JP2014082084A - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP2014082084A JP2014082084A JP2012228623A JP2012228623A JP2014082084A JP 2014082084 A JP2014082084 A JP 2014082084A JP 2012228623 A JP2012228623 A JP 2012228623A JP 2012228623 A JP2012228623 A JP 2012228623A JP 2014082084 A JP2014082084 A JP 2014082084A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- positive electrode
- material layer
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 65
- 239000007773 negative electrode material Substances 0.000 claims abstract description 70
- 238000000576 coating method Methods 0.000 claims abstract description 55
- 239000011248 coating agent Substances 0.000 claims abstract description 52
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 45
- 239000007774 positive electrode material Substances 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 40
- 150000003624 transition metals Chemical class 0.000 claims abstract description 35
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 13
- 239000011149 active material Substances 0.000 claims abstract description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract 2
- -1 transition metal sulfide Chemical class 0.000 claims description 17
- 239000003575 carbonaceous material Substances 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 102
- 238000012360 testing method Methods 0.000 description 43
- 229910052782 aluminium Inorganic materials 0.000 description 21
- 239000011888 foil Substances 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 239000008151 electrolyte solution Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 238000007600 charging Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000011572 manganese Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 239000002482 conductive additive Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 description 3
- 229910012735 LiCo1/3Ni1/3Mn1/3O2 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- OMQHDIHZSDEIFH-UHFFFAOYSA-N 3-Acetyldihydro-2(3H)-furanone Chemical compound CC(=O)C1CCOC1=O OMQHDIHZSDEIFH-UHFFFAOYSA-N 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910004706 CaSi2 Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020646 Co-Sn Inorganic materials 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910020709 Co—Sn Inorganic materials 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- 229910005329 FeSi 2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 229910015915 LiNi0.8Co0.2O2 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012404 LiSnO Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910016006 MoSi Inorganic materials 0.000 description 1
- 229910005881 NiSi 2 Inorganic materials 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910005790 SnSiO Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池に関するものである。 The present invention relates to a lithium ion secondary battery.
リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在リチウムイオン二次電池は、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。そのため、さらに高容量のリチウムイオン二次電池が望まれている。また高容量と共にサイクル特性のよいリチウムイオン二次電池が求められている。 A lithium ion secondary battery is a secondary battery having a high charge / discharge capacity and capable of high output. At present, lithium ion secondary batteries are mainly used as a power source for portable electronic devices, and further expected as a power source for electric vehicles that are expected to be widely used in the future. Therefore, an even higher capacity lithium ion secondary battery is desired. There is also a need for a lithium ion secondary battery with high capacity and good cycle characteristics.
リチウムイオン二次電池は、正極と負極と電解液とから構成されている。正極は、集電体と、集電体の表面に形成された、例えばリチウムと遷移金属との金属複合酸化物からなる正極活物質を含む正極活物質層とからなる。負極は、集電体と、集電体の表面に形成されたリチウムイオンを吸蔵・放出し得る負極活物質を含む負極活物質層とからなる。負極活物質として黒鉛などの炭素材料が広く用いられている。また近年炭素材料に代えて珪素または酸化珪素の使用も検討されている。 A lithium ion secondary battery is composed of a positive electrode, a negative electrode, and an electrolytic solution. The positive electrode includes a current collector and a positive electrode active material layer including a positive electrode active material formed on a surface of the current collector, for example, a metal composite oxide of lithium and a transition metal. The negative electrode includes a current collector and a negative electrode active material layer including a negative electrode active material capable of inserting and extracting lithium ions formed on the surface of the current collector. Carbon materials such as graphite are widely used as the negative electrode active material. In recent years, the use of silicon or silicon oxide instead of carbon materials has been studied.
上記リチウムイオン二次電池について充放電を行うと、電解液を通じて正極活物質と負極活物質との間でリチウムイオンの挿入・脱離が行われる。その際には、電解液が一部還元分解され、その分解生成物が、負極活物質表面を被覆して被膜を形成する。この被膜は、リチウムイオンは通し易いが、電子は通し難いという膜であり、固体電解質界面被膜(SEI:Solid Electrolyte Interphase)と言われている。固体電解質界面被膜は、負極活物質の表面を被覆することで、電解液と負極活物質とが直接接触することを防止して電解液の分解劣化を抑えている。そのため負極活物質の表面にSEIが形成されるとリチウムイオン二次電池はサイクル特性があがる。しかしながらこの被膜は電子を通しにくいため抵抗成分となることが推測される。 When the lithium ion secondary battery is charged / discharged, insertion / extraction of lithium ions is performed between the positive electrode active material and the negative electrode active material through the electrolytic solution. At that time, the electrolytic solution is partially reduced and decomposed, and the decomposition product covers the surface of the negative electrode active material to form a film. This film is a film in which lithium ions can easily pass but electrons cannot easily pass through, and it is said to be a solid electrolyte interface film (SEI: Solid Electrolyte Interface). The solid electrolyte interface coating covers the surface of the negative electrode active material, thereby preventing direct contact between the electrolytic solution and the negative electrode active material, thereby suppressing degradation of the electrolytic solution. Therefore, when SEI is formed on the surface of the negative electrode active material, the lithium ion secondary battery has improved cycle characteristics. However, since this film is difficult to pass electrons, it is assumed that it becomes a resistance component.
また例えば特許文献1では、負極活物質の粒子の表面の少なくとも一部を金属層が被覆している形態が開示されている。実施例において、金属層は電解めっき法で形成されている。最表層に位置する負極活物質粒子の表面が金属層で被覆されていれば、電解質などの分解反応が効果的に抑制されることが記載されている。 For example, Patent Document 1 discloses a form in which a metal layer covers at least a part of the surface of the negative electrode active material particles. In the embodiment, the metal layer is formed by an electrolytic plating method. It is described that if the surface of the negative electrode active material particles located on the outermost layer is coated with a metal layer, the decomposition reaction of the electrolyte and the like is effectively suppressed.
本発明者らは、電解液の分解劣化を抑制できかつ抵抗成分となりにくい被膜を負極活物質層の少なくとも一部に簡便に形成することを検討した。 The inventors of the present invention have studied to easily form a coating that can suppress degradation of the electrolytic solution and hardly become a resistance component on at least a part of the negative electrode active material layer.
本発明は、このような事情に鑑みて為されたものであり、電解液の分解劣化を抑制できかつ抵抗成分となりにくい被膜を簡便に負極活物質層に形成して、サイクル特性を向上できるリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of such circumstances. Lithium which can suppress degradation and degradation of the electrolytic solution and which is difficult to become a resistance component can be easily formed on the negative electrode active material layer to improve cycle characteristics. An object is to provide an ion secondary battery.
本発明者等が鋭意検討した結果、負極を被覆できる材料層を正極に形成しておき、充放電によって負極にこの材料層の構成成分を含む被膜を形成させることができることを見いだした。 As a result of intensive studies by the present inventors, it has been found that a material layer capable of covering the negative electrode is formed on the positive electrode, and a film containing the constituent components of the material layer can be formed on the negative electrode by charging and discharging.
すなわち、本発明のリチウムイオン二次電池は、正極集電体と、正極集電体の表面に形成された正極活物質層とを有する正極と、負極集電体と、負極集電体の表面に形成された負極活物質層とを有する負極と、非水電解液と、を有し、正極は、正極集電体の表面のうち、正極活物質層が形成されていない活物質層未形成部に遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層が形成されていることを特徴とする。 That is, the lithium ion secondary battery of the present invention includes a positive electrode current collector, a positive electrode having a positive electrode active material layer formed on the surface of the positive electrode current collector, a negative electrode current collector, and a surface of the negative electrode current collector. A negative electrode having a negative electrode active material layer formed on the non-aqueous electrolyte, and a positive electrode is an active material layer on which no positive electrode active material layer is formed on the surface of the positive electrode current collector A negative electrode coating material layer containing a transition metal and / or a transition metal sulfide is formed in the portion.
遷移金属は、Zn、Sn、Cu、Ni、Ti及びMoからなる群から選択される少なくとも1つであることが好ましい。 The transition metal is preferably at least one selected from the group consisting of Zn, Sn, Cu, Ni, Ti, and Mo.
負極活物質層は負極活物質を含有し、負極活物質を100質量部としたときに、遷移金属及び/または遷移金属の硫化物は、1質量部以下であることが好ましい。 The negative electrode active material layer contains a negative electrode active material, and when the negative electrode active material is 100 parts by mass, the transition metal and / or transition metal sulfide is preferably 1 part by mass or less.
負極活物質層は炭素系材料からなる負極活物質を含有することが好ましい。 The negative electrode active material layer preferably contains a negative electrode active material made of a carbon-based material.
上記リチウムイオン二次電池を用いて少なくとも初回充放電を行った後に、負極活物質層の表面のすくなくとも一部に少なくとも負極被覆用材料層の構成成分である遷移金属が含まれる被膜が形成されている。 After at least initial charge / discharge using the lithium ion secondary battery, a film containing at least a transition metal that is a constituent component of the negative electrode coating material layer is formed on at least a part of the surface of the negative electrode active material layer. Yes.
また本発明の他のリチウムイオン二次電池は、第1正極集電体と、第1正極集電体の表面に形成された正極活物質層とを有する第1正極と、第2正極集電体と、第2正極集電体の表面に形成された遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層とを有する第2正極と、負極集電体と、負極集電体の表面に形成された負極活物質層とを有する負極と、非水電解液と、を有することを特徴とする。 Another lithium ion secondary battery of the present invention includes a first positive electrode current collector, a first positive electrode having a positive electrode active material layer formed on a surface of the first positive electrode current collector, and a second positive electrode current collector. Body, a second positive electrode having a negative electrode coating material layer containing a transition metal and / or transition metal sulfide formed on the surface of the second positive electrode current collector, a negative electrode current collector, and a negative electrode current collector It has the negative electrode which has the negative electrode active material layer formed in the surface, and a non-aqueous electrolyte, It is characterized by the above-mentioned.
本発明のリチウムイオン二次電池において、正極に遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層を形成することで、少なくとも初回充放電後に負極活物質層の少なくとも一部に少なくとも負極被覆用材料層の構成成分である遷移金属が含まれる被膜が形成される。 In the lithium ion secondary battery of the present invention, by forming a negative electrode coating material layer containing a transition metal and / or transition metal sulfide on the positive electrode, at least a part of the negative electrode active material layer is at least partly after the first charge / discharge. A film containing a transition metal that is a constituent component of the negative electrode coating material layer is formed.
本発明のリチウムイオン二次電池において、充放電によって負極被覆用材料層の構成成分である遷移金属が溶出する。また非水電解液が一部還元分解され、その分解生成物も溶出する。本発明のリチウムイオン二次電池では負極において、負極被覆用材料層の構成成分である遷移金属及び非水電解液の分解生成物を含有する被膜が形成される。この被膜は負極活物質層の表面に位置する負極活物質の表面に選択的に析出する。負極活物質に被膜が形成されることで、電解液と負極活物質とが直接接触することを防止してさらなる電解液の分解劣化を抑制できる。また、この被膜には負極被覆用材料層の構成成分である遷移金属が含有されている。被膜に含有される遷移金属は、リチウムイオン二次電池の正極活物質から溶出したMn等の金属成分の溶出イオンをトラップするため、正極活物質からの溶出イオンによって負極が劣化されることを抑制することが出来る。そのため、本発明のリチウムイオン二次電池はサイクル特性が向上する。 In the lithium ion secondary battery of the present invention, the transition metal that is a constituent component of the negative electrode coating material layer is eluted by charge and discharge. In addition, the non-aqueous electrolyte is partially reduced and decomposed, and the decomposition products are also eluted. In the lithium ion secondary battery of the present invention, in the negative electrode, a film containing a transition metal, which is a component of the negative electrode coating material layer, and a decomposition product of the non-aqueous electrolyte is formed. This film is selectively deposited on the surface of the negative electrode active material located on the surface of the negative electrode active material layer. By forming a film on the negative electrode active material, it is possible to prevent direct contact between the electrolytic solution and the negative electrode active material, and to suppress further degradation of the electrolytic solution. Moreover, the transition metal which is a structural component of the negative electrode coating material layer is contained in this coating film. The transition metal contained in the coating traps the elution ions of metal components such as Mn eluted from the positive electrode active material of the lithium ion secondary battery, so that the negative electrode is prevented from being deteriorated by the elution ions from the positive electrode active material. I can do it. Therefore, the cycle characteristics of the lithium ion secondary battery of the present invention are improved.
<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、正極と、負極と、非水電解液とを有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of this invention has a positive electrode, a negative electrode, and a non-aqueous electrolyte.
正極は、正極集電体と、正極集電体の表面に形成された正極活物質層と、正極集電体の表面のうち、正極活物質層が形成されていない活物質層未形成部に形成された負極被覆用材料層とを有する。 The positive electrode includes a positive electrode current collector, a positive electrode active material layer formed on the surface of the positive electrode current collector, and an active material layer unformed portion where the positive electrode active material layer is not formed on the surface of the positive electrode current collector. And a negative electrode coating material layer formed.
集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体に用いられる材料として、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。また集電体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体の膜厚は、1μm〜200μmであることが好ましい。集電体の表面は、酸化されていても良く、集電体の表面が他の金属や金属酸化物、炭素などで覆われていても良い。 The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. Examples of the material used for the current collector include metal materials such as stainless steel, titanium, nickel, aluminum, and copper, or conductive resins. The current collector can take the form of a foil, a sheet, a film, or the like. Therefore, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably as a collector. The film thickness of the current collector is preferably 1 μm to 200 μm. The surface of the current collector may be oxidized, and the surface of the current collector may be covered with another metal, metal oxide, carbon, or the like.
正極集電体として、アルミニウム箔、ステンレス箔が好適に用いられる。 As the positive electrode current collector, aluminum foil and stainless steel foil are preferably used.
正極活物質層は、正極活物質及び結着剤、必要に応じて導電助剤を含む。 The positive electrode active material layer includes a positive electrode active material, a binder, and, if necessary, a conductive additive.
正極活物質としては、リチウム含有化合物が適当である。例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物などのリチウム含有金属複合酸化物を用いることができる。また正極活物質として他の金属化合物あるいは高分子材料を用いることもできる。他の金属化合物としては、例えば酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの二硫化物が挙げられる。高分子材料としては例えばポリアニリンまたはポリチオフェンなどの導電性高分子やキノン構造を有する有機化合物が挙げられる。 A lithium-containing compound is suitable as the positive electrode active material. For example, lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, and lithium manganese composite oxide can be used. Other metal compounds or polymer materials can also be used as the positive electrode active material. Examples of the other metal compound include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, or disulfides such as titanium sulfide and molybdenum sulfide. Examples of the polymer material include conductive polymers such as polyaniline and polythiophene and organic compounds having a quinone structure.
特に正極活物質は、一般式: LixCopNiqMnrO2 (0.8<x<1.5、p+q+r=1、0<p<1、0≦q<1、0≦r<1)で表される複合金属酸化物を含むことが好ましい。上記複合金属酸化物は、熱安定性に優れ、低コストであるため、上記複合金属酸化物を含むことによって、熱安定性のよい、安価なリチウムイオン二次電池とすることができる。 In particular, the positive electrode active material has a general formula: Li x Co p Ni q Mn r O 2 (0.8 <x <1.5, p + q + r = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r < It is preferable that the composite metal oxide represented by 1) is included. Since the composite metal oxide is excellent in thermal stability and low in cost, by including the composite metal oxide, an inexpensive lithium ion secondary battery with good thermal stability can be obtained.
上記複合金属酸化物として、例えばLiCo1/3Ni1/3Mn1/3O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.5Co0.2Mn0.3O2、LiCoO2、LiNi0.8Co0.2O2を用いることができる。中でもLiCo1/3Ni1/3Mn1/3O2は、熱安定性の点で好ましい。 Examples of the composite metal oxide include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 can be used. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is preferable from the viewpoint of thermal stability.
結着剤は、正極活物質や導電助剤を集電体に繋ぎ止める役割を果たす。結着剤としては、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を用いることができる。 The binder plays a role of connecting the positive electrode active material and the conductive additive to the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. Can be used.
導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、あるいは金属微粒子であるニッケルフレーク、銅フレーク等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極活物質100質量部に対して、1〜30質量部程度とすることができる。 The conductive assistant is added to increase the conductivity of the electrode. Carbon black, graphite, acetylene black (AB), Ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), or nickel flakes, which are metal fine particles, as a conductive auxiliary agent, Copper flakes and the like can be added alone or in combination of two or more. The amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the positive electrode active material.
正極活物質層は、正極活物質および結着剤、必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらに上記組成物に適当な溶剤を加えてペースト状にしてから、正極集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。 The positive electrode active material layer is prepared by preparing a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder and, if necessary, a conductive additive, and adding a suitable solvent to the above composition to make a paste. Thus, it can be formed after being applied to the surface of the positive electrode current collector and then dried and compressed as necessary to increase the electrode density.
正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いることができる。 As a method for applying the composition for forming a positive electrode active material layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method can be used.
粘度調整のための溶剤としては、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用できる。 As a solvent for adjusting the viscosity, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK) and the like can be used.
負極被覆用材料層は、遷移金属または遷移金属の硫化物を含む。これらの遷移金属あるいは遷移金属の硫化物は、充放電時にイオンとして溶出させることが出来るものであれば特に限定されない。遷移金属としてMnやFeを用いることも可能であるが、負極に形成された被膜から再度遷移金属が溶出することが懸念される場合は、遷移金属としてMnやFeを用いるよりも、Zn、Sn、Cu、Ni、Ti及びMoからなる群から選択される少なくとも1つを用いることが好ましい。特に負極被覆用材料層は、ZnS、Cu及びMoから選ばれる少なくとも1つを含むことが好ましい。 The negative electrode coating material layer includes a transition metal or a transition metal sulfide. These transition metals or sulfides of transition metals are not particularly limited as long as they can be eluted as ions during charge / discharge. Although it is possible to use Mn or Fe as the transition metal, if there is a concern that the transition metal elutes again from the coating formed on the negative electrode, Zn or Sn is used rather than using Mn or Fe as the transition metal. It is preferable to use at least one selected from the group consisting of Cu, Ni, Ti and Mo. In particular, the negative electrode coating material layer preferably contains at least one selected from ZnS, Cu and Mo.
負極被覆用材料層を、正極集電体の表面のうち正極活物質層が形成されていない活物質層未形成部に形成する方法は特に限定されない。負極被覆用材料層は正極活物質層を形成する前に形成されてもよいし、正極活物質層を形成してから形成されてもよい。負極被覆用材料層の形成方法は、真空蒸着法、スパッタリング法、化学的気相成長法(CVD法)、コーティング法等が使用できる。 The method for forming the negative electrode coating material layer in the active material layer non-formed part where the positive electrode active material layer is not formed on the surface of the positive electrode current collector is not particularly limited. The negative electrode coating material layer may be formed before the positive electrode active material layer is formed, or may be formed after the positive electrode active material layer is formed. As a method for forming the negative electrode coating material layer, a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), a coating method, or the like can be used.
特に負極被覆用材料層の形成方法はスパッタリング法が好ましい。スパッタリング法を用いて負極被覆用材料層を形成すれば、コーティング法に比べて負極被覆用材料層にバインダー成分などを含まなくてもよいため、均質で、密着性の高い膜が形成できる。またスパッタリング法を用いれば、真空蒸着法やCVD法に比べて、密着性の高い膜が形成できる。 In particular, the method for forming the negative electrode coating material layer is preferably a sputtering method. If the negative electrode coating material layer is formed by sputtering, it is not necessary to include a binder component or the like in the negative electrode coating material layer as compared with the coating method, so that a homogeneous and highly adhesive film can be formed. In addition, if a sputtering method is used, a film having higher adhesion can be formed as compared with a vacuum deposition method or a CVD method.
正極集電体の活物質層未形成部の表面に負極被覆用材料層を形成した第1実施形態の正極を説明する模式図を図1に示す。図1において、正極集電体1の片面上に正極活物質層2と負極被覆用材料層3とが隣接して形成されている。 FIG. 1 shows a schematic diagram for explaining the positive electrode of the first embodiment in which a negative electrode coating material layer is formed on the surface of the positive electrode current collector where the active material layer is not formed. In FIG. 1, a positive electrode active material layer 2 and a negative electrode coating material layer 3 are formed adjacent to each other on one surface of a positive electrode current collector 1.
また第2実施形態の正極を説明する模式図を図2に示す。図2においては、正極集電体1の一方の面に正極活物質層2が形成され、正極集電体1の他方の面に負極被覆用材料層3が形成されている。 Moreover, the schematic diagram explaining the positive electrode of 2nd Embodiment is shown in FIG. In FIG. 2, the positive electrode active material layer 2 is formed on one surface of the positive electrode current collector 1, and the negative electrode coating material layer 3 is formed on the other surface of the positive electrode current collector 1.
負極被覆用材料層は、リチウムイオン二次電池の充放電後にその構成成分を含む被膜を主に負極活物質の表面に形成するための材料である。そのため負極活物質を100質量部としたときに、遷移金属及び/または遷移金属の硫化物は、1質量部以下であることが好ましい。 The negative electrode coating material layer is a material for forming a coating film containing its constituent components mainly on the surface of the negative electrode active material after charging and discharging of the lithium ion secondary battery. Therefore, when the negative electrode active material is 100 parts by mass, the transition metal and / or transition metal sulfide is preferably 1 part by mass or less.
負極活物質100質量部としたときに遷移金属及び/または遷移金属の硫化物が1質量部より多いと、負極活物質の表面に形成される被膜の厚みが厚くなり、リチウムイオンの移動の抵抗が高くなるため好ましくない。 If the amount of transition metal and / or transition metal sulfide is more than 1 part by mass when the negative electrode active material is 100 parts by mass, the thickness of the coating formed on the surface of the negative electrode active material increases and resistance to lithium ion migration. Is unfavorable because of the high.
基本的に負極活物質層において負極活物質の占める割合は多い。従って、厳密には負極活物質層における負極活物質の含有割合にもよるが、負極活物質層が50μm〜200μmの厚みで形成されると、目安として負極被覆用材料層は100nm〜400nmの厚みで形成されればよい。 Basically, the proportion of the negative electrode active material in the negative electrode active material layer is large. Therefore, strictly speaking, depending on the content ratio of the negative electrode active material in the negative electrode active material layer, when the negative electrode active material layer is formed with a thickness of 50 μm to 200 μm, the negative electrode coating material layer has a thickness of 100 nm to 400 nm as a guide. May be formed.
負極は、負極集電体と、負極集電体の表面に形成された負極活物質層とを有する。 The negative electrode has a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
負極集電体には正極集電体で説明した集電体と同様のものを使用できる。特に負極集電体には銅箔が好適に用いられる。 As the negative electrode current collector, the same current collector as described for the positive electrode current collector can be used. In particular, a copper foil is suitably used for the negative electrode current collector.
負極活物質層は、負極活物質及び結着剤、必要に応じて導電助剤を含む。 The negative electrode active material layer includes a negative electrode active material, a binder, and, if necessary, a conductive additive.
負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する元素化合物、あるいは高分子材料などを用いることができる。 As the negative electrode active material, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
炭素系材料としては、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biの少なくとも1種であるとよい。中でも、リチウムを合金化可能な元素は、珪素(Si)または錫(Sn)であるとよい。 Elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn. , Pb, Sb, Bi. Among them, the element capable of alloying lithium is preferably silicon (Si) or tin (Sn).
リチウムと合金化可能な元素を有する元素化合物としては、例えば、ZnLiAl、AlSb、SiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si3N4、Si2N2O、SiOv(0<v≦2)、SnOw(0<w≦2)、SnSiO3、LiSiOあるいはLiSnOが使用できる。リチウムと合金化反応可能な元素を有する元素化合物は珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物には、例えば、スズ合金(Cu−Sn合金、Co−Sn合金等)が使用できる。 Examples of elemental compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO can be used. The elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. The silicon compound is preferably SiO x (0.5 ≦ x ≦ 1.5). For the tin compound, for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be used.
高分子材料としては、ポリアセチレン、ポリピロールなどが使用できる。 As the polymer material, polyacetylene, polypyrrole, or the like can be used.
負極活物質は炭素系材料からなることが好ましい。リチウムイオン二次電池を高電圧、高温で使用すると、正極活物質中に含まれる例えばMnのような金属成分や正極集電体の例えばAlのような成分が溶出することがある。溶出されたMnやAlは、負極活物質である炭素系材料の本来Liイオンが挿入される層間に入ってしまい、Liイオンがその層間に挿入できなくなる。本発明では、負極活物質の表面に遷移金属成分が含まれた被膜が形成される。この遷移金属成分は溶出されたMnやAlを吸着しやすい。そのため本発明のリチウムイオン二次電池では、MnやAlが炭素系材料の層間に入るのを抑制できる。そのため負極活物質が炭素系材料であると、リチウムイオン二次電池のサイクル特性を向上する被膜の効果が顕著に見られる。 The negative electrode active material is preferably made of a carbon-based material. When a lithium ion secondary battery is used at high voltage and high temperature, a metal component such as Mn contained in the positive electrode active material or a component such as Al in the positive electrode current collector may be eluted. The eluted Mn and Al enter the layer where the original Li ions of the carbon-based material as the negative electrode active material are inserted, and Li ions cannot be inserted between the layers. In the present invention, a film containing a transition metal component is formed on the surface of the negative electrode active material. This transition metal component easily adsorbs eluted Mn and Al. Therefore, in the lithium ion secondary battery of this invention, it can suppress that Mn and Al enter into the interlayer of a carbonaceous material. Therefore, when the negative electrode active material is a carbon-based material, the effect of the coating that improves the cycle characteristics of the lithium ion secondary battery is noticeable.
負極の結着剤及び導電助剤には正極と同様のものを使用できる。 As the negative electrode binder and the conductive additive, the same materials as those for the positive electrode can be used.
非水電解液としては、リチウムイオン二次電池に用いることの出来る非水電解液が使用できる。非水電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。 As the non-aqueous electrolyte, a non-aqueous electrolyte that can be used for a lithium ion secondary battery can be used. The nonaqueous electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.
溶媒として、例えば環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンが使用できる。 As the solvent, for example, cyclic esters, chain esters, and ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. As ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane can be used.
また上記電解液に溶解させる電解質として、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2等のリチウム塩を使用することが出来る。電解質として特にLiPF6、LiBF4が好ましい。 As the electrolyte dissolved in the electrolytic solution, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used. As the electrolyte, LiPF 6 and LiBF 4 are particularly preferable.
非水電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO4、LiPF6、LiBF4、LiCF3SO3などのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することが出来る。 As the non-aqueous electrolyte, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate and the like to 0.5 mol / l to 1.7 mol. A solution dissolved at a concentration of about 1 / l can be used.
また本発明の他のリチウムイオン二次電池は、第1正極集電体と、第1正極集電体の表面に形成された正極活物質層とを有する第1正極と、第2正極集電体と、第2正極集電体の表面に形成された遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層とを有する第2正極と、負極集電体と、負極集電体の表面に形成された負極活物質層とを有する負極と、非水電解液と、を有することを特徴とする。 Another lithium ion secondary battery of the present invention includes a first positive electrode current collector, a first positive electrode having a positive electrode active material layer formed on a surface of the first positive electrode current collector, and a second positive electrode current collector. Body, a second positive electrode having a negative electrode coating material layer containing a transition metal and / or transition metal sulfide formed on the surface of the second positive electrode current collector, a negative electrode current collector, and a negative electrode current collector It has the negative electrode which has the negative electrode active material layer formed in the surface, and a non-aqueous electrolyte, It is characterized by the above-mentioned.
この他のリチウムイオン二次電池の構成は、正極活物質層を有する第1正極とあわせて、正極活物質層を有しない負極被覆用材料層を有する第2正極を有することを特徴とする。このリチウムイオン二次電池を第3実施形態とする。第3実施形態のリチウムイオン二次電池を説明する模式図を図3に示す。 The structure of this other lithium ion secondary battery is characterized by having a second positive electrode having a negative electrode coating material layer not having a positive electrode active material layer, in addition to the first positive electrode having a positive electrode active material layer. This lithium ion secondary battery is referred to as a third embodiment. FIG. 3 shows a schematic diagram for explaining a lithium ion secondary battery of the third embodiment.
図3に示すリチウムイオン二次電池は、正極集電体1の2面に正極活物質層2が形成されている第1正極60と、負極集電体4の片面に負極活物質層5が形成されている負極70と、第2正極集電体11の全面に負極被覆用材料層3が形成されている第2正極80とを有する。図3に図示されてはいないが、第3実施形態のリチウムイオン二次電池において、第1正極60と負極70とは交互に複数積層され、一個または複数個の第2正極80が最外周部または正極及び負極の積層される間に配置される。この第3実施形態において、充放電後に複数の負極70の表面に被膜が形成できる。 The lithium ion secondary battery shown in FIG. 3 includes a first positive electrode 60 in which the positive electrode active material layer 2 is formed on two surfaces of the positive electrode current collector 1, and a negative electrode active material layer 5 on one surface of the negative electrode current collector 4. The negative electrode 70 is formed, and the second positive electrode 80 having the negative electrode coating material layer 3 formed on the entire surface of the second positive electrode current collector 11. Although not shown in FIG. 3, in the lithium ion secondary battery of the third embodiment, a plurality of first positive electrodes 60 and negative electrodes 70 are alternately stacked, and one or a plurality of second positive electrodes 80 are provided at the outermost peripheral portion. Or it arrange | positions between lamination | stacking of a positive electrode and a negative electrode. In the third embodiment, a film can be formed on the surfaces of the plurality of negative electrodes 70 after charge and discharge.
上記した正極および負極にセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。 A separator is sandwiched between the positive electrode and the negative electrode described above to form an electrode body. Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.
リチウムイオン二次電池の形状は、特に限定されず、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.
上記したリチウムイオン二次電池を用いて少なくとも初回充放電を行った後に、負極活物質層の表面のすくなくとも一部に少なくとも負極被覆用材料層の構成成分が含まれる被膜が形成される。 After at least initial charge / discharge using the above-described lithium ion secondary battery, a film containing at least the constituent components of the negative electrode coating material layer is formed at least in part on the surface of the negative electrode active material layer.
被膜は少なくとも負極被覆用材料層の構成成分である遷移金属が含まれる。被膜は、遷移金属以外に、非水電解液の分解生成物を含有する。この被膜の成分は、例えばEDX(エネルギー分散型X線分光法:Energy Dispersive X−ray Spectroscopy)等を用いて測定することが出来る。 The coating contains at least a transition metal that is a constituent component of the negative electrode coating material layer. The coating contains a decomposition product of the nonaqueous electrolytic solution in addition to the transition metal. The component of this film can be measured using, for example, EDX (Energy Dispersive X-ray Spectroscopy).
この被膜は負極活物質層の表面のすくなくとも一部に形成される。この被膜は負極活物質層の表面に位置する負極活物質の表面に選択的に析出する。負極活物質に被膜が形成されることで、電解液と負極活物質とが直接接触することを防止してさらなる電解液の分解劣化を抑制できる。また、この被膜には負極被覆用材料層の構成成分である遷移金属が含有されている。被膜に含有される遷移金属は、リチウムイオン二次電池の正極活物質から溶出したMn等の金属成分の溶出イオンをトラップするため、正極活物質からの溶出イオンによって負極が劣化されることを抑制することが出来る。 This coating is formed on at least a part of the surface of the negative electrode active material layer. This film is selectively deposited on the surface of the negative electrode active material located on the surface of the negative electrode active material layer. By forming a film on the negative electrode active material, it is possible to prevent direct contact between the electrolytic solution and the negative electrode active material, and to suppress further degradation of the electrolytic solution. Moreover, the transition metal which is a structural component of the negative electrode coating material layer is contained in this coating film. The transition metal contained in the coating traps the elution ions of metal components such as Mn eluted from the positive electrode active material of the lithium ion secondary battery, so that the negative electrode is prevented from being deteriorated by the elution ions from the positive electrode active material. I can do it.
被膜は1nm〜50nmの厚みを有することが好ましい。被膜が1nm以上の厚みであれば、負極を保護することが出来る。被膜が50nmより厚いと、リチウムイオンの移動の抵抗が高くなるため好ましくない。 The coating preferably has a thickness of 1 nm to 50 nm. If the film has a thickness of 1 nm or more, the negative electrode can be protected. If the film is thicker than 50 nm, the resistance to movement of lithium ions increases, which is not preferable.
以上説明した本発明のリチウムイオン二次電池は、携帯電話、ノートパソコン等の携帯機器、情報関連機器の分野の他、定置用分野や自動車の分野においても好適に利用できる。 The lithium ion secondary battery of the present invention described above can be suitably used not only in the field of portable devices such as mobile phones and notebook computers, and information-related devices, but also in the field of stationary and automobiles.
以上、本発明のリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the lithium ion secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
<ラミネート型リチウムイオン二次電池作製>
(試験例1)
正極集電体として、厚み20μmのアルミニウム箔を準備した。アルミニウム箔をスパッタリング装置に入れ、その片面にZnSをスパッタリングし、膜厚100nmのZnS層を形成した。
<Production of laminated lithium-ion secondary battery>
(Test Example 1)
An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The aluminum foil was put in a sputtering apparatus, and ZnS was sputtered on one surface thereof to form a ZnS layer having a thickness of 100 nm.
片面にZnS層を形成したアルミニウム箔の裏面に以下のように正極活物質層を形成した。まず正極活物質としてLiCo1/3Ni1/3Mn1/3O2と導電助剤としてアセチレンブラックとを、それぞれ88質量部、6質量部と、結着剤としてポリフッ化ビニリデン(PVDF)6質量部とを混合し、この混合物を適量のN−メチル−2−ピロリドン(NMP)に分散させて、スラリーを作製した。 A positive electrode active material layer was formed on the back surface of an aluminum foil having a ZnS layer formed on one side as follows. First, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive additive, 88 parts by mass and 6 parts by mass, respectively, and polyvinylidene fluoride (PVDF) 6 as a binder A part by mass was mixed, and the mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.
上記アルミニウム箔のZnS層が形成されていない面にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した後、ロ−ルプレス機により、ZnS層が形成されたアルミニウム箔とアルミニウム箔上の塗布物を強固に密着接合させた。この時電極密度は2.3g/cm2となるようにした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ50μm程度の正極とした。 The slurry was placed on the surface of the aluminum foil on which the ZnS layer was not formed, and applied using a doctor blade so that the slurry became a film. The obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the aluminum foil on which the ZnS layer was formed and the coating on the aluminum foil were tightly bonded with a roll press. . At this time, the electrode density was set to 2.3 g / cm 2 . The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and formed into a positive electrode having a thickness of about 50 μm.
負極は以下のように作製した。黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン−ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ45μm程度の負極とした。 The negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive additive, 1 part by mass of styrene-butadiene rubber (SBR) and 1 part by mass of carboxymethylcellulose (CMC) as a binder are mixed, and this mixture is mixed. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 μm as a negative electrode current collector so as to form a film using a doctor blade, and the current collector coated with the slurry was dried and pressed. It was heated with a vacuum dryer for a time, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and a negative electrode having a thickness of about 45 μm was obtained.
上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒に1モルのLiPF6を溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、試験例1のラミネート型リチウムイオン二次電池を作製した。 A laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution obtained by dissolving 1 mol of LiPF 6 in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 3: 7 (volume ratio) was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate type lithium ion secondary battery of Test Example 1 was produced.
試験例1のラミネート型リチウムイオン二次電池において、負極活物質を100質量部とした場合にZnS層は1質量部であった。 In the laminate type lithium ion secondary battery of Test Example 1, when the negative electrode active material was 100 parts by mass, the ZnS layer was 1 part by mass.
(試験例2)
正極集電体として、厚み20μmのアルミニウム箔を準備した。アルミニウム箔をスパッタリング装置に入れ、その片面にCuをスパッタリングし、膜厚100nmのCu層を形成した。
(Test Example 2)
An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The aluminum foil was put in a sputtering apparatus, and Cu was sputtered on one surface to form a Cu layer having a thickness of 100 nm.
このCu層を形成したアルミニウム箔を正極用集電体として用いた以外は試験例1と同様にして試験例2のラミネート型リチウムイオン二次電池を作製した。 A laminated lithium ion secondary battery of Test Example 2 was produced in the same manner as in Test Example 1 except that the aluminum foil on which the Cu layer was formed was used as a positive electrode current collector.
試験例2のラミネート型リチウムイオン二次電池において、負極活物質を100質量部とした場合にCu層は5質量部であった。 In the laminated lithium ion secondary battery of Test Example 2, when the negative electrode active material was 100 parts by mass, the Cu layer was 5 parts by mass.
(試験例3)
正極集電体として、厚み20μmのアルミニウム箔を準備した。アルミニウム箔をスパッタリング装置に入れ、その片面にMoをスパッタリングし、膜厚100nmのMo層を形成した。
(Test Example 3)
An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The aluminum foil was put in a sputtering apparatus, and Mo was sputtered on one surface thereof to form a Mo layer having a thickness of 100 nm.
このMo層を形成したアルミニウム箔を正極用集電体として用いた以外は試験例1と同様にして試験例3のラミネート型リチウムイオン二次電池を作製した。 A laminated lithium ion secondary battery of Test Example 3 was produced in the same manner as in Test Example 1 except that the aluminum foil on which the Mo layer was formed was used as a positive electrode current collector.
試験例1のラミネート型リチウムイオン二次電池において、負極活物質を100質量部とした場合にMo層は5質量部であった。 In the laminated lithium ion secondary battery of Test Example 1, when the negative electrode active material was 100 parts by mass, the Mo layer was 5 parts by mass.
(試験例4)
正極集電体として、厚み20μmのアルミニウム箔を準備し、そのアルミニウム箔を正極用集電体として用いた以外は試験例1と同様にして試験例4のラミネート型リチウムイオン二次電池を作製した。
(Test Example 4)
A laminated lithium ion secondary battery of Test Example 4 was prepared in the same manner as in Test Example 1 except that an aluminum foil having a thickness of 20 μm was prepared as the positive electrode current collector, and that aluminum foil was used as the positive electrode current collector. .
<被膜の確認>
試験例1、試験例2及び試験例3のラミネート型リチウムイオン二次電池を以下の条件で充放電を行った。
<Confirmation of coating>
The laminated lithium ion secondary batteries of Test Example 1, Test Example 2 and Test Example 3 were charged and discharged under the following conditions.
充電の際は55℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電の際は電圧3.0V、1CレートでCC放電(定電流放電)を行った。 At the time of charging, CCCV charging (constant current constant voltage charging) was performed at 55 ° C. at a 1C rate and a voltage of 4.5V. The voltage was held for 1 hour. When discharging, CC discharge (constant current discharge) was performed at a voltage of 3.0 V and a 1 C rate.
上記充放電操作後、各電池を解体し、負極集電体より負極活物質層を分離させ、EDX装置(エネルギー分散型X線分光装置)を用いて加速電圧15kVにて測定を行った。試験例1、試験例2、試験例3の測定結果のEDXスペクトルを各々図4、図5、図6に示す。 After the charge / discharge operation, each battery was disassembled, the negative electrode active material layer was separated from the negative electrode current collector, and measurement was performed at an acceleration voltage of 15 kV using an EDX apparatus (energy dispersive X-ray spectrometer). The EDX spectra of the measurement results of Test Example 1, Test Example 2, and Test Example 3 are shown in FIGS. 4, 5, and 6, respectively.
図4に示すEDXスペクトルから、Zn、S、F及びPが検出されたことがわかった。このことから試験例1の負極活物質層にはZn、S、F及びPの成分を有する被膜が形成されていることが確認できた。この被膜の膜厚は50nmであった。被膜の膜厚は断面SEM観察で測定した。 From the EDX spectrum shown in FIG. 4, it was found that Zn, S, F and P were detected. From this, it was confirmed that the negative electrode active material layer of Test Example 1 was formed with a film having Zn, S, F, and P components. The film thickness of this film was 50 nm. The film thickness was measured by cross-sectional SEM observation.
図5に示すEDXスペクトルから、Cu、Fが検出されたことがわかった。このことから試験例2の負極活物質層にはCu及びFの成分を有する被膜が形成されていることが確認できた。この被膜の膜厚は200nmであった。 From the EDX spectrum shown in FIG. 5, it was found that Cu and F were detected. From this, it was confirmed that a film having Cu and F components was formed on the negative electrode active material layer of Test Example 2. The film thickness of this coating was 200 nm.
図6に示すEDXスペクトルから、Mo、P、Fが検出されたことがわかった。このことから試験例3の負極活物質層にはMo、P及びFの成分を有する被膜が形成されていることが確認できた。この被膜の膜厚は200nmであった。 From the EDX spectrum shown in FIG. 6, it was found that Mo, P, and F were detected. From this, it was confirmed that a film having Mo, P and F components was formed on the negative electrode active material layer of Test Example 3. The film thickness of this coating was 200 nm.
<サイクル特性評価>
試験例1及び試験例4のラミネート型リチウムイオン二次電池のサイクル特性を評価した。サイクル特性の評価としては、以下の条件で充放電を繰り返したサイクル試験を行い各サイクルの放電容量を測定した。充電の際は、55℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。CV充電は、電圧4.5Vにて一時間保持した。放電の際は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、25サイクルまでサイクル試験を行った。サイクル試験の前後に電流レートが0.33Cの時の容量を測定し、サイクル試験前の0.33Cの時の容量を初期容量とし、サイクル試験後の0.33Cの時の容量をサイクル後容量として容量維持率を計算した。容量維持率(%)は以下の式で求めた。
容量維持率(%)=(サイクル後容量/初期容量)×100
結果を表1に示す。
<Cycle characteristic evaluation>
The cycle characteristics of the laminated lithium ion secondary batteries of Test Example 1 and Test Example 4 were evaluated. As an evaluation of the cycle characteristics, a cycle test in which charging and discharging were repeated under the following conditions was performed, and the discharge capacity of each cycle was measured. At the time of charging, CCCV charging (constant current constant voltage charging) was performed at 55 ° C. at a 1C rate and a voltage of 4.5V. CV charging was held at a voltage of 4.5V for 1 hour. When discharging, CC discharge (constant current discharge) was performed at 3.0 V and 1 C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Before and after the cycle test, the capacity when the current rate is 0.33C is measured, the capacity when the current rate is 0.33C before the cycle test is the initial capacity, and the capacity when the current rate is 0.33C after the cycle test is the capacity after the cycle. The capacity maintenance rate was calculated as The capacity retention rate (%) was obtained by the following formula.
Capacity retention rate (%) = (capacity after cycle / initial capacity) × 100
The results are shown in Table 1.
表1より試験例4のラミネート型リチウムイオン二次電池に比べて試験例1のラミネート型リチウムイオン二次電池の容量維持率は大幅に向上した。ここで試験例1のラミネート型リチウムイオン二次電池における初期容量が、試験例4のラミネート型リチウムイオン二次電池におけるものと比べて低下したことがわかった。試験例1の負極の導電性と試験例4の負極の導電性を測定したところ、試験例1の負極の導電性と試験例4の負極の導電性は同等であった。そのため本来なら試験例1の初期容量は試験例4の初期容量と同等のはずであるが、この初期容量の低下は、ZnがLiを吸蔵する物質であるため、初回にLiがZnに吸蔵された分が不可逆容量となった結果であると判断した。初期容量の設定は、負極被覆用材料層の厚み及び正負極の容量設計により最適化することができる。 From Table 1, the capacity retention rate of the laminate type lithium ion secondary battery of Test Example 1 was significantly improved as compared with the laminate type lithium ion secondary battery of Test Example 4. Here, it was found that the initial capacity of the laminate type lithium ion secondary battery of Test Example 1 was lower than that of the laminate type lithium ion secondary battery of Test Example 4. When the conductivity of the negative electrode of Test Example 1 and the conductivity of the negative electrode of Test Example 4 were measured, the conductivity of the negative electrode of Test Example 1 and the conductivity of the negative electrode of Test Example 4 were equivalent. Therefore, the initial capacity of Test Example 1 should be equivalent to the initial capacity of Test Example 4, but this decrease in initial capacity is caused by the fact that Zn is a substance that occludes Li, so that Li is occluded by Zn for the first time. It was judged that the result was an irreversible capacity. The setting of the initial capacity can be optimized by the thickness of the negative electrode coating material layer and the capacity design of the positive and negative electrodes.
1:正極集電体、2:正極活物質層、3:負極被覆用材料層、4:負極集電体、5:負極活物質層、11:第2正極集電体、60:第1正極、70:負極、80:第2正極。 1: positive electrode current collector, 2: positive electrode active material layer, 3: negative electrode coating material layer, 4: negative electrode current collector, 5: negative electrode active material layer, 11: second positive electrode current collector, 60: first positive electrode , 70: negative electrode, 80: second positive electrode.
Claims (6)
負極集電体と、該負極集電体の表面に形成された負極活物質層とを有する負極と、
非水電解液と、
を有し、
前記正極は、前記正極集電体の表面のうち、前記正極活物質層が形成されていない活物質層未形成部に遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層が形成されていることを特徴とするリチウムイオン二次電池。 A positive electrode having a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector;
A negative electrode having a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector;
A non-aqueous electrolyte,
Have
In the positive electrode, a negative electrode coating material layer containing a transition metal and / or a transition metal sulfide is formed on the surface of the positive electrode current collector in an active material layer non-formed portion where the positive electrode active material layer is not formed. Lithium ion secondary battery characterized by being made.
第2正極集電体と、該第2正極集電体の表面に形成された遷移金属及び/または遷移金属の硫化物を含む負極被覆用材料層とを有する第2正極と、
負極集電体と、該負極集電体の表面に形成された負極活物質層とを有する負極と、
非水電解液と、
を有することを特徴とするリチウムイオン二次電池。 A first positive electrode having a first positive electrode current collector and a positive electrode active material layer formed on the surface of the first positive electrode current collector;
A second positive electrode having a second positive electrode current collector and a negative electrode coating material layer containing a transition metal and / or a transition metal sulfide formed on the surface of the second positive electrode current collector;
A negative electrode having a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector;
A non-aqueous electrolyte,
A lithium ion secondary battery comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012228623A JP2014082084A (en) | 2012-10-16 | 2012-10-16 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012228623A JP2014082084A (en) | 2012-10-16 | 2012-10-16 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014082084A true JP2014082084A (en) | 2014-05-08 |
Family
ID=50786107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012228623A Pending JP2014082084A (en) | 2012-10-16 | 2012-10-16 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014082084A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015193982A1 (en) * | 2014-06-18 | 2015-12-23 | 株式会社日立製作所 | Lithium ion battery and method for manufacturing same |
JP2017191773A (en) * | 2016-04-06 | 2017-10-19 | 株式会社東芝 | Nonaqueous electrolyte battery, battery pack, and vehicle |
JP2018517266A (en) * | 2015-08-25 | 2018-06-28 | エルジー・ケム・リミテッド | Negative electrode for secondary battery and secondary battery including the same |
JP2020113487A (en) * | 2019-01-15 | 2020-07-27 | トヨタ自動車株式会社 | Lithium ion secondary battery |
CN112420977A (en) * | 2019-08-21 | 2021-02-26 | 比亚迪股份有限公司 | Lithium battery and preparation method thereof |
JP2023087241A (en) * | 2021-12-13 | 2023-06-23 | トヨタ自動車株式会社 | Lithium ion battery and manufacturing method thereof |
-
2012
- 2012-10-16 JP JP2012228623A patent/JP2014082084A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015193982A1 (en) * | 2014-06-18 | 2015-12-23 | 株式会社日立製作所 | Lithium ion battery and method for manufacturing same |
JPWO2015193982A1 (en) * | 2014-06-18 | 2017-04-20 | 株式会社日立製作所 | Lithium ion battery and manufacturing method thereof |
JP2018517266A (en) * | 2015-08-25 | 2018-06-28 | エルジー・ケム・リミテッド | Negative electrode for secondary battery and secondary battery including the same |
US10497929B2 (en) | 2015-08-25 | 2019-12-03 | Lg Chem, Ltd. | Anode for secondary battery and secondary battery including the same |
JP2017191773A (en) * | 2016-04-06 | 2017-10-19 | 株式会社東芝 | Nonaqueous electrolyte battery, battery pack, and vehicle |
JP2020113487A (en) * | 2019-01-15 | 2020-07-27 | トヨタ自動車株式会社 | Lithium ion secondary battery |
CN112420977A (en) * | 2019-08-21 | 2021-02-26 | 比亚迪股份有限公司 | Lithium battery and preparation method thereof |
CN112420977B (en) * | 2019-08-21 | 2021-12-07 | 比亚迪股份有限公司 | Lithium battery and preparation method thereof |
JP2023087241A (en) * | 2021-12-13 | 2023-06-23 | トヨタ自動車株式会社 | Lithium ion battery and manufacturing method thereof |
JP7552568B2 (en) | 2021-12-13 | 2024-09-18 | トヨタ自動車株式会社 | How lithium-ion batteries are manufactured |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190027742A1 (en) | Negative electrode active material for nonaqueous electrolyte secondary battery | |
JP6044427B2 (en) | Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
EP1711971A1 (en) | Electrode additives coated with electro conductive material and lithium secondary comprising the same | |
JP5664943B2 (en) | ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE | |
JP6135219B2 (en) | Electrolytic solution and lithium ion secondary battery provided with the same | |
JP2014082084A (en) | Lithium ion secondary battery | |
JP6300021B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6061143B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5643996B1 (en) | Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer | |
JP5668845B2 (en) | ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE | |
WO2016038644A1 (en) | Positive electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery | |
JP5557067B1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6048312B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2014149989A (en) | Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery | |
JP6048751B2 (en) | Current collector for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6056685B2 (en) | Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP6016029B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6011634B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5862490B2 (en) | Lithium ion secondary battery | |
JP5610031B1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2015011965A1 (en) | Lithium-ion secondary battery | |
JP5857943B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5862622B2 (en) | Method for producing active material for lithium ion secondary battery | |
JP2016091935A (en) | Nonaqueous secondary battery and method of manufacturing the same | |
JP2021157960A (en) | Composite lithium salt, positive electrode, and lithium ion secondary battery |