸と中和剤を少なくとも含むことを特徴としている。   The reagent for lysing acid-fast bacteria and extracting RNA of the present invention (hereinafter simply referred to as the reagent of the present invention) is characterized by containing at least an alkylbenzenesulfonic acid and a neutralizing agent.

本発明の試薬を構成するアルキルベンゼンスルホン酸は、界面活性剤としての機能を有するものであれば特に限定はなく、一例として、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸といった、炭素数10から14の直鎖または分枝鎖を有するアルキル鎖が結合したベンゼンスルホン酸があげられる。中でもドデシルベンゼンスルホン酸(DBSA)は、本発明の試薬を構成するアルキルベンゼンスルホン酸として好ましい態様の一つといえる。   The alkylbenzene sulfonic acid constituting the reagent of the present invention is not particularly limited as long as it has a function as a surfactant. For example, decyl benzene sulfonic acid, undecyl benzene sulfonic acid, dodecyl benzene sulfonic acid, tridecyl Examples thereof include benzenesulfonic acid and tetradecylbenzenesulfonic acid, which are bonded with an alkyl chain having a linear or branched chain having 10 to 14 carbon atoms. Among these, dodecylbenzenesulfonic acid (DBSA) can be said to be one of the preferred embodiments as the alkylbenzenesulfonic acid constituting the reagent of the present invention.

本発明の試薬を構成するアルキルベンゼンスルホン酸はスルホ基(−SOH)を有しているため、水溶液にすると強酸性を示す(一例として、10%(w/v)DBSA水溶液のpHは1以下である)。一方、RNAは強酸性下では加水分解される可能性がある。そのため、本発明の試薬ではアルキルベンゼンスルホン酸に中和剤を添加することでRNAの加水分解が生じない程度のpHに調整する必要がある。ただし本発明の試薬に添加する中和剤として、金属水酸化物(例えば、水酸化ナトリウムや水酸化カリウム)など、アルキルベンゼンスルホン酸との反応により前記酸の金属塩を生成する中和剤を用いるのは好ましくない。その理由として、アルキルベンゼンスルホン酸金属塩は、アルキルベンゼンスルホン酸と比較し溶菌性能が劣るからである(後述の実施例1参照)。本発明の試薬に添加する中和剤の一例として、アンモニアや、2−アミノエタノール、2,2’−イミノジエタノール、2,2’,2’’−ニトリロトリエタノール、2−アミノ−2−メチル−1,3−プロパンジオールなどのアルカノールアミン類や、トリスヒドロキシメチルアミノメタン(Tris)があげられる。中でも、毒劇物の扱いを受けず臭気もないTrisは、本発明の試薬に添加する中和剤として好ましい態様の一つといえる。 Since the alkylbenzene sulfonic acid constituting the reagent of the present invention has a sulfo group (—SO 3 H), it exhibits strong acidity in an aqueous solution (for example, the pH of a 10% (w / v) DBSA aqueous solution is 1 Below). On the other hand, RNA may be hydrolyzed under strong acidity. Therefore, in the reagent of the present invention, it is necessary to adjust the pH to such an extent that RNA is not hydrolyzed by adding a neutralizing agent to alkylbenzenesulfonic acid. However, as a neutralizing agent to be added to the reagent of the present invention, a neutralizing agent that generates a metal salt of the acid by reaction with an alkylbenzene sulfonic acid such as a metal hydroxide (for example, sodium hydroxide or potassium hydroxide) is used. Is not preferred. This is because the alkylbenzenesulfonic acid metal salt is inferior in lysis performance as compared to alkylbenzenesulfonic acid (see Example 1 described later). Examples of the neutralizing agent added to the reagent of the present invention include ammonia, 2-aminoethanol, 2,2′-iminodiethanol, 2,2 ′, 2 ″ -nitrilotriethanol, 2-amino-2-methyl- Examples include alkanolamines such as 1,3-propanediol and trishydroxymethylaminomethane (Tris). Among these, Tris that is not treated with poisonous and deleterious substances and has no odor can be said to be one of preferred embodiments as a neutralizing agent added to the reagent of the present invention.

本発明の試薬におけるアルキルベンゼンスルホン酸の濃度は、アルキルベンゼンスルホン酸がDBSAの場合、抗酸菌を含む試料に本発明の試薬を添加した時点の終濃度で0.05%(w/v)以上であればよく、0.5%(w/v)以上であるとより好ましい。上限については特に限定はないが、アルキルベンゼンスルホン酸がDBSAの場合、20%(w/v)以上の水溶液は粘性が高く、取り扱いが困難となるため、避けたほうが好ましい。なおアルキルベンゼンスルホン酸は、粘性が高く、水への溶解速度も遅い。そのため本発明の試薬を調製する際、あらかじめアルキルベンゼンスルホン酸に、2−プロパノールといった低級アルコールや、エチレングリコールといったジオールや、ジメチルスルフォキシドといった非プロトン性有機溶媒などの水溶性の有機溶媒を混和させてから調製すると、粘性を下げることができ、かつ水への溶解速度も向上するため好ましい。   When the alkylbenzene sulfonic acid is DBSA, the concentration of the alkylbenzene sulfonic acid in the reagent of the present invention is 0.05% (w / v) or more at the final concentration when the reagent of the present invention is added to the sample containing acid-fast bacteria. What is necessary is just 0.5% (w / v) or more. The upper limit is not particularly limited, but when the alkylbenzenesulfonic acid is DBSA, an aqueous solution of 20% (w / v) or more is preferably avoided because it has high viscosity and is difficult to handle. Alkylbenzenesulfonic acid has a high viscosity and a low dissolution rate in water. Therefore, when preparing the reagent of the present invention, a water-soluble organic solvent such as a lower alcohol such as 2-propanol, a diol such as ethylene glycol, or an aprotic organic solvent such as dimethyl sulfoxide is mixed with the alkylbenzene sulfonic acid in advance. It is preferable to prepare it afterwards because the viscosity can be lowered and the dissolution rate in water is improved.

本発明の試薬の好ましい態様として、非イオン性界面活性剤をさらに添加した試薬があげられ、前記試薬により溶菌効率のばらつきを改善することができる。添加する非イオン性界面活性剤は、当業者が通常用いるものから適宜選択することができ、その一例として、MEGA−8(n−Octanoyl−N−methyl−D−glucamine)、MEGA−9(n−Nonanoyl−N−methyl−D−glucamine)、MEGA−10(n−Decanoyl−N−methyl−D−glucamine)、n−ドデシル−β−D−マルトシド、オクチル−β−D−グルコシド、Triton X−100(商品名)があげられる。濃度については、臨界ミセル濃度(CMC)を考慮のうえ、適宜設定すればよい。   A preferred embodiment of the reagent of the present invention is a reagent to which a nonionic surfactant is further added, and the variation in lysis efficiency can be improved by the reagent. The nonionic surfactant to be added can be appropriately selected from those usually used by those skilled in the art. Examples thereof include MEGA-8 (n-octanoyl-N-methyl-D-glucamine), MEGA-9 (n -Nonanoyl-N-methyl-D-glucomine), MEGA-10 (n-Decanyl-N-methyl-D-glucomine), n-dodecyl-β-D-maltoside, octyl-β-D-glucoside, Triton X- 100 (trade name). The concentration may be appropriately set in consideration of the critical micelle concentration (CMC).

本発明の試薬を抗酸菌を含む試料に添加し、加熱処理することで、抗酸菌を溶菌しRNAを抽出することができる。加熱処理する温度は60℃以下では抗酸菌が実質的に溶菌しないことから(Chemical Engineering Science,64(9),1944−1951(2009))、65℃から95℃までの範囲内であればよく、70℃から90℃までの範囲内が特に好ましい。加熱処理する時間は温度に依存するが、加熱処理する温度が70℃から90℃までの場合、5分から60分までの間とすればよく、10分前後が特に好ましい。   By adding the reagent of the present invention to a sample containing acid-fast bacteria and heat treatment, the acid-fast bacteria can be lysed and RNA can be extracted. Since the acid-fast bacteria are not substantially lysed at a temperature of 60 ° C. or less (Chemical Engineering Science, 64 (9), 1944-951 (2009)), the heat treatment temperature is within the range from 65 ° C. to 95 ° C. In particular, the range from 70 ° C. to 90 ° C. is particularly preferable. The time for the heat treatment depends on the temperature, but when the temperature for the heat treatment is from 70 ° C. to 90 ° C., it may be from 5 minutes to 60 minutes, and about 10 minutes is particularly preferable.

本発明の試薬を抗酸菌を含む試料に添加し、加熱処理することで、抗酸菌を溶菌して抗酸菌由来RNAを抽出した後は、当該RNAに特異的なプライマー・プローブを用いて、増幅・検出することにより、試料中に含まれる抗酸菌を検出することができる。なおRNAを抽出した後、RNeasy(QIAGEN)などの市販のRNA精製キットを用いてRNAを高純度に精製してから、前記増幅・検出を行なってもよい。また前記増幅・検出は、TMA(Transcription−Mediated Amplification)法、NASBA(Nucleic Acid Sequence−Based Amplification)法、TRC(Transcription Reverse transcription Concerted reaction)(特開2000−014400号公報)法など従来より知られているRNA増幅法を用いて行なえばよい。   After adding the reagent of the present invention to a sample containing acid-fast bacteria and heat-treating it, the acid-fast bacteria are lysed and the acid-fast bacteria-derived RNA is extracted, and then a primer / probe specific to the RNA is used. Thus, acid-fast bacteria contained in the sample can be detected by amplification and detection. In addition, after extracting RNA, you may perform said amplification and detection, after purifying RNA with high purity using commercially available RNA purification kits, such as RNeasy (QIAGEN). In addition, the amplification and detection are performed by the TMA (Transcribation-Mediated Amplification) method, the NASBA (Nucleic Acid Sequence-Based Amplification) method, the TRC (Transcribion Reverse-Transcribion Method 400), and the like. The RNA amplification method may be used.

本発明の試薬で溶菌可能な抗酸菌は、Mycobacterium属に属する菌のことを指し、具体的には、M.avium、M.intracellularae、M.gordonae、M.tuberculosis(結核菌)、M.kansasii、M.fortuitum、M.chelonae、M.bovis、M.scrofulaceum、M.paratuberculosis(ヨーネ菌)、M.phlei、M.marinum、M.simiae、M.szulgai、M.leprae(らい菌)、M.xenopi、M.ulcerans、M.lepraemurium、M.flavescens、M.terrae、M.nonchromogenicum、M.malmoense、M.asiaticum、M.vaccae、M.gastri、M.triviale、M.africanum、M.thermoresistable、M.smegmatis、M.shinjukuenseが例示できる。試料中に含まれる抗酸菌を検出するには、前述した抗酸菌のRNAに特異的なプライマー・プローブを設計し、当該設計したプライマー・プローブを用いて適切な条件下でRNAの増幅・検出を行なえばよい(例えば、特開2004−194583号公報)。   The acid-fast bacterium that can be lysed by the reagent of the present invention refers to a bacterium belonging to the genus Mycobacterium, specifically, avium, M.M. intracellularae, M .; gordonae, M.M. tuberculosis, M. tuberculosis. Kansasii, M.M. fortuitum, M.M. chelonae, M.C. bovis, M.M. s. paratuberculosis, M. pneumoniae. phlei, M.M. marinum, M.M. simiae, M.M. szulgai, M.M. leprae, M. et al. xenopi, M.M. ulcerans, M.M. lepraemurium, M. et al. flavescens, M.M. terrae, M.M. nonchromogenicum, M.M. malmoense, M.M. asiaticum, M. et al. vaccae, M.M. gastri, M.M. triviale, M.M. africanum, M.M. thermoresistable, M.M. smegmatis, M.M. Shinjukuense can be exemplified. To detect acid-fast bacilli contained in a sample, a primer / probe specific to the acid-fast bacilli RNA described above is designed, and RNA amplification / ampling under appropriate conditions using the designed primer / probe is performed. What is necessary is just to perform a detection (for example, Unexamined-Japanese-Patent No. 2004-194583).

本発明における抗酸菌を含む試料の一例として、喀痰、気管支洗浄液、気管支肺胞洗浄液、胃液、血液、骨髄液、尿、糞便、組織、その他体液、培養液などがあげられる。なお、抗酸菌を含む試料が喀痰の場合は、NALC(N−acetyl−L−cysteine)−NaOH法などの公知の方法によりあらかじめ試料の粘性を下げる前処理を行なったほうがよい。   Examples of samples containing acid-fast bacteria in the present invention include sputum, bronchial lavage fluid, bronchoalveolar lavage fluid, gastric fluid, blood, bone marrow fluid, urine, feces, tissue, other body fluids, culture fluid, and the like. In addition, when the sample containing an acid-fast bacterium is sputum, it is better to perform a pretreatment for reducing the viscosity of the sample in advance by a known method such as a NALC (N-acetyl-L-cysteine) -NaOH method.

本発明の試薬は、アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を少なくとも含むことを特徴としている。抗酸菌を含む試料に本発明の試薬を添加し加熱処理することで抗酸菌を溶菌しRNAを抽出後、当該RNAに特異的なプライマー・プローブを用いて増幅・検出することで、試料中に含まれる抗酸菌を簡便かつ短時間に検査することができる。また本発明の試薬を用いた抗酸菌の溶菌操作は、1本のチューブで完結し、ヒートブロック以外の特別な装置が不要なため、容易に実施することができる。またコンタミネーションリスクが少なく、バイオセーフティも確保できる操作である。   The reagent of the present invention is characterized in that it contains at least a neutralizing agent that does not produce a metal salt of the acid by a reaction between the alkylbenzenesulfonic acid and the acid. By adding the reagent of the present invention to a sample containing acid-fast bacteria and heat-treating it, the acid-fast bacterium is lysed and RNA is extracted, and then amplified and detected using a primer / probe specific to the RNA. The acid-fast bacterium contained therein can be inspected easily and in a short time. Further, the lysis operation of acid-fast bacteria using the reagent of the present invention can be easily carried out because it is completed with one tube and no special apparatus other than the heat block is required. In addition, it is an operation that has little risk of contamination and can ensure biosafety.

以下、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto.

実施例1 界面活性剤による抗酸菌から溶菌効率の検討
各種界面活性剤により抗酸菌の溶菌操作を行ない、溶菌効率を、前記操作により液相に放出された抗酸菌由来のRNAを増幅・検出することで評価した。
(1)MycoBroth(極東製薬)中で静置培養したMycobacterium bovis BCG Tokyo株(以下、BCGと記載)を孔径5μmの親水性シリンジフィルター(日本PALL)でろ過後、ろ液の600nmにおける吸光度(OD600)を測定し、その吸光度を基にOD600が0.1になるように滅菌蒸留水で希釈した(10cfu(colony forming unit)/mL相当)。
(2)(1)の希釈液を段階希釈し、10cfuのBCGを含む200μLの菌液を調製した。
(3)(2)で調製した菌液200μLに、10%(w/v)ドデシルベンゼンスルホン酸(DBSA)水溶液、10%(w/v)ドデシルベンゼンスルホン酸ナトリウム塩(Na−DBS)水溶液、10%(w/v)ドデシル硫酸ナトリウム(SDS)水溶液、または10%(w/v)セチルトリメチルアンモニウムブロミド(CTAB)水溶液、各200μLを添加し混和後、80℃で10分加熱処理することで溶菌操作を行なった。なお10%(w/v)DBSA水溶液はpH1以下の強酸性水溶液であり、RNAが加水分解される可能性があるので、あらかじめトリスヒドロキシメチルアミノメタン(Tris)で中和している。
(4)(3)の処理液のうち200μLを、RNeasy mini kit(QIAGEN)を用いることで精製操作を行ない、溶出液50μLを得た。なお本操作は、キットの取扱説明書に従い実施した。
(5)(4)の溶出液5μLを、市販の結核菌群rRNA検出試薬(TRCRapid M.TB、東ソー)およびTRCRリアルタイムモニター(TRCRapid−160、東ソー)を用いて溶出液中のRNAを増幅検出し、前記モニターで陽性判定となる時間(陽性時間)を測定した。なお本操作は、前記試薬の添付文書および前記モニターの取扱説明書に従い実施した。陽性時間が短いほど測定試料中のBCG RNA量が多いことから、溶菌効率がよいといえる。
Example 1 Examination of lysis efficiency from acid-fast bacteria with surfactants Lysis of acid-fast bacteria was performed with various surfactants, and the lysis efficiency was amplified by amplification of RNA derived from acid-fast bacteria released into the liquid phase by the above-described operation.・ Evaluated by detecting.
(1) Mycobacterium bovis BCG Tokyo strain (hereinafter referred to as BCG) statically cultured in MycoBroth (Kyokuto Pharmaceutical) was filtered with a hydrophilic syringe filter (Japan PALL) having a pore size of 5 μm, and the absorbance at 600 nm of the filtrate (OD600) ) Was measured and diluted with sterilized distilled water based on the absorbance so that the OD600 was 0.1 (equivalent to 10 7 cfu (colony forming unit) / mL).
(2) The diluted solution of (1) was serially diluted to prepare 200 μL of a bacterial solution containing 10 2 cfu of BCG.
(3) 10% (w / v) dodecylbenzenesulfonic acid (DBSA) aqueous solution, 10% (w / v) sodium dodecylbenzenesulfonic acid sodium salt (Na-DBS) aqueous solution, to 200 μL of the bacterial solution prepared in (2), By adding 200 μL each of 10% (w / v) sodium dodecyl sulfate (SDS) aqueous solution or 10% (w / v) cetyltrimethylammonium bromide (CTAB) aqueous solution and mixing, heat treatment is performed at 80 ° C. for 10 minutes. Lysis operation was performed. The 10% (w / v) DBSA aqueous solution is a strongly acidic aqueous solution having a pH of 1 or less, and RNA may be hydrolyzed, so it is neutralized with trishydroxymethylaminomethane (Tris) in advance.
(4) 200 μL of the processing solution of (3) was purified using RNeasy mini kit (QIAGEN) to obtain 50 μL of eluate. This operation was performed according to the instruction manual of the kit.
(5) 5 μL of the eluate of (4) was amplified and detected using a commercially available tuberculosis group rRNA detection reagent (TRCRapid M.TB, Tosoh) and a TRCR real-time monitor (TRCRapid-160, Tosoh). Then, the time (positive time) during which a positive determination was made on the monitor was measured. This operation was performed according to the attached document of the reagent and the instruction manual of the monitor. Since the amount of BCG RNA in the measurement sample is larger as the positive time is shorter, it can be said that the lysis efficiency is better.

溶菌操作(前記(3)の操作)は3重で行ない、精製操作と測定(前記(4)および(5))は各処理液に対し1重で行なった。結果を表1に示す。なお表1中、N.D.は標的RNAを検出できなかったことを表す。   The lysis operation (operation (3) above) was performed in triplicate, and the purification operation and measurement (above (4) and (5)) were performed in a single layer for each treatment solution. The results are shown in Table 1. In Table 1, N.I. D. Indicates that the target RNA could not be detected.

Figure 2014097051
表1の結果より、陰イオン性界面活性剤であるDBSA、Na−DBS、SDSは抗酸菌を良好に溶菌している一方、陽イオン性界面活性剤でありDNA抽出で頻用されるCTABでは抗酸菌の溶菌が全く進んでいないことがわかる。また前記陰イオン性界面活性剤の中でも、DBSAを用いて溶菌操作を行なったときは、そのナトリウム塩であるNa−DBSや陰イオン性界面活性剤として通常用いられるSDSを用いて溶菌操作を行なったときと比較し、陽性時間が短いことから、DBSAが抗酸菌を溶菌するための界面活性剤として最も好ましいことがわかる。
Figure 2014097051
From the results of Table 1, the anionic surfactants DBSA, Na-DBS, and SDS are well lysed mycobacteria, while the cationic surfactants that are frequently used in DNA extraction are CTAB. It can be seen that lysis of mycobacteria has not progressed at all. Among the anionic surfactants, when lysis is performed using DBSA, the lysis is performed using Na-DBS, which is its sodium salt, or SDS that is usually used as an anionic surfactant. Since the positive time is short as compared with the time of the test, it can be seen that DBSA is most preferable as a surfactant for lysing acid-fast bacteria.

実施例2 DBSAの最適濃度検討
実施例1で検討した界面活性剤のうち、抗酸菌を最も良好に溶菌したDBSAについて最適濃度を検討した。
(1)実施例1(1)の希釈液から滅菌蒸留水で段階希釈し、10cfuのBCGを含む100μLの菌液を調製した。
(2)あらかじめTrisで中和した10%(w/v)DBSA水溶液を蒸留水で段階希釈し、1%(w/v)、0.1%(w/v)および0.01%(w/v)DBSA−Tris水溶液を調製した。
(3)(1)で調製した菌液100μLに、(2)で調製したDBSA−Tris水溶液100μLを添加し混和後、80℃で10分加熱処理することで溶菌操作を行なった。なお、10%(w/v)DBSA−Tris水溶液を添加した場合の終濃度は5%(w/v)、1%(w/v)DBSA−Tris水溶液を添加した場合の終濃度は0.5%(w/v)、0.1%(w/v)DBSA−Tris水溶液を添加した場合の終濃度は0.05%(w/v)、0.01%(w/v)DBSA−Tris水溶液を添加した場合の終濃度は0.005%(w/v)となる。
(4)(3)の処理液全量(200μL)を実施例1(4)と同様な方法で精製し、実施例1(5)と同様な方法で陽性時間を測定した。
Example 2 Examination of optimum concentration of DBSA Among the surfactants examined in Example 1, the optimum concentration was examined for DBSA that best lyses acid-fast bacteria.
(1) From the diluted solution of Example 1 (1), serially diluted with sterilized distilled water to prepare 100 μL of a bacterial solution containing 10 2 cfu of BCG.
(2) A 10% (w / v) DBSA aqueous solution previously neutralized with Tris was serially diluted with distilled water, and 1% (w / v), 0.1% (w / v) and 0.01% (w / V) A DBSA-Tris aqueous solution was prepared.
(3) To 100 μL of the bacterial solution prepared in (1), 100 μL of the DBSA-Tris aqueous solution prepared in (2) was added and mixed, followed by heat treatment at 80 ° C. for 10 minutes to perform the lysis operation. The final concentration when the 10% (w / v) DBSA-Tris aqueous solution was added was 5% (w / v), and the final concentration when the 1% (w / v) DBSA-Tris aqueous solution was added was 0.00. When 5% (w / v) and 0.1% (w / v) DBSA-Tris aqueous solution is added, final concentrations are 0.05% (w / v) and 0.01% (w / v) DBSA- When the Tris aqueous solution is added, the final concentration is 0.005% (w / v).
(4) The total amount (200 μL) of the processing solution of (3) was purified by the same method as in Example 1 (4), and the positive time was measured by the same method as in Example 1 (5).

結果を表2に示す。なお表2中、N.D.は標的RNAを検出できなかったことを表す。   The results are shown in Table 2. In Table 2, N. D. Indicates that the target RNA could not be detected.

Figure 2014097051
表2の結果より、抗酸菌の溶菌に必要なDBSAの濃度は、少なくとも終濃度0.05%(w/v)以上、好ましくは0.5%(w/v)以上であることがわかる。なお対照試験として、DBSAを添加しない系も同時に実施したが、抗酸菌の溶菌がほとんど進んでいないことがわかる。
Figure 2014097051
From the results in Table 2, it can be seen that the concentration of DBSA required for lysis of acid-fast bacteria is at least a final concentration of 0.05% (w / v) or more, preferably 0.5% (w / v) or more. . In addition, although the system which does not add DBSA was implemented simultaneously as a control test, it turns out that the lysis of acid-fast bacteria has hardly progressed.

実施例3 非イオン性界面活性剤の添加の効果(その1)
DBSAに非イオン界面活性剤をさらに添加することで、抗酸菌の溶菌効率がさらに向上するか評価した。
Example 3 Effect of Addition of Nonionic Surfactant (Part 1)
It was evaluated whether the lysis efficiency of acid-fast bacteria was further improved by further adding a nonionic surfactant to DBSA.

実施例1(2)で調製した菌液200μLに添加する水溶液として、2.8mg/mLのMEGA−10(n−Decanoyl−N−methyl−D−glucamine)(同仁化学)を含む10%(w/v)DBSA−Tris水溶液200μLとした他は、実施例1と同様な方法で評価した。結果を表3に示す。   10% (w) containing 2.8 mg / mL MEGA-10 (n-Decanyl-N-methyl-D-glucomine) (Dojindo) as an aqueous solution to be added to 200 μL of the bacterial solution prepared in Example 1 (2) / V) Evaluation was performed in the same manner as in Example 1 except that 200 μL of the DBSA-Tris aqueous solution was used. The results are shown in Table 3.

Figure 2014097051
表3の結果より、非イオン性界面活性剤であるMEGA−10を加えることで、陽性時間のばらつき、すなわち溶菌効率のばらつきが改善されることがわかる。
Figure 2014097051
From the results in Table 3, it can be seen that the addition of MEGA-10, which is a nonionic surfactant, improves the variation in positive time, that is, the variation in lysis efficiency.

実施例4 非イオン性界面活性剤の添加の効果(その2)
DBSAにMEGA−10以外の非イオン界面活性剤を添加することで、MEGA−10を添加したときと同様な効果が得られるか検討した。
Example 4 Effect of Addition of Nonionic Surfactant (Part 2)
It was examined whether the same effect as when MEGA-10 was added could be obtained by adding a nonionic surfactant other than MEGA-10 to DBSA.

実施例1(2)で調製した菌液200μLに添加する水溶液として、以下に示す(A)から(F)の水溶液200μLとした他は、実施例1と同様な方法で評価した。
(A)2.8mg/mLのMEGA−8(n−Octanoyl−N−methyl−D−glucamine)(同仁化学)を含む10%(w/v)DBSA−Tris水溶液
(B)2.8mg/mLのMEGA−9(n−Nonanoyl−N−methyl−D−glucamine)(同仁化学)を含む10%(w/v)DBSA−Tris水溶液
(C)2.8mg/mLのMEGA−10(同仁化学)を含む10%(w/v)DBSA−Tris水溶液
(D)2.8mg/mLのn−ドデシル−β−D−マルトシド(12m)を含む10%(w/v)DBSA−Tris水溶液
(E)2.8mg/mLのn−オクチル−β−D−グルコシド(8g)を含む10%(w/v)DBSA−Tris水溶液
(F)2.8mg/mLのTriton X−100(TX)(商品名)を含む10%(w/v)DBSA−Tris水溶液
結果を表4に示す。本実施例で検討した5種類の非イオン性界面活性剤のいずれもがMEGA−10と同様、溶菌効率のばらつきが改善されていることがわかる。
Evaluation was performed in the same manner as in Example 1 except that 200 μL of the aqueous solutions (A) to (F) shown below were used as the aqueous solution to be added to 200 μL of the bacterial solution prepared in Example 1 (2).
(A) 10% (w / v) DBSA-Tris aqueous solution (B) containing 2.8 mg / mL MEGA-8 (n-Octanoyl-N-methyl-D-glucamine) (Dojin Chemical) 2.8 mg / mL 10% (w / v) DBSA-Tris aqueous solution (C) containing MEGA-9 (n-Nonanoyl-N-methyl-D-glucamine) (Dojindo) 2.8 mg / mL MEGA-10 (Dojindo) 10% (w / v) DBSA-Tris aqueous solution (D) containing 10% (w / v) DBSA-Tris aqueous solution (E) containing 2.8 mg / mL n-dodecyl-β-D-maltoside (12 m) 10% (w / v) DBSA-Tris aqueous solution (F) containing 2.8 mg / mL n-octyl-β-D-glucoside (8 g) 2.8 mg / mL Tri Table 4 shows the results of 10% (w / v) DBSA-Tris aqueous solution containing ton X-100 (TX) (trade name). It can be seen that all of the five types of nonionic surfactants studied in this example have improved lysis efficiency variations as in MEGA-10.

Figure 2014097051
実施例5 加熱条件の検討
DBSAとMEGA−10とを含む水溶液で抗酸菌を溶菌する際の加熱処理温度および加熱処理時間の検討を行なった。
(1)実施例1(2)で調製した菌液200μLに、2.8mg/mLのMEGA−10(同仁化学)と10%(w/v)DBSAとを含む水(90%)/2−プロパノール(10%)混合溶液(Trisで中和)200μLを添加し、混和した。なお2−プロパノールは、DBSAの粘性の低下と水への溶解性の向上を目的に添加している。
(2)70℃、80℃または90℃で5分間、10分間、30分間または60分間加熱処理後、前記処理液100μLを実施例1(4)と同様な方法で精製し、実施例1(5)と同様な方法で陽性時間を測定した。
Figure 2014097051
Example 5 Examination of Heating Conditions Heat treatment temperature and heat treatment time for lysing mycobacteria with an aqueous solution containing DBSA and MEGA-10 were examined.
(1) Water (90%) / 2− containing 200 μL of the bacterial solution prepared in Example 1 (2) and containing 2.8 mg / mL MEGA-10 (Dojindo) and 10% (w / v) DBSA 200 μL of propanol (10%) mixed solution (neutralized with Tris) was added and mixed. 2-Propanol is added for the purpose of reducing the viscosity of DBSA and improving the solubility in water.
(2) After heat treatment at 70 ° C., 80 ° C. or 90 ° C. for 5 minutes, 10 minutes, 30 minutes or 60 minutes, 100 μL of the treatment solution was purified by the same method as in Example 1 (4), and Example 1 ( The positive time was measured by the same method as in 5).

結果を表5に示す。本実施例で検討した加熱処理温度(70℃から90℃)および加熱処理時間(5分から60分)の範囲であれば、溶菌効率に大きな差はないことがわかる。また本実施例では、DBSAの粘性の低下と水への溶解性の向上を目的に2−プロパノールを添加したが、溶菌自体には大きな影響を与えていないことがわかる。   The results are shown in Table 5. It can be seen that there is no significant difference in lysis efficiency within the range of the heat treatment temperature (70 ° C. to 90 ° C.) and the heat treatment time (5 minutes to 60 minutes) studied in this example. In this example, 2-propanol was added for the purpose of lowering the viscosity of DBSA and improving the solubility in water, but it was found that the lysis itself was not greatly affected.

Figure 2014097051
実施例6 水溶性有機溶媒の検討
実施例5では、DBSAの粘性の低下と水への溶解性の向上を目的に2−プロパノールを添加したが、他の水溶性有機溶媒も同様に適用可能か検討した。
Figure 2014097051
Example 6 Examination of Water-Soluble Organic Solvent In Example 5, 2-propanol was added for the purpose of reducing the viscosity of DBSA and improving the solubility in water. Can other water-soluble organic solvents be applied in the same manner? investigated.

2−プロパノール(2−PrOH)の代わりに、非プロトン性有機溶媒であるジメチルスルフォキシド(DMSO)またはジオールであるエチレングリコール(Et−Gly)を用い、加熱処理温度・加熱処理時間を80℃・10分とした他は、実施例5と同様な方法で実施した。結果を表6に示す。本実施例で検討した水溶性有機溶媒はいずれも使用可能であることがわかる。   Instead of 2-propanol (2-PrOH), dimethyl sulfoxide (DMSO), which is an aprotic organic solvent, or ethylene glycol (Et-Gly), which is a diol, is used. -It implemented by the method similar to Example 5 except having set it as 10 minutes. The results are shown in Table 6. It can be seen that any of the water-soluble organic solvents studied in this example can be used.

Figure 2014097051
実施例7 バイオセーフティの確認
結核菌を含む抗酸菌の検査では、操作者のバイオセーフティが確保されていることが重要である。抗酸菌検査における塗抹検査の陽性最高値は3+であり、これは10cfu(colony forming unit)/mLに相当する(結核 第83巻 第4号 387−390、2008年)。また、液体培養の陽性時の菌数は10から10cfu/mLである(日本BD 培養同定・抗酸菌キット「ミジット分離培養剤」 添付文書)。そこで本発明者らは、検体が濃厚試料または培養液の場合は、10cfu程度の抗酸菌が検体に持ち込まれ得ると考え、10cfuの抗酸菌を本発明の試薬で処理した液から生菌が検出されない、すなわちバイオセーフティが確保されているかどうかを検討した。
(1)MycoBroth(極東製薬)中で静置培養したBCGを孔径5μmの親水性シリンジフィルター(日本PALL)でろ過後、ろ液の600nmにおける吸光度(OD600)を測定し、その吸光度を基にOD600が0.1になるように、氷冷した滅菌蒸留水で希釈した(10cfu/mL相当)。
(2)希釈した菌液を1mL分取後、16000Gで10分間、4℃の条件で遠心(以下、前記条件を「強遠心」と記載)し、上清を慎重に取り除いた後、沈殿を200μLの滅菌蒸留水に懸濁させた。得られたBCG懸濁液を抗酸菌を含む試料として、以下に示す溶菌処理を行なった。
(3)(2)で調製した菌液200μLに対し、12%(w/v)の2−プロパノール、と2.8mg/mLのMEGA−10とを含む10%(w/v)DBSA水溶液(Trisで中和)、または滅菌蒸留水を、それぞれ200μL添加し、混和した。
(4)(3)で混和した液のうち、DBSA水溶液と混和した液は7分間、9分間、10分間または15分間、蒸留水と混和した液は10分間、それぞれ70℃または80℃で加熱した。加熱後は氷上に5分以上静置した。前記処理は、それぞれの温度・時間で2重で行なった。
(5)加熱処理後、強遠心により上清を取り除いた後、沈殿に0.05%(w/v)のTween 80(Sigma)を含む1/15Mのリン酸緩衝液(以下、T−PBと記載)を1mL加え、よく撹拌することで沈殿を洗浄した。
(6)(5)の洗浄を再度行なった後、最終的に沈殿を300μLのT−PBに懸濁させ、全量を7H9−C平板培地(極東製薬)に塗布し、37℃、5%COの条件で培養した。培養期間は結核菌検査指針2007(日本結核病学会抗酸菌検査法検討委員会編)に従って8週間とした。なお(1)で希釈した菌液が正しく10cfu/mLに調製されたかどうかを確認する目的で、当該菌液から、T−PBを用いて10倍に段階希釈した液を7H9−C平板培地に塗布したものを培養陽性として同時に培養した。
(7)コロニーが認められた時点でコロニー数をカウントした。8週間後でもコロニーが認められないものはN.D.とした。
Figure 2014097051
Example 7 Confirmation of biosafety It is important that biosafety of the operator is ensured in the examination of acid-fast bacteria including tuberculosis bacteria. The highest positive value of the smear test in the mycobacteria test is 3+, which corresponds to 10 6 cfu (colony forming unit) / mL (Tuberculosis Vol. 83, No. 4, 387-390, 2008). In addition, the number of bacteria when positive in liquid culture is 10 6 to 10 7 cfu / mL (Nippon BD Culture Identification / Mycobacteria Kit “Midit Isolation Culture Agent” package insert). Therefore, the present inventors considered that about 10 7 cfu mycobacteria could be brought into the sample when the sample was a concentrated sample or culture solution, and treated 10 7 cfu acid-fast bacteria with the reagent of the present invention. We examined whether viable bacteria were not detected from the liquid, that is, whether biosafety was ensured.
(1) After filtering BCG statically cultured in MycoBroth (Kyokuto Pharmaceutical Co., Ltd.) with a hydrophilic syringe filter (Japan PALL) having a pore size of 5 μm, the absorbance at 600 nm (OD600) of the filtrate is measured, and OD600 based on the absorbance. Was diluted with ice-cooled sterilized distilled water so as to be 0.1 (equivalent to 10 7 cfu / mL).
(2) After 1 mL of the diluted bacterial solution is collected, it is centrifuged at 16000 G for 10 minutes at 4 ° C. (hereinafter referred to as “strong centrifugation”), the supernatant is carefully removed, and the precipitate is removed. Suspended in 200 μL of sterile distilled water. The obtained BCG suspension was used as a sample containing acid-fast bacteria, and the following lysis treatment was performed.
(3) 10% (w / v) DBSA aqueous solution containing 12% (w / v) 2-propanol and 2.8 mg / mL MEGA-10 with respect to 200 μL of the bacterial solution prepared in (2) ( 200 μL each of neutralized with Tris) or sterilized distilled water was added and mixed.
(4) Of the liquids mixed in (3), the liquid mixed with the DBSA aqueous solution is heated at 70 ° C. or 80 ° C. for 7 minutes, 9 minutes, 10 minutes or 15 minutes, and the liquid mixed with distilled water for 10 minutes, respectively. did. After heating, it was left on ice for 5 minutes or more. The treatment was performed in duplicate at each temperature and time.
(5) After the heat treatment, the supernatant was removed by strong centrifugation, and then the 1/15 M phosphate buffer solution (hereinafter referred to as T-PB) containing 0.05% (w / v) Tween 80 (Sigma) in the precipitate. 1 mL) was added, and the precipitate was washed by stirring well.
(6) After washing (5) again, the precipitate was finally suspended in 300 μL of T-PB, and the entire amount was applied to 7H9-C plate medium (Kyokuto Pharmaceutical Co., Ltd.). The culture was performed under the conditions of 2 . The culture period was 8 weeks in accordance with the tuberculosis test guideline 2007 (edited by the Mycobacterium tuberculosis society mycobacteria test method review committee). In addition, for the purpose of confirming whether or not the bacterial solution diluted in (1) was correctly prepared to 10 7 cfu / mL, a solution obtained by serially diluting 10 5 times using T-PB from the bacterial solution was added to 7H9-C. What applied to the plate culture medium was culture | cultivated simultaneously as culture | cultivation positive.
(7) When colonies were observed, the number of colonies was counted. No colonies were found after 8 weeks. D. It was.

培養の結果を表7に示す。蒸留水を用いた場合、一部試料で菌の検出が確認され、バイオセーフティが必ずしも確保されていないことがわかる。一方、本発明の試薬を用いた場合は、いずれの試料も菌の検出が確認されないことから、少なくとも70℃以上かつ7分間以上の加熱処理を行なえば、バイオセーフティが確保された溶菌操作が行なえるといえる。すなわち、前述した本発明の試薬による抗酸菌の処理方法は、濃厚試料や培養液が検体であったとしても、10cfuの抗酸菌を死滅させることができるため、バイオセーフティの観点からも極めて有効な方法といえる。 The culture results are shown in Table 7. When distilled water is used, the detection of bacteria is confirmed in some samples, and it can be seen that biosafety is not necessarily ensured. On the other hand, when the reagent of the present invention is used, detection of bacteria is not confirmed in any of the samples. Therefore, a lysis operation in which biosafety is ensured can be performed by performing a heat treatment of at least 70 ° C. and 7 minutes or more. It can be said. That is, the above-mentioned method for treating acid-fast bacteria with the reagent of the present invention can kill 10 7 cfu acid-fast bacteria even if a concentrated sample or a culture solution is a specimen. Is also an extremely effective method.

Figure 2014097051
実施例8 中和剤の検討
実施例1から7においては、強酸性のドデシルベンゼンスルホン酸(DBSA)水溶液の中和剤として、トリスヒドロキシメチルアミノメタン(Tris)を採用したが、アルキルベンゼンスルホン酸との反応により前記酸の金属塩を生成しない他の中和剤が採用できるか検討した。
(1)実施例1(1)から(2)に記載の方法にしたがい、10cfuのBCGを含む100μLの菌液を調製した。
(2)(1)で調製した菌液100μLに、以下に示す(A)から(C)の水溶液100μLを添加し混和後、80℃で10分加熱処理した。
(A)中和剤としてTrisを含む10%(w/v)DBSA水溶液
(B)中和剤としてアンモニア水(NH)を含む10%(w/v)DBSA水溶液
(C)中和剤として2−アミノエタノール(NH−EtOH)を含む10%(w/v)DBSA水溶液
(3)実施例1(4)と同様な方法で精製し、実施例1(5)と同様な方法で陽性時間を測定した。
Figure 2014097051
Example 8 Examination of Neutralizing Agent In Examples 1 to 7, trishydroxymethylaminomethane (Tris) was used as a neutralizing agent for strongly acidic dodecylbenzenesulfonic acid (DBSA) aqueous solution. It was investigated whether other neutralizing agents that do not generate the metal salt of the acid by the reaction of can be employed.
(1) According to the method described in Example 1 (1) to (2), 100 μL of a bacterial solution containing 10 2 cfu of BCG was prepared.
(2) To 100 μL of the bacterial solution prepared in (1), 100 μL of the aqueous solutions (A) to (C) shown below were added and mixed, followed by heat treatment at 80 ° C. for 10 minutes.
(A) 10% (w / v) DBSA aqueous solution containing Tris as neutralizing agent (B) 10% (w / v) DBSA aqueous solution containing ammonia water (NH 3 ) as neutralizing agent (C) As neutralizing agent 10% (w / v) DBSA aqueous solution containing 2 -aminoethanol (NH 2 -EtOH) (3) Purified by the same method as in Example 1 (4), positive by the same method as in Example 1 (5) Time was measured.

結果を表8に示す。本実施例で検討した、アルキルベンゼンスルホン酸との反応により前記酸の金属塩を生成しない中和剤は、いずれも使用可能であることがわかる。   The results are shown in Table 8. It can be seen that any of the neutralizing agents studied in this example that does not produce a metal salt of the acid by reaction with an alkylbenzene sulfonic acid can be used.

Figure 2014097051
Figure 2014097051

本発明の試薬を用いた抗酸菌を溶菌し核酸を抽出する方法は、特殊な装置を用いることなく、簡便かつ短時間に抗酸菌から核酸を確実に抽出でき、かつ操作者の安全(バイオセーフティ)が確保された方法である。したがって、当該方法を、例えば、核酸の増幅・検出法による抗酸菌検査における試料の前処理に適用することにより、安全かつ効率的な抗酸菌検査を容易に実現できる。   The method for lysing acid-fast bacteria using the reagent of the present invention and extracting nucleic acid can extract nucleic acid from acid-fast bacteria easily and in a short time without using a special device, and can be safe for the operator ( This is a method that ensures biosafety. Therefore, a safe and efficient acid-fast bacteria test can be easily realized by applying the method to, for example, pretreatment of a sample in an acid-fast bacilli test using a nucleic acid amplification / detection method.

Claims (8)

アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液からなる、抗酸菌を溶菌しRNAを抽出するための試薬。 A reagent for lysing acid-fast bacteria and extracting RNA, comprising an aqueous solution containing an alkylbenzenesulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by the reaction of the acid. アルキルベンゼンスルホン酸がドデシルベンゼンスルホン酸である、請求項1に記載の試薬。 The reagent according to claim 1, wherein the alkylbenzenesulfonic acid is dodecylbenzenesulfonic acid. 中和剤がトリスヒドロキシメチルアミノメタンである、請求項1または2に記載の試薬。 The reagent according to claim 1 or 2, wherein the neutralizing agent is trishydroxymethylaminomethane. さらに非イオン性界面活性剤を含む、請求項1から3のいずれかに記載の試薬。 The reagent according to any one of claims 1 to 3, further comprising a nonionic surfactant. さらに水溶性有機溶媒を含む、請求項1から4のいずれかに記載の試薬。 The reagent according to any one of claims 1 to 4, further comprising a water-soluble organic solvent. アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液を、抗酸菌を含む試料に添加後、加熱処理することで、抗酸菌を溶菌しRNAを抽出する方法。 After adding an aqueous solution containing an alkylbenzene sulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by reaction with the acid to a sample containing acid-fast bacteria, the acid-fast bacteria are lysed by RNA treatment. How to extract. ドデシルベンゼンスルホン酸とトリスヒドロキシメチルアミノメタンを含む水溶液を、ドデシルベンゼンスルホン酸の終濃度が0.05%(w/v)以上となるよう、抗酸菌を含む試料に添加後、70℃から90℃で5分間から60分間加熱処理することで、抗酸菌を溶菌しRNAを抽出する方法。 After adding an aqueous solution containing dodecylbenzenesulfonic acid and trishydroxymethylaminomethane to a sample containing acid-fast bacteria so that the final concentration of dodecylbenzenesulfonic acid is 0.05% (w / v) or more, from 70 ° C. A method of lysing acid-fast bacteria and extracting RNA by heat treatment at 90 ° C. for 5 minutes to 60 minutes. アルキルベンゼンスルホン酸と、前記酸との反応により前記酸の金属塩を生成しない中和剤を含む水溶液を、抗酸菌を含む試料に添加後、加熱処理することで、抗酸菌を溶菌しRNAを抽出する工程と、
前記工程で抽出した抗酸菌由来RNAを当該RNAに特異的なプライマー・プローブを用いて、増幅・検出する工程とを含む、
試料中に含まれる抗酸菌を検出する方法。
After adding an aqueous solution containing an alkylbenzene sulfonic acid and a neutralizing agent that does not produce a metal salt of the acid by reaction with the acid to a sample containing acid-fast bacteria, the acid-fast bacteria are lysed by RNA treatment. Extracting the
Amplifying and detecting the mycobacteria-derived RNA extracted in the above step using a primer / probe specific to the RNA,
A method for detecting acid-fast bacteria contained in a sample.
JP2013059705A 2012-08-10 2013-03-22 Acid-fast lysis reagent and method for detecting acid-fast bacterium using the reagent Active JP6064722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059705A JP6064722B2 (en) 2012-08-10 2013-03-22 Acid-fast lysis reagent and method for detecting acid-fast bacterium using the reagent

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012178098 2012-08-10
JP2012178098 2012-08-10
JP2012231698 2012-10-19
JP2012231698 2012-10-19
JP2013059705A JP6064722B2 (en) 2012-08-10 2013-03-22 Acid-fast lysis reagent and method for detecting acid-fast bacterium using the reagent

Publications (2)

Publication Number Publication Date
JP2014097051A true JP2014097051A (en) 2014-05-29
JP6064722B2 JP6064722B2 (en) 2017-01-25

Family

ID=50939672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059705A Active JP6064722B2 (en) 2012-08-10 2013-03-22 Acid-fast lysis reagent and method for detecting acid-fast bacterium using the reagent

Country Status (1)

Country Link
JP (1) JP6064722B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192350A (en) * 2016-04-21 2017-10-26 東ソー株式会社 Method for lysis of mycoplasma pneumoniae and method for detection thereof
JP2018510961A (en) * 2015-04-30 2018-04-19 ダウ グローバル テクノロジーズ エルエルシー Amino alcohol salts of alkylbenzene sulfonic acids and their use in detergent formulations
WO2023286535A1 (en) * 2021-07-15 2023-01-19 栄研化学株式会社 Method for reducing nonspecific amplification in nucleic acid amplification reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136221A (en) * 2007-12-07 2009-06-25 Ebara Jitsugyo Co Ltd Nucleic acid extraction method
WO2010083844A1 (en) * 2009-01-26 2010-07-29 Quantibact A/S Methods and uses for rna extract and storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136221A (en) * 2007-12-07 2009-06-25 Ebara Jitsugyo Co Ltd Nucleic acid extraction method
WO2010083844A1 (en) * 2009-01-26 2010-07-29 Quantibact A/S Methods and uses for rna extract and storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510961A (en) * 2015-04-30 2018-04-19 ダウ グローバル テクノロジーズ エルエルシー Amino alcohol salts of alkylbenzene sulfonic acids and their use in detergent formulations
JP2017192350A (en) * 2016-04-21 2017-10-26 東ソー株式会社 Method for lysis of mycoplasma pneumoniae and method for detection thereof
WO2023286535A1 (en) * 2021-07-15 2023-01-19 栄研化学株式会社 Method for reducing nonspecific amplification in nucleic acid amplification reaction

Also Published As

Publication number Publication date
JP6064722B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CA2451985C (en) Universal method and composition for the rapid lysis of cells for the release of nucleic acids and their detection
EP2149614B1 (en) Primers for the detection of Mycobacterium tubeculosis
CA2950419C (en) Composition and method for stabilizing and maintaining the viability of hardy microorganisms
JP2016127844A (en) Selective lysis of cells
AU2002354838A1 (en) Universal method and composition for the rapid lysis of cells for the release of nucleic acids and their detection
JP2017510284A (en) Method and system for microbial lysis using periodate
Roring et al. Simultaneous detection and strain differentiation of Mycobacterium bovis directly from bovine tissue specimens by spoligotyping
US7935483B2 (en) Method of effecting lysis of acid-fast bacteria and method of performing gene amplification or detection therewith
AU2011227452B2 (en) Use of achromopeptidase for lysis at room temperature
EP1574564B1 (en) Microorganism or cell collecting method, and microorganism or cell collecting implement used for the method
Papanicolas et al. Optimisation of a propidium monoazide based method to determine the viability of microbes in faecal slurries for transplantation
JP6064722B2 (en) Acid-fast lysis reagent and method for detecting acid-fast bacterium using the reagent
Omar et al. Laboratory evaluation of a specimen transport medium for downstream molecular processing of sputum samples to detect Mycobacterium tuberculosis
JP5434199B2 (en) Method for amplifying mycobacterial genes
US20050239045A1 (en) Microorganism or cell collecting method, and microorganism or cell collecting implement used for the method
US20120264119A1 (en) New method for decontamination and processing of clinical specimens from a patient
Kaur et al. Utility of PCR targeting IS6110 and MPT64 genes in the diagnosis of extrapulmonary tuberculosis
JP2009136221A (en) Nucleic acid extraction method
JP2004344108A (en) Method for pre-treating acid-fast bacterium and method for amplifying or detecting gene by using the same
WO2024048755A1 (en) Rapid sterility test method
El Shannat et al. Comparison of Different DNA Extraction Protocols for Molecular Diagnosis of Mycobacterium Tuberculosis.
Vansnick et al. Preliminary results of a survey for Johne's disease in the Antwerp zoo.
Beissner et al. Detection of viable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6064722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151