[go: up one dir, main page]

JP2014081481A - 観察光学系、及びそれを用いた観察装置 - Google Patents

観察光学系、及びそれを用いた観察装置 Download PDF

Info

Publication number
JP2014081481A
JP2014081481A JP2012229072A JP2012229072A JP2014081481A JP 2014081481 A JP2014081481 A JP 2014081481A JP 2012229072 A JP2012229072 A JP 2012229072A JP 2012229072 A JP2012229072 A JP 2012229072A JP 2014081481 A JP2014081481 A JP 2014081481A
Authority
JP
Japan
Prior art keywords
optical system
image
observation
optical
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229072A
Other languages
English (en)
Inventor
Koichi Takahashi
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012229072A priority Critical patent/JP2014081481A/ja
Publication of JP2014081481A publication Critical patent/JP2014081481A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】 広画角でかつ高い解像力を有する観察光学系、及び観察光学系を用いた観察装置を提供する。
【解決手段】 観察光学系は、観察者の前方に配置され、光を拡散する拡散面と、第1面、第2面、及び第3面を有する少なくとも3面の光学面で構成され、前記光学面のうち、少なくとも2面は、回転非対称な形状を有し、物体面の映像の実像を前記拡散面に投影する第1光学系と、前記拡散面に投影された実像を観察者眼球に拡大された虚像として投影する第2光学系と、を備え、前記物体面の中心と前記拡散面の中心を結ぶ光線を軸上主光線としたとき、前記少なくとも3面の光学面は、それぞれ前記軸上主光線に対して偏心して配置されることを特徴とする。
【選択図】図1

Description

本発明は、光学面を偏心して配置する観察光学系、及び観察光学系を用いた観察装置に関するものである。
従来、小型の映像生成装置を用い、これらの表示素子の原画像を光学系によって拡大して観察者に呈示する観察装置が知られている(特許文献1〜5)。この観察装置は、観察者頭部周辺に配備されるため、装置全体の小型化、軽量化することが要望されている。また、呈示する画像に高い臨場感を持たせるには、表示素子の原画像を可能な限り広画角に呈示すると共に、高い解像度で表現できる光学系が求められる。このような要求を満たすための手段として、表示素子からの光束を観察者眼球に導く光学系は、表示素子と観察者眼球の間の経路に中間像を形成させることが有効となる。例えば、特許文献1、2及び3には、光路中に中間像を形成する光学系が開示されている。また、広画角の接眼光学系として、コンタクトレンズを用いれば焦点距離を短くできるため、広画角が望める。例えば、特許文献4および5には、コンタクトレンズを用いた観察装置が開示されている。
特開2001−166211号公報 特開2001−255489号公報 特許2000−221440号公報 特開平10−62712号公報 特開平6−347731号公報
リレー光学系を用いて1次像を形成し、接眼光学系でその1次像を眼球に導く偏心光学系を備えた画像表示装置においては、リレー光学系を備えていない画像表示装置に比べると、リレー光学系により小さな表示素子を中間結像面に大きく拡大することで、見かけ上、大きな表示面を接眼光学系に用いたものと等価になる。したがって、小さな表示素子であっても広い観察画角を得ることが可能となるのである。
しかし、従来のリレー光学系を用いた観察光学系は、映像生成装置の原画像をリレーする際に、空中像を形成し、その中間像である空中像を接眼光学系で観察者眼球に投影するため、中間像の大きさに制限があり、十分な拡大率を確保することが困難であった。
特許文献1及び2は、観察像を表示する2次元画像表示素子と、2次元画像表示素子の実像を空中に投影するリレー光学系と、その実像を空中に拡大投影すると共に光軸を反射屈曲させる接眼鏡とを具備した視覚表示装置であるが、これらの光学系では、リレー光学系は複数個の球面、または非球面レンズを用い、さらに2面の偏心非球面からなる補正光学系を用いているために、光学系は大型化し、重量が増大する。
さらに、特許文献1は、リレー光学系と接眼鏡との間に相互に偏心した面で構成された偏心補正光学系を具備しており、コスト、重量ともに不利になる。特許文献2は、より広画角になると、接眼するプリズムが実現できないほど大型化する恐れがある。
特許文献3には、観察像を表示する画像表示素子と、画像表示素子の実像を空中に投影するリレー光学系と、その実像を空中に拡大投影すると共に光軸を反射屈曲させる接眼鏡とを具備した視覚表示装置が記載されている。この光学系では、接眼光学系に回転非対称な凹面の表面鏡を用いているため、より広画角になると、リレー光学系で発生する非対称な像面湾曲、歪曲収差などの収差補正を十分行うことができない。
一方、観察者眼球に近接または接触した状態で観察する所謂コンタクトレンズタイプの接眼光学系として、従来の技術として、特許文献4及び5が開示されている。
特許文献4に記載された接眼光学系では、コンタクトレンズを用いて目の前にあるディスプレイを観察するだけなので、画角を大きくしようとすると、ディスプレイが大きくなり、それに伴って装置も大型化するし、コストも高くなる。
特許文献5に記載された技術は、角膜頂点付近のみを映像生成装置の原画像に対応した屈折力とし、それ以外の部分は、通常の屈折力で外界像を観察する構成である。観察者眼球の瞳孔径は、このような状態では、3〜5mm程度であることがわかっている。角膜頂点付近の強い正の屈折力を有する部分の面積は、大きければ明るい拡大画像となるが、小さい面積であれば、画像が暗くなるのと同時に瞳孔位置に対する強い正のパワー部分が瞳孔中心からずれる可能性も出てくる。逆に、通常の外界観察に対しては、角膜頂点付近の強い正の屈折力を有する部分の面積は、大きければ外界像を見るときに中心付近の画像はぼけた部分ばかりになって、正しく認識できなくなる。また、小さい面積であっても、やはり、観察画像中心の像にはぼけた像が常に存在するので、観察者にとって違和感が生じる。
本発明は、広画角でかつ高い解像力を有する観察光学系、及び観察光学系を用いた観察装置を提供するところにある。
本発明の一実施形態である観察光学系は、
観察者の前方に配置され、光を拡散する拡散面と、
第1面、第2面、及び第3面を有する少なくとも3面の光学面で構成され、前記光学面のうち、少なくとも2面は、回転非対称な形状を有し、物体面の映像の実像を前記拡散面に投影する第1光学系と、
前記拡散面に投影された実像を観察者眼球に拡大された虚像として投影する第2光学系と、
を備え、
前記物体面の中心と前記拡散面の中心を結ぶ光線を軸上主光線としたとき、前記少なくとも3面の光学面は、それぞれ前記軸上主光線に対して偏心して配置される。
また、本発明の一実施形態である観察光学系では、
前記第1光学系は、前記少なくとも3面の光学面で囲まれ、屈折率が1以上の媒質で満たされている偏心プリズムである。
また、本発明の一実施形態である観察光学系では、
前記第1光学系の射出瞳は、前記偏心プリズムの射出面近傍に配置する。
また、本発明の一実施形態である観察光学系では、
前記軸上主光線を含む面内における前記第1光学系の上側最大画角の射出瞳から像面までの光路長をOPux
前記軸上主光線を含む面内における前記第1光学系の下側最大画角の射出瞳から像面までの光路長をOPix
としたとき、
以下の条件式(1)を満足する。
1.05 ≦ OPux/OPix ≦ 1.95 (1)
また、本発明の一実施形態である観察光学系では、
前記第1光学系の前記第2面をローカル座標で定義する関数をf(x,y)とし、
前記第2面のローカル座標(x,y)におけるxの2階偏微分値をcx(x,y)、
前記第2面のローカル座標(x,y)の値を(η,ζ)とすると、
以下の条件式(2)を満足する。
cx(η,ζa) < cx(η,ζb) (2)
ただし、
ζa < ζb、
ηは、任意の数、
である。
また、本発明の一実施形態である観察光学系では、
前記第1光学系の前記第2面をローカル座標で定義する関数をf(x,y)とし、
前記第2面のローカル座標(x,y)におけるyの2階偏微分値をcy(x,y)、
前記第2面のローカル座標(x,y)の値を(η,ζ)とすると、
以下の条件式(2)を満足する。
cy(η,ζa) < cy(η,ζb) (3)
ただし、
ζa < ζb、
ηは、任意の数、
である。
また、本発明の一実施形態である観察光学系では、
前記第2光学系は、観察者の眼球に配置するコンタクトレンズである。
また、本発明の一実施形態である観察光学系では、
前記拡散面は、曲面である。
また、本発明の一実施形態である観察光学系では、
前記拡散面は、球面である。
前記第2光学系は、観察者の眼球の前方に配置する接眼光学系である。
また、本発明の一実施形態である観察光学系では、
前記拡散面は、調光ガラスである。
また、本発明の一実施形態である観察光学系では、
前記拡散面に対して、前記第2光学系とは反対側にシースルーレンズを配置する。
また、本発明の一実施形態である観察光学系では、
前記シースルーレンズは、フレネルレンズである。
また、本発明の一実施形態である観察装置では、
前記観察光学系と、
前記物体面に配置されて映像を表示する映像生成部と、
を備え、
前記映像生成部に表示される映像は、前記第1面を透過し、前記第2面で反射され、前記第1面で反射され、前記第3面とその近傍に配備された前記射出瞳を通り、前記拡散面に投影される。
また、本発明の一実施形態である観察装置では、
前記映像生成部は、映像信号によって変調されたレーザ光を2次元デジタルマイクロミラーデバイスで反射することによって表示する。
また、本発明の一実施形態である観察装置では、
前記映像生成部は、映像信号によって変調されたレーザ光を2次元に走査することによって表示する。
また、本発明の一実施形態である観察装置では、
前記映像生成部は、前記レーザ光を偏向する偏向ミラーを有し、
前記偏向ミラーの反射位置は、前記第1光学系の入射瞳近傍に配置され、
前記第1光学系の入射瞳位置と前記拡散面は、互いにチルト又はシフトしている。
また、本発明の一実施形態である観察装置では、
前記映像生成部は、反射型液晶又は半透過型液晶であり、
前記映像生成部を照明する照明部を備える。
また、本発明の一実施形態である観察装置では、
前記照明部は、偏光ビームスプリッターを有する。
また、本発明の一実施形態である観察装置では、
前記照明部は、回折光学素子を有する。
また、本発明の一実施形態である観察装置では、
眼鏡型の筺体を備え、
前記映像生成部は、眼鏡型の筺体内に配置される。
また、本発明の一実施形態である観察装置では、
前記第1光学系は、眼鏡型の筺体内に配置される。
また、本発明の一実施形態である観察装置では、
眼鏡型のレンズを備え、
前記拡散面は、眼鏡型のレンズに相当する面の内側に配置される。
本発明の一実施形態によれば、広画角でかつ高い解像力を有する観察光学系、及び観察光学系を用いた観察装置を提供することが可能となる。
本実施形態の観察光学系及び観察装置の構成を示す。 実施例1の第1光学系60の光路図を示す。 実施例1の第1光学系60のディストーションマップを示す。 本実施形態の第1光学系60と同様の構成で上下対称の光路長になるように設計した変形例1の偏心プリズムの光路図である。 図4の変形例1の光学系のディストーションマップを示す。 図4の変形例1の光学系の物体位置及び像位置を移動させることで斜め投影するようにした変形例2の光路図である。 図6の変形例2の光学系のディストーションマップである。 実施例1の第1光学系60の第2面62の形状を示す図である。 実施例1の第1光学系60の第2面62の形状を形成している関数をxで2階偏微分した結果を示す図である。 実施例1の第1光学系60の第2面62の形状を形成している関数をyで2階偏微分した結果を示す図である。 実施例2の第1光学系62の光路図を示す図である。 実施例2の第1光学系のディストーションマップを示す図である。 実施例2の第1光学系の第2面の形状を示す図である。 実施例2の第1光学系の第2面の形状を形成している関数をxで2階偏微分した結果を示す図である。 実施例2の第1光学系の第2面の形状を形成している関数をyで2階偏微分した結果を示す図である。 本実施形態の観察光学系の第2光学系40をコンタクトレンズ41のみの場合の実施例3の光路図である。 拡散面50を球面とした実施例4を示す。拡散面50の曲率半径は50mmとしている。 本実施形態の第2光学系40である接眼光学系を観察者眼球10の前方に配置する例を示す図である。 第2光学系40である接眼光学系を観察者眼球10の前方に配置する他の例を示す図である。 第1光学系には偏心プリズム、第2光学系にはコンタクトレンズを適用した場合の外界像を観察する場合の光路図を示す。 ダイクロイックミラーまたはダイクロイックプリズムにより3つのレーザ光が1つになった後の第1光学系の概念を示す図である。 本実施形態の反射型表示素子と第1光学系60と、その間に反射型表示素子を照明する照明部を配置した光路図である。
本発明の一実施形態である観察光学系は、
観察者の前方に配置され、光を拡散する拡散面と、
第1面、第2面、及び第3面を有する少なくとも3面の光学面で構成され、光学面のうち、少なくとも2面は、回転非対称な形状を有し、物体面の映像の実像を拡散面に投影する第1光学系と、
拡散面に投影された実像を観察者眼球に拡大された虚像として投影する第2光学系と、
を備え、
物体面の中心と拡散面の中心を結ぶ光線を軸上主光線としたとき、少なくとも3面の光学面は、それぞれ軸上主光線に対して偏心して配置される。
以下、上記配置をとる理由と作用について説明する。
第1光学系は、少なくとも3面の光学面で構成され、そのうち少なくとも2面の光学面は、回転非対称な形状を有する面を有し、かつ、少なくとも3面の光学面はそれぞれ、物体面の中心と拡散面の中心を結ぶ軸上主光線に対して偏心して配置された偏心光学系である。
このような第1光学系を用いることによって、映像生成部の映像を拡散面に投影する第1光学系を観察者頭部近傍に配備させることが可能となり、観察装置を小型に構成することができる。さらに、偏心して配置された光学系で発生する光軸に対して非対称な収差を補正することができるのである。
以下に図を用いて詳細に説明する。
図1は、本実施形態の観察光学1系及び観察装置100の構成を示す。
この図において、観察者眼球を10、観察者瞳孔位置を20、観察者視軸を30、第2光学系を40、拡散面を50、第1光学系を60、映像生成部としての画像表示素子を70、第1光学系の第1面(TIR面)を61、第2面(凹面反射面)を62、第3面(射出面)を63で示す。
この図は、観察者の頭部の断面図に、本実施形態の観察光学系1が搭載された眼鏡型の観察装置100を装着した状態を示している。映像生成部70は、アスペクト比が3:4、表示面の大きさは0.24インチである。拡散面50は、眼鏡型映像表示装置である観察装置100の眼鏡レンズに相当する部分に配備された液晶である。第2光学系40は、特殊なコンタクトレンズとしている。観察者眼球位置1での瞳径は3mmである。
映像生成部70から発した光線は、互いに偏心した3つの面で構成された偏心プリズム60である第1光学系60の第1面61から偏心プリズム60内に入射し、第2面62で内部反射し、再び第1面61で内部反射し、第3面63から射出し、観察者眼球10の前面に配備された眼鏡型観察装置の内側の面の拡散面50上に実像を形成する。一方、第2光学系40は、観察者眼球10の角膜上に配備された特殊なコンタクトレンズであり、観察者眼球10の屈折力(視力)を考慮し、拡散面50上に合焦するようにコンタクトレンズの屈折力が決まっている。したがって、観察者は、拡散面50上に形成された実像を拡大された虚像として観察することができる。
図2は、実施例1の第1光学系60の光路図を示す。図3は、実施例1の第1光学系60のディストーションマップを示す。
第1光学系60は設計の利便性から、像面Imから映像生成部70の物体面としての表示面Obに到達する逆光線追跡によって示されている。そのため、図2は、表示面におけるディストーションマップを示している。
ここで、第1光学系60がこのような偏心光学系、特に、内部反射の偏心プリズム60で構成されることのメリットについて説明する。レンズのような屈折光学素子は、その境界面に曲率を付けることによりパワーを持たせることができる。そのため、レンズの境界面で光線が屈折する際に、屈折光学素子の色分散特性による色収差の発生が避けられない。その結果、色収差を補正する目的で別の屈折光学素子が付加されるのが一般的である。
一方、ミラーやプリズム等のような反射光学素子は、その反射面にパワーを持たせても原理的に色収差の発生はなく、色収差を補正する目的だけのために別の光学素子を付加する必要はない。そのため、反射光学素子を用いた光学系は、屈折光学素子を用いた光学系に比べて、色収差補正の観点から光学素子の構成枚数の削減が可能である。
同時に、反射光学素子を用いた反射光学系は、光路を折り畳むことになるために、屈折光学系に比べて光学系自身を小さくすることが可能である。また、反射面は、屈折面に比して偏心誤差感度が高いため、組み立て調整に高い精度を要求される。
また、第1光学系60は、第1面、第2面、及び第3面を有する少なくとも3面の光学面で囲まれ、屈折率が1以上の媒質で満たされている偏心プリズム60である。
反射光学素子の中でも、プリズムはそれぞれの面の相対的な位置関係が固定されているので、プリズム単体として偏心を制御すればよく、必要以上の組み立て精度、調整工数が不要である。さらに、プリズムは、屈折面である入射面と射出面、それと反射面を有しており、反射面しかもたないミラーに比べて、収差補正の自由度が大きい。特に、反射面に所望のパワーの大部分を分担させ、屈折面である入射面と射出面のパワーを小さくすることで、ミラーに比べて収差補正の自由度を大きく保ったまま、レンズ等のような屈折光学素子に比べて、色収差の発生を非常に小さくすることが可能である。また、プリズム内部は空気よりも屈折率の高い透明体で満たされているために、空気に比べ光路長を長くとることができ、空気中に配置されるレンズやミラー等よりは、光学系の薄型化、小型化が可能である。
また、観察光学系1は、中心性能はもちろんのこと周辺まで良好な結像性能を要求される。そこで、本発明では、上記のように、観察光学系1を構成する光学系に1個の偏心プリズム60を用いて、少なくとも、映像生成部70から射出された像光をプリズム内に入射させ、かつ内部反射する第1面61と、その第1面61から入射した光束を内部反射させる第2面62と、射出させる第3面63で構成し、少なくともその反射面を光束に光学的パワーを与えかつ偏心収差を補正する回転非対称な曲面形状に構成して、中心ばかりでなく軸外収差も良好に補正することを可能にしている。
このような基本構成をとることで、屈折光学系あるいは回転対称な結像光学系を用いた光学系に比べて光学素子の構成枚数が少なく、中心から周辺まで性能の良好な、小型の画像表示装置を得ることが可能となる。ここで、映像生成部70の表示面の中心から眼前の拡散面50の中心に到達する光線を軸上主光線Lcとしたとき、プリズムの少なくとも1つの反射面が軸上主光線Lcに対して偏心していないと、軸上主光線Lcの入射光線と反射光線が同一の光路をとることとなり、軸上主光線Lcが光学系中で遮断されてしまう。その結果、中心部が遮光された光束のみで像を形成することになり、中心が暗くなったり、中心では全く像を結ばなくなったりしてしまう。また、パワーを付けた反射面を軸上主光線Lcに対し偏心させることも当然可能である。
上記したように、本実施形態においては、第1光学系60の偏心プリズム60を構成する反射面の面形状として、光束に光学的パワーを与えかつ偏心収差を補正する回転非対称な曲面形状に構成している。このような面形状は偏心収差を補正する上で好ましい。その理由を以下に詳述する。
まず、用いる座標系、回転非対称な面について説明する。本実施形態では、軸上主光線Lcと像面Imの交点を座標原点としている。絞りSの中心から紙面上右側を正として水平軸をZ軸とし、そのZ軸と直交し、かつ、光学系を構成する各面の偏心面内の軸をY軸と定義し、前記Z軸と直交し、かつ、前記Y軸と直交する軸をX軸とする。
一般に、球面レンズでのみ構成された球面レンズ系では、球面により発生する球面収差と、コマ収差、像面湾曲等の収差をいくつかの面でお互いに補正しあい、全体として収差を少なくする構成になっている。一方、少ない面数で収差を良好に補正するためには、回転対称非球面等が用いられる。これは、球面で発生する各種収差自体を少なくするためである。しかし、偏心した光学系においては、偏心により発生する回転非対称な収差を回転対称光学系で補正することは不可能である。この偏心により発生する回転非対称な収差は、歪曲収差、像面湾曲、さらに、軸上でも発生する非点収差、コマ収差がある。
まず、回転非対称な像面湾曲について説明する。例えば、無限遠の物点から偏心した凹面鏡に入射した光線は、凹面鏡に当たって反射結像されるが、光線が凹面鏡に当たって以降、像面までの後側焦点距離は、像界側が空気の場合、光線が当たった部分の曲率半径の半分になる。すると、軸上主光線に対して傾いた像面を形成する。このように、回転非対称な像面湾曲を補正するには回転対称な光学系では不可能である。
この傾いた像面湾曲をその発生源である凹面鏡自身で補正するには、凹面鏡を回転非対称な面で構成し、この例ではY軸正の方向に対して曲率を強く(屈折力を強く)し、Y軸負の方向に対して曲率を弱く(屈折力を弱く)すれば、補正することができる。また、上記構成と同様な効果を持つ回転非対称な面を、凹面鏡とは別に光学系中に配置することにより、少ない構成枚数でフラットの像面を得ることが可能となる。また、回転非対称な面は、その面内及び面外共に回転対称軸を有しない回転非対称面形状の面とすることが、自由度が増え収差補正上は好ましい。
次に、回転非対称な非点収差について説明する。上記説明と同様に、偏心して配置された凹面鏡では、軸上光線に対しても非点収差が発生する。この非点収差を補正するためには、上記説明と同様に、回転非対称面のX軸方向の曲率とY軸方向の曲率を適切に変えることによって可能となる。
さらに、回転非対称なコマ収差について説明する。上記説明と同様に、偏心して配置された凹面鏡では、軸上光線に対してもコマ収差が発生する。このコマ収差を補正するためには、回転非対称面のX軸の原点から離れるに従って面の傾きを変えると共に、Y軸の正負によって面の傾きを適切に変えることによって可能となる。また、本発明の結像光学系では、前述の反射作用を有する少なくとも1つの面が軸上主光線に対し偏心し、回転非対称な面形状でパワーを有する構成も可能である。このような構成をとれば、その反射面にパワーを持たせることで発生する偏心収差をその面自体で補正することが可能となり、プリズムの屈折面のパワーを緩めることで、色収差の発生自体を小さくすることができる。
また、本実施形態で用いる上記の回転非対称面は、対称面を1面のみ有する面対称自由曲面であることが好ましい。ここで、本発明で使用する自由曲面とは、以下の式(a)で定義されるものである。なお、その定義式のZが自由曲面FFSのZ軸となる。また、データの記載されていない係数項は0である。
Z=cr2 /[1+√{1−(1+k)c22 }]
66
+Σ Cj m n (a)
j=2
ここで、(a)式の第1項は球面項、第2項は自由曲面項である。
また、球面項中、
c:頂点の曲率
k:コーニック定数(円錐定数)
r=√(X2 +Y2
である。
自由曲面項は、
66
Σ Cj m n
j=2
=C2 X+C3
+C4 2 +C5 XY+C6 2
+C7 3 +C8 2 Y+C9 XY2 +C103
+C114 +C123 Y+C132 2 +C14XY3 +C154
+C165 +C174 Y+C183 2 +C192 3 +C20XY4
+C215
+C226 +C235 Y+C244 2 +C253 3 +C262 4
+C27XY5 +C286
+C297 +C306 Y+C315 2 +C324 3 +C333 4
+C342 5 +C35XY6 +C367
・・・・・・
ただし、Cj(jは2以上の整数)は係数である。上記自由曲面は、一般的には、X−Z面、Y−Z面共に対称面を持つことはないが、本実施形態では、Xの奇数次項を全て0にすることによって、Y−Z面と平行な対称面が1つだけ存在する自由曲面となる。例えば、上記定義式(a)においては、C2 、C5 、C7 、C9 、C12、C14、C16、C18、C20、C23、C25、C27、C29、C31、C33、C35・・・の各項の係数を0にすることによって可能である。
また、Yの奇数次項を全て0にすることによって、X−Z面と平行な対称面が1つだけ存在する自由曲面となる。例えば、上記定義式においては、C3 、C5、C8 、C10、C12、C14、C17、C19、C21、C23、C25、C27、C30、C32、C34、C36・・・の各項の係数を0にすることによって可能である。
また、上記対称面の方向の何れか一方を対称面とし、それに対応する方向の偏心、例えば、Y−Z面と平行な対称面に対して光学系の偏心方向はY軸方向に、X−Z面と平行な対称面に対しては光学系の偏心方向はX軸方向にすることで、偏心により発生する回転非対称な収差を効果的に補正しながら同時に製作性をも向上させることが可能となる。
なお、上記定義式(a)は、前述のように1つの例として示したものであり、本実施形態の自由曲面は、回転非対称な面を用いることで偏心により発生する回転非対称な収差を補正し、同時に製作性も向上させるということが特徴であり、他のいかなる定義式に対しても同じ効果が得られることは言うまでもない。
また、第1光学系60を偏心プリズムで構成する場合に、少なくとも第1面61〜第3面63の3つの面でプリズムを構成し、第1面61を映像生成部70から射出された光束を媒質内に入射させる入射面にて構成し、第2面62をその第1面61から入射した光束を内部反射させる反射面で構成し、再び第1面61で内部反射し、第3面63をその第1面61から反射した光束をプリズムから射出させる透過面で構成し、第1面61〜第3面63共に光束に光学的パワーを与えかつ偏心収差を補正する回転非対称な曲面形状に構成することが収差補正上より望ましい。
また、偏心プリズムの第1面61は、映像生成部70からの光束を入射する透過面であると共に、第2面62の反射光を内部反射する反射面となっている。このような構成により、偏心プリズムの第1面61は1つの面で2つの作用を有するため、小型薄型にすることが可能となる。また、第2面62の光束が射出される部分では全反射するように、第1面61に入射する角度を臨界角以上に設定されていることが望ましいのだが、第1面61の射出領域ではない部分では臨界角以下にすることもできる。その場合,第1面61の全反射条件を満たさない反射領域に反射コーティングを施すことで画面全体を観察することが可能となる。
また、第1光学系60の射出瞳位置は、偏心プリズム60の射出面と一致又は略一致することが好ましい。
第1光学系60の射出瞳位置は、偏心プリズムの射出面と略一致させることで、偏心プリズムの射出面の近傍に絞りSを設けて射出光線を制限することができる。偏心プリズム内部に射出瞳がある、または射出瞳の一部がプリズム内にあると、特に軸外光線の周辺光線を制御できず、収差補正されていない光束が結像することになる。逆にプリズム射出面から離れてしまうと、絞りSを位置決めし、固定するための部材が発生し、コストアップにつながる。
また、軸上主光線Lcを含む面内における第1光学系60の上側最大画角の射出瞳から像面Imまでの光路長をOPux、軸上主光線Lsを含む面内における第1光学系60の下側最大画角の射出瞳から像面Imまでの光路長をOPix、としたとき、以下の条件式(1)を満足することが好ましい。
1.05 ≦ OPux/OPix ≦ 1.95 (1)
ここで、本実施形態の観察光学系1と観察者頭部のレイアウト上の関係を、図1を用いて説明する。図1においては、本光学系を搭載した眼鏡型のヘッドマウントディスプレイを想定している。このように、第1光学系60は観察者頭部の側部に配置され、眼鏡のテンプル部の中に映像生成部70と共に搭載されている。そして第1光学系60から射出する向きは斜めに映像を投影するため、眼鏡の外側と内側では明らかに射出後の光路長が異なる。つまり、外側は短く、内側は長い。第1光学系60のYZ面内における上側最大画角の射出瞳から像面までの光路長OPux、YZ面内における下側最大画角の射出瞳から像面までの光路長OPix、としたとき、条件式(1)を満足することにより、適切な比率で上側と下側の光路長差をつけることになり、斜めに投影することになり、観察者の頭部と光学系及び光線の干渉をさせることが可能になる。
条件式(1)の下限を下回ると、上下の光路長差が小さくなり、斜めに投影するメリットが少なくなる。
条件式(1)の上限を上回ると、上下の光路長差が大きくなりすぎ、斜め投影によるディストーションの補正が困難になる。
また、第1光学系60の第2面62をローカル座標で定義する関数をf(x,y)とし、第2面62のローカル座標(x,y)におけるxの2階偏微分値をcx(x,y)、第2面62のローカル座標(x,y)の値を(η,ζ)とすると、以下の条件式(2)を満足することが好ましい。
cx(η,ζa) < cx(η,ζb) (2)
ただし、
ζa < ζb、
ηは、任意の数、
である。
さらに、第1光学系60の第2面62をローカル座標で定義する関数をf(x,y)とし、第2面62のローカル座標(x,y)におけるyの2階偏微分値をcy(x,y)、第2面62のローカル座標(x,y)の値を(η,ζ)とすると、以下の条件式(2)を満足することが好ましい。
cy(η,ζa) < cy(η,ζb) (3)
ただし、
ζa < ζb、
ηは、任意の数、
である。
通常、本実施形態のように斜め投影をさせると、台形歪が発生する。以下に台形歪に関して説明する。
図4は、本実施形態の第1光学系60と同様の構成で上下対称の光路長になるように設計した変形例1の偏心プリズムの光路図である。図5は、図4の変形例1の光学系のディストーションマップを示す。また、図6は、図4の変形例1の光学系の物体位置及び像位置を移動させることで斜め投影するようにした変形例2の光路図である。図7は、図6の変形例2の光学系のディストーションマップである。第1光学系60は、設計の利便性から、像面Imから映像生成部70の物体面としての表示面Obに到達する逆光線追跡によって示されているため、図5及び図7は、表示面におけるディストーションマップを示している。
図5のディストーションマップは、ほぼ対称な形状のマップが、図7では上側の方が下側よりもX方向、Y方向共に短く、台形になっている。つまり、図6において物体面ObのU部から射出し、射出瞳を介して像面ImのU’部に到達する方が図7のディストーションマップにおける上部に相当する。一方、図6において物体面のL部から射出し、瞳を介して像面のL’部に到達する方が図7のディストーションマップにおける下部に相当する。これは、物体距離が長い方が、倍率が小さくなっているためである。
したがって、この台形ディストーションを補正するためには、投影光学系である偏心プリズム60のU部からU‘部までの光線が通過する部分が、L部からL’部までの光線が通過する部分よりも倍率を大きくするような作用があればよい。この偏心プリズム60の第3面63は射出瞳位置の近傍であるため、軸上から軸外までのすべての光束が略同じ部分を通過するため、この面で屈折力の差異をつけることは困難である。
第1面61は内部反射と物体面から入射する2つの作用を有する。そして、内部反射する部分と射出する部分は一部オーバーラップしている。したがって、たとえば、U−U‘部の光束の第2面内部反射部分に強い負のパワーをつけ、L−L’部の内部反射部分に弱い負パワーとすることが有効になるが、この第1面61は内部反射と透過の2つの作用を同時に行っている部分があること、像面に近接する面であるため、軸外の収差補正を行うために必要な屈折力、すなわち、パワー配分をするため、単純に台形ディストーション補正のためだけに形状を決めることができない。
第2面62はこの偏心プリズム60の主な正のパワーを有する面であり、この面のパワーが光学系全体のパワーに大きく作用する。したがって、たとえば、U−U‘部の光束が通過する第2面62の内部反射部分の正のパワーは、L−L’部の光束の第2面62の内部反射部分の正パワーよりも弱くすることが台形ディストーション補正に有効となる。
つまり、第2面62は、第3面63に近い位置(図6において左側)から離れるにしたがって、つまりZの値が大きくなるにしたがって、正のパワーが強くなるようにすれば、上記台形歪を補正することが可能となる。
第2面62を構成する面形状は、どんな面であっても構わないが、良好に収差補正を行うには回転非対称な形状を有する方が望ましい。すなわち上述の(a)で定義されている自由曲面で定義された面である。どのような面であっても面形状は関数で定義されており、その関数をx及びyによってそれぞれ2階偏微分を行うことで、曲面のX方向、Y方向の曲率を求めることができる。
第2面62を定義する関数f(x,y)において、第2面62のローカル座標(x,y)におけるxの2階の偏微分値を
Figure 2014081481
とすると、条件式(1)を満たしていることが、第2面62が第3面63に近い位置から離れるにしたがって、x方向の正のパワーが強くなるようになるため、x方向の台形ディストーション補正に有効に作用する。
第2面を定義する関数f(x,y)において、第2面のローカル座標(x,y)におけるyの2階の偏微分値を
Figure 2014081481
とすると、条件式(2)を満たしていることが、第2面62が第3面63に近い位置から離れるにしたがって、y方向の正のパワーが強くなるようになるため、Y方向の台形ディストーション補正に有効に作用する。
図8は、実施例1の第1光学系60の第2面62の形状を示す図である。図9は、実施例1の第1光学系60の第2面62の形状を形成している関数をxで2階偏微分した結果を示す図である。図10は、実施例1の第1光学系60の第2面62の形状を形成している関数をyで2階偏微分した結果を示す図である。
さらに、図11は、実施例2の第1光学系62の光路図を示す図である。図12は、実施例2の第1光学系のディストーションマップを示す図である。図13は、実施例2の第1光学系の第2面の形状を示す図である。図14は、実施例2の第1光学系の第2面の形状を形成している関数をxで2階偏微分した結果を示す図である。図15は、実施例2の第1光学系の第2面の形状を形成している関数をyで2階偏微分した結果を示す図である。
図9及び図14からわかるように、xの2階偏微分値はyの値が大きくなるにしたがって、大きくなっている。また、図10及び図15からわかるように、yの2階偏微分値はyの値が大きくなるにしたがって、大きくなっている。
このように、第2面の特性が条件式(2)及び(3)を満足している偏心プリズム60であれば、実施例1及び実施例2のディストーションマップである図3及び図12のように、台形歪が小さい良好なディストーションを示す。
また、本実施形態の観察光学系では、第2光学系40は、観察者の眼球10に配置するコンタクトレンズ41であることが好ましい。
図16は、本実施形態の観察光学系の第2光学系40をコンタクトレンズ41のみの場合の実施例3の光路図である。
図16では、無限遠物点の光束をコンタクトレンズ41によって約12MM先の眼鏡内面の拡散面5
0上に結像したことを想定している。コンタクトレンズ41は、眼球から眼鏡内面である拡散面50までの距離を焦点距離とし、さらに観察者の視力を考慮して設計される。たとえば、一般的な眼球と眼鏡の距離である12MMとすると、度数に換算すると、+83ジオプタとなる。観察者の視力が0.
08だとすると、コンタクトレンズ41の度数は−5ジオプタとなるため、この場合には、設計値は+78ジオプタとなる。このような構成であれば、第1光学系60で拡散面上に投影された画像を拡大した虚像として観察することができる。
また、本実施形態の観察光学系の第2光学系40がコンタクトレンズ41の場合、拡散面50は、曲面であることが好ましい。
第2光学系40が観察者眼球上に配備されたコンタクトレンズ41であって、軸外の画像を観察する場合には、観察者の眼球を回転させて観察する。そのため、観察者にとって物体面である拡散面50はコンタクトレンズ41の焦点距離上の物体に焦点が合うことになる。したがって、拡散面50は湾曲していることが望ましい。また、第1光学系60の像面Imは、この湾曲した拡散面50に略一致した湾曲した像面Imになっていることが望ましい。
また、拡散面50は、球面であることが好ましい。
図17は、拡散面50を球面とした実施例4を示す。拡散面50の曲率半径は50mmとしている。
第2光学系40のコンタクトレンズ41と眼球の組み合わせに対しては、眼球回旋中心に対して略球面上に焦点を結ぶため、拡散面50は球面になっているとなお望ましい。それに合わせて、第1光学系60の像面湾曲が球面になっていれば、なお良い。
また、第2光学系40は、観察者の眼球の前方に配置する接眼光学系であることが好ましい。
図18は、本実施形態の第2光学系40である接眼光学系を観察者眼球10の前方に配置する例を示す図である。図19は、第2光学系40である接眼光学系を観察者眼球10の前方に配置する他の例を示す図である。
図18に示す例では、観察者眼球10の前方に屈折レンズ42を配置している。また、屈折レンズ42の前方には、拡散面50としての液晶素子50を配置し、そのさらに前方にシースルーレンズ81を配置している。なお、第2光学系としての接眼光学系は、液晶素子上に形成された像を拡大投影して観察者瞳孔位置近傍に射出瞳を形成し、眼球10に導光することができれば、どんな光学系でもよい。たとえば、図18では屈折レンズ42を想定しているが、図19に示すような配置で、液晶表示面50を下向きにして観察者の目の上側に配置し、液晶表示面の下に配備した偏心プリズムを接眼光学系40に用いることも可能である。
また、拡散面50は、調光ガラスであることが好ましい。
第1光学系60の像を表示する拡散面50であればどんな面であってもよい。しかしながら、液晶素子やエレクトロクロミズムなどの透過する光の量を電気的に調整することができる調光ガラスであれば、映像生成部70の映像を観察する時は透過率を下げ、外界像を見るときは透過率を上げる。さらに電子像と外界像を重畳させて見るときは中間の状態にする。
また、拡散面50に対して、第2光学系40とは反対側にシースルーレンズを配置することが好ましい。
観察者の前方に調光ガラスなどの拡散面50を配備した場合には、第2光学系40のパワーをキャンセルし、さらに外界像が正立像になるように考慮したシースルーレンズ81を配備することで、観察者は外界像を観察することが可能となる。
図20は、第1光学系60には偏心プリズム、第2光学系40にはコンタクトレンズ41を適用した場合の外界像を観察する場合の光路図を示す。
液晶素子50の裏側には、フレネルレンズ82が貼り付けてあることを想定している。さらに、液晶素子50が透明なモードを有する場合には、外界からの光を取り込むことができる。しかし、コンタクトレンズ41は強い正のパワーを有するため、そのままでは観察することができない。
そこで、図20に示すように、液晶素子50の裏側にフレネルレンズ82を形成し、その外側には両面フレネルレンズ83を配備し、一度中間像を形成して液晶素子50の面に外界像を形成するようにしている。この構成であれば、ケプラー型のアフォーカル光学系を構成し、かつ光路中に一度外界像形成してその像をリレーするため、観察者は正立像の外界像を観察することが可能となる。
また、図18に示した第1光学系60に偏心プリズム、第2光学系40に接眼光学系を配備し、さらに、液晶素子50と負レンズを配備している光路の構成では、ガリレオ型のアフォーカル光学系を構成しているため、観察者は正立像の外界像を観察することが可能となる。
また、本実施形態の観察装置100では、観察光学系1と、物体面Obに配置されて映像を表示する映像生成部70と、を備え、映像生成部70に表示される映像は、第1面から入射し、第2反射面62で反射され、第1反射面61で反射され、第3面63から射出し、射出瞳を通り、拡散面50に投影される。
また、本実施形態の観察装置100では、観察者頭部近傍に映像生成部70を配備し、その表示面を少なくとも2回反射して観察者前方の拡散面50に投影すれば、装置全体をコンパクトに構成することが可能である。
第1光学系60が2回反射であれば、拡散面50に投影される像は正立像となるので、第2光学系40が屈折系であれば、そのまま投影すればよい。また、第2光学系40に偏心プリズム等の反射型を用いる場合には、眼球に投影する像が正立像となるように反射回数を考慮する必要がある。一方、第1光学系60が3回反射で第2光学系40が屈折系であれば、映像生成部に表示する画像は反転像を表示することになる。
また、映像生成部70は、映像信号によって変調されたレーザ光を2次元デジタルマイクロミラーデバイスで反射することによって表示することが好ましい。
2次元デジタルマイクロミラーデバイス(DMD)の大きさ以上の光束としたレーザ光は、2次元微小ミラーアレイのON、OFFによって画像を形成することが可能となる。フルカラーで表示するには、RGB(赤、緑、青)の3つのレーザ光源を用いる。第1光学系60は、DMDで反射した光を像面上に結像することで、像面である拡散面50に画像を投影することが可能となる。この場合の第1光学系60は偏心プリズムであることが望ましい。
また、映像生成部70は、映像信号によって変調されたレーザ光を2次元に走査することによって表示することが好ましい。
図21は、ダイクロイックミラーまたはダイクロイックプリズムにより3つのレーザ光が1つになった後の第1光学系の概念を示す図である。
外部から入力された映像信号によって変調されたレーザ光をMEMSミラー等の偏向機によって拡散面上に2次元に走査することで、映像を形成することが可能である。フルカラーで表示するには、RGB(赤、緑、青)の3つのレーザ光源を用いる。変調器によって独立に変調された3つのレーザ光はダイクロイックミラーまたは、ダイクロイックプリズムを用いて光軸を一致させ、見かけ上はひとつのレーザ光110となり、偏向ミラー120に入射され、2次元に偏向走査される。この場合には、上述の2次元画像を投影するのではなく、偏向ミラー120で2次元走査された光を第1光学系60によって投影することになる。したがって、第1光学系60から離れた位置に設定された入射瞳と一致した位置に配備された偏向ミラー120で反射偏向されて第1光学系60に入射する。第1光学系60では、レーザ光は、像面上を2次元走査することで、原画像を像面である拡散面50に投影することが可能となる。
また、本実施形態の観察装置100では、映像生成部70は、反射型液晶又は半透過型液晶であり、映像生成部70を照明する照明部90を備えることが好ましい。
図22は、本実施形態の反射型表示素子と第1光学系60と、その間に反射型表示素子を照明する照明部90を配置した光路図である。
映像生成部70がLCOS(反射型液晶表示装置)などの反射型表示素子の場合、映像生成部70と第1光学系60の間には表示素子を照明する照明部90を配備する必要がある。光源91から発した光は、ポーラライザー92を介して直線偏光となり、照明プリズム93に入射し、プリズム底面で全反射し、斜面のPBS94で反射してプリズム93から出射し、1/4波長板で円偏光となり、反射型表示素子70で反射された光は、再び1/4波長板で入射した偏光とは直交する偏光となり、PBS94を透過して照明プリズム93から第1光学系60に入射し、原画像は像面に投影される。
また、本実施形態の観察装置100では、照明部90は、偏光ビームスプリッターを有することが好ましい。
図22に示したような光路で直線偏光光(S偏向)を照明プリズム93に入射した場合に、たとえばS偏光を反射し、P偏光を透過する偏光ビームスプリッターであれば、上述した効果で理論的には、100%の光の利用効率となる。
また、本実施形態の観察装置100では、照明部90は、回折光学素子を有することが好ましい。
上述のPBS94の代わりに回折光学素子HOEを用いることが可能である。その際に、偏光状態にかかわらず、光源91からの光がHOEに入射する角度に対しては、回折(反射)し、表示素子からの光の入射角に対しては、回折せずに透過するように設定することで、理論的には100%の光の利用効率となる。
また、本実施形態の観察装置100は、眼鏡型の筺体を備え、映像生成部70は、眼鏡型の筺体内に配置されることが好ましい。加えて、第1光学系60を眼鏡型の筺体内に配置すると、さらに好ましい。さらに、観察装置100は、眼鏡型のレンズを備え、拡散面50は、眼鏡型のレンズに相当する面の内側に配置されることが好ましい。
眼鏡型とすることにより、小型で軽量に作成することが可能となる。また、観察者頭部に装着して仕様することができ、眼鏡とほぼ同じ見た目で使用することが可能となる。
次に、本発明の一実施形態に係る各実施例について説明する。
図2に示した実施例1は、第1光学系60の実施例である。
実施例1の第1光学系60では、物体面Obに水平画角32°で0.24インチのLCD70を配置することを想定している。また、物体面側から光束が入射する第1面61と、第1面61から入射した光束を反射させる第2面62と、第2面62から反射された光束を反射させる第1面61と、第1面61から反射された光束を射出する第3面63を備え、プリズム内において、軸上主光線Lcは光路が交差しない自由曲面プリズム60を用いている。第1面61〜第3面63は、面対称自由曲面で形成される。第3面63から射出した光束は、像面Imである拡散面50に結像する。射出瞳である絞りSは第3面63の近傍に射出光線の角度を考慮した角度で傾いて配置される。実施例1の像面Imへ射出する軸上主光線Lcの角度は、45°である。
図11に示した実施例2は、第1光学系60の実施例である。
実施例2の第1光学系60では、物体面Obに水平画角30.5°で0.24インチのLCD70を配置することを想定している。また、物体面側から光束が入射する第1面61と、第1面61から入射した光束を反射させる第2面62と、第2面62から反射された光束を反射させる第1面61と、第1面61から反射された光束を射出する第3面63を備え、プリズム内において、軸上主光線Lcは光路が交差しない自由曲面プリズム60を用いている。第1面61〜第3面63は、面対称自由曲面で形成される。第3面63から射出した光束は、像面Imである拡散面50に結像する。射出瞳である絞りSは第3面63の近傍に射出光線の角度を考慮した角度で傾いて配置される。実施例1の像面Imへ射出する軸上主光線Lcの角度は、31°である。
実施例3の第1光学系60では、物体面Obに水平画角34°で0.24インチのLCD70を配置することを想定している。自由曲面プリズムの構成は、実施例1と同様である。実施例3の像面Imへ射出する軸上主光線Lcの角度は、31°である。また、像面Imの曲率半径は、50mmである。第2光学系40は、コンタクトレンズである。
図16に示した実施例4は、第2光学系40の実施例である。
実施例4の第2光学系40では、コンタクトレンズ41を用いている。眼球側の面は球面、外側は非球面とし、屈折力を+63として、眼球から約12MMの眼鏡内面にフォーカスするようになってい
る。
図20に示した実施例5は、第2光学系40の実施例である。
実施例5の第2光学系40では、コンタクトレンズ41を用いている。拡散面50と拡散面50の裏面にフレネルレンズ面82、その前方に両面のフレネルレンズ83が配置されている。
以下に、上記実施例1〜実施例5の構成パラメータを示す。実施例1〜3の光線の追跡方向は、像面Imである拡散面50から物体面Obである映像生成部70に向かう逆光線追跡で説明する。
各実施例では、Y−Z平面内で各面の偏心を行っている。また、各回転非対称自由曲面の唯一の対称面をY−Z面としている。偏心面については、対応する座標系の原点から、その面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸(自由曲面については、前記(a)式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα,β,γ(°))とが与えられている。なお、その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。
また、各実施例の光学系を構成する光学作用面の中、特定の面(仮想面を含む。)とそれに続く面が共軸光学系を構成する場合に、面間隔が与えられている。また、偏心後は、偏心前の原点に戻り、面間隔で与えられたZ軸方向に進んで次の面の原点とする。
その他、媒質の屈折率、アッベ数が慣用法に従って与えられている。また、本発明で用いられる自由曲面の面の形状は前記(a)式により定義し、その定義式のZ軸が自由曲面の軸となる。
なお、記号“e”は、それに続く数値が10を底にもつ、べき指数であることを示している。例えば「1.0e−5」は「1.0×10-5」であることを意味している。
実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
像 面 ∞ 75.00 偏心(1)
r1 絞り面 0.00 偏心(2)
r2 FFS[1] 0.00 偏心(3) 1.5254 56.2
r3 FFS[2] 0.00 偏心(4) 1.5254 56.2
r4 FFS[3] 0.00 偏心(5) 1.5254 56.2
r5 FFS[2] 0.00 偏心(4)
物体面 ∞ 0.00 偏心(6)

FFS[1]
C4 3.6893e-002 C6 6.4083e-002 C8 6.7871e-003
C10 -3.6624e-004 C11 1.3802e-004 C13 -4.2439e-004
C15 3.9371e-004 C17 5.3522e-005 C19 -2.6302e-004
C21 -1.6949e-005 C22 5.1378e-007 C24 -1.6316e-005
C26 1.1230e-005 C28 -3.9212e-007

FFS[2]
C4 6.6789e-003 C6 1.2870e-002 C8 5.9293e-003
C10 -4.2298e-004 C11 3.4687e-005 C13 -2.6633e-004
C15 1.8168e-004 C17 7.3571e-005 C19 -1.1884e-004
C21 -2.4134e-005 C22 3.5449e-005 C24 -1.6829e-005
C26 1.0632e-005 C28 1.5003e-006

FFS[3]
C4 2.8442e-002 C6 2.4977e-002 C8 4.2282e-003
C10 1.7421e-003 C11 3.4048e-005 C13 -4.7660e-004
C15 -1.3365e-004 C17 6.4510e-005 C19 2.2391e-005
C21 3.9161e-005 C22 -9.4746e-008 C24 -9.6547e-008
C26 -5.1188e-009 C28 -6.8168e-007

偏心[1]
X 0.00 Y 0.00 Z 0.00
α 45.00 β 0.00 γ 0.00

偏心[2]
X 0.00 Y 0.00 Z 0.00
α 35.58 β 0.00 γ 0.00

偏心[3]
X 0.00 Y 0.00 Z 0.00
α 39.00 β 0.00 γ 0.00

偏心[4]
X 0.00 Y 1.82 Z 6.97
α -36.31 β 0.00 γ 0.00

偏心[5]
X 0.00 Y 7.71 Z 7.11
α -68.46 β 0.00 γ 0.00

偏心[6]
X 0.00 Y 1.78 Z 11.77
α -50.00 β 0.00 γ -180.00

実施例2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
像 面 ∞ 75.00 偏心(1)
r1 絞り面 0.00 偏心(1)
r2 FFS[1] 0.00 偏心(2) 1.5254 56.2
r3 FFS[2] 0.00 偏心(3) 1.5254 56.2
r4 FFS[3] 0.00 偏心(4) 1.5254 56.2
r5 FFS[2] 0.00 偏心(3)
物体面 ∞ 0.00 偏心(5)

FFS[1]
C4 4.8978e-002 C6 6.9232e-002 C8 3.6508e-003
C10 2.6931e-004 C11 -1.5318e-004 C13 -8.6377e-004
C15 2.0572e-004 C17 2.6159e-005 C19 -3.6139e-004
C21 -4.8713e-005

FFS[2]
C4 5.9829e-003 C6 8.4123e-003 C8 3.7368e-003
C10 3.0984e-004 C11 -9.9909e-005 C13 7.8477e-006
C15 8.8455e-005 C17 6.8287e-005 C19 -5.4763e-005
C21 -3.9312e-006

FFS[3]
C4 2.5179e-002 C6 2.2687e-002 C8 3.4068e-003
C10 1.5660e-003 C11 -1.0019e-004 C13 -1.9560e-004
C15 8.4734e-006 C17 7.6240e-005 C19 -9.3229e-006
C21 2.1578e-005

偏心[1]
X 0.00 Y 0.00 Z 0.00
α 31.00 β 0.00 γ 0.00

偏心[2]
X 0.00 Y 0.37 Z 0.00
α 17.87 β 0.00 γ 0.00

偏心[3]
X 0.00 Y 1.05 Z 8.24
α -44.84 β 0.00 γ 0.00

偏心[4]
X 0.00 Y 6.46 Z 8.89
α -77.77 β 0.00 γ 0.00

偏心[5]
X 0.00 Y 0.18 Z 12.39
α -63.48 β 0.00 γ -180.00


実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
像 面 50.00 75.00 偏心(1)
r1 絞り面 0.00 偏心(1)
r2 FFS[1] 0.00 偏心(2) 1.5254 56.2
r3 FFS[2] 0.00 偏心(3) 1.5254 56.2
r4 FFS[3] 0.00 偏心(4) 1.5254 56.2
r5 FFS[2] 0.00 偏心(3)
物体面 ∞ 0.00 偏心(5)

FFS[1]
C4 5.0097e-002 C6 4.2610e-002 C8 3.4705e-003
C10 1.9611e-003

FFS[2]
C4 9.1122e-003 C6 -3.4810e-004 C8 2.1544e-003
C10 2.5047e-004 C11 -1.5295e-004 C13 -1.5682e-004
C15 8.2666e-007

FFS[3]
C4 2.4243e-002 C6 1.4239e-002 C8 2.3263e-003
C10 1.1413e-003 C11 -1.6864e-005 C13 -3.9474e-005
C15 7.7222e-006

偏心[1]
X 0.00 Y 0.00 Z 0.00
α 31.00 β 0.00 γ 0.00

偏心[2]
X 0.00 Y 0.64 Z 0.00
α 16.97 β 0.00 γ 0.00

偏心[3]
X 0.00 Y 0.86 Z 7.10
α -50.44 β 0.00 γ 0.00

偏心[4]
X 0.00 Y 9.21 Z 9.88
α -83.60 β 0.00 γ 0.00

偏心[5]
X 0.00 Y 2.01 Z 13.88
α -62.64 β 0.00 γ -180.00


実施例4
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
像 面 ∞ ∞
r1(絞り) ∞ 0.40
r2 非球面[1] 12.196
物体面 0.00 0.00

非球面[1]
曲率半径 -3.49
k -0.999289
a 0.6834e-003 b -0.2089e-004

実施例5
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
r1 ∞ 0.00
r2 フレネル面[1] 1.70 1.4918 57.4
r3 フレネル面[2] 1.50
r4 フレネル面[3] 1.70 1.4918 57.4
r5 ∞ 0.00
r6 ∞ 12.20
r7 非球面[1] 0.40 1.4918 57.4
r8 8.10 0.00
r9(絞り) ∞ 0.00
r10 ∞ 22.00
像 面 -11.00 0.00

フレネル面[1]
曲率半径 0.49734
k 0.0000e+000

フレネル面[2]
曲率半径 -0.1187
k 0.0000e+000

フレネル面[3]
曲率半径 0.3465
k 0.0000e+000

非球面[1]
曲率半径 3.49
k -3.862634
a 7.3289e-003 b -7.6198e-004
上記実施例1〜3について、条件式(1)の値を下記に示しておく。
実施例1 実施例2 実施例3
OPux/OPix 1.66 1.35 1.50
以上、本発明の種々の実施形態について説明したが、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。
1…観察光学系
10…眼球
20…観察者瞳孔位置
30…観察者視軸
40…第2光学系
50…拡散面
60…第1光学系(偏心プリズム)
61…第1面
62…第2面
63…第3面
70…映像生成部(画像表示素子)

Claims (23)

  1. 観察者の前方に配置され、光を拡散する拡散面と、
    第1面、第2面、及び第3面を有する少なくとも3面の光学面で構成され、前記光学面のうち、少なくとも2面は、回転非対称な形状を有し、物体面の映像の実像を前記拡散面に投影する第1光学系と、
    前記拡散面に投影された実像を観察者眼球に拡大された虚像として投影する第2光学系と、
    を備え、
    前記物体面の中心と前記拡散面の中心を結ぶ光線を軸上主光線としたとき、前記少なくとも3面の光学面は、それぞれ前記軸上主光線に対して偏心して配置される
    ことを特徴とする観察光学系。
  2. 前記第1光学系は、前記少なくとも3面の光学面で囲まれ、屈折率が1以上の媒質で満たされている偏心プリズムである
    請求項1に記載の観察光学系。
  3. 前記第1光学系の射出瞳は、前記偏心プリズムの射出面近傍に配置する
    請求項2に記載の観察光学系。
  4. 前記軸上主光線を含む面内における前記第1光学系の上側最大画角の射出瞳から像面までの光路長をOPux
    前記軸上主光線を含む面内における前記第1光学系の下側最大画角の射出瞳から像面までの光路長をOPix
    としたとき、
    以下の条件式(1)を満足する
    請求項1乃至3のいずれか1項に記載の観察光学系。
    1.05 ≦ OPux/OPix ≦ 1.95 (1)
  5. 前記第1光学系の前記第2面をローカル座標で定義する関数をf(x,y)とし、
    前記第2面のローカル座標(x,y)におけるxの2階偏微分値をcx(x,y)、
    前記第2面のローカル座標(x,y)の値を(η,ζ)とすると、
    以下の条件式(2)を満足する
    請求項1乃至4のいずれか1項に記載の観察光学系。
    cx(η,ζa) < cx(η,ζb) (2)
    ただし、
    ζa < ζb、
    ηは、任意の数、
    である。
  6. 前記第1光学系の前記第2面をローカル座標で定義する関数をf(x,y)とし、
    前記第2面のローカル座標(x,y)におけるyの2階偏微分値をcy(x,y)、
    前記第2面のローカル座標(x,y)の値を(η,ζ)とすると、
    以下の条件式(2)を満足する
    請求項1乃至5のいずれか1項に記載の観察光学系。
    cy(η,ζa) < cy(η,ζb) (3)
    ただし、
    ζa < ζb、
    ηは、任意の数、
    である。
  7. 前記第2光学系は、観察者の眼球に配置するコンタクトレンズである
    請求項1乃至6のいずれか1項に記載の観察光学系。
  8. 前記拡散面は、曲面である
    請求項7に記載の観察光学系。
  9. 前記拡散面は、球面である
    請求項7に記載の観察光学系。
  10. 前記第2光学系は、観察者の眼球の前方に配置する接眼光学系である
    請求項1乃至6のいずれか1項に記載の観察光学系。
  11. 前記拡散面は、調光ガラスである
    請求項10に記載の観察光学系。
  12. 前記拡散面に対して、前記第2光学系とは反対側にシースルーレンズを配置する
    請求項7乃至11のいずれか1項に記載の観察光学系。
  13. 前記シースルーレンズは、フレネルレンズである
    請求項12に記載の観察光学系。
  14. 請求項1乃至13のいずれか1項に記載の観察光学系と、
    前記物体面に配置されて映像を表示する映像生成部と、
    を備え、
    前記映像生成部に表示される映像は、前記第1面を透過し、前記第2面で反射され、前記第1面で反射され、前記第3面とその近傍に配備された前記射出瞳を通り、前記拡散面に投影される
    ことを特徴とする観察装置。
  15. 前記映像生成部は、映像信号によって変調されたレーザ光を2次元デジタルマイクロミラーデバイスで反射することによって表示する
    ことを特徴とする請求項14に記載の観察装置。
  16. 前記映像生成部は、映像信号によって変調されたレーザ光を2次元に走査することによって表示する
    ことを特徴とする請求項14に記載の観察装置。
  17. 前記映像生成部は、前記レーザ光を偏向する偏向ミラーを有し、
    前記偏向ミラーの反射位置は、前記第1光学系の入射瞳近傍に配置され、
    前記第1光学系の入射瞳位置と前記拡散面は、互いにチルト又はシフトしている
    ことを特徴とする請求項16に記載の観察装置。
  18. 前記映像生成部は、反射型液晶又は半透過型液晶であり、
    前記映像生成部を照明する照明部を備える
    ことを特徴とする請求項14に記載の観察装置。
  19. 前記照明部は、偏光ビームスプリッターを有する
    ことを特徴とする請求項18に記載の観察装置。
  20. 前記照明部は、回折光学素子を有する
    ことを特徴とする請求項18に記載の観察装置。
  21. 前記観察装置は、眼鏡型の筺体を備え、
    前記映像生成部は、眼鏡型の筺体内に配置される
    ことを特徴とする請求項14乃至20のいずれか1つに記載の観察装置。
  22. 前記第1光学系は、眼鏡型の筺体内に配置される
    ことを特徴とする請求項21に記載の観察装置。
  23. 前記観察装置は、眼鏡型のレンズを備え、
    前記拡散面は、眼鏡型のレンズに相当する面の内側に配置される
    ことを特徴とする請求項21又は22に記載の観察装置。
JP2012229072A 2012-10-16 2012-10-16 観察光学系、及びそれを用いた観察装置 Pending JP2014081481A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229072A JP2014081481A (ja) 2012-10-16 2012-10-16 観察光学系、及びそれを用いた観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229072A JP2014081481A (ja) 2012-10-16 2012-10-16 観察光学系、及びそれを用いた観察装置

Publications (1)

Publication Number Publication Date
JP2014081481A true JP2014081481A (ja) 2014-05-08

Family

ID=50785721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229072A Pending JP2014081481A (ja) 2012-10-16 2012-10-16 観察光学系、及びそれを用いた観察装置

Country Status (1)

Country Link
JP (1) JP2014081481A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013163A (ko) 2015-07-27 2017-02-06 가부시키가이샤 보스톤쿠라부 디바이스를 부착할 수 있는 안경 프레임
JP2017156388A (ja) * 2016-02-29 2017-09-07 セイコーエプソン株式会社 光束径拡大素子及び画像表示装置
CN107300773A (zh) * 2017-06-30 2017-10-27 北京铠博德科技有限公司 一种增强现实的智能眼镜
EP3553593A1 (en) 2018-04-09 2019-10-16 Boston Club Co., Ltd. Spectacle frame
JP2020512584A (ja) * 2017-03-21 2020-04-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. 薄型ビームスプリッタ
WO2020226235A1 (ko) * 2019-05-08 2020-11-12 엘지전자 주식회사 전자 디바이스
JP2022023860A (ja) * 2016-03-02 2022-02-08 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー 像面湾曲補正ディスプレイ
JP2022544291A (ja) * 2019-08-15 2022-10-17 マジック リープ, インコーポレイテッド ピクセルアレイを伴うシースルーディスプレイ内の残影画像軽減
US11567320B2 (en) 2017-03-21 2023-01-31 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
KR20230049391A (ko) * 2021-10-06 2023-04-13 한국광기술원 회절효율을 확보할 수 있는 콘텍트 렌즈형 프로젝션 홀로그래픽 디스플레이 장치 및 시스템
JP2024147629A (ja) * 2017-12-11 2024-10-16 マジック リープ, インコーポレイテッド 導波管照明器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347731A (ja) * 1993-06-08 1994-12-22 Menicon Co Ltd 近点観察用コンタクトレンズ
JPH1062712A (ja) * 1996-08-22 1998-03-06 Nikon Corp 観察光学系および観察方法
JP2004325672A (ja) * 2003-04-23 2004-11-18 Canon Inc 走査光学系
JP2005292308A (ja) * 2004-03-31 2005-10-20 Canon Inc 画像表示装置
JP2011007990A (ja) * 2009-06-25 2011-01-13 Olympus Imaging Corp 投影装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347731A (ja) * 1993-06-08 1994-12-22 Menicon Co Ltd 近点観察用コンタクトレンズ
JPH1062712A (ja) * 1996-08-22 1998-03-06 Nikon Corp 観察光学系および観察方法
JP2004325672A (ja) * 2003-04-23 2004-11-18 Canon Inc 走査光学系
JP2005292308A (ja) * 2004-03-31 2005-10-20 Canon Inc 画像表示装置
JP2011007990A (ja) * 2009-06-25 2011-01-13 Olympus Imaging Corp 投影装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013163A (ko) 2015-07-27 2017-02-06 가부시키가이샤 보스톤쿠라부 디바이스를 부착할 수 있는 안경 프레임
US10989925B2 (en) 2016-02-29 2021-04-27 Seiko Epson Corporation Light flux diameter expanding element and image display device
JP2017156388A (ja) * 2016-02-29 2017-09-07 セイコーエプソン株式会社 光束径拡大素子及び画像表示装置
US12222509B2 (en) 2016-02-29 2025-02-11 Seiko Epson Corporation Light flux diameter expanding element and image display device
US11619818B2 (en) 2016-02-29 2023-04-04 Seiko Epson Corporation Light flux diameter expanding element and image display device
JP2022023860A (ja) * 2016-03-02 2022-02-08 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー 像面湾曲補正ディスプレイ
JP2023014115A (ja) * 2017-03-21 2023-01-26 マジック リープ, インコーポレイテッド 薄型ビームスプリッタ
US12038587B2 (en) 2017-03-21 2024-07-16 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
JP7075942B2 (ja) 2017-03-21 2022-05-26 マジック リープ, インコーポレイテッド 薄型ビームスプリッタ
US11835723B2 (en) 2017-03-21 2023-12-05 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
US11480861B2 (en) 2017-03-21 2022-10-25 Magic Leap, Inc. Low-profile beam splitter
US12271001B2 (en) 2017-03-21 2025-04-08 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
JP7174794B2 (ja) 2017-03-21 2022-11-17 マジック リープ, インコーポレイテッド 薄型ビームスプリッタ
JP2020512584A (ja) * 2017-03-21 2020-04-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. 薄型ビームスプリッタ
US11567320B2 (en) 2017-03-21 2023-01-31 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
JP7422204B2 (ja) 2017-03-21 2024-01-25 マジック リープ, インコーポレイテッド 薄型ビームスプリッタ
JP2021099523A (ja) * 2017-03-21 2021-07-01 マジック リープ, インコーポレイテッドMagic Leap,Inc. 薄型ビームスプリッタ
CN107300773A (zh) * 2017-06-30 2017-10-27 北京铠博德科技有限公司 一种增强现实的智能眼镜
JP2024147629A (ja) * 2017-12-11 2024-10-16 マジック リープ, インコーポレイテッド 導波管照明器
EP3553593A1 (en) 2018-04-09 2019-10-16 Boston Club Co., Ltd. Spectacle frame
US11493757B2 (en) 2019-05-08 2022-11-08 Lg Electronics Inc. Electronic device
WO2020226235A1 (ko) * 2019-05-08 2020-11-12 엘지전자 주식회사 전자 디바이스
JP2023165727A (ja) * 2019-08-15 2023-11-17 マジック リープ, インコーポレイテッド ピクセルアレイを伴うシースルーディスプレイ内の残影画像軽減
US12276798B2 (en) 2019-08-15 2025-04-15 Magic Leap, Inc. Ghost image mitigation in see-through displays with pixel arrays
JP7343690B2 (ja) 2019-08-15 2023-09-12 マジック リープ, インコーポレイテッド ピクセルアレイを伴うシースルーディスプレイ内の残影画像軽減
JP7545542B2 (ja) 2019-08-15 2024-09-04 マジック リープ, インコーポレイテッド ピクセルアレイを伴うシースルーディスプレイ内の残影画像軽減
JP2022544291A (ja) * 2019-08-15 2022-10-17 マジック リープ, インコーポレイテッド ピクセルアレイを伴うシースルーディスプレイ内の残影画像軽減
KR20230049391A (ko) * 2021-10-06 2023-04-13 한국광기술원 회절효율을 확보할 수 있는 콘텍트 렌즈형 프로젝션 홀로그래픽 디스플레이 장치 및 시스템
KR102668008B1 (ko) * 2021-10-06 2024-05-22 한국광기술원 회절효율을 확보할 수 있는 콘텍트 렌즈형 프로젝션 홀로그래픽 디스플레이 장치 및 시스템

Similar Documents

Publication Publication Date Title
JP2014081481A (ja) 観察光学系、及びそれを用いた観察装置
JP5791991B2 (ja) 偏心光学系、偏心光学系を用いた画像表示装置及び撮像装置
JP3599828B2 (ja) 光学装置
JP5031272B2 (ja) 表示光学系及びそれを有する画像表示装置
JP2000221440A (ja) 画像表示装置
JPH11125791A (ja) 画像表示装置
JP2000206446A (ja) 画像表示装置
JPH1075407A (ja) 画像表示装置
JP2005202060A (ja) 観察光学系
JP5653816B2 (ja) 偏心光学系を有する画像表示装置
JP2012242794A (ja) 2眼式画像表示装置
JP5186003B2 (ja) 視覚表示装置
JP4926432B2 (ja) 表示光学系及びそれを有する画像表示装置
JP5980627B2 (ja) 偏心光学系、偏心光学系を用いた画像投影装置、及び偏心光学系を用いた画像撮像装置
JP2011043599A (ja) 視覚表示装置
JP4667655B2 (ja) 光学素子及びそれを用いた光学装置
JP2000180783A (ja) 画像表示装置
JPWO2016181460A1 (ja) プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
JP4847055B2 (ja) 画像表示装置および撮像装置
JP3870073B2 (ja) 画像表示装置および撮像装置
JP4579396B2 (ja) 画像表示装置
JP6392066B2 (ja) 偏心光学系、及び偏心光学系を用いた画像投影装置
JP2006313365A (ja) 画像表示装置
JP3870074B2 (ja) 画像表示装置および撮像装置
JP6529239B2 (ja) 偏心光学系、偏心光学系を用いた画像投影装置、及び偏心光学系を用いた画像撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170301