[go: up one dir, main page]

JP2014086709A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2014086709A
JP2014086709A JP2012237366A JP2012237366A JP2014086709A JP 2014086709 A JP2014086709 A JP 2014086709A JP 2012237366 A JP2012237366 A JP 2012237366A JP 2012237366 A JP2012237366 A JP 2012237366A JP 2014086709 A JP2014086709 A JP 2014086709A
Authority
JP
Japan
Prior art keywords
semiconductor device
sic substrate
manufacturing
oxide film
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012237366A
Other languages
Japanese (ja)
Other versions
JP5988299B2 (en
Inventor
Naoto Kameda
直人 亀田
Ryoji Kosugi
亮治 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Meidensha Corp
Priority to JP2012237366A priority Critical patent/JP5988299B2/en
Publication of JP2014086709A publication Critical patent/JP2014086709A/en
Application granted granted Critical
Publication of JP5988299B2 publication Critical patent/JP5988299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】SiC基板を用いた半導体装置の信頼性や歩留まりを向上する。
【解決手段】アンモニア・過酸化水素水洗浄(SC1)、塩酸・過酸化水素水洗浄(SC2)を行い、SiC基板を洗浄する(RCA洗浄工程S2)。次に、SiC基板に、濃度が80体積%以上のオゾンガスを100sccmで供給し、300Pa、1000℃で26分間処理する(犠牲酸化工程S3)。犠牲酸化工程S3終了後のSiC基板をフッ酸で処理し、SiC基板表面に形成された酸化膜を除去する(HF洗浄工程S4)。
【選択図】図4
The reliability and yield of a semiconductor device using a SiC substrate are improved.
An SiC substrate is cleaned by performing ammonia / hydrogen peroxide solution cleaning (SC1) and hydrochloric acid / hydrogen peroxide solution cleaning (SC2) (RCA cleaning step S2). Next, ozone gas having a concentration of 80% by volume or more is supplied to the SiC substrate at 100 sccm and treated at 300 Pa and 1000 ° C. for 26 minutes (sacrificial oxidation step S3). The SiC substrate after completion of the sacrificial oxidation step S3 is treated with hydrofluoric acid to remove the oxide film formed on the surface of the SiC substrate (HF cleaning step S4).
[Selection] Figure 4

Description

本発明は、炭化珪素単結晶基板を用いた半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device using a silicon carbide single crystal substrate.

炭化珪素(SiC)素子は、珪素(Si)素子と比較して、高耐圧、低オン抵抗の半導体装置を実現できることが期待されている。近年SiC素子の製造技術が著しく進歩し、SiC素子のデバイス特性の優位性が確立されつつある。また、炭化珪素単結晶基板(SiC基板)の高品質化、大口径化が進み、半導体装置の製造に必要なSiC基板の入手が比較的容易になっている。これらの技術的進歩を背景に、SiC素子の実用を見据えた開発が本格化している。特に、ショットキーバリアダイオード(SBD)は、SiC素子で最も開発が先行している素子のひとつであり、信頼性の確保や歩留り(良品の比率)の向上など量産に向けたプロセス開発段階に達している。   A silicon carbide (SiC) element is expected to realize a semiconductor device having a higher breakdown voltage and lower on-resistance than a silicon (Si) element. In recent years, the manufacturing technology of SiC elements has remarkably advanced, and the superiority of device characteristics of SiC elements is being established. In addition, the quality and size of silicon carbide single crystal substrates (SiC substrates) are increasing, and it is relatively easy to obtain SiC substrates necessary for manufacturing semiconductor devices. Against the background of these technological advances, full-scale development with a view to practical use of SiC elements is in full swing. In particular, the Schottky barrier diode (SBD) is one of the most developed SiC devices, and has reached the stage of process development for mass production, such as ensuring reliability and improving yield (ratio of good products). ing.

SiC素子を実用するためには、さらなるSiC素子の集積度(パワー密度)の向上が求められる。SiC素子の集積度を向上させるためには、より大きなサイズの電極を用いた素子設計が必要となる。そして、大きなサイズの電極を用いる場合、SiC素子の歩留りを高く保つためのSiC基板表面処理が重要となる。SiC基板において、高温のSiC素子製造工程によって発生する基板への金属不純物の付着や混入、その他炭素化合物形成による表面の荒れなどが、SiC素子の歩留りを低下させる要因のひとつと考えられる。   In order to put the SiC element into practical use, further improvement in the degree of integration (power density) of the SiC element is required. In order to improve the integration degree of the SiC element, it is necessary to design an element using a larger size electrode. And when using a large-sized electrode, the SiC substrate surface treatment for keeping the yield of a SiC element high becomes important. In a SiC substrate, adhesion and mixing of metal impurities to the substrate generated by a high-temperature SiC element manufacturing process, and other surface roughness due to the formation of a carbon compound are considered to be one of the factors that reduce the yield of SiC elements.

SiC素子製造工程では、薬液によるSiC基板表面の洗浄工程が行われる。例えば、Si素子を製造する技術として培われた洗浄技術であるRCA洗浄がSiC素子製造工程でもよく用いられる。RCA洗浄とは、アンモニア・過酸化水素水による洗浄(SC1)と塩酸・過酸化水素水による洗浄(SC2)を基本とするSi基板のウエット洗浄法である。   In the SiC element manufacturing process, a cleaning process of the SiC substrate surface with a chemical solution is performed. For example, RCA cleaning, which is a cleaning technique cultivated as a technique for manufacturing Si elements, is often used in the SiC element manufacturing process. The RCA cleaning is a Si substrate wet cleaning method based on cleaning with ammonia / hydrogen peroxide solution (SC1) and cleaning with hydrochloric acid / hydrogen peroxide solution (SC2).

Si基板では、SC1処理によりSi基板表面に酸化膜が形成され、この膜中に金属不純物が取り込まれる。そして、SC2処理で、SC1処理により形成された酸化膜を除去することで、酸化膜に取り込まれた金属不純物も除去される。これに対して、SiC基板では、SC1処理によってSiC基板表面に酸化膜を形成することが困難であり、Si基板のSC1処理のように酸化膜を形成して、この酸化膜に金属不純物を取り込んで除去することが困難であるとされている。また、SiC基板をエッチングする場合、水酸化カリウム溶融液のような特殊な薬液を用いてエッチングするが、このエッチング速度が大きな面方位依存性を持つため、表面の荒れを制御することが困難となる。   In the Si substrate, an oxide film is formed on the surface of the Si substrate by the SC1 process, and metal impurities are taken into this film. Then, by removing the oxide film formed by the SC1 process in the SC2 process, the metal impurities taken into the oxide film are also removed. On the other hand, with an SiC substrate, it is difficult to form an oxide film on the surface of the SiC substrate by the SC1 process, and an oxide film is formed like the SC1 process of the Si substrate, and metal impurities are taken into this oxide film. It is said that it is difficult to remove by. In addition, when etching a SiC substrate, etching is performed using a special chemical solution such as a potassium hydroxide melt, but it is difficult to control surface roughness because the etching rate has a large plane orientation dependency. Become.

そこで、SiC基板の洗浄では、RCA洗浄と犠牲酸化と呼ばれる酸化膜形成プロセスとを併用して、SiC基板表面の洗浄が行われる(例えば、特許文献1)。通常の犠牲酸化は、酸素により基板表面に酸化膜が形成される。   Therefore, in the cleaning of the SiC substrate, the surface of the SiC substrate is cleaned using both RCA cleaning and an oxide film forming process called sacrificial oxidation (for example, Patent Document 1). In normal sacrificial oxidation, an oxide film is formed on the substrate surface by oxygen.

特開2009−194216号公報JP 2009-194216 A 特開2008−283201号公報JP 2008-283201 A 特開2008−53561号公報JP 2008-53561 A 特開2001−244227号公報JP 2001-244227 A 特開2001−244260号公報JP 2001-244260 A

小杉亮治、外2名、"Thermal oxidation of (0001)4H-SiC at high temperatures in ozone-admixed oxygen gas ambient"、Applied Physics Letters、American Institute of Physics、2003年6月3日、第83巻、第5号、p. 884-886Ryoji Kosugi, 2 others, "Thermal oxidation of (0001) 4H-SiC at high temperatures in ozone-admixed oxygen gas ambient", Applied Physics Letters, American Institute of Physics, June 3, 2003, 83, Vol. 5, p. 884-886

しかし、犠牲酸化工程の酸化手法(酸化ガス種)を変えることで、酸素ガスを用いた犠牲酸化手法を用いた場合より犠牲酸化膜除去後のSiC基板表面の金属不純物密度が低くなることが知られている(例えば、特許文献1)。そして、SiC基板表面の金属不純物密度を低下させることで、SiC素子の信頼性や歩留りが向上することが確認されている。   However, it is known that the metal impurity density on the surface of the SiC substrate after removal of the sacrificial oxide film becomes lower by changing the oxidation method (oxidation gas species) in the sacrificial oxidation process than when the sacrificial oxidation method using oxygen gas is used. (For example, Patent Document 1). It has been confirmed that the reliability and yield of SiC elements are improved by reducing the metal impurity density on the surface of the SiC substrate.

特許文献1には、酸素プラズマをSiC基板表面の酸化剤として用いることで、犠牲酸化膜除去後のSiC基板表面における金属不純物密度が酸素ガスを用いた犠牲酸化手法と比較して減少する傾向があることが示されている。このことより、より強い酸化種を用いることで、金属不純物を酸化膜中に効果的に取り込むことができ、この酸化膜を除去することでより多くの金属不純物を除去することができるものと考えられる。さらに、特許文献1には、SBDやMOSFETなどさまざまな素子の製造工程において、酸化手法の違いによるSiC基板表面の洗浄効果を検証し、酸化手法の違いによってSiC素子の信頼性や歩留りを向上させることができることが示されている。   In Patent Document 1, the use of oxygen plasma as an oxidizing agent on the surface of a SiC substrate tends to reduce the metal impurity density on the surface of the SiC substrate after removal of the sacrificial oxide film as compared with a sacrificial oxidation method using oxygen gas. It is shown that there is. From this fact, it is considered that metal impurities can be effectively incorporated into the oxide film by using stronger oxidizing species, and more metal impurities can be removed by removing this oxide film. It is done. Further, Patent Document 1 verifies the cleaning effect of the SiC substrate surface due to the difference in the oxidation method in the manufacturing process of various elements such as SBD and MOSFET, and improves the reliability and yield of the SiC element due to the difference in the oxidation method. It has been shown that it can.

このように、SiC基板では、従来のSi基板の処理方法が必ずしも適用できるわけではないので、SiC素子の信頼性や歩留りをより向上させるためのSiC基板の処理方法が求められている。   As described above, since the conventional Si substrate processing method is not necessarily applicable to the SiC substrate, a SiC substrate processing method for further improving the reliability and yield of the SiC element is required.

上記事情に鑑み、本発明は、SiC基板を用いた半導体装置の信頼性や歩留りの向上に貢献する技術の提供を目的としている。   In view of the above circumstances, an object of the present invention is to provide a technique that contributes to improvement in reliability and yield of a semiconductor device using a SiC substrate.

上記目的を達成する本発明の半導体装置製造方法の一態様は、炭化珪素単結晶基板を、80体積%以上のオゾン雰囲気下で酸化処理し、前記炭化珪素単結晶基板表面に酸化膜を形成する犠牲酸化工程を、有することを特徴としている。   In one embodiment of the semiconductor device manufacturing method of the present invention that achieves the above object, a silicon carbide single crystal substrate is oxidized in an ozone atmosphere of 80% by volume or more, and an oxide film is formed on the surface of the silicon carbide single crystal substrate. It has a sacrificial oxidation process.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程を、前記炭化珪素単結晶基板をRCA洗浄処理した後に行うことを特徴としている。   Another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object is characterized in that, in the semiconductor device manufacturing method, the sacrificial oxidation step is performed after the silicon carbide single crystal substrate is subjected to RCA cleaning treatment. It is said.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程は、酸素による酸化膜の製膜速度が3nm/h以下の条件で行うことを特徴としている。   According to another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object, in the semiconductor device manufacturing method, the sacrificial oxidation step is performed under a condition that a film formation rate of oxygen oxide film is 3 nm / h or less. It is characterized by doing.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程の処理条件は、処理圧力が1000Pa以下、処理温度が1200℃以下であることを特徴としている。   In another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object, in the semiconductor device manufacturing method, the processing conditions of the sacrificial oxidation step are a processing pressure of 1000 Pa or lower and a processing temperature of 1200 ° C. or lower. It is characterized by being.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程後に、前記炭化珪素単結晶基板に電極層を形成する電極形成工程を行うことを特徴としている。   According to another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object, in the semiconductor device manufacturing method, an electrode forming step of forming an electrode layer on the silicon carbide single crystal substrate after the sacrificial oxidation step is performed. It is characterized by doing.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記酸化膜は、0.4nm以上であることを特徴としている。   Another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object is characterized in that, in the semiconductor device manufacturing method, the oxide film has a thickness of 0.4 nm or more.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記炭化珪素結晶基板には、エピタキシャル成長層が形成されていることを特徴としている。   Another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object is characterized in that, in the above semiconductor device manufacturing method, an epitaxially grown layer is formed on the silicon carbide crystal substrate.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程終了後、前記炭化珪素単結晶基板を、10Pa以下の真空下で、100℃/min以上の降温速度で、室温まで冷却することを特徴としている。   According to another aspect of the semiconductor device manufacturing method of the present invention that achieves the above object, in the semiconductor device manufacturing method, after the sacrificial oxidation step, the silicon carbide single crystal substrate is placed under a vacuum of 10 Pa or less. It is characterized by cooling to room temperature at a temperature lowering rate of 100 ° C./min or more.

また、上記目的を達成する本発明の半導体装置製造方法の他の態様は、上記の半導体装置製造方法において、前記犠牲酸化工程において、前記炭化珪素単結晶基板に、200〜300nmの紫外光を照射して、酸化膜を形成することを特徴としている。   According to another aspect of the semiconductor device manufacturing method of the present invention for achieving the above object, in the semiconductor device manufacturing method, the silicon carbide single crystal substrate is irradiated with ultraviolet light of 200 to 300 nm in the sacrificial oxidation step. Thus, an oxide film is formed.

以上の発明によれば、SiC基板を用いた半導体装置の信頼性や歩留りの向上に貢献することができる。   According to the above invention, it is possible to contribute to the improvement of the reliability and the yield of the semiconductor device using the SiC substrate.

本発明の実施形態に係る半導体装置の製造方法に用いられる酸化膜形成装置の概略図である。It is the schematic of the oxide film formation apparatus used for the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法に用いられる酸化膜形成装置の要部の概略断面図である。It is a schematic sectional drawing of the principal part of the oxide film formation apparatus used for the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の要部断面図であり、(a)SiC基板表面でのオゾンの反応を説明する説明図、(b)半導体装置の電気的特性を評価する回路を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is principal part sectional drawing of the semiconductor device which concerns on embodiment of this invention, (a) Explanatory drawing explaining reaction of ozone on the SiC substrate surface, (b) The circuit which evaluates the electrical property of a semiconductor device is demonstrated. It is explanatory drawing. (a)実施例の半導体装置の製造方法を説明するフロー図、(b)比較例の半導体装置の製造方法を説明するフロー図である。(A) The flowchart explaining the manufacturing method of the semiconductor device of an Example, (b) The flowchart explaining the manufacturing method of the semiconductor device of a comparative example. (a)実施例の半導体装置の順方向特性を示す特性図、(b)実施例の半導体装置の逆方向特性を示す特性図、(c)比較例の半導体装置の順方向特性を示す特性図、(d)比較例の半導体装置の逆方向特性を示す特性図である。(A) Characteristic diagram showing forward characteristic of semiconductor device of example, (b) Characteristic diagram showing reverse characteristic of semiconductor device of example, (c) Characteristic diagram showing forward characteristic of semiconductor device of comparative example (D) It is a characteristic view which shows the reverse direction characteristic of the semiconductor device of a comparative example.

本発明の実施形態に係る半導体装置製造方法について、図を参照して詳細に説明する。なお、本発明の炭化珪素単結晶基板(SiC基板)とは、炭化珪素の単結晶層を有する基板や炭化珪素の単結晶にイオン注入した層を有する炭化珪素基板のことを示す。   A semiconductor device manufacturing method according to an embodiment of the present invention will be described in detail with reference to the drawings. The silicon carbide single crystal substrate (SiC substrate) of the present invention refers to a substrate having a single crystal layer of silicon carbide or a silicon carbide substrate having a layer ion-implanted into a single crystal of silicon carbide.

まず、図1、2を参照して、SiC基板の表面に酸化膜を形成する酸化膜形成装置1について説明する。SiC基板の表面処理を行う処理装置としては、例えば、特許文献2,3に開示される処理装置が知られている。   First, an oxide film forming apparatus 1 that forms an oxide film on the surface of a SiC substrate will be described with reference to FIGS. As processing apparatuses that perform surface treatment of SiC substrates, for example, processing apparatuses disclosed in Patent Documents 2 and 3 are known.

図1に示すように、酸化膜形成装置1は処理炉2、オゾン発生器3、光源4及び光源5を備える。   As shown in FIG. 1, the oxide film forming apparatus 1 includes a processing furnace 2, an ozone generator 3, a light source 4 and a light source 5.

処理炉2は横型層流減圧方式の炉である。処理炉2には、配管6を介してオゾン発生器3が接続され、配管7を介してオゾン除去装置8が設けられる。オゾン除去装置8により、処理炉2の反応に供されたガス中の残留オゾンが分解除去される。そして、オゾン除去装置8で処理後のガスは、真空ポンプ9により系外に排出される。また、処理炉2の内部中心付近には、SiC基板10を保持するするサセプタ11が設けられる。サセプタ11は、例えば、赤外光を吸収する材料(不透明石英やSiC単結晶体など)で構成され、処理炉2外に設けられた光源5から赤外光が照射され加熱される。   The processing furnace 2 is a horizontal laminar pressure reduction type furnace. An ozone generator 3 is connected to the processing furnace 2 via a pipe 6, and an ozone removing device 8 is provided via a pipe 7. Residual ozone in the gas subjected to the reaction of the processing furnace 2 is decomposed and removed by the ozone removing device 8. The gas treated by the ozone removing device 8 is discharged out of the system by the vacuum pump 9. A susceptor 11 that holds the SiC substrate 10 is provided in the vicinity of the inner center of the processing furnace 2. The susceptor 11 is made of, for example, a material that absorbs infrared light (such as opaque quartz or SiC single crystal), and is irradiated with infrared light from a light source 5 provided outside the processing furnace 2 and heated.

図2は、処理炉2の詳細を示す図である。図2に示すように、処理炉2として、例えば、石英ガラス管2aが用いられる。石英ガラス管2aの端部にそれぞれOリング12(または、ガスケット)を介して、配管6及び配管7が設けられる。配管6及び配管7は、真空対応の配管であり、例えば、ステンレス鋼(SUS材)管の内面を電解研磨により表面処理したものが用いられる。配管6(配管7)と処理炉2(すなわち、石英ガラス管2a)との接続部6a(接続部7a)は、水冷されていることが望ましい。また、Oリング12は、耐熱材料の部材(例えば、デュポン社製カルレッツ)が用いられる。配管6及び配管7には、それぞれ流量可変バルブ13,14が設けられ、この流量可変バルブ13,14を制御することで、処理炉2に供給されるオゾンの流量や処理炉2の圧力が制御される。なお、処理炉2の外周近傍を流通するように冷却用のガスが供給され処理炉2が空冷される。つまり、処理炉2は、コールドウォールであり、ガス輸送中におけるオゾンの熱分解が抑制される。   FIG. 2 is a diagram showing details of the processing furnace 2. As shown in FIG. 2, for example, a quartz glass tube 2 a is used as the processing furnace 2. A pipe 6 and a pipe 7 are provided at the end of the quartz glass tube 2a via O-rings 12 (or gaskets), respectively. The pipe 6 and the pipe 7 are vacuum-compatible pipes, and for example, a stainless steel (SUS material) pipe whose inner surface is surface-treated by electrolytic polishing is used. The connecting portion 6a (connecting portion 7a) between the piping 6 (pipe 7) and the processing furnace 2 (that is, the quartz glass tube 2a) is desirably water-cooled. The O-ring 12 is made of a heat-resistant material (for example, Kalrez manufactured by DuPont). The pipe 6 and the pipe 7 are respectively provided with variable flow valves 13 and 14, and by controlling the variable flow valves 13 and 14, the flow rate of ozone supplied to the processing furnace 2 and the pressure of the processing furnace 2 are controlled. Is done. In addition, the gas for cooling is supplied so that it may distribute | circulate the outer periphery vicinity of the processing furnace 2, and the processing furnace 2 is air-cooled. That is, the processing furnace 2 is a cold wall, and the thermal decomposition of ozone during gas transportation is suppressed.

オゾン発生器3は、図1に示すように、処理炉2にオゾンを供給する。オゾン発生器3は、気体のオゾンを冷却して液体オゾンとし、この液体オゾンを再び気化することで、ほぼ100%のオゾンガスを発生する。このようなオゾン発生器3としては、例えば、明電舎製のピュアオゾンジェネレータがあり、オゾン発生器3から発生したオゾンを不活性ガス(アルゴンやヘリウムなど)で希釈することで、任意の濃度のオゾンを処理炉2に供給することができる。   As shown in FIG. 1, the ozone generator 3 supplies ozone to the processing furnace 2. The ozone generator 3 cools gaseous ozone to liquid ozone, and vaporizes the liquid ozone again to generate almost 100% ozone gas. As such an ozone generator 3, for example, there is a pure ozone generator manufactured by Meidensha, and by diluting ozone generated from the ozone generator 3 with an inert gas (argon, helium, etc.), ozone having an arbitrary concentration Can be supplied to the processing furnace 2.

光源4は、波長210nmより長い連続的または離散的な波長の輝線を有する紫外光領域の光を発する。光源4からの光は、例えば、SiC基板10の表面に向けガスの流れと垂直に照射される。光源4からの光の照度はSiC基板10の全面での照度の揺らぎが小さくなるように調節される。オゾンは、(1)式に示す紫外線解離反応により、励起状態原子状酸素O(1D)を生成する。また、オゾンは、(2)式に示す熱分解反応により、基底状態原子状酸素O(3P)を生成する。
3 +hν(λ<310nm) → O(1D) + O2 …(1)
3 → O(3P) + O2 …(2)
紫外光解離反応により生じた励起状態原子状酸素は、基底状態原子状酸素よりも反応性が高いので、光源4から紫外光を照射してSiC基板10に対してオゾンガスを供給した場合、SiC基板10表面の洗浄効果がより向上する。なお、基底状態原子状酸素も、高い反応性を有するため、SiC基板10上に良好な酸化膜を形成することができる。ゆえに、基底状態原子状酸素により十分な洗浄効果が得られる場合は、必ずしも紫外光を照射する必要がない。
The light source 4 emits light in the ultraviolet region having an emission line having a continuous or discrete wavelength longer than a wavelength of 210 nm. The light from the light source 4 is irradiated, for example, toward the surface of the SiC substrate 10 perpendicular to the gas flow. The illuminance of light from the light source 4 is adjusted so that fluctuation of illuminance on the entire surface of the SiC substrate 10 is reduced. Ozone generates excited state atomic oxygen O ( 1 D) by an ultraviolet dissociation reaction represented by the formula (1). In addition, ozone generates ground state atomic oxygen O ( 3 P) by a thermal decomposition reaction represented by the formula (2).
O 3 + hν (λ <310 nm) → O ( 1 D) + O 2 (1)
O 3 → O ( 3 P) + O 2 (2)
The excited state atomic oxygen generated by the ultraviolet photodissociation reaction has a higher reactivity than the ground state atomic oxygen. Therefore, when ozone gas is supplied to the SiC substrate 10 by irradiating ultraviolet light from the light source 4, the SiC substrate 10 The surface cleaning effect is further improved. Since ground state atomic oxygen also has high reactivity, a good oxide film can be formed on SiC substrate 10. Therefore, when a sufficient cleaning effect can be obtained by the ground state atomic oxygen, it is not always necessary to irradiate ultraviolet light.

光源5は、赤外光領域の光を出力するランプである。光源5からの光は、処理炉2を透過してサセプタ11に照射され、サセプタ11に保持されたSiC基板10の温度が所定の温度となるようにサセプタ11の温度が制御される。よって、光源5から照射される光の波長は、サセプタ11またはSiC基板10が吸収する光であればどのような波長の光を用いてもよい。   The light source 5 is a lamp that outputs light in the infrared light region. Light from the light source 5 passes through the processing furnace 2 and is irradiated to the susceptor 11, and the temperature of the susceptor 11 is controlled so that the temperature of the SiC substrate 10 held by the susceptor 11 becomes a predetermined temperature. Therefore, the wavelength of the light emitted from the light source 5 may be any wavelength as long as the light is absorbed by the susceptor 11 or the SiC substrate 10.

[実施例]
本発明の実施例の半導体装置製造方法について、図3,4を参照して説明する。
[Example]
A semiconductor device manufacturing method according to an embodiment of the present invention will be described with reference to FIGS.

図3(a)は、本発明の実施形態に係る半導体装置製造方法に供されるSiC基板10の概略断面図であり、図3(b)は、SiC基板10を用いて構成された半導体装置15の特性を評価する電気的特性評価回路16の概略を示す図である。なお、図3(a)のSiC基板10及び図3(b)の半導体装置15は、本発明の実施形態に係るSiC基板及び半導体装置を模式的に示したものであり、図面上の寸法比と実際の寸法比とは必ずしも一致するものではない。   FIG. 3A is a schematic cross-sectional view of a SiC substrate 10 used in the method for manufacturing a semiconductor device according to the embodiment of the present invention, and FIG. 3B is a semiconductor device configured using the SiC substrate 10. It is a figure which shows the outline of the electrical property evaluation circuit 16 which evaluates 15 properties. The SiC substrate 10 in FIG. 3A and the semiconductor device 15 in FIG. 3B schematically show the SiC substrate and the semiconductor device according to the embodiment of the present invention. And the actual dimensional ratio do not always coincide with each other.

図4は、実施例の半導体装置15製造方法のフローを示す図である。図4を参照して、実施例の半導体装置15の製造方法について説明する。   FIG. 4 is a diagram illustrating a flow of the manufacturing method of the semiconductor device 15 of the embodiment. With reference to FIG. 4, the manufacturing method of the semiconductor device 15 of an Example is demonstrated.

実施例では、12mm□サイズ4H−SiC(0001)基板(SiC基板)を用いて簡易型PNダイオードを作成した。具体的には、Cree社製のオフ角4°、1.2×1018cm-3のn型ドープされたn+層基板10aを用いた。 In the example, a simple PN diode was prepared using a 12 mm □ size 4H—SiC (0001) substrate (SiC substrate). Specifically, n-type doped n + layer substrate 10a with an off angle of 4 ° and 1.2 × 10 18 cm −3 manufactured by Cree was used.

まず、前工程S1で、n+層基板10a上に、n-エピ層10b(エピキャピタル成長層)を形成した。具体的には、n+層基板10a上に、厚み4.7μm程度のn-エピ層10bを濃度1.2×1015cm-3で形成した。そして、n-エピ層10b上にp層10cなどn-エピ層10b内のキャリア分布作成処理を行い、SiC基板10を作成した。 First, in the previous step S1, an n epi layer 10b (epicap growth layer) was formed on the n + layer substrate 10a. Specifically, an n epi layer 10b having a thickness of about 4.7 μm was formed on the n + layer substrate 10a at a concentration of 1.2 × 10 15 cm −3 . Then, n - such as p layer 10c on the epitaxial layer 10b n - performs carrier distribution process of creating the epi layer 10b, creating the SiC substrate 10.

次に、RCA洗浄工程S2を行った。RCA洗浄工程S2は、アンモニア(28重量%):過酸化水素水(30〜35重量%):水=1:1:5(体積比)の洗浄液で、70〜80℃、10分処理するアンモニア・過酸化水素水洗浄工程(SC1)を行った。その後、塩酸(36重量%):過酸化水素水(30〜35重量%):水=1:1:5(体積比)の洗浄液で、70〜80℃、10分処理する塩酸・過酸化水素水洗浄工程(SC2)を行い、SiC基板10を洗浄した。   Next, RCA cleaning step S2 was performed. The RCA cleaning step S2 is ammonia that is treated at 70 to 80 ° C. for 10 minutes with a cleaning solution of ammonia (28 wt%): hydrogen peroxide solution (30 to 35 wt%): water = 1: 1: 5 (volume ratio). -The hydrogen peroxide washing process (SC1) was performed. Then, hydrochloric acid / hydrogen peroxide treated at 70-80 ° C. for 10 minutes with a cleaning solution of hydrochloric acid (36% by weight): hydrogen peroxide (30-35% by weight): water = 1: 1: 5 (volume ratio) A water cleaning step (SC2) was performed to clean the SiC substrate 10.

犠牲酸化工程S3では、図1,2に示した酸化膜形成装置1を用いてSiC基板10の酸化処理を行った。サセプタ11にSiC基板10を保持し、濃度が80体積%以上のオゾンガスを100sccm、300Paで処理炉2に供給し、1000℃で26分間SiC基板10のオゾン処理を行った。このとき、光源4による紫外光の照射は行わなかった。犠牲酸化工程S3で形成された酸化膜は、10nm程度であった。なお、犠牲酸化工程S3では、オゾン酸化後に、SiC基板10のアニール処理(POA)を行わなかった。POAを行うことで、界面準位が少ない酸化膜/SiC界面を形成することができるが、POA工程を行わないことで、プロセス時間を短縮することができる。   In the sacrificial oxidation step S3, the oxidation treatment of the SiC substrate 10 was performed using the oxide film forming apparatus 1 shown in FIGS. The SiC substrate 10 was held on the susceptor 11, ozone gas having a concentration of 80% by volume or more was supplied to the processing furnace 2 at 100 sccm and 300 Pa, and the SiC substrate 10 was subjected to ozone treatment at 1000 ° C. for 26 minutes. At this time, irradiation of ultraviolet light by the light source 4 was not performed. The oxide film formed in the sacrificial oxidation step S3 was about 10 nm. In the sacrificial oxidation step S3, annealing treatment (POA) of the SiC substrate 10 was not performed after the ozone oxidation. By performing POA, an oxide film / SiC interface with few interface states can be formed, but by not performing the POA process, the process time can be shortened.

SiC基板10の酸化処理が終了したら、処理炉2へのオゾン供給を停止し、処理炉2内を真空(10Pa以下)とした。この状態で、SiC基板10の加熱を停止し、SiC基板10を室温まで冷却した。SiC基板10が室温まで冷却された後、不活性ガスをパージして、SiC基板10を処理炉2から取り出してHF洗浄工程S4に供した。   When the oxidation treatment of the SiC substrate 10 was completed, the ozone supply to the processing furnace 2 was stopped, and the inside of the processing furnace 2 was evacuated (10 Pa or less). In this state, heating of SiC substrate 10 was stopped, and SiC substrate 10 was cooled to room temperature. After the SiC substrate 10 was cooled to room temperature, the inert gas was purged, and the SiC substrate 10 was taken out of the processing furnace 2 and subjected to the HF cleaning step S4.

HF洗浄工程S4では、犠牲酸化工程S3でSiC基板10表面に形成された酸化膜をフッ酸(0.5〜10%程度のフッ化水素水溶液)を用いて除去した。   In the HF cleaning step S4, the oxide film formed on the surface of the SiC substrate 10 in the sacrificial oxidation step S3 was removed using hydrofluoric acid (about 0.5 to 10% hydrogen fluoride aqueous solution).

さらに、金属電極層形成工程S5では、HF洗浄工程S4で酸化膜が除去されたSiC基板10の表面17に金属電極層18を形成した。金属電極層18は、ニッケルを1000℃にて合金化して形成し、この金属電極層18をアノード電極とした。実施例の半導体装置15では、直径1mmの円形に形成した金属電極層18を16個形成した。   Further, in the metal electrode layer forming step S5, the metal electrode layer 18 was formed on the surface 17 of the SiC substrate 10 from which the oxide film was removed in the HF cleaning step S4. The metal electrode layer 18 was formed by alloying nickel at 1000 ° C., and this metal electrode layer 18 was used as an anode electrode. In the semiconductor device 15 of the example, 16 metal electrode layers 18 formed in a circle having a diameter of 1 mm were formed.

後工程S6では、金属電極層18にアルミニウムを融点以上の温度で合金化して、金属電極層18にアノード電極パッド19を設けた。また、SiC基板10のアノード電極パッド19が設けられる面の反対側の面(つまり、n+層基板10a)に、オーミック接合によりアルミニウムを合金化して設け、カソード電極20とした。 In the post-process S6, aluminum was alloyed on the metal electrode layer 18 at a temperature equal to or higher than the melting point, and the anode electrode pad 19 was provided on the metal electrode layer 18. Also, aluminum was alloyed on the surface opposite to the surface on which the anode electrode pad 19 of the SiC substrate 10 is provided (that is, the n + layer substrate 10a) by ohmic bonding to form the cathode electrode 20.

[比較例]
比較例の半導体装置製造方法のフローを図4(b)に示す。図4(b)に示すように、比較例の半導体装置の製造方法は、犠牲酸化工程S7以外の工程は、実施例の半導体装置の製造方法と同じである。よって、犠牲酸化工程S7についてのみ詳細に説明し、重複を避けるため他の工程には同じ符号を付してその説明を省略する。
[Comparative example]
The flow of the semiconductor device manufacturing method of the comparative example is shown in FIG. As shown in FIG. 4B, the semiconductor device manufacturing method of the comparative example is the same as the semiconductor device manufacturing method of the embodiment except for the sacrificial oxidation step S7. Therefore, only the sacrificial oxidation step S7 will be described in detail, and in order to avoid duplication, the other steps are denoted by the same reference numerals and description thereof is omitted.

比較例の半導体装置製造方法の犠牲酸化工程S7は、前工程S1及びRCA洗浄工程S2を行った後のSiC基板を処理炉2のサセプタ11に保持し、この処理炉2に100sccm、1.015×106Paで100%酸素ガスを供給して、1200℃、50分間、SiC基板の表面処理を行った。犠牲酸化工程S7で形成された酸化膜は、10nm程度であった。 In the sacrificial oxidation step S7 of the semiconductor device manufacturing method of the comparative example, the SiC substrate after performing the pre-step S1 and the RCA cleaning step S2 is held in the susceptor 11 of the processing furnace 2, and the processing furnace 2 has 100 sccm, 1.015. A surface treatment of the SiC substrate was performed by supplying 100% oxygen gas at × 10 6 Pa at 1200 ° C. for 50 minutes. The oxide film formed in the sacrificial oxidation step S7 was about 10 nm.

犠牲酸化工程S7終了後、実施例の半導体装置製造方法と同様に、HF洗浄工程S4、金属電極層作成工程S5、後工程S6により、比較例の半導体装置にアノード電極、及びカソード電極を設けた。電極は、直径1mmの円形に形成したものを16個形成した。   After completion of the sacrificial oxidation step S7, an anode electrode and a cathode electrode were provided on the semiconductor device of the comparative example by the HF cleaning step S4, the metal electrode layer creation step S5, and the post-step S6, as in the semiconductor device manufacturing method of the example. . Sixteen electrodes formed into a circle having a diameter of 1 mm were formed.

図5は、図3(b)に示す電気的特性評価回路16で、実施例及び比較例の半導体装置の各電極で順方向特性及び逆方向特性を測定した測定結果である。   FIG. 5 shows measurement results obtained by measuring the forward characteristics and the reverse characteristics at the respective electrodes of the semiconductor devices of the example and the comparative example by the electrical characteristic evaluation circuit 16 shown in FIG.

図5(a),(c)に示すように、多くの電極で図中矢印で示した場所よりも高電圧側でオーミックなVI関係が成り立った。図5(a),(b)に示すように、実施例の半導体装置では、順方向特性、逆方向特性のどちらの特性試験でも、不良特性を示す試料が1つであり、残りの15個の試料は良好な特性を示した。一方、図5(c),(d)に示すように、比較例の半導体装置では、順方向特性、逆方向特性どちらの特性試験でも、不良特性を示す試料が3つあり、残りの13個の試料は良好な特性を示した。つまり、実施例の半導体装置の製造方法によれば、比較例の半導体装置の製造方法と比較して、不良電極の数が減少した。   As shown in FIGS. 5 (a) and 5 (c), an ohmic VI relationship was established on the higher voltage side than the location indicated by the arrow in the figure for many electrodes. As shown in FIGS. 5A and 5B, in the semiconductor device of the example, there is one sample exhibiting defective characteristics in the forward characteristic and reverse characteristic tests, and the remaining 15 samples. The sample showed good properties. On the other hand, as shown in FIGS. 5C and 5D, in the semiconductor device of the comparative example, there are three samples showing defective characteristics in both the forward characteristic and reverse characteristic tests, and the remaining 13 samples. The sample showed good properties. That is, according to the semiconductor device manufacturing method of the example, the number of defective electrodes was reduced as compared with the semiconductor device manufacturing method of the comparative example.

以上のように、本発明の半導体装置の製造方法によれば、SiC基板の洗浄に、高濃度(80体積%以上)のオゾンを用いて犠牲酸化膜を作成する犠牲酸化工程と、当該犠牲酸化膜を除去するHF洗浄工程とを有するSiC基板洗浄方法を用いることで、SiC基板表面の金属不純物やカーボン系化合物を効果的に除去することができる。さらに、オゾンの強い酸化力による不純物除去だけでなく、SiC基板の表面の粗さを抑制することができる。その結果、SiC素子の信頼性を向上し、SiC素子の歩留りを向上することができる。   As described above, according to the method for manufacturing a semiconductor device of the present invention, a sacrificial oxidation process for forming a sacrificial oxide film using high-concentration (80% by volume or more) ozone for cleaning an SiC substrate, and the sacrificial oxidation By using the SiC substrate cleaning method including the HF cleaning process for removing the film, it is possible to effectively remove metal impurities and carbon-based compounds on the surface of the SiC substrate. Furthermore, not only the removal of impurities due to the strong oxidizing power of ozone, but also the roughness of the surface of the SiC substrate can be suppressed. As a result, the reliability of the SiC element can be improved and the yield of the SiC element can be improved.

また、200nm以上の波長の光をSiC基板に照射することでSiC基板表面のダメージを低減することができ、300nm以下の波長の光をオゾンに照射することで励起状態原子状酸素を生成することができる。よって、SiC基板の表面をオゾン処理するときに、SiC基板表面にオゾンの分解に必要な紫外光(波長200〜300nmの光を含む)を照射することで、基板表面の洗浄効果をより向上させることができる(例えば、引用文献5)。   Moreover, it is possible to reduce the damage on the surface of the SiC substrate by irradiating the SiC substrate with light having a wavelength of 200 nm or longer, and generating excited state atomic oxygen by irradiating ozone with light having a wavelength of 300 nm or shorter. Can do. Therefore, when the surface of the SiC substrate is subjected to ozone treatment, the cleaning effect on the substrate surface is further improved by irradiating the SiC substrate surface with ultraviolet light (including light having a wavelength of 200 to 300 nm) necessary for ozone decomposition. (For example, cited reference 5).

また、本発明の半導体装置の製造方法は、酸素によるSiC基板表面の製膜速度が3nm/h以下となるようなプロセス条件で、犠牲酸化処理を行うことで、酸素による酸化による影響を低減したSiC基板の洗浄を行うことができる。具体的には、非特許文献1で示されているように、処理圧力が1000Pa以下、処理温度を1200℃以下とすることで、酸素によるSiC基板表面の製膜速度が3nm/h以下となるようにSiC基板表面を酸化することができる。その結果、酸素ガスによるSiC基板表面の酸化反応の進行を抑制し、酸素による不完全な酸化が局所的に行われることでSiC基板表面の洗浄状態が不均一となることを低減することができる。なお、処理圧力が10Pa以上、処理温度を800℃以上とすることで、SiC基板表面に酸化膜を形成することができる。よって、犠牲酸化工程の処理条件は、オゾンガスの供給量:50〜300sccm、処理圧力:10〜1000Pa、処理温度:800〜1200℃とすることで、SiC基板の表面の不純物を除去するだけでなく、SiC基板の表面の粗さを低減したSiC基板の洗浄を行うことができる。   In addition, the method for manufacturing a semiconductor device of the present invention reduces the influence of oxidation by oxygen by performing sacrificial oxidation treatment under process conditions such that the deposition rate of the SiC substrate surface by oxygen is 3 nm / h or less. The SiC substrate can be cleaned. Specifically, as shown in Non-Patent Document 1, by setting the processing pressure to 1000 Pa or less and the processing temperature to 1200 ° C. or less, the deposition rate of the SiC substrate surface by oxygen becomes 3 nm / h or less. Thus, the surface of the SiC substrate can be oxidized. As a result, the progress of the oxidation reaction of the SiC substrate surface by oxygen gas can be suppressed, and the incomplete oxidation by oxygen can be locally performed to reduce the non-uniform cleaning state of the SiC substrate surface. . An oxide film can be formed on the surface of the SiC substrate by setting the processing pressure to 10 Pa or higher and the processing temperature to 800 ° C. or higher. Therefore, the processing conditions of the sacrificial oxidation step are not only removing the impurities on the surface of the SiC substrate by setting the supply amount of ozone gas: 50 to 300 sccm, the processing pressure: 10 to 1000 Pa, and the processing temperature: 800 to 1200 ° C. In addition, it is possible to perform cleaning of the SiC substrate with reduced surface roughness of the SiC substrate.

また、犠牲酸化工程のSiC基板の酸化処理に、高濃度(80体積%以上)のオゾンを用いることで、低温下、短時間で、SiC基板の酸化処理を行うことができる。その結果、SiC基板の熱歪みやSiC基板への不純物の混入を減少させることができる。濃度が80体積%以上、より好ましくは95体積%以上のオゾンをSiC基板の犠牲酸化処理に供することで、良好な酸化膜を形成することができる。特に、略100体積%のオゾンを用いると数分でSiC基板の酸化処理を行うことができる。この処理時間は、80体積%のオゾンで同じ膜厚の酸化膜を形成する形成速度の1.25倍であり、単位時間あたりのSiC基板の処理量が向上する。半導体装置の製造工程は枚葉処理のため、酸化膜形成速度の向上は、半導体装置の生産速度に大きく影響する。   Further, by using ozone with a high concentration (80% by volume or more) for the oxidation treatment of the SiC substrate in the sacrificial oxidation step, the SiC substrate can be oxidized in a short time at a low temperature. As a result, thermal distortion of the SiC substrate and contamination of impurities into the SiC substrate can be reduced. A good oxide film can be formed by subjecting ozone having a concentration of 80% by volume or more, more preferably 95% by volume or more to sacrificial oxidation treatment of the SiC substrate. In particular, when approximately 100% by volume of ozone is used, the SiC substrate can be oxidized in a few minutes. This processing time is 1.25 times the formation speed of forming an oxide film having the same film thickness with 80% by volume of ozone, and the throughput of the SiC substrate per unit time is improved. Since the manufacturing process of the semiconductor device is a single wafer process, the improvement in the oxide film formation rate greatly affects the production rate of the semiconductor device.

また、本発明の半導体装置の製造方法に用いられるSiC基板表面の洗浄方法を、SiC基板にアノード用接触電極を形成する前の基板処理工程に用いることで、結合信頼性の高いSiC/電極層(例えば、Ni)界面を形成することができる。   Further, the SiC / electrode layer having high bonding reliability can be obtained by using the method for cleaning the surface of the SiC substrate used in the method for manufacturing a semiconductor device of the present invention in the substrate processing step before forming the anode contact electrode on the SiC substrate. A (for example, Ni) interface can be formed.

また、コールドウォールの処理炉でSiC基板表面のオゾン処理を行うことで、オゾン処理後のSiC基板を100℃/min以上の降温速度で冷却することができる。犠牲酸化工程終了後、SiC基板を、10Pa以下の真空下で、100℃/min以上の降温速度で室温まで冷却すると、基板へのパーティクルの付着を防止し、ウエハへの不純物の混入を防止することができる。   In addition, by performing ozone treatment on the surface of the SiC substrate in a cold wall processing furnace, the ozone-treated SiC substrate can be cooled at a temperature lowering rate of 100 ° C./min or more. After completion of the sacrificial oxidation process, when the SiC substrate is cooled to room temperature at a temperature lowering speed of 100 ° C./min or higher under a vacuum of 10 Pa or lower, adhesion of particles to the substrate is prevented and contamination of impurities to the wafer is prevented. be able to.

SiC基板の表面をオゾン処理することで、SiC基板表面の炭素不純物が減少することや、品質の良い酸化膜を形成することができることが開示されている(例えば、特許文献4,5)。これに対して、本発明の半導体装置の製造方法は、犠牲酸化工程の酸化処理に80%以上のオゾンを用いることを特徴としている。特に、エピ層内にキャリア分布作成処理を行った後のSiC基板の処理に後のSiC基板の洗浄工程である犠牲酸化工程の酸化にオゾン用いることで、SiC基板と電極層との接合部の信頼性が向上する。この犠牲酸化工程で形成される酸化膜の膜厚を、原子一層分の厚さ(0.4nm)以上、特に10nm程度形成することで、SiC基板と電極層との良好な接合部を得ることができる。   It is disclosed that the surface of the SiC substrate can be treated with ozone to reduce carbon impurities on the surface of the SiC substrate and to form a high quality oxide film (for example, Patent Documents 4 and 5). On the other hand, the semiconductor device manufacturing method of the present invention is characterized in that 80% or more of ozone is used for the oxidation treatment in the sacrificial oxidation step. In particular, by using ozone for the oxidation of the sacrificial oxidation process, which is a subsequent cleaning process of the SiC substrate, in the processing of the SiC substrate after the carrier distribution creation process in the epi layer, the junction of the SiC substrate and the electrode layer is formed. Reliability is improved. By forming the film thickness of the oxide film formed in this sacrificial oxidation step to be more than the thickness of one atomic layer (0.4 nm), particularly about 10 nm, a good junction between the SiC substrate and the electrode layer can be obtained. Can do.

なお、本発明の半導体装置の製造方法について、具体例を示して詳細に説明したが、本発明の半導体装置の製造方法は、上述した実施形態に限定されるものでなく、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明の半導体装置の製造方法である。   In addition, although the manufacturing method of the semiconductor device of this invention was demonstrated in detail, showing the specific example, the manufacturing method of the semiconductor device of this invention is not limited to embodiment mentioned above, The feature of this invention is shown. The design can be changed as appropriate within a range that is not impaired, and the modified form is also the method for manufacturing a semiconductor device of the present invention.

例えば、実施形態の説明では、炭化珪素の単結晶として、4H−SiCからなるSiC基板を用いたが、炭化珪素の単結晶としては、4H−SiCの他にも、2H−SiC、6H−SiC、3C−SiC等、他の結晶形の炭化珪素単結晶をSiC基板として用いることもできる。また、実施例では、単結晶基板の(0001)面に対して、エピ層や金属電極層などを形成したが、(0001)面の他、(000−1)面や(11−20)面に対してエピ層などを形成した基板に本発明の半導体装置製造方法を適用することができる。また、実施例では、オフ角4°のSiC基板を用いたが、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。   For example, in the description of the embodiment, a SiC substrate made of 4H—SiC is used as the silicon carbide single crystal. However, as the silicon carbide single crystal, 2H—SiC and 6H—SiC are available in addition to 4H—SiC. Other crystal forms of silicon carbide single crystal such as 3C—SiC can also be used as the SiC substrate. In the examples, an epi layer, a metal electrode layer, and the like were formed on the (0001) plane of the single crystal substrate. However, in addition to the (0001) plane, the (000-1) plane and the (11-20) plane On the other hand, the semiconductor device manufacturing method of the present invention can be applied to a substrate on which an epi layer or the like is formed. In the embodiment, the SiC substrate having an off angle of 4 ° is used. However, the off angle is not limited to 4 °, and any other angle may be used as long as it is about 0 to 8 °.

また、本発明の半導体装置の製造方法に用いられるSiC基板の洗浄方法は、SiC基板/電極層の界面を接合するときの前処理として行うことに限定されるものではなく、さまざまなSiC基板の界面(例えば、SiC基板/SiO2の界面)に対する前処理として用いることができる。 Further, the SiC substrate cleaning method used in the method for manufacturing a semiconductor device of the present invention is not limited to the pretreatment when bonding the interface of the SiC substrate / electrode layer. It can be used as a pretreatment for the interface (for example, SiC substrate / SiO 2 interface).

また、半導体装置としては、ショットキーバリアダイオード(SBD)の他にMOSFET、IGBTなどの半導体装置においても、SiC表面にショットキー接合またはオーミック接合により電極を形成する場合などに本発明の半導体装置の製造方法に係る洗浄方法を適用することができる。   In addition to Schottky barrier diodes (SBDs), semiconductor devices such as MOSFETs and IGBTs are also used for semiconductor devices when the electrodes are formed on the SiC surface by Schottky junctions or ohmic junctions. A cleaning method according to the manufacturing method can be applied.

1…酸化膜形成装置
2…処理炉
3…オゾン発生器
4…光源
5…光源
6,7…配管
8…オゾン除去装置
9…真空ポンプ
10…SiC基板
10a…n+層基板
10b…n-エピ層
10c…p層
11…サセプタ
15…半導体装置
16…電気的特性評価回路
17…SiC基板の表面(SiC/Ni界面)
18…金属電極層
19…アノード電極パッド
20…カソード電極
21…保護膜
DESCRIPTION OF SYMBOLS 1 ... Oxide film formation apparatus 2 ... Processing furnace 3 ... Ozone generator 4 ... Light source 5 ... Light source 6, 7 ... Pipe 8 ... Ozone removal apparatus 9 ... Vacuum pump 10 ... SiC substrate 10a ... n + layer substrate 10b ... n - epi Layer 10c ... p layer 11 ... susceptor 15 ... semiconductor device 16 ... electric characteristic evaluation circuit 17 ... surface of SiC substrate (SiC / Ni interface)
18 ... Metal electrode layer 19 ... Anode electrode pad 20 ... Cathode electrode 21 ... Protective film

Claims (9)

炭化珪素単結晶基板を、80体積%以上のオゾン雰囲気下で酸化処理し、前記炭化珪素単結晶基板表面に酸化膜を形成する犠牲酸化工程を、
有する
ことを特徴とする半導体装置製造方法。
A sacrificial oxidation step of oxidizing the silicon carbide single crystal substrate in an ozone atmosphere of 80% by volume or more and forming an oxide film on the surface of the silicon carbide single crystal substrate,
A method for manufacturing a semiconductor device, comprising:
前記犠牲酸化工程は、
前記炭化珪素単結晶基板をRCA洗浄処理した後に行う
ことを特徴とする請求項1に記載の半導体装置製造方法。
The sacrificial oxidation step includes
The method of manufacturing a semiconductor device according to claim 1, wherein the method is performed after the silicon carbide single crystal substrate is subjected to an RCA cleaning process.
前記犠牲酸化工程は、酸素による酸化膜の製膜速度が3nm/h以下の条件で行う
ことを特徴とする請求項1または請求項2に記載の半導体装置製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the sacrificial oxidation step is performed under a condition that a deposition rate of an oxide film with oxygen is 3 nm / h or less.
前記犠牲酸化工程の処理条件は、処理圧力が1000Pa以下、処理温度が1200℃以下である
ことを特徴とする請求項3に記載の半導体装置製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the processing conditions of the sacrificial oxidation step are a processing pressure of 1000 Pa or lower and a processing temperature of 1200 ° C. or lower.
前記犠牲酸化工程後に、前記炭化珪素単結晶基板に電極層を形成する電極形成工程を行う
ことを特徴とする請求項1から請求項4のいずれか1項に記載の半導体装置製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein an electrode forming step of forming an electrode layer on the silicon carbide single crystal substrate is performed after the sacrificial oxidation step. 6.
前記酸化膜は、0.4nm以上である
ことを特徴とする請求項1から請求項5のいずれか1項に記載の半導体装置製造方法。
6. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film has a thickness of 0.4 nm or more.
前記炭化珪素結晶基板には、エピタキシャル成長層が形成されている
ことを特徴とする請求項1から請求項6のいずれか1項に記載の半導体装置製造方法。
The semiconductor device manufacturing method according to claim 1, wherein an epitaxial growth layer is formed on the silicon carbide crystal substrate.
前記犠牲酸化工程終了後、前記炭化珪素単結晶基板を、10Pa以下の真空下で、100℃/min以上の降温速度で、室温まで冷却する
ことを特徴とする請求項1から請求項7のいずれか1項に記載の半導体装置製造方法。
8. The silicon carbide single crystal substrate is cooled to room temperature at a temperature lowering rate of 100 [deg.] C./min or higher under a vacuum of 10 Pa or less after the sacrificial oxidation step. 2. A method for manufacturing a semiconductor device according to claim 1.
前記犠牲酸化工程において、前記炭化珪素単結晶基板に、200〜300nmの紫外光を照射して、酸化膜を形成する
ことを特徴とする請求項1から請求項8のいずれか1項に記載の半導体装置製造方法。
9. The oxide film according to claim 1, wherein in the sacrificial oxidation step, the silicon carbide single crystal substrate is irradiated with ultraviolet light of 200 to 300 nm to form an oxide film. Semiconductor device manufacturing method.
JP2012237366A 2012-10-29 2012-10-29 Semiconductor device manufacturing method Expired - Fee Related JP5988299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237366A JP5988299B2 (en) 2012-10-29 2012-10-29 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237366A JP5988299B2 (en) 2012-10-29 2012-10-29 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2014086709A true JP2014086709A (en) 2014-05-12
JP5988299B2 JP5988299B2 (en) 2016-09-07

Family

ID=50789455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237366A Expired - Fee Related JP5988299B2 (en) 2012-10-29 2012-10-29 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5988299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202523A1 (en) 2016-02-18 2017-08-24 Sicrystal Ag Process for the purification of a monocrystalline SiC substrate and SiC substrate
CN110462112A (en) * 2017-03-28 2019-11-15 三菱电机株式会社 Silicon carbide substrate, method of manufacturing silicon carbide substrate, and method of manufacturing silicon carbide semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244227A (en) * 2000-02-25 2001-09-07 Natl Inst Of Advanced Industrial Science & Technology Meti Vapor phase cleaning of semiconductor substrate surface
JP2002075909A (en) * 2000-09-01 2002-03-15 National Institute Of Advanced Industrial & Technology Ohmic electrode structure, manufacturing method thereof, and semiconductor device using ohmic electrode
JP2008283201A (en) * 2008-06-09 2008-11-20 National Institute Of Advanced Industrial & Technology Cold wall type heat treatment furnace and insulating film forming apparatus
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
JP2012114210A (en) * 2010-11-24 2012-06-14 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide semiconductor device and manufacturing apparatus for silicon carbide semiconductor device
JP2012186331A (en) * 2011-03-07 2012-09-27 Hitachi Ltd Semiconductor device and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244227A (en) * 2000-02-25 2001-09-07 Natl Inst Of Advanced Industrial Science & Technology Meti Vapor phase cleaning of semiconductor substrate surface
JP2002075909A (en) * 2000-09-01 2002-03-15 National Institute Of Advanced Industrial & Technology Ohmic electrode structure, manufacturing method thereof, and semiconductor device using ohmic electrode
JP2008283201A (en) * 2008-06-09 2008-11-20 National Institute Of Advanced Industrial & Technology Cold wall type heat treatment furnace and insulating film forming apparatus
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
JP2012114210A (en) * 2010-11-24 2012-06-14 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide semiconductor device and manufacturing apparatus for silicon carbide semiconductor device
JP2012186331A (en) * 2011-03-07 2012-09-27 Hitachi Ltd Semiconductor device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202523A1 (en) 2016-02-18 2017-08-24 Sicrystal Ag Process for the purification of a monocrystalline SiC substrate and SiC substrate
CN110462112A (en) * 2017-03-28 2019-11-15 三菱电机株式会社 Silicon carbide substrate, method of manufacturing silicon carbide substrate, and method of manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP5988299B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
US20120214309A1 (en) Method and apparatus of fabricating silicon carbide semiconductor device
JP2009194216A (en) Manufacturing method of semiconductor device
US20120178259A1 (en) Method of cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
CN104541362A (en) Apparatus and method for selective oxidation at lower temperature using remote plasma source
JPWO2007086196A1 (en) Method for manufacturing silicon carbide semiconductor device
CN101652835A (en) Annealing method of semiconductor device having silicon carbide substrate and semiconductor device
JP2010064918A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal wafer, and silicon carbide single crystal semiconductor power device
TW201203385A (en) Silicon carbide semiconductor device manufacturing method
JP6971622B2 (en) Manufacturing method of semiconductor wafer and semiconductor wafer
CN106611700B (en) A kind of preparation method of silicon carbide oxidation film
JP5988299B2 (en) Semiconductor device manufacturing method
JP5529217B2 (en) Manufacturing method of semiconductor device
TWI815180B (en) Manufacturing method for cleaned bare wafer, bare wafer and semiconductor device
JP5971718B2 (en) Semiconductor device manufacturing method
WO2011158558A1 (en) Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
CN118658778A (en) Method for optimizing minority carrier lifetime of 4H-SiC thick film epitaxial wafer
JP5560774B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP6024962B2 (en) Semiconductor device manufacturing method
JP2006196713A (en) Semiconductor device, manufacturing method thereof, and deuterium treatment apparatus
JP4278635B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6199354B2 (en) Manufacturing method of semiconductor device
JP2012186490A (en) Semiconductor device and semiconductor substrate deuterium treatment apparatus
CN104851792B (en) The processing method of passivation
JP2012094877A (en) Semiconductor device and heavy hydrogen processing apparatus for semiconductor substrate
JP5809317B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5988299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees