[go: up one dir, main page]

JP2014088998A - Grain dryer - Google Patents

Grain dryer Download PDF

Info

Publication number
JP2014088998A
JP2014088998A JP2012239249A JP2012239249A JP2014088998A JP 2014088998 A JP2014088998 A JP 2014088998A JP 2012239249 A JP2012239249 A JP 2012239249A JP 2012239249 A JP2012239249 A JP 2012239249A JP 2014088998 A JP2014088998 A JP 2014088998A
Authority
JP
Japan
Prior art keywords
drying
moisture
value
unevenness
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239249A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kamo
吉博 加茂
Shinji Ninomiya
伸治 二宮
Keiichi Miyazaki
啓市 宮崎
Eiji Nishino
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2012239249A priority Critical patent/JP2014088998A/en
Publication of JP2014088998A publication Critical patent/JP2014088998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

【課題】
穀物乾燥機において穀粒の水分むらを収束しながらオペレータの希望する乾燥速度で乾燥効率を高める。
【解決手段】
貯溜室(2)の張込穀粒を1循環させる間に張込量に応じて複数回のタイミングで穀粒の水分値を測定し、該測定によって得られた張込穀粒の水分値分布(Mn)からその水分むらの程度を把握し、その水分むらが設定値以上と判定されると穀粒の循環によって所定幅内に水分むらを収束するに要する予定循環時間(H)を算出し、該予定循環時間(H)に対応する乾燥速度で乾燥循環運転を行ない、水分むらが設定値以下であると判断すると、オペレータが設定した乾燥速度で乾燥目標水分値まで乾燥運転する。
【選択図】図10
【Task】
In the grain dryer, the drying efficiency is increased at the drying speed desired by the operator while converging the unevenness of grain moisture.
[Solution]
The moisture value distribution of the tension kernel obtained by measuring the moisture value of the kernel at a plurality of times according to the amount of tension during one circulation of the tension kernel in the storage chamber (2). From (Mn), the degree of moisture unevenness is grasped, and when the moisture unevenness is determined to be greater than or equal to the set value, the expected circulation time (H) required to converge the moisture unevenness within a predetermined width by circulation of the grain is calculated. When the drying circulation operation is performed at the drying speed corresponding to the scheduled circulation time (H) and it is determined that the moisture unevenness is equal to or less than the set value, the drying operation is performed to the drying target moisture value at the drying speed set by the operator.
[Selection] Figure 10

Description

本発明は、貯溜室に張り込まれた穀粒を循環しつつ乾燥部で順次熱風乾燥する穀物乾燥機に関するものである。   The present invention relates to a grain dryer for sequentially drying hot air in a drying section while circulating grains stuck in a storage chamber.

貯溜室に張り込まれた穀粒を循環しつつ設定の乾燥速度に沿って乾燥部に乾燥熱風を供給する乾燥循環運転により乾燥目標水分値まで順次乾燥処理する運転制御部を備える穀物乾燥機において、前記運転制御部は貯溜室の張込穀粒を1循環させる間に張込量に応じて複数回の異なるタイミングで穀粒の水分値を測定する一巡測定を行い、この一巡測定によって得られた張込穀粒の縦方向水分値分布からその水分むらの程度を把握し、この水分むらを穀粒の循環によって所定幅内に収束するに要する予定循環時間を算出し、この予定循環時間により乾燥目標水分値に至る乾燥速度により乾燥循環運転をし、予定循環時間が最緩速の乾燥速度によって定まる最緩速乾燥時間を越える場合に、両時間の差を補充循環のための通風循環時間としてこの通風循環時間について通風状態で穀粒を循環する通風循環運転をするようにし、貯溜室内に張り込まれた際に堆積層別に生じる縦方向の水分むらを所定幅内に収束しつつ乾燥目標水分値まで循環乾燥するようにしたものは、公知である(特許文献1)。   In a grain dryer equipped with an operation control unit that sequentially performs a drying process to a drying target moisture value by a drying circulation operation in which drying hot air is supplied to a drying unit according to a set drying speed while circulating grains stuck in a storage chamber The operation control unit performs a round measurement to measure the moisture value of the grain at a plurality of different timings according to the amount of tension while circulating the tension grain in the storage chamber, and is obtained by this round measurement. Grasping the degree of moisture unevenness from the vertical moisture content distribution of the stretched grain, calculating the planned circulation time required to converge the moisture unevenness within the predetermined width by the circulation of the grain, When drying circulation operation is performed at the drying speed that reaches the drying target moisture value, and the planned circulation time exceeds the slowest drying time determined by the slowest drying speed, the difference between the two times is the ventilation circulation time for replenishment circulation As this The circulation target operation is to circulate the grain in the ventilation state for the circulation time, and the moisture target in the drying direction converges within the specified width while keeping the unevenness in the vertical direction within each storage layer when it is inserted into the storage chamber. The one that is circulated and dried until is well known (Patent Document 1).

特開2009−156481号公報JP 2009-156481 A

本特許出願人は前記背景技術の特許出願に示すように穀粒の水分むらを所定幅内に収束しながら乾燥目標水分値まで循環乾燥する発明を完成し特許出願をしている。
本発明は前記特許出願発明の改良発明にかかわるもので、設定乾燥速度及び通風循環乾燥により水分むらを収束しながら穀粒を乾燥をするにあたり、水分むらの程度に応じてオペレータの要望に沿った乾燥速度で乾燥運転をするものである。
As shown in the above-mentioned background patent application, the present applicant has completed an invention for circulating drying to a target drying moisture value while converging the grain moisture unevenness within a predetermined width, and has filed a patent application.
The present invention relates to an improved invention of the patent application invention, and when drying the grain while converging the moisture unevenness by the set drying speed and the circulation circulation drying, it is in line with the operator's request according to the degree of the moisture unevenness. A drying operation is performed at a drying speed.

請求項1の発明は、貯溜室(2)に張り込まれた穀粒を循環しつつ設定乾燥速度に従って乾燥部(3)に乾燥熱風を供給する乾燥循環運転により乾燥目標水分値まで順次乾燥処理する運転制御部(19)を備えた穀物乾燥機において、前記運転制御部(19)は、貯溜室(2)の張込穀粒を1循環させる間に張込量に応じて複数回のタイミングで穀粒の水分値を測定し、該測定によって得られた張込穀粒の水分値分布(Mn)からその水分むらの程度を把握し、その水分むらが設定値以上と判定されると穀粒の循環によって所定幅内に水分むらを収束するに要する予定循環時間(H)を算出し、該予定循環時間(H)に対応する乾燥速度で乾燥循環運転を行ない、水分むらが設定値以下であると判断すると、オペレータが設定した乾燥速度で乾燥目標水分値まで乾燥運転することを特徴とする。   In the invention of claim 1, the drying process is sequentially performed to the drying target moisture value by the drying circulation operation of supplying the drying hot air to the drying unit (3) according to the set drying speed while circulating the grains stuck in the storage chamber (2). In the grain dryer provided with the operation control unit (19) that performs the operation, the operation control unit (19) performs a plurality of times according to the amount of tension during one circulation of the tension kernel in the storage chamber (2). The moisture content of the grain is measured with the above, and the degree of the moisture unevenness is grasped from the moisture value distribution (Mn) of the stretched kernel obtained by the measurement. Calculate the planned circulation time (H) required to converge the moisture irregularity within the predetermined width by the circulation of the grains, perform the drying circulation operation at the drying speed corresponding to the scheduled circulation time (H), and the moisture irregularity is below the set value At the drying speed set by the operator. Wherein the drying operation until 燥 target water content value.

請求項2の発明は、請求項1の発明において、水分むらを収束する乾燥速度で乾燥循環運転を開始した後、設定時間後又は検出水分値が所定の中間設定水分値に到達すると、水分値分布(Mn)を再度測定し、水分むらが設定値以下であると判定されると、水分むら収束のための乾燥速度からオペレータが設定した乾燥速度に移行し、乾燥目標水分値まで前記設定乾燥速度で乾燥循環運転することを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein after the drying circulation operation is started at a drying speed that converges the moisture unevenness, the moisture value is reached after a set time or when the detected moisture value reaches a predetermined intermediate set moisture value. When the distribution (Mn) is measured again and it is determined that the moisture unevenness is equal to or less than the set value, the drying speed for converging the moisture unevenness shifts to the drying speed set by the operator, and the set drying is performed up to the drying target moisture value. It is characterized by dry circulation operation at a speed.

請求項1の発明によると、水分むらが設定値以上と判定されると穀粒の循環によって所定幅内に水分むらを収束するに要する予定循環時間(H)を算出し、この予定循環時間(H)に対応する乾燥速度で乾燥し、水分むらが設定値以下であると判断すると、オペレータが設定した乾燥速度で乾燥目標水分値まで乾燥運転するので、水分むらの状態を把握した上で、オペレータの好みに合わせた穀粒乾燥をすることができる。   According to the invention of claim 1, when it is determined that the moisture unevenness is greater than or equal to the set value, the planned circulation time (H) required to converge the moisture unevenness within a predetermined width by circulation of the grain is calculated, and this scheduled circulation time ( When drying is performed at a drying speed corresponding to H) and the moisture unevenness is determined to be equal to or less than the set value, the drying operation is performed to the drying target moisture value at the drying speed set by the operator. The kernel can be dried according to the operator's preference.

請求項2の発明によると、水分むらを収束するための乾燥運転中に水分むらが速く収束した場合にはその後の水分むら解消のための通風乾燥運転を省略しオペレータの設定乾燥速度で乾燥目標水分値まで乾燥運転することができ、迅速な穀粒乾燥を実現することができる。   According to the second aspect of the present invention, when the moisture unevenness rapidly converges during the drying operation for converging the moisture unevenness, the subsequent drying operation for eliminating the water unevenness is omitted, and the drying target is set at the drying speed set by the operator. The drying operation can be performed up to the moisture value, and quick grain drying can be realized.

穀物乾燥機の切断正面図。The cutting front view of a grain dryer. 穀物乾燥機の切断側面図。A cut side view of a grain dryer. 操作盤の正面図。The front view of an operation panel. 制御ブロック図。Control block diagram. 穀粒の水分むらの分布状態を示す図。The figure which shows the distribution state of the moisture unevenness of a grain. 水分むら層の区分例を示す図。The figure which shows the example of a division | segmentation of a moisture unevenness layer. 水分むら測定回数区分の図表例。Chart example of the number of times of measurement of moisture unevenness. 水分むらの一巡測定と関係水分値の図表例。Example chart of the measurement of water irregularity and related water values. 水分むら層の一巡測定値の例示グラフ。The example graph of a round measurement value of a moisture unevenness layer. フローチャート。flowchart. フローチャート。flowchart.

前記技術思想に基づいて具体的に構成された実施の形態について以下図面を参照しつつ説明する。
穀物乾燥機は、その機枠1の内部に上側から下側に貯溜室2、乾燥部3、集穀室4を順次形成し、その外周部に設けた昇降機5の駆動によって穀粒を循環させながら、バーナ6の燃焼と吸引ファン7とにより発生する熱風を乾燥部3に浴びせて乾燥する公知の形態である。乾燥部3の穀粒出口には正逆に回転しながら所定量の穀粒を流下させる繰り出しドラム8を備え、その繰出し穀粒を昇降機5に通じる集穀室4の下部移送装置9に受け、昇降機5の上部に接続する上部移送装置10で貯溜室2の拡散盤11に供給することにより、張込穀粒が貯溜室2の全面に均等に堆積貯溜される。貯溜室2に設けた張込量測定器2aにより、張込穀粒の堆積上面高さ位置を測定することにより、張込量を把握することができる。
An embodiment specifically configured based on the technical idea will be described below with reference to the drawings.
The grain dryer has a storage chamber 2, a drying unit 3, and a grain collection chamber 4 formed in the machine frame 1 from the upper side to the lower side in order, and the grains are circulated by driving an elevator 5 provided on the outer periphery thereof. However, it is a well-known form in which hot air generated by the combustion of the burner 6 and the suction fan 7 is applied to the drying unit 3 and dried. At the grain outlet of the drying unit 3, it is provided with a feeding drum 8 that causes a predetermined amount of grain to flow down while rotating in the forward and reverse directions, and the fed grain is received by the lower transfer device 9 of the grain collection chamber 4 that leads to the elevator 5. By supplying the upper transfer device 10 connected to the upper part of the elevator 5 to the diffusion plate 11 of the storage chamber 2, the stretched grains are uniformly accumulated and stored on the entire surface of the storage chamber 2. The amount of tension can be ascertained by measuring the height position of the top surface of the grain to be accumulated by the tension amount measuring device 2 a provided in the storage chamber 2.

バーナ6及び昇降機5をはじめとする穀粒循環機構等は、運転制御に必要な制御プログラムや各種データ等を記憶するメモリーを備えるコンピュータによって行われる。すなわち、操作盤12には、図3に示すように、液晶形態の表示部13を備え、この表示部13の下部に沿って押しボタン形態のスイッチ、例えば張込スイッチ14、通風乾燥スイッチ15、熱風乾燥スイッチ16、排出スイッチ、及び、停止スイッチ18を配置して構成し、表示部13の画面変更に従って異なる機能を具備させることのできる構成である。   The grain circulation mechanism including the burner 6 and the elevator 5 is performed by a computer including a memory that stores a control program necessary for operation control, various data, and the like. That is, as shown in FIG. 3, the operation panel 12 includes a liquid crystal display unit 13, and a push button switch, for example, a tension switch 14, a ventilation drying switch 15, along the lower part of the display unit 13. The hot air drying switch 16, the discharge switch, and the stop switch 18 are arranged and configured so that different functions can be provided according to the screen change of the display unit 13.

内臓の制御部は操作盤12のスイッチ情報や乾燥機枠1に配設したセンサ類からの検出情報等を受けて所定の演算処理により、バーナ燃焼量制御,穀粒循環系の起動・停止制御,表示部13の表示内容制御等を行なう。前記操作盤12のスイッチ類は、張込・熱風乾燥・排出・通風乾燥の各設定のほか、穀物種類、乾燥目標の設定水分(仕上げ水分値)、張込量、タイマ増・減等を設定できる。   The built-in control unit receives switch information on the operation panel 12 and detection information from sensors provided in the dryer frame 1 and performs predetermined calculation processing to control burner combustion amount and start / stop control of the grain circulation system. , Display content control of the display unit 13 is performed. The switches on the operation panel 12 are for setting the tension, hot air drying, discharge, and ventilation drying, as well as setting the grain type, drying target moisture setting (finishing moisture value), amount of insertion, timer increase / decrease, etc. it can.

次に、図4に基づき運転制御手段のブロック構成について説明する。
前記操作盤12を有する制御ボックスに内蔵する運転制御部19には前記スイッチからの設定情報のほか、水分計20の検出情報、昇降機5の投げ出し部における穀粒検出情報、熱風温度検出情報等が入力される。一方出力情報としては、バーナ6の燃焼系情報、例えば燃料供給信号、その流量制御信号、あるいは上下移送螺旋19,9、繰出バルブ8などの穀粒循環系モータ制御信号、吸引ファン7のモータ制御信号、操作盤12への出力表示等がある。
Next, the block configuration of the operation control means will be described with reference to FIG.
In addition to the setting information from the switch, the operation control unit 19 built in the control box having the operation panel 12 includes detection information from the moisture meter 20, grain detection information at the throw-out unit of the elevator 5 and hot air temperature detection information. Entered. On the other hand, as output information, combustion system information of the burner 6, for example, a fuel supply signal, a flow rate control signal thereof, or a grain circulation system motor control signal such as the up and down transfer spirals 19 and 9, the feed valve 8, a motor control of the suction fan 7. There are signals, output display on the operation panel 12, and the like.

次に、穀物乾燥機の乾燥運転制御の概要を説明する。
穀物乾燥機は、貯溜室2に張り込まれた穀粒を循環しつつ設定の乾燥速度に沿って乾燥部3に乾燥熱風を供給する乾燥循環運転により乾燥目標水分値まで順次乾燥処理する前記運転制御部19を備えて構成されている。この運転制御部19は、貯溜室2の張込穀粒を1循環させる間に張込量に応じて複数回の異なるタイミングで穀粒の水分値を測定する一巡測定を行い、この一巡測定によって得られた張込穀粒の縦方向水分値分布状態から水分むらの程度を把握し、この水分むらを穀粒の循環によって所定幅内に収束するために要する予定循環時間を算出し、この予定循環時間で乾燥目標水分値に至るまで設定乾燥速度により乾燥循環運転を行なう。
Next, an outline of drying operation control of the grain dryer will be described.
The grain dryer is configured to perform the drying process sequentially to the drying target moisture value by the drying circulation operation in which drying hot air is supplied to the drying unit 3 along the set drying speed while circulating the grains stuck in the storage chamber 2. A control unit 19 is provided. The operation control unit 19 performs a round measurement to measure the moisture value of the grain at a plurality of different timings according to the amount of tension while circulating the tension grain in the storage chamber 2, and by this round measurement, Grasp the degree of moisture unevenness from the vertical moisture content distribution state of the obtained stretched grain, calculate the planned circulation time required to converge this moisture unevenness within the predetermined width by the circulation of the grain, this schedule The drying circulation operation is performed at the set drying speed until the drying target moisture value is reached in the circulation time.

前記運転制御部19により、張込穀粒の一巡測定によって得られた縦方向の水分むらに基づき、その収束に要する予定循環時間が算出され、この予定循環時間において乾燥目標水分値まで乾燥循環運転をすることから、水分むらの解消に必要な時間に応じて乾燥目標水分値まで適切な運転制御が行われ、乾燥の仕上がりと同時に水分むらの収束が可能となる。   The operation control unit 19 calculates the planned circulation time required for the convergence based on the vertical moisture unevenness obtained by the round measurement of the stretched grain, and the dry circulation operation up to the drying target moisture value in the planned circulation time. Therefore, appropriate operation control is performed up to the drying target moisture value according to the time required for eliminating the moisture unevenness, and the moisture unevenness can be converged simultaneously with the finishing of the drying.

また、運転制御部19は、予定循環時間Hが最緩速の乾燥速度によって定まる最緩速乾燥時間H3を越える場合に、両時間の差を補充循環するための通風循環時間Kとしてこの通常循環時間Kにおいて通風しながら穀粒を循環する通風循環運転を行なう。   In addition, when the scheduled circulation time H exceeds the slowest speed drying time H3 determined by the slowest drying speed, the operation control unit 19 uses the normal circulation as the ventilation circulation time K for supplementary circulation of the difference between the two times. A ventilation circulation operation for circulating the grain while ventilating at time K is performed.

穀物乾燥機の乾燥運転制御は穀粒の張込停止時点で穀粒張込量を検出した上で乾燥運転は開始される。乾燥運転はモータ,バーナ類の起動の後に張込量に応じた水分むら測定回数を算出し、貯溜室2の張込穀粒の水分むらの測定を行なう。   In the drying operation control of the grain dryer, the drying operation is started after the amount of the grain is detected when the grain is stopped. In the drying operation, after the motor and burners are started, the number of times of unevenness measurement according to the amount of tension is calculated, and the amount of unevenness of the tension in the storage chamber 2 is measured.

水分むらは、例えば、図6の水分むら層の区分例のように、貯溜室2の張込穀粒を機体内で1循環することによってできるので、張込量に応じて設定した測定回数区分の図表例に従い、穀粒が1巡回する間の所要時点で水分測定をする一巡測定による。   For example, as shown in the example of the division of the moisture unevenness layer in FIG. 6, it is possible to circulate the suspended grains in the storage chamber 2 once in the machine body. According to the chart example, the moisture measurement is performed at a required time while the grain goes around once.

この一巡測定によって得られる層別水分値は張込穀粒量がLV10で測定回数が12回(LV1は3か所測定する)の例について説明する。図8の一巡測定と関係水分値の図表例及び図9の例示グラフに示すように各層につき標本32粒の測定水分値の平均を各層の平均水分値Mnとし、これらの測定区分の層L1〜L10についてそれぞれの水分値M1〜M10を検出し、さらに、各層平均水分値の平均値を張込穀粒全体の初期平均水分値(Ms)として検出する。そして、これらの各測定区分の層LV1〜LV10における水分値M1〜M10の分布状態から、その水分むらを所定範囲内に収束するために必要な混合循環時間としての予定循環時間Hを算出する。   The stratified moisture value obtained by this round measurement will be described with reference to an example in which the amount of cereal grains is LV10 and the number of measurements is 12 (LV1 is measured at three locations). As shown in the chart example of the cyclic measurement of FIG. 8 and the related moisture value and the exemplary graph of FIG. 9, the average of the measured moisture values of 32 samples per layer is the average moisture value Mn of each layer, and the layers L1 to L1 of these measurement categories The respective moisture values M1 to M10 are detected for L10, and the average value of the average moisture value of each layer is detected as the initial average moisture value (Ms) of the whole inlaid grain. Then, from the distribution state of the moisture values M1 to M10 in the layers LV1 to LV10 of these measurement sections, a planned circulation time H as a mixing circulation time necessary for converging the moisture unevenness within a predetermined range is calculated.

予定循環時間Hは、まず、堆積層別の水分むら層個々の水分値M1,M2,…及び初期平均水分値Msとの差(MI−Ms)、(M2−Ms),…をそれぞれ算出する。そして、連続して隣接する層の総和の絶対値が一番大きい数字、すなわち、前記「差」のデータ並びについて同符号で隣接している範囲の和を算出し、これら各範囲の「和」の絶対値について一番大きいものを水分むら係数Xとする。   For the planned circulation time H, first, the difference (MI−Ms), (M2−Ms),... Between the moisture values M1, M2,. . Then, the sum of the consecutive layers adjacent to each other is calculated by calculating the sum of the adjacent numbers with the same sign with respect to the number of the absolute value of the total sum of the adjacent layers, that is, the “difference” data sequence. The largest value of the absolute value of is the moisture unevenness coefficient X.

この場合、層番号をn=1,2,…とする一般表示で表すと、個々の層LVnの水分値Mnについて、同符号の連続範囲の「Mn−Ms」の和は絶対値で最大となる値である。この水分むら係数Xは、水分むらの程度を把握するための指標の一例である。   In this case, when the layer number is represented by a general display with n = 1, 2,..., The sum of “Mn−Ms” in the continuous range of the same sign is the maximum in absolute value for the moisture value Mn of each layer LVn. Is the value. The moisture unevenness coefficient X is an example of an index for grasping the degree of moisture unevenness.

この水分むら係数Xと穀物種別と対応して得られる穀物定数A(たとえば、籾は1.4,小麦は2)とから、次の計算式「X/A<0.01」を満たす循環回数Rを算出し、この循環回数Rと張込量W,循環能力Bによって予定循環時間Hを算出する。 Circulation satisfying the following calculation formula “X / A R <0.01” based on the grain constant A (for example, 1.4 for straw and 2 for wheat) obtained from the moisture unevenness coefficient X and the grain type. The number of times R is calculated, and the planned circulation time H is calculated from the number of times of circulation R, the amount of tension W, and the circulation capacity B.

次いで、「ふつう」「ややおそい」おそい」の3区分の予定乾燥速度a1〜a3として、乾燥時間H1〜H3を一般表示式「Hn=(Ms−Mset)αn」によって算出し、予定循環時間Hが各区分の乾燥時間Hnに含まれる場合は区分の判定にしたがって「通常設定の乾燥」〜「おそい設定による乾燥」の処理を行い、予定乾燥時間Hが最緩の乾燥速度a3である「おそい」で乾燥した乾燥時間H3の長さ以上であれば、必要な混合乾燥時間を補う補充循環のための通風循環時間K=H−H3を算出し補充循環のための乾燥処理に移行する。   Next, the drying times H1 to H3 are calculated by the general expression “Hn = (Ms−Mset) αn” as the scheduled drying speeds a1 to a3 of the three categories of “normal” and “slightly slow”, and the expected circulation time H Is included in the drying time Hn of each section, the processing of “normally set drying” to “drying by slow setting” is performed according to the determination of the section, and “slowly” the scheduled drying time H is the slowest drying speed a3. If the drying time is equal to or longer than the drying time H3, the ventilation circulation time K = H−H3 for replenishment circulation to compensate for the necessary mixed drying time is calculated, and the process proceeds to the drying process for replenishment circulation.

前記補充循環のための処理については、現時点水分値Msgが所定値(例えば、18%)になるまで熱風乾燥してバーナを消化し、続いて通風循環時間Kについて通常循環モードで運転し、続く熱風乾燥によって現時点水分値Msgが設定水分値msetになると、バーナ消化をして熱風乾燥を終了する。   The processing for the replenishment circulation is performed by drying with hot air until the current moisture value Msg reaches a predetermined value (for example, 18%), digesting the burner, and subsequently operating in the normal circulation mode for the ventilation circulation time K. When the current moisture value Msg reaches the set moisture value mset by hot air drying, burner digestion is performed and hot air drying is terminated.

なお、本実施形態の穀物乾燥機は循環能力B(トン/時間)が7.5(トン/時間)で、張込穀粒量Wが籾が6トン、乾燥目標とする設定水分値Msetを14.5%としている。そして、張込時の層別の水分検出結果は図7のとおりである。そこで、各層のLV1〜LV10の各層別平均値と全体の初期平均水分値Msである22.1の差を算出すると次のとおりである。
LV1 −2.1
LV1 −0.8
LV1 +1.5
LV2 +1.9
LV3 +0.8
LV4 −1.6
LV5 −1.9
LV6 +2.2
LV7 +0.9
LV8 +1.7
LV9 −1.6
LV10 −1.4
ここで、水分むら係数Xは連続して隣接する層の総和の絶対値が一番大きい数字であるLV1(+1.5)とLV2(+o.8)の総和の絶対値は4.2となる。すなわち、このあたりの層の水分むらが一番大きいと判断し、この大きな水分むらを収束するだけの循環時間を算出すれば他の層の水分むらも収束できるとするものである。
The grain dryer according to the present embodiment has a circulation capacity B (ton / hour) of 7.5 (ton / hour), an inset grain amount W of 6 tons, and a set moisture value Mset as a drying target. 14.5%. And the moisture detection result according to the layer at the time of tension is as FIG. Accordingly, the difference between the average value for each layer of LV1 to LV10 of each layer and 22.1 which is the overall initial average moisture value Ms is calculated as follows.
LV1 -2.1
LV1 -0.8
LV1 +1.5
LV2 +1.9
LV3 +0.8
LV4 -1.6
LV5 -1.9
LV6 +2.2
LV7 +0.9
LV8 +1.7
LV9 -1.6
LV10 -1.4
Here, the moisture nonuniformity coefficient X is 4.2, the absolute value of the sum of LV1 (+1.5) and LV2 (+ o.8), which is the largest absolute value of the sum of the adjacent layers. . That is, if it is judged that the moisture unevenness of the layer around here is the largest, and the circulation time sufficient to converge this large moisture unevenness is calculated, the moisture unevenness of other layers can be converged.

そして、前記のX/A<0.01のXとAにそれぞれ数値を代入すると、
4.2/1.4R<0.01となり循環回数R=17(回)となる。
さらに、水分むらを収束するための循環予定時間Hは
H=R×W/Bとなり、H=17×6/7.5=13.6となる。
Substituting numerical values for X and A where X / A R <0.01 respectively,
Since 4.2 / 1.4R <0.01, the number of circulations R = 17 (times).
Furthermore, the scheduled circulation time H for converging the moisture unevenness is H = R × W / B, and H = 17 × 6 / 7.5 = 13.6.

前記計算式(Ms−Mset)/αにより各乾燥速度α1〜α3で乾燥した場合の予定乾燥時間H1〜H3を算出する。すなわち、通常の乾燥速度α1(乾減率0.7%)の場合にはH1は(22.1−14.5)/0.7=10.8となり、やや遅い乾燥速度α2(乾減率0.6)の場合にはH2=12.6となり、遅い乾燥速度α3(乾減率0.5%)の場合にはH=15.2となり、本実施の形態では遅い乾燥速度α3で乾燥する。   Based on the calculation formula (Ms−Mset) / α, estimated drying times H1 to H3 when drying is performed at the respective drying speeds α1 to α3 are calculated. That is, in the case of a normal drying rate α1 (drying rate 0.7%), H1 is (22.1-14.5) /0.7=10.8, and a slightly slower drying rate α2 (drying rate) In the case of 0.6), H2 = 12.6, and in the case of the slow drying rate α3 (drying rate 0.5%), H = 15.2, and in this embodiment, the drying is performed at the slow drying rate α3. To do.

ここで、仮に水分むらを収束する予定循環時間Hが16.8(時間)と算出された場合、すなわち、「おそい」乾燥速度α3で乾燥しても水分むらを収束するだけの時間に到達しない場合には予定循環時間Hから乾燥予定循環時間H3の1.5時間を通風循環時間Kとすることで水分むらを収束させる。なお、この通風循環時間Kは設定中間水分値(18%)に到達した時に一旦バーナ6を消化した後に設定している。   Here, if the planned circulation time H for converging the moisture unevenness is calculated to be 16.8 (hours), that is, even if drying is performed at the “slow” drying speed α3, the time sufficient to converge the moisture unevenness is not reached. In this case, the moisture unevenness is converged by setting the ventilation circulation time K to 1.5 hours from the scheduled circulation time H to the drying scheduled circulation time H3. The ventilation circulation time K is set after the burner 6 is once digested when the set intermediate moisture value (18%) is reached.

次に、図10のフローチャートに基づき運転制御内容を説明する。
本制御が開始されると、張込スイッチ14のON操作により穀粒の張込運転が開始され(ステップS1)、次いで、オペレータによる到達予定水分値(乾燥目標水分値)の設定、張込量の設定(あるいは張込量測定器2aによる自動設定)、穀物種別の設定、乾燥速度の設定がなされ(ステップS2)、乾燥循環運転が開始される(ステップS3)。
Next, the operation control content will be described based on the flowchart of FIG.
When this control is started, the operation of squeezing the grain is started by the ON operation of the squeezing switch 14 (step S1), and then setting of the expected moisture value (dry target moisture value) by the operator and the squeezing amount Is set (or automatically set by the measuring device 2a), the grain type is set, and the drying speed is set (step S2), and the drying circulation operation is started (step S3).

次いで、水分バラツキスイッチ25a,25b,25cのいずれかのON操作により水分むら解消モードが選択されているか否かを判定し(ステップS4)、Yesであると、張込穀粒層の縦方向水分むらを検出し(ステップS5)、次いで、縦方向の水分むらが設定値以上か否かを判定し(ステップS6)、Yesであると、水分むら解消のための循環時間を算出する(ステップS7)。   Next, it is determined whether or not the moisture unevenness elimination mode is selected by the ON operation of any of the moisture variation switches 25a, 25b, and 25c (step S4). If Yes, the moisture in the vertical direction of the stretched grain layer is determined. Unevenness is detected (step S5), and then it is determined whether the vertical moisture unevenness is equal to or greater than a set value (step S6). If Yes, the circulation time for eliminating the moisture unevenness is calculated (step S7). ).

次いで、「水分むら解消のための循環時間>乾燥時間」の判定をし(ステップS8)、Noであると、設定乾燥速度で水分むら解消のための乾燥運転をし(ステップS9)、次いで、後述のステップS13に移行する。また、Yesであると、設定中間水分値(例えば、18%)に到達すると(ステップS10)、次いで、循環時間から乾燥済み時間を差し引いた残りの残存時間について通風循環乾燥運転を実行し(ステップS11)、通風循環乾燥運転が終了すると、設定された乾燥速度での乾燥運転を再開し(ステップS12)、測定水分値が到達予定水分値に到達すると(ステップS13)、乾燥運転を終了する(ステップS14)。   Next, “circulation time for eliminating moisture unevenness> drying time” is determined (step S8). If No, a drying operation for eliminating moisture unevenness is performed at the set drying speed (step S9), and then The process proceeds to step S13 described later. Moreover, when it reaches Yes, when setting intermediate | middle moisture value (for example, 18%) is reached (step S10), ventilation circulation drying operation will be performed about the remaining remaining time which deducted drying time from circulation time (step S10). S11) When the circulation circulation drying operation is completed, the drying operation at the set drying speed is resumed (step S12), and when the measured moisture value reaches the expected moisture value (step S13), the drying operation is terminated (step S13). Step S14).

また、縦方向の水分むらが設定値以上か否かを判定し(ステップS6)、Noであると、オペレータが設定している乾燥速度(オペレータが乾燥速度を設定していない場合には所定の中程度乾燥速度)で乾燥運転を実行し(ステップS15)、測定水分値が設定水分値に到達すると(ステップS16)、乾燥作業を終了する(ステップS14)。   Further, it is determined whether or not the vertical moisture unevenness is equal to or greater than the set value (step S6). If No, the drying speed set by the operator (if the operator has not set the drying speed, a predetermined value is set). A drying operation is executed at a medium drying speed (step S15), and when the measured moisture value reaches the set moisture value (step S16), the drying operation is terminated (step S14).

また、前記水分むらを収束する乾燥工程において、穀粒循環毎に一巡水分むらを検出し水分むらの収束状態を把握し、水分むらが無くなったこと(あるいは、水分むらが所定値以下になったこと)を検出すると、乾燥速度を上げるような乾燥運転を実行し、乾燥運転の効率化を図ってもよい。   Further, in the drying process for converging the moisture unevenness, the moisture unevenness is detected for each circulation of the grains to grasp the convergence state of the moisture unevenness, and the moisture unevenness has disappeared (or the moisture unevenness has become a predetermined value or less. If it is detected, a drying operation that increases the drying speed may be executed to improve the efficiency of the drying operation.

次に、乾燥運転の他の実施態様について説明する。
穀物設定スイッチ27により大麦(あるいは小麦)を選択した場合には、水分設定スイッチ28で目標水分値を12.5%程度に設定し乾燥運転を開始するのが一般的である。しかし、目標水分値を12.0%未満に設定し乾燥運転を開始することがあるが、このような場合に適切な乾燥運転をしようとするものである。
Next, another embodiment of the drying operation will be described.
When barley (or wheat) is selected by the grain setting switch 27, the target moisture value is generally set to about 12.5% by the moisture setting switch 28 and the drying operation is started. However, the target moisture value may be set to less than 12.0% and the drying operation may be started. In such a case, an appropriate drying operation is attempted.

前記のように12.0%未満の低い目標水分値が設定された場合には、運転制御部19の目標水分値低設定による乾燥熱風温度上昇指令に基づき乾燥熱風温度を+5度C(あるいは、+10度C)高めに設定し、高温熱風で乾燥運転する。   When a low target moisture value of less than 12.0% is set as described above, the drying hot air temperature is set to +5 degrees C (or alternatively, based on the drying hot air temperature increase command by the target moisture value low setting of the operation control unit 19. +10 degrees C) Set high and dry with hot hot air.

麦乾燥の場合には乾燥が進行するにしたがって籾乾燥と比較して穀粒体積の収縮が進行し、張込穀粒の間から乾燥熱風が漏れ乾燥風量の作用率が低下し、乾燥能率が低下する。しかし、前記構成によるとこのような問題点を解決し能率的に乾燥運転をすることができる。   In the case of wheat drying, as the drying progresses, the shrinkage of the grain volume proceeds, and the hot dry air leaks from between the squeezed grains, and the efficiency of the drying air volume decreases, and the drying efficiency is reduced. descend. However, according to the said structure, such a problem can be solved and a dry operation can be performed efficiently.

また、穀物設定スイッチ27により大麦(あるいは小麦)を選択した場合には、運転制御部19の麦設定による乾燥熱風温度上昇指令に基づき通常の乾燥熱風温度に対して+5度C(あるいは、+10度C)高めに設定するようにしてもよい。   Further, when barley (or wheat) is selected by the grain setting switch 27, +5 degrees C (or +10 degrees) with respect to the normal drying hot air temperature based on the drying hot air temperature increase command by the wheat setting of the operation control unit 19 C) It may be set higher.

次に、他の実施形態について説明する。
設定の乾燥速度で乾燥運転を開始すると開始から所定回数分の一巡穀粒の水分値測定を実行し水分むら記憶し、次いで、所定時間(例えば2時間)経過後に前記と同様の一巡水分値測定を行い水分むらの検出記憶をする。次いで、検出水分値が中間水分値(例えば18度C)に到達した時点で、前記複数回の水分むら収束状態から目標水分値までの乾燥運転では水分むらが収束しないと判断した場合には、前記水分むらの収束具合に応じ目標水分値までに水分むらが収束すると推定される所定時間にわたり通風循環運転をし、次いで、目標水分値まで設定乾燥速度により乾燥運転をする。
Next, another embodiment will be described.
When the drying operation is started at the set drying speed, the moisture value measurement of one round of kernels is performed for a predetermined number of times from the start, and the moisture unevenness is stored. To detect and store moisture unevenness. Next, when the detected moisture value reaches an intermediate moisture value (for example, 18 degrees C), when it is determined that the moisture unevenness does not converge in the drying operation from the plurality of moisture unevenness convergence states to the target moisture value, A ventilation circulation operation is performed for a predetermined time when it is estimated that the moisture unevenness converges to the target moisture value according to the convergence of the moisture unevenness, and then the drying operation is performed to the target moisture value at the set drying speed.

前記構成によると、水分むら収束のための通風乾燥運転が長くなるのを抑制し乾燥効率を高めることができる。
次に、他の実施形態について説明する。
According to the said structure, it can suppress that the ventilation drying driving | operation for moisture unevenness convergence becomes long, and can improve drying efficiency.
Next, another embodiment will be described.

設定の乾燥速度で乾燥運転を開始すると、開始から所定回数分の一巡穀粒による水分値測定を実行し水分むらを記憶し、次いで、所定時間(例えば2時間)経過後に前記と同様の一巡水分値測定を行い水分むらの記憶をする。次いで、検出水分値が中間水分値(例えば18度C)に到達した時点で、前記複数回の水分むら検出データから目標水分値までの乾燥運転で水分むらの収束が可能と判断した場合には、中間水分値(例えば18度C)まで通風循環運転を実行し、次いで、設定乾燥速度で目標水分値まで乾燥運転する。   When the drying operation is started at the set drying speed, the moisture value is measured for a predetermined number of rounds of grains from the start, and the moisture unevenness is stored. Then, after a predetermined time (for example, 2 hours), the same cycle of moisture as described above Measure the value and memorize the moisture unevenness. Next, when the detected moisture value reaches an intermediate moisture value (for example, 18 degrees C), when it is determined that the moisture unevenness can be converged by the drying operation from the plurality of moisture unevenness detection data to the target moisture value. The ventilation circulation operation is executed up to the intermediate moisture value (for example, 18 degrees C), and then the drying operation is performed up to the target moisture value at the set drying speed.

また、前記複数回の水分むら検出データから目標水分値までの乾燥運転では水分むらが収束しないと判断した場合には、所定時間(例えば3時間。ただし、水分むらの度合いにより時間変更可能。)にわたり乾燥休止(穀粒循環を停止し、乾燥風の供給を停止する。)を実行する。次いで、前記と同様の一巡水分値測定を行い水分むらを記憶し、これらの水分むらデータから残存水分むらの収束にかかる所定時間を推定し、該所定時間にわたり通風循環乾燥を行い、次いで、設定乾燥速度で目標水分値まで乾燥運転する。   In addition, when it is determined that the moisture unevenness does not converge in the drying operation from the plurality of moisture unevenness detection data to the target moisture value, the predetermined time (for example, 3 hours; however, the time can be changed depending on the degree of the moisture unevenness). The drying pause (cereal circulation is stopped and the supply of drying air is stopped) is performed. Next, the moisture content measurement is performed in the same manner as described above, the moisture unevenness is stored, the predetermined time required for convergence of the remaining moisture unevenness is estimated from the moisture unevenness data, the circulation circulation drying is performed for the predetermined time, and then the setting is performed. Dry to the target moisture value at the drying speed.

前記構成によると、水分むら収束のための通風乾燥運転を長引かせずに穀粒の品質向上を図りながら乾燥効率を高めることができる。
次に、他の実施形態について説明する。
According to the said structure, drying efficiency can be improved, aiming at the quality improvement of a grain, without lengthening the ventilation drying driving | operation for moisture unevenness convergence.
Next, another embodiment will be described.

設定の乾燥速度で乾燥運転を開始すると、開始から所定回数の一巡水分値測定を行い水分むらを記憶し、次いで、所定時間(例えば2時間)経過後に前記と同様の一巡水分値測定により水分むらの記憶をする。次いで、検出水分値が中間水分値(例えば18度C)に到達した時点で、前記複数回の水分むら検出データから目標水分値までの乾燥運転で水分むらの収束が可能と判断した場合には、中間水分値(例えば18度C)まで通風循環運転を実行し、次いで、目標水分値まで設定乾燥速度で乾燥運転する。   When the drying operation is started at the set drying speed, a predetermined number of cycles of moisture value measurement is performed from the start and moisture unevenness is stored. Then, after a predetermined time (for example, 2 hours), moisture irregularity is measured by the same cycle of moisture value measurement as described above. To remember. Next, when the detected moisture value reaches an intermediate moisture value (for example, 18 degrees C), when it is determined that the moisture unevenness can be converged by the drying operation from the plurality of moisture unevenness detection data to the target moisture value. The ventilation circulation operation is executed up to the intermediate moisture value (for example, 18 degrees C), and then the drying operation is performed at the set drying speed up to the target moisture value.

また、前記複数回の水分むら収束データから目標水分値までの乾燥運転では水分むらが収束しないと判断した場合には、所定時間(例えば3時間。ただし、水分むらの度合いにより時間変更可能。)にわたり乾燥休止(穀粒循環を停止し、乾燥風の供給を停止する。)を実行し、次いで、目標水分値まで設定乾燥速度で乾燥運転をする。   Further, when it is determined that the moisture unevenness does not converge in the drying operation from the plurality of moisture unevenness convergence data to the target moisture value, a predetermined time (for example, 3 hours; however, the time can be changed depending on the degree of the moisture unevenness). Then, the drying is suspended (the grain circulation is stopped and the supply of the drying air is stopped), and then the drying operation is performed at the set drying speed up to the target moisture value.

前記構成によると、水分むら収束のための通風乾燥運転が長引くのを抑制し穀粒の品質向上を図ることができる。
次に、図11のフローチャートに基づき運転制御内容を説明する。
According to the said structure, it can suppress that the ventilation drying driving | operation for moisture unevenness convergence is prolonged and can aim at the quality improvement of a grain.
Next, the operation control content will be described based on the flowchart of FIG.

運転制御が開始され、張込スイッチ14がON操作されると(ステップS21)、穀粒の張込運転が実行され、運転制御部19の張込穀粒の有無検出指令に基づき水分計20が作動され水分値測定穀粒の有無から張込穀粒の有無を検出する(ステップS22)。   When the operation control is started and the tension switch 14 is turned ON (step S21), the grain tension operation is executed, and the moisture meter 20 is operated based on the presence detection command of the tension kernel of the operation control unit 19. It is actuated and the presence / absence of the stretched grain is detected from the presence / absence of the moisture value measurement grain (step S22).

次いで、水分計20が穀粒取り込み無し検出をしたか否かの判定をし(ステップS23)、Yesであると、張込運転を停止し通風循環運転を開始し張込穀粒の蒸れを防止する(ステップS24)。次いで、水分計20の水分値測定データの有無から次回の張込穀粒有りを検出したか否かを判定し(ステップS25)、Noであると、通風循環運転が最大運転時間に到達したか否かを判定し(ステップS26)、Noであると、前記ステップS25に戻り、Yesであると、通風循環運転を停止し(ステップS27)、張込穀粒の表面の損傷を防止する。   Next, it is determined whether or not the moisture meter 20 has detected that there is no grain uptake (step S23), and if yes, the tension operation is stopped and the ventilation circulation operation is started to prevent the tension kernel from being stuffy. (Step S24). Next, it is determined whether or not the next presence of grain is detected from the presence or absence of moisture value measurement data of the moisture meter 20 (step S25), and if it is No, has the ventilation circulation operation reached the maximum operation time? It determines whether or not (step S26), and returns to the step S25 if it is No, and if it is Yes, the ventilation circulation operation is stopped (step S27), and damage to the surface of the stretched grain is prevented.

また、水分計20が次回の張込穀粒有りを検出したか否かを判定し(ステップS25)、Yesであると、通風循環運転を停止し張込運転に移行する(ステップS28)。次いで、張込量測定器2aが張込穀粒満了を検出したか否かを判定し(ステップS29)、Noであると、前記ステップS23に戻り、Yesであると、張込運転を停止し(ステップS30)、張込作業を終了する。
(5480)
なお、前記のように通風循環運転しながら穀粒の張込運転を実行するるにあたり、水分計20で水分値を測定し所定水分値より高い場合には穀粒の表面が雨に濡れていると判定し、運転制御部19の低速張込指令に基づき前記繰り出しドラム8の繰り出し速度を低速繰り出しに変更するようにしてもよい。
Further, it is determined whether or not the moisture meter 20 has detected the presence of the next overhanging grain (step S25). If yes, the ventilation circulation operation is stopped and the operation proceeds to the overburden operation (step S28). Next, it is determined whether or not the tension measuring instrument 2a has detected the expiration of the tension kernel (Step S29). If No, the process returns to Step S23, and if Yes, the tension operation is stopped. (Step S30), the tensioning operation is terminated.
(5480)
In addition, when performing the tensioning operation of the grain while performing the circulation operation as described above, when the moisture value is measured by the moisture meter 20 and higher than the predetermined moisture value, the surface of the grain is wet with rain. And the feeding speed of the feeding drum 8 may be changed to the low speed feeding based on the low speed extension command of the operation control unit 19.

穀粒の表面が濡れている場合には、穀粒が機内循環で脱ぷすることがある。しかし、前記のように繰り出しドラム8を低速繰り出しにすることによりこのような不具合を防止することができる。   When the surface of the grain is wet, the grain may be deflated by in-flight circulation. However, such a problem can be prevented by setting the feeding drum 8 to low speed feeding as described above.

1 穀物乾燥機の機枠
2 貯溜室
3 乾燥部
19 運転制御部
H 穀粒循環により水分むらが所定幅内に収束するに要する予定循環時間
Mn 張込穀粒の縦方向水分値分布
DESCRIPTION OF SYMBOLS 1 Grain dryer frame 2 Reservoir 3 Drying unit 19 Operation control unit H Expected circulation time required for moisture unevenness to converge within a predetermined width due to grain circulation Mn Longitudinal moisture value distribution of entrapped grain

Claims (2)

貯溜室(2)に張り込まれた穀粒を循環しつつ設定乾燥速度に従って乾燥部(3)に乾燥熱風を供給する乾燥循環運転により乾燥目標水分値まで順次乾燥処理する運転制御部(19)を備えた穀物乾燥機において、前記運転制御部(19)は、貯溜室(2)の張込穀粒を1循環させる間に張込量に応じて複数回のタイミングで穀粒の水分値を測定し、該測定によって得られた張込穀粒の水分値分布(Mn)からその水分むらの程度を把握し、その水分むらが設定値以上と判定されると穀粒の循環によって所定幅内に水分むらを収束するに要する予定循環時間(H)を算出し、該予定循環時間(H)に対応する乾燥速度で乾燥循環運転を行ない、水分むらが設定値以下であると判断すると、オペレータが設定した乾燥速度で乾燥目標水分値まで乾燥運転することを特徴とする穀物乾燥機。   An operation control unit (19) that sequentially performs drying processing to a drying target moisture value by a drying circulation operation in which drying hot air is supplied to the drying unit (3) according to a set drying speed while circulating the grains stuck in the storage chamber (2). In the grain dryer provided with the above, the operation control unit (19) sets the moisture value of the grain at a plurality of times according to the amount of tension while circulating the tensioned grain in the storage chamber (2) once. Measure and grasp the degree of moisture unevenness from the moisture content distribution (Mn) of the stretched grain obtained by the measurement, and if the moisture unevenness is determined to be greater than or equal to the set value, When the estimated circulation time (H) required to converge the moisture irregularity is calculated, the drying circulation operation is performed at the drying speed corresponding to the scheduled circulation time (H), and the moisture irregularity is determined to be equal to or less than the set value, the operator Up to the target moisture value at the drying speed set by燥 grain dryer, characterized in that the driving. 請求項1の発明において、水分むらを収束する乾燥速度で乾燥循環運転を開始した後、設定時間後又は検出水分値が所定の中間設定水分値に到達すると、水分値分布(Mn)を再度測定し、水分むらが設定値以下であると判定されると、水分むら収束のための乾燥速度からオペレータが設定した乾燥速度に移行し、乾燥目標水分値まで前記設定乾燥速度で乾燥循環運転することを特徴とする穀物乾燥機。   In the invention of claim 1, after starting the drying circulation operation at a drying speed that converges the moisture unevenness, the moisture value distribution (Mn) is measured again after a set time or when the detected moisture value reaches a predetermined intermediate set moisture value. When it is determined that the moisture unevenness is equal to or less than the set value, the drying speed for shifting the moisture unevenness is shifted to the drying speed set by the operator, and the drying circulation operation is performed at the set drying speed up to the drying target moisture value. A grain dryer characterized by.
JP2012239249A 2012-10-30 2012-10-30 Grain dryer Pending JP2014088998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239249A JP2014088998A (en) 2012-10-30 2012-10-30 Grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239249A JP2014088998A (en) 2012-10-30 2012-10-30 Grain dryer

Publications (1)

Publication Number Publication Date
JP2014088998A true JP2014088998A (en) 2014-05-15

Family

ID=50791038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239249A Pending JP2014088998A (en) 2012-10-30 2012-10-30 Grain dryer

Country Status (1)

Country Link
JP (1) JP2014088998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133759A (en) * 2016-01-28 2017-08-03 井関農機株式会社 Grain dryer
CN113821120A (en) * 2021-07-17 2021-12-21 深圳彩虹源科技有限责任公司 Business super display screen interactive system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133759A (en) * 2016-01-28 2017-08-03 井関農機株式会社 Grain dryer
CN113821120A (en) * 2021-07-17 2021-12-21 深圳彩虹源科技有限责任公司 Business super display screen interactive system
CN113821120B (en) * 2021-07-17 2024-04-26 深圳彩虹源科技有限责任公司 Commercial super display screen interaction system

Similar Documents

Publication Publication Date Title
JP5884673B2 (en) Grain dryer
JP2014088998A (en) Grain dryer
CN101824734A (en) Drying machine and control method thereof
JP2008039221A (en) Grain dryer
JP5104287B2 (en) Grain dryer
JP5104286B2 (en) Grain dryer
JP2011002205A (en) Grain drier
JP2008298324A (en) Grain dryer
JP2008298324A5 (en)
JP2009198047A (en) Grain dryer
JP2009198048A (en) Grain dryer
JP5251286B2 (en) Grain dryer
CN101812800B (en) Outage compensation control method for clothing drying machine
JP5359592B2 (en) Grain dryer
JP4992326B2 (en) Grain dryer
JP2011153808A (en) Circulation type grain drier
JP6244947B2 (en) Grain dryer
JP4946183B2 (en) Grain dryer
JP2010197022A (en) Display screen for grain drier
JP7344448B2 (en) grain dryer
JP4985064B2 (en) Grain dryer
CN112127093B (en) Method and device for automatically controlling water inlet time of washing machine and washing machine
JP2011075236A (en) Grain dryer
JPS636381A (en) Cereal drier controller
JPH05231774A (en) Grain drying controller