[go: up one dir, main page]

JP2014063710A - Electrolytic solution and lithium ion secondary battery - Google Patents

Electrolytic solution and lithium ion secondary battery Download PDF

Info

Publication number
JP2014063710A
JP2014063710A JP2012280097A JP2012280097A JP2014063710A JP 2014063710 A JP2014063710 A JP 2014063710A JP 2012280097 A JP2012280097 A JP 2012280097A JP 2012280097 A JP2012280097 A JP 2012280097A JP 2014063710 A JP2014063710 A JP 2014063710A
Authority
JP
Japan
Prior art keywords
lithium
electrolytic solution
boron trifluoride
trifluoride complex
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012280097A
Other languages
Japanese (ja)
Inventor
Kenichi Shinmyo
健一 新明
Masashi Kano
正史 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012280097A priority Critical patent/JP2014063710A/en
Publication of JP2014063710A publication Critical patent/JP2014063710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery preventing deterioration in capacity due to repetition of charging/discharging, more specifically excellent in cycle life characteristics, in relating to an electrolytic solution or gel electrolyte for a lithium ion secondary battery and a lithium ion secondary battery including the electrolytic solution or gel electrolyte.SOLUTION: An electrolytic solution of the present invention is an electrolytic solution that is obtained by dissolving a first lithium salt in a nonaqueous solvent, and further mixed with an organic acid lithium-boron trifluoride complex, as a second lithium salt.

Description

本発明は、電解質を用いた電解液及び該電解液を用いて得られたリチウムイオン二次電池に関する。  The present invention relates to an electrolytic solution using an electrolyte and a lithium ion secondary battery obtained using the electrolytic solution.

リチウムイオン二次電池は、鉛蓄電池、ニッケル水素電池に比べて、エネルギー密度及び起電力が高いという特徴を有するため、小型、軽量化が要求される携帯電話やノートパソコン等の電源として広く使用されている。  Lithium ion secondary batteries are characterized by high energy density and electromotive force compared to lead-acid batteries and nickel metal hydride batteries, so they are widely used as power sources for mobile phones and laptop computers that require small size and light weight. ing.

リチウムイオン二次電池は、一般に負極、正極ならびにその両極の短絡を防止するセパレータから構成されており、それらに、リチウム塩を非水溶媒に溶解させた電解液が保持されている。  A lithium ion secondary battery is generally composed of a negative electrode, a positive electrode, and a separator that prevents short-circuiting of both electrodes, and holds an electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent.

リチウムイオン二次電池では、通常、負極として金属リチウム、リチウム合金、リチウムを吸蔵及び放出し得る炭素系材料、金属酸化物等が使用される。また、正極としてコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン型リン酸鉄リチウム等の遷移金属酸化物が使用される。
そして、現在のリチウムイオン二次電池の多くは電解液として、エチレンカーボネート、プロピレンカーボネート、ガンマブチロラクトン、メチルカーボネート、エチルメチルカーボネート、エチルカーボネート等の各種非水溶媒に、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、過塩素酸リチウム(LiClO)、三フッ化メタンスルホン酸リチウム(LiCFSO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)等のリチウム塩を溶解させた非水系電解液を使用している(例えば、特許文献1、特許文献2参照)。
In a lithium ion secondary battery, metallic lithium, a lithium alloy, a carbon-based material that can occlude and release lithium, a metal oxide, or the like is usually used as a negative electrode. In addition, transition metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, and olivine-type lithium iron phosphate are used as the positive electrode.
Many of the current lithium ion secondary batteries are used as an electrolyte solution in various nonaqueous solvents such as ethylene carbonate, propylene carbonate, gamma butyrolactone, methyl carbonate, ethyl methyl carbonate, ethyl carbonate, and lithium hexafluorophosphate (LiPF). 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate ( LiCF 3 SO 3), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6), lithium tetraphenylborate (LiB (C 6 H 5) by dissolving a lithium salt such as 4) Using non-aqueous electrolyte (example) If, refer to Patent Document 1, Patent Document 2).

特許第3369583号公報Japanese Patent No. 3369583 特許第4407205号公報Japanese Patent No. 4407205

リチウムイオン二次電池の初期充電時において、例えば、エチレンカーボネートのような環状炭酸エステル類は、負極表面上にて還元されLiCO、LiO、LiOHなどから成る固体電解質様の界面皮膜(以下、SEIと称する。)を形成する。このSEI皮膜は、充放電時にリチウムイオンに溶媒和された溶媒分子が負極中に挿入するのを阻止し、負極構造の破壊を止める役割を持つ。 During initial charging of a lithium ion secondary battery, for example, cyclic carbonates such as ethylene carbonate are reduced on the negative electrode surface and are made of a solid electrolyte-like interfacial film made of Li 2 CO 3 , Li 2 O, LiOH, or the like. (Hereinafter referred to as SEI). This SEI film has a role of preventing the breakdown of the negative electrode structure by preventing the solvent molecules solvated with lithium ions from being inserted into the negative electrode during charging and discharging.

しかし、充放電が繰り返されることによって、負極の膨張収縮などが繰り返し起こる、部分的な過電圧がかかる等の理由によりSEIは徐々に崩壊してしまう。このSEIが崩壊し露出した負極表面上にて、さらに炭酸エステル系の溶媒が分解されるために、サイクル特性や保存特性などの電池特性が低下してしまうという問題がある。  However, when charging and discharging are repeated, the SEI gradually collapses due to factors such as repeated expansion and contraction of the negative electrode and partial overvoltage. Since the carbonate solvent is further decomposed on the negative electrode surface exposed by the collapse of SEI, there is a problem that battery characteristics such as cycle characteristics and storage characteristics are deteriorated.

そこで、本発明者は、上述のような従来技術の問題点を解消するために、添加剤を種々探求した結果、前述されている非水系電解液に有機酸リチウム−三フッ化ホウ素錯体を添加することによって、サイクル特性の悪化を減少させることができることを見出し、本発明を完成するに至った。すなわち、本発明は、リチウムイオン二次電池用の電解液及びこれを含むリチウムイオン二次電池に関し、充放電の繰り返しによる容量劣化を阻止する、すなわち、サイクル寿命特性が優れたリチウムイオン二次電池を提供することを課題とする。  Therefore, the present inventor added various organic acid lithium-boron trifluoride complexes to the non-aqueous electrolyte described above as a result of exploring various additives in order to solve the problems of the prior art as described above. As a result, it was found that deterioration of cycle characteristics can be reduced, and the present invention has been completed. That is, the present invention relates to an electrolytic solution for a lithium ion secondary battery and a lithium ion secondary battery including the same, which prevents capacity deterioration due to repeated charge and discharge, that is, a lithium ion secondary battery having excellent cycle life characteristics. It is an issue to provide.

上記課題を解決するため、
本発明は、第一のリチウム塩を非水溶媒に溶解させた電解液において、さらに第二のリチウム塩として、有機酸リチウム−三フッ化ホウ素錯体が配合されてなることを特徴とする電解液を提供する。
To solve the above problem,
The present invention provides an electrolytic solution obtained by dissolving an organic acid lithium-boron trifluoride complex as the second lithium salt in an electrolytic solution in which the first lithium salt is dissolved in a nonaqueous solvent. I will provide a.

本発明の電解液においては、前記有機酸リチウム−三フッ化ホウ素錯体が、ギ酸リチウム−三フッ化ホウ素錯体、酢酸リチウム−三フッ化ホウ素錯体、シュウ酸リチウム−三フッ化ホウ素錯体、コハク酸リチウム−三フッ化ホウ素錯体からなる群から選択される一種以上であることが好ましい。
本発明の電解液においては、前記第一のリチウム塩の配合量:前記有機酸リチウム−三フッ化ホウ素錯体の配合量が99.8:0.2〜50:50(モル比)であることが好ましい。
In the electrolytic solution of the present invention, the organic acid lithium-boron trifluoride complex is a lithium formate-boron trifluoride complex, lithium acetate-boron trifluoride complex, lithium oxalate-boron trifluoride complex, succinic acid. It is preferably at least one selected from the group consisting of lithium-boron trifluoride complexes.
In the electrolytic solution of the present invention, the amount of the first lithium salt: the amount of the organic acid lithium-boron trifluoride complex is 99.8: 0.2 to 50:50 (molar ratio). Is preferred.

本発明の電解液においては、前記第一のリチウム塩が、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、過塩素酸リチウム(LiClO)、三フッ化メタンスルホン酸リチウム(LiCFSO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)及びテトラフェニルホウ酸リチウム(LiB(C)からなる群から選択される一種以上であることが好ましい。 In the electrolytic solution of the present invention, the first lithium salt is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroboron (LiBF 4 ), lithium bis (trifluoromethylsulfonyl) imide lithium (LiN (SO 2 CF 3) 2), lithium perchlorate (LiClO 4), trifluoromethane sulfonic lithium (LiCF 3 SO 3), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6 And at least one selected from the group consisting of lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ).

本発明の電解液においては、前記非水溶媒が、環状炭酸エステル、鎖状炭酸エステル、エーテル類、カルボン酸エステル類、ニトリル類、アミド類及びスルホン類からなる群から選択される一種以上が配合されてなることが好ましい。  In the electrolytic solution of the present invention, the non-aqueous solvent contains one or more selected from the group consisting of cyclic carbonates, chain carbonates, ethers, carboxylic esters, nitriles, amides and sulfones. It is preferable to be made.

また、本発明は、上記本発明の電解液を用いて得られたことを特徴とするリチウムイオン二次電池を提供する。  The present invention also provides a lithium ion secondary battery obtained by using the electrolytic solution of the present invention.

本発明に係る電解液が適用されたリチウムイオン二次電池は、初充電時に安定したSEI皮膜を生成させることによって、充放電の繰り返しによる容量劣化を阻止する、すなわち、サイクル寿命特性が優れたリチウムイオン二次電池を提供できる。  The lithium ion secondary battery to which the electrolytic solution according to the present invention is applied is a lithium ion battery that prevents a capacity deterioration due to repeated charge and discharge by generating a stable SEI film at the time of initial charge, that is, a lithium having excellent cycle life characteristics. An ion secondary battery can be provided.

本発明の電解液及びリチウムイオン二次電池の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of an electrolytic solution and a lithium ion secondary battery of the present invention will be described.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.

<電解液>
本発明の電解液は、第一のリチウム塩を非水溶媒に溶解させた電解液において、さらに第二のリチウム塩として、有機酸リチウム−三フッ化ホウ素錯体が配合されてなることを特徴とする。
第一のリチウム塩を非水溶媒に溶解させた電解液に、有機酸リチウム−三フッ化ホウ素錯体を添加することにより、本発明の電解液は、初充電時に安定したSEI皮膜を生成させることによって、サイクル寿命特性が優れており、リチウムイオン二次電池への適用に好適なものである。
<Electrolyte>
The electrolytic solution of the present invention is characterized in that in the electrolytic solution in which the first lithium salt is dissolved in a non-aqueous solvent, an organic acid lithium-boron trifluoride complex is further blended as the second lithium salt. To do.
By adding an organic acid lithium-boron trifluoride complex to an electrolytic solution in which the first lithium salt is dissolved in a non-aqueous solvent, the electrolytic solution of the present invention generates a stable SEI film at the time of initial charge. Therefore, the cycle life characteristics are excellent, and it is suitable for application to a lithium ion secondary battery.

(第一のリチウム塩)
前記、第一のリチウム塩は、非水溶媒中において溶解するものであれば特に限定されず、好ましいものとしては、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、六フッ化ニオブ酸リチウム(LiNbF)、テトラフェニルホウ酸リチウム(LiB(C)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、ビス(ペンタフルオロエチルスルホニル)イミドリチウム(LiN(SO)、三フッ化メタンスルホン酸リチウム(LiCFSO)、等のリチウム塩を例示できる。
(First lithium salt)
The first lithium salt is not particularly limited as long as it dissolves in a non-aqueous solvent, and preferable ones include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroboron (LiBF 4 ). , lithium perchlorate (LiClO 4), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6), lithium hexafluoro tantalate (LiTaF 6), lithium hexafluoro niobate ( LiNbF 6 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), bis (fluorosulfonyl) imide lithium (LiN (FSO 2 ) 2 ), bis (trifluoromethylsulfonyl) imide lithium (LiN (SO 2) CF 3) 2), bis (pentafluoroethyl sulfonyl) imide (LiN ( O 2 C 3 F 5) 2 ), trifluoromethane sulfonic lithium (LiCF 3 SO 3), can be mentioned lithium salt and the like.

前記、第一のリチウム塩は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。
前記、第一のリチウム塩の配合量は特に限定されず、例えば、前記、第一のリチウム塩や溶媒の種類に応じて適宜調節すれば良い。通常は、[前記、第一のリチウム塩の配合量(モル数)]/[配合された物質の総重量]の質量モル濃度が0.2以上であることが好ましく、0.5以上であることがより好ましい。このような範囲とすることによって、電解液のイオン伝導度が一層向上する。また、前記質量モル濃度の上限値は本発明の効果を妨げない限り特に限定されないが、3.0であることが好ましく、2.0であることがより好ましい。
The said 1st lithium salt may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.
The compounding quantity of said 1st lithium salt is not specifically limited, For example, what is necessary is just to adjust suitably according to the kind of said 1st lithium salt and solvent. Usually, it is preferable that the molar concentration of [the above-mentioned blending amount (number of moles) of the first lithium salt] / [total weight of blended substances] is 0.2 or more, and 0.5 or more. It is more preferable. By setting it as such a range, the ionic conductivity of electrolyte solution improves further. The upper limit of the molar concentration is not particularly limited as long as the effect of the present invention is not hindered, but is preferably 3.0, more preferably 2.0.

前記非水溶媒は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル類、ガンマブチロラクトン、バンマバレロラクトン等のラクトン類、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、テトラヒドロフラン、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のエーテル類、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチルなどのカルボン酸エステル類、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類及びスルホラン、ジメチルスルホキシド等のスルホン類が例示できる。  The non-aqueous solvent includes cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, lactones such as gamma butyrolactone and bunvalerolactone, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, tetrahydrofuran 1,2-dimethoxyethane, 2-methyltetrahydrofuran, 1,3-dioxolane, ethers such as 4-methyl-1,3-dioxolane, methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate , Carboxylic acid esters such as methyl propionate, ethyl propionate and methyl butyrate, nitriles such as acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile S, N, N-dimethylformamide, N, N-amides such as dimethylacetamide and sulfolane, sulfones such as dimethyl sulfoxide can be exemplified.

前記非水溶媒は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。  The said non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.

(有機酸リチウム−三フッ化ホウ素錯体)
有機酸リチウム−三フッ化ホウ素錯体において、有機酸リチウムの部分は、カルボン酸のリチウム塩が好ましい。また、有機酸リチウムの部分において、リチウム塩を構成する酸基の数は、特に限定されない。
(Organic acid lithium-boron trifluoride complex)
In the organic acid lithium-boron trifluoride complex, the portion of the organic acid lithium is preferably a lithium salt of a carboxylic acid. Further, the number of acid groups constituting the lithium salt in the portion of the organic acid lithium is not particularly limited.

好ましい前記有機酸リチウム−三フッ化ホウ素錯体としては、ギ酸リチウム−三フッ化ホウ素錯体、酢酸リチウム−三フッ化ホウ素錯体、プロピオン酸リチウム−三フッ化ホウ素錯体、酪酸リチウム−三フッ化ホウ素錯体、イソ酪酸リチウム−三フッ化ホウ素錯体、シュウ酸リチウム−三フッ化ホウ素錯体、乳酸リチウム−三フッ化ホウ素錯体、酒石酸リチウム−三フッ化ホウ素錯体、マレイン酸リチウム−三フッ化ホウ素錯体、フマル酸リチウム−三フッ化ホウ素錯体、マロン酸リチウム−三フッ化ホウ素錯体、コハク酸リチウム−三フッ化ホウ素錯体、リンゴ酸リチウム−三フッ化ホウ素錯体、クエン酸リチウム−三フッ化ホウ素錯体、グルタル酸リチウム−三フッ化ホウ素錯体、アジピン酸リチウム−三フッ化ホウ素錯体、フタル酸リチウム−三フッ化ホウ素錯体、安息香酸リチウム−三フッ化ホウ素錯体が例示できる。より好ましい前記有機酸リチウム−三フッ化ホウ素錯体としては、ギ酸リチウム−三フッ化ホウ素錯体、酢酸リチウム−三フッ化ホウ素錯体、シュウ酸リチウム−三フッ化ホウ素錯体、コハク酸リチウム−三フッ化ホウ素錯体が例示できる。  Preferred examples of the organic acid lithium-boron trifluoride complex include lithium formate-boron trifluoride complex, lithium acetate-boron trifluoride complex, lithium propionate-boron trifluoride complex, lithium butyrate-boron trifluoride complex. , Lithium isobutyrate-boron trifluoride complex, lithium oxalate-boron trifluoride complex, lithium lactate-boron trifluoride complex, lithium tartrate-boron trifluoride complex, lithium maleate-boron trifluoride complex, fumarate Lithium acid-boron trifluoride complex, lithium malonate-boron trifluoride complex, lithium succinate-boron trifluoride complex, lithium malate-boron trifluoride complex, lithium citrate-boron trifluoride complex, glutar Lithium acid-boron trifluoride complex, Lithium adipate-boron trifluoride complex, Lithium phthalate Um - boron trifluoride complex, lithium benzoate - boron trifluoride complex can be exemplified. More preferable examples of the organic acid lithium-boron trifluoride complex include lithium formate-boron trifluoride complex, lithium acetate-boron trifluoride complex, lithium oxalate-boron trifluoride complex, lithium succinate-trifluoride. An example is a boron complex.

有機酸リチウム−三フッ化ホウ素錯体は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。前記、第一のリチウム塩の配合量は特に限定されず、例えば、前記、第一のリチウム塩や溶媒の種類に応じて適宜調節すれば良い。通常は、前記、第一のリチウム塩の配合量:前記有機酸リチウム−三フッ化ホウ素錯体の配合量が99.8:0.2〜50:50(モル比)であることが好ましく、99:1〜70:30(モル比)であることがより好ましい。このような範囲とすることで、より良好なSEIが形成され、サイクル寿命特性が優れたリチウムイオン二次電池が得られる。
なお、本発明の電解液は、有機酸リチウム−三フッ化ホウ素錯体が直接、配合されているので、カルボン酸リチウム塩と、三フッ化ホウ素及び/又は三フッ化ホウ素錯体と、有機溶媒とを配合し、撹拌して均一な溶液とした電解液ではないので、残存不純物として三フッ化ホウ素錯体から脱離した配位結合成分が含まれておらず、この配位結合成分が除去されているため、極めて高純度であり、不純物量が少なくなっている。
An organic acid lithium-boron trifluoride complex may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose. The compounding quantity of said 1st lithium salt is not specifically limited, For example, what is necessary is just to adjust suitably according to the kind of said 1st lithium salt and solvent. Usually, the blending amount of the first lithium salt: the blending amount of the organic acid lithium-boron trifluoride complex is preferably 99.8: 0.2 to 50:50 (molar ratio). : It is more preferable that it is 1-70: 30 (molar ratio). By setting it as such a range, better SEI is formed and the lithium ion secondary battery excellent in cycle life characteristics is obtained.
In addition, since the organic acid lithium-boron trifluoride complex is directly blended in the electrolytic solution of the present invention, the lithium carboxylate, the boron trifluoride and / or boron trifluoride complex, the organic solvent, Therefore, it does not contain the coordination bond component desorbed from the boron trifluoride complex as a residual impurity, and the coordination bond component is removed. Therefore, the purity is extremely high and the amount of impurities is small.

(その他の成分)
本発明の電解液は、前記有機酸リチウム−三フッ化ホウ素錯体以外に、本発明の効果を妨げない範囲内において、その他の成分が配合されていても良い。
(Other ingredients)
The electrolyte solution of the present invention may contain other components in addition to the organic acid lithium-boron trifluoride complex as long as the effects of the present invention are not hindered.

(電解液の製造方法)
本発明の電解液は、第一のリチウム塩、非水溶媒、有機酸リチウム−三フッ化ホウ素錯体、並びに必要に応じてその他の成分を適宜配合することで、製造できる。各成分の配合時の添加順序、温度、時間等の各条件は、配合成分の種類に応じて任意に調節できる。
(Method for producing electrolyte)
The electrolytic solution of the present invention can be produced by appropriately blending the first lithium salt, the non-aqueous solvent, the organic acid lithium-boron trifluoride complex, and other components as necessary. Each condition such as the order of addition, temperature, time and the like at the time of blending each component can be arbitrarily adjusted according to the type of the blended component.

<ゲル電解質>
本発明のゲル電解質は、本発明の電解液に、さらにマトリクスポリマーが配合されてなることを特徴とする。前記電解液は、マトリクスポリマー中に保持される。前記ゲル電解質は、リチウムイオン二次電池が通常使用される40℃以下の環境において、流動性を示さないものが好ましい。
<Gel electrolyte>
The gel electrolyte of the present invention is characterized in that a matrix polymer is further blended with the electrolytic solution of the present invention. The electrolytic solution is held in a matrix polymer. The gel electrolyte is preferably one that does not exhibit fluidity in an environment of 40 ° C. or lower where a lithium ion secondary battery is normally used.

(マトリクスポリマー)
マトリクスポリマーは、特に限定されず、ゲル電解質分野で公知のものが適宜使用できる。
マトリクスポリマーの好ましいものとして具体的には、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−六フッ化プロピレン共重合体、ポリフッ化ビニリデン−六フッ化アセトン共重合体、ポリテトラフルオロエチレン等のフッ素系ポリマー;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリアクリルアミド、エチレンオキシドユニットを含むポリアクリレート等のポリアクリル系ポリマー;ポリアクリロニトリル;ポリホスファゼン;ポリシロキサンを例示できる。
(Matrix polymer)
The matrix polymer is not particularly limited, and those known in the gel electrolyte field can be used as appropriate.
Specific examples of preferred matrix polymers include polyether polymers such as polyethylene oxide and polypropylene oxide; polyvinyl fluoride, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-hexafluoride. Fluoropolymers such as acetone copolymers and polytetrafluoroethylene; polyacrylic polymers such as poly (meth) acrylate methyl, poly (meth) ethyl acrylate, polyacrylamide, polyacrylates containing ethylene oxide units; polyacrylonitrile; Polyphosphazene; polysiloxane can be exemplified.

前記、マトリクスポリマーは、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。
前記、マトリクスポリマーの配合量は特に限定されず、例えば、前記、電解液を構成する溶媒の種類に応じて適宜調節すれば良いが、配合成分の総量に占めるマトリクスポリマーの配合量は、1〜50質量%であることが好ましい。下限値以上とすることで、ゲル電解質の強度が一層向上し、上限値以下とすることで、リチウムイオン二次電池は一層優れた電池性能を示す。
The matrix polymer may be used alone or in combination of two or more. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.
The blending amount of the matrix polymer is not particularly limited. For example, the blending amount of the matrix polymer in the total amount of the blending components may be appropriately adjusted according to the type of the solvent constituting the electrolytic solution. It is preferable that it is 50 mass%. By setting the lower limit value or more, the strength of the gel electrolyte is further improved, and by setting the lower limit value or less, the lithium ion secondary battery shows more excellent battery performance.

(ゲル電解質の製造方法)
本発明のゲル電解質は、本発明の電解液、マトリクスポリマー、並びに必要に応じてその他の成分を適宜配合することで、製造できる。各成分の配合時の添加順序、温度、時間等の各条件は、配合成分の種類に応じて任意に調節できる。
(Gel electrolyte production method)
The gel electrolyte of the present invention can be produced by appropriately blending the electrolytic solution of the present invention, the matrix polymer, and other components as necessary. Each condition such as the order of addition, temperature, time and the like at the time of blending each component can be arbitrarily adjusted according to the type of the blended component.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、上記本発明の電解液または本発明のゲル電解質を用いて得られたことを特徴とする。
本発明のリチウムイオン二次電池は、本発明の電解液または本発明のゲル電解質を用いること以外は、従来のリチウムイオン二次電池と同様の構成とすることができ、例えば、負極、正極、セパレータ及び前記電解液を備えて構成される。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is obtained using the electrolytic solution of the present invention or the gel electrolyte of the present invention.
The lithium ion secondary battery of the present invention can have the same configuration as the conventional lithium ion secondary battery except that the electrolytic solution of the present invention or the gel electrolyte of the present invention is used. For example, a negative electrode, a positive electrode, A separator and the electrolytic solution are provided.

前記負極の材質は特に限定されないが、金属リチウム、リチウム合金、リチウムを吸蔵及び放出し得る炭素系材料、金属酸化物等を例示でき、これら材質からなる群から選択される一種以上であることが好ましい。
前記正極の材質は特に限定されないが、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン型リン酸鉄リチウム、リチウムコバルト・ニッケル・マンガン複合酸化物等の遷移金属酸化物を例示でき、これら材質からなる群から選択される一種以上であることが好ましい。
The material of the negative electrode is not particularly limited, but may be exemplified by metal lithium, lithium alloy, carbon-based material capable of inserting and extracting lithium, metal oxide, etc., and may be one or more selected from the group consisting of these materials. preferable.
The material of the positive electrode is not particularly limited, and examples thereof include transition metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, olivine type lithium iron phosphate, and lithium cobalt / nickel / manganese composite oxide. It is preferable that it is 1 or more types selected from the group which consists of.

前記セパレータの材質は特に限定されないが、微多孔性の高分子膜、不織布、ガラスファイバー等が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。  Although the material of the separator is not particularly limited, it can be exemplified by a microporous polymer film, a nonwoven fabric, glass fiber, and the like, and is preferably at least one selected from the group consisting of these materials.

本発明のリチウムイオン二次電池の形状は、特に限定されず、円筒型、角型、コイン型、シート型、ラミネート型等、種々のものに調節できる。  The shape of the lithium ion secondary battery of the present invention is not particularly limited, and can be adjusted to various shapes such as a cylindrical shape, a square shape, a coin shape, a sheet shape, and a laminate shape.

本発明のリチウムイオン二次電池は、公知の方法に従って、例えば、グローブボックス内又は乾燥空気雰囲気下で、前記電解液及び電極を使用して製造すれば良い。  What is necessary is just to manufacture the lithium ion secondary battery of this invention using the said electrolyte solution and an electrode according to a well-known method, for example in a glove box or dry air atmosphere.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

(1)使用した化学物質
本実施例で使用した化学物質を以下に示す。
・(A)有機酸リチウム−三フッ化ホウ素錯体の原料
六フッ化リン酸リチウム(LiPF)(キシダ化学社製)
四フッ化ホウ素リチウム(LiPF)(キシダ化学社製)
ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)(キシダ化学社製)
シュウ酸リチウム(Alfa社製)
・(B)非水溶媒
エチレンカーボネート(以下、ECと略記する。)(キシダ化学社製)
ジメチルカーボネート(以下、DMCと略記する。)(キシダ化学社製)
ガンマブチロラクトン(以下、GBLと略記する。)(キシダ化学社製)
(1) Chemical substances used The chemical substances used in this example are shown below.
(A) Lithium hexafluorophosphate (LiPF 6 ) (made by Kishida Chemical Co., Ltd.)
Lithium boron tetrafluoride (LiPF 4 ) (manufactured by Kishida Chemical Co., Ltd.)
Bis (trifluoromethylsulfonyl) imidolithium (LiN (SO 2 CF 3 ) 2 ) (manufactured by Kishida Chemical Co., Ltd.)
Lithium oxalate (Alfa)
(B) Nonaqueous solvent ethylene carbonate (hereinafter abbreviated as EC) (manufactured by Kishida Chemical Co., Ltd.)
Dimethyl carbonate (hereinafter abbreviated as DMC) (Kishida Chemical Co., Ltd.)
Gamma butyrolactone (hereinafter abbreviated as GBL) (manufactured by Kishida Chemical Co., Ltd.)

(2)有機酸リチウム−三フッ化ホウ素錯体の調製
(2−1)シュウ酸リチウム−三フッ化ホウ素錯体の調製
シュウ酸リチウム(22.3g、223mmol)を丸底フラスコに量り取り、これを200mLのDMCに懸濁させた。これに、23℃で三フッ化ホウ素ジエチルエーテル錯体(63.3g、446mmol)をゆっくりと滴下した後、室温(23℃)で24時間撹拌し、反応液が透明になって不溶物が見られず、均一な溶液となったことを確認した。次いで、ロータリーエバポレーターを用いて、反応液から溶媒及び不純物を留去した。その後、析出した白色の固体を50℃にて乾燥させることにより、白色粉末のシュウ酸リチウム−三フッ化ホウ素錯体((COOLi)・(BF)を得た(収率96.5%)。
(2) Preparation of organic acid lithium-boron trifluoride complex (2-1) Preparation of lithium oxalate-boron trifluoride complex Lithium oxalate (22.3 g, 223 mmol) was weighed into a round bottom flask, Suspended in 200 mL DMC. To this, boron trifluoride diethyl ether complex (63.3 g, 446 mmol) was slowly added dropwise at 23 ° C., followed by stirring at room temperature (23 ° C.) for 24 hours. The reaction solution became transparent and insoluble matter was observed. It was confirmed that a uniform solution was obtained. Subsequently, the solvent and impurities were distilled off from the reaction solution using a rotary evaporator. Thereafter, the precipitated white solid was dried at 50 ° C. to obtain a white powder of lithium oxalate-boron trifluoride complex ((COOLi) 2. (BF 3 ) 2 ) (yield 96.5). %).

(3)電解液及びセルの製造
以下に示す実施例及び比較例における操作は、すべてドライボックス内で行った。
また、表1に実施例及び比較例における電解液の配合を示す。
(3) Manufacture of electrolyte solution and cell All the operations in Examples and Comparative Examples shown below were performed in a dry box.
Table 1 shows the composition of the electrolytic solutions in the examples and comparative examples.

[実施例1]
<電解液の製造>
LiPF(6.45g、42.5mmol)に、非水溶媒としてEC及びDMCの混合溶媒(EC:DMC=30:70(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1)を得た。また、上記(2−1)にて得られたシュウ酸リチウム−三フッ化ホウ素錯体(1.12g、5.11mmol)に、非水溶媒としてEC及びDMCの混合溶媒(EC:DMC=30:70(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2)を得た。
上記で得られた電解液(1)90重量部に対し、電解液(2)を10重量部加えることにより、本実施例にて用いた電解液を得た。なお、LiPFの配合量とシュウ酸リチウム−三フッ化ホウ素錯体の配合量は、モル比で90:10であった。
[Example 1]
<Manufacture of electrolyte>
A mixed solvent of EC and DMC (EC: DMC = 30: 70 (volume ratio)) as a nonaqueous solvent was weighed into LiPF 6 (6.45 g, 42.5 mmol) in a sample bottle, and the concentration of lithium atoms was 1. The electrolyte solution (1) was obtained by mixing so that it might become 0 mol / kg. In addition, the lithium oxalate-boron trifluoride complex (1.12 g, 5.11 mmol) obtained in (2-1) above was mixed with EC and DMC as a nonaqueous solvent (EC: DMC = 30: 70 (volume ratio)) was weighed into a sample bottle and mixed so that the concentration of lithium atoms was 1.0 mol / kg to obtain an electrolytic solution (2).
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2) to 90 parts by weight of the electrolytic solution (1) obtained above. The blending amount of LiPF 6 and the blending amount of the lithium oxalate-boron trifluoride complex was 90:10 in molar ratio.

<コイン型セルの製造>
負極(宝泉株式会社製)及び正極(宝泉株式会社製)を直径16mmの円盤状に打ち抜いた。また、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。得られた正極、セパレータ及び負極をこの順にSUS製の電池容器(CR2032)内で積層し、上記で得られた電解液をセパレータ、負極及び正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型セルを製造した。
<Manufacture of coin cell>
A negative electrode (manufactured by Hosen Co., Ltd.) and a positive electrode (manufactured by Hosen Co., Ltd.) were punched into a disk shape having a diameter of 16 mm. Further, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator. The obtained positive electrode, separator and negative electrode were laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode were impregnated with the electrolytic solution obtained above, and a SUS plate was placed on the negative electrode. A coin-type cell was manufactured by placing (covering a thickness of 1.2 mm, a diameter of 16 mm) and capping.

[参考例]
実施例1で得られた電解液(1)のみを使用したこと以外は、実施例と同様の方法で電解液の製造ならびにコイン型セルを製造した。
[Reference example]
Except that only the electrolytic solution (1) obtained in Example 1 was used, an electrolytic solution and a coin-type cell were manufactured in the same manner as in the Example.

[実施例2]
<電解液の製造>
LiPF(6.45g、42.5mmol)に、非水溶媒としてEC及びDMC及びGBLの混合溶媒(EC:DMC:GBL=34:33:33(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1)を得た。また、上記(2−1)にて得られたシュウ酸リチウム−三フッ化ホウ素錯体(1.12g、5.11mmol)に、非水溶媒としてEC及びDMC及びGBLの混合溶媒(EC:DMC:GBL=34:33:33(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(2)を得た。
上記で得られた電解液(1)90重量部に対し、電解液(2)を10重量部加えることにより、本実施例にて用いた電解液を得た。なお、LiPFの配合量とシュウ酸リチウム−三フッ化ホウ素錯体の配合量は、モル比で90:10であった。
そして、上記で得られた電解液を使用したこと以外は、実施例1と同様の方法でコイン型セルを製造した。
[Example 2]
<Manufacture of electrolyte>
LiPF 6 (6.45 g, 42.5 mmol) was weighed in a sample bottle with a mixed solvent of EC, DMC and GBL (EC: DMC: GBL = 34: 33: 33 (volume ratio)) as a non-aqueous solvent. Electrolyte solution (1) was obtained by mixing so that an atom concentration might be 1.0 mol / kg. Further, the lithium oxalate-boron trifluoride complex (1.12 g, 5.11 mmol) obtained in (2-1) above was mixed with EC, DMC and GBL as a nonaqueous solvent (EC: DMC: GBL = 34: 33: 33 (volume ratio)) was weighed into a sample bottle and mixed so that the concentration of lithium atoms was 1.0 mol / kg to obtain an electrolytic solution (2).
The electrolytic solution used in this example was obtained by adding 10 parts by weight of the electrolytic solution (2) to 90 parts by weight of the electrolytic solution (1) obtained above. The blending amount of LiPF 6 and the blending amount of the lithium oxalate-boron trifluoride complex was 90:10 in molar ratio.
And the coin-type cell was manufactured by the method similar to Example 1 except having used the electrolyte solution obtained above.

[実施例3]
<電解液の製造>
LiBF(1.86g、19.7mmol)に、非水溶媒としてEC及びDMC及びGBLの混合溶媒(EC:DMC:GBL=34:33:33(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1)を得た。
上記で得られた電解液(1)90重量部に対し、実施例2にて得られた電解液(2)を10重量部加えることにより、本実施例にて用いた電解液を得た。なお、LiPFの配合量とシュウ酸リチウム−三フッ化ホウ素錯体の配合量は、モル比で90:10であった。
そして、上記で得られた電解液を使用したこと以外は、実施例1と同様の方法でコイン型セルを製造した。
[Example 3]
<Manufacture of electrolyte>
LiBF 6 (1.86 g, 19.7 mmol) was weighed in a sample bottle with a mixed solvent of EC, DMC and GBL (EC: DMC: GBL = 34: 33: 33 (volume ratio)) as a non-aqueous solvent. Electrolyte solution (1) was obtained by mixing so that an atom concentration might be 1.0 mol / kg.
The electrolyte solution used in this example was obtained by adding 10 parts by weight of the electrolyte solution (2) obtained in Example 2 to 90 parts by weight of the electrolyte solution (1) obtained above. The blending amount of LiPF 6 and the blending amount of the lithium oxalate-boron trifluoride complex was 90:10 in molar ratio.
And the coin-type cell was manufactured by the method similar to Example 1 except having used the electrolyte solution obtained above.

[実施例4]
<電解液の製造>
LiN(SOCF(7.25g、25.3mmol)に、非水溶媒としてEC及びDMC及びGBLの混合溶媒(EC:DMC:GBL=34:33:33(体積比))をサンプル瓶に量り取り、リチウム原子の濃度が1.0モル/kgとなるように混合することにより電解液(1)を得た。
上記で得られた電解液(1)90重量部に対し、実施例2にて得られた電解液(2)を10重量部加えることにより、本実施例にて用いた電解液を得た。なお、LiPFの配合量とシュウ酸リチウム−三フッ化ホウ素錯体の配合量は、モル比で90:10であった。
そして、上記で得られた電解液を使用したこと以外は、実施例1と同様の方法でコイン型セルを製造した。
[Example 4]
<Manufacture of electrolyte>
Sample of LiN (SO 2 CF 3 ) 2 (7.25 g, 25.3 mmol) and a mixed solvent of EC, DMC and GBL (EC: DMC: GBL = 34: 33: 33 (volume ratio)) as a non-aqueous solvent The electrolyte solution (1) was obtained by measuring in a bottle and mixing so that the density | concentration of a lithium atom might be 1.0 mol / kg.
The electrolyte solution used in this example was obtained by adding 10 parts by weight of the electrolyte solution (2) obtained in Example 2 to 90 parts by weight of the electrolyte solution (1) obtained above. The blending amount of LiPF 6 and the blending amount of the lithium oxalate-boron trifluoride complex was 90:10 in molar ratio.
And the coin-type cell was manufactured by the method similar to Example 1 except having used the electrolyte solution obtained above.

[実施例5]
実施例2で得られた電解液(1)99.8重量部に対し、実施例2で得られた電解液(2)を0.2重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 5]
Except that the electrolyte solution was prepared by adding 0.2 parts by weight of the electrolyte solution (2) obtained in Example 2 to 99.8 parts by weight of the electrolyte solution (1) obtained in Example 2. An electrolytic solution was produced in the same manner as in Example 1, and a coin-type cell was further produced.

[実施例6]
実施例2で得られた電解液(1)99.5重量部に対し、実施例2で得られた電解液(2)を0.5重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 6]
Except that the electrolyte solution was prepared by adding 0.5 parts by weight of the electrolyte solution (2) obtained in Example 2 to 99.5 parts by weight of the electrolyte solution (1) obtained in Example 2. An electrolytic solution was produced in the same manner as in Example 1, and a coin-type cell was further produced.

[実施例7]
実施例2で得られた電解液(1)99重量部に対し、実施例2で得られた電解液(2)を1重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 7]
Except that the electrolyte solution was prepared by adding 1 part by weight of the electrolyte solution (2) obtained in Example 2 to 99 parts by weight of the electrolyte solution (1) obtained in Example 2, Example 1 and An electrolytic solution was manufactured by the same method, and a coin-type cell was manufactured.

[実施例8]
実施例2で得られた電解液(1)95重量部に対し、実施例2で得られた電解液(2)を5重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 8]
Example 1 is the same as Example 1 except that 5 parts by weight of the electrolytic solution (2) obtained in Example 2 was added to 95 parts by weight of the electrolytic solution (1) obtained in Example 2. An electrolytic solution was manufactured by the same method, and a coin-type cell was manufactured.

[実施例9]
実施例2で得られた電解液(1)80重量部に対し、実施例2で得られた電解液(2)を20重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 9]
Except that the electrolyte solution was prepared by adding 20 parts by weight of the electrolyte solution (2) obtained in Example 2 to 80 parts by weight of the electrolyte solution (1) obtained in Example 2. An electrolytic solution was manufactured by the same method, and a coin-type cell was manufactured.

[実施例10]
実施例2で得られた電解液(1)50重量部に対し、実施例2で得られた電解液(2)を50重量部加えることにより電解液を調製したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Example 10]
Except that the electrolyte solution was prepared by adding 50 parts by weight of the electrolyte solution (2) obtained in Example 2 to 50 parts by weight of the electrolyte solution (1) obtained in Example 2, and An electrolytic solution was manufactured by the same method, and a coin-type cell was manufactured.

[比較例1]
実施例2で得られた電解液(1)のみを使用したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Comparative Example 1]
Except that only the electrolytic solution (1) obtained in Example 2 was used, an electrolytic solution was produced in the same manner as in Example 1, and further a coin-type cell was produced.

[比較例2]
実施例3で得られた電解液(1)のみを使用したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Comparative Example 2]
Except that only the electrolytic solution (1) obtained in Example 3 was used, an electrolytic solution was produced in the same manner as in Example 1, and further a coin-type cell was produced.

[比較例3]
実施例4で得られた電解液(1)のみを使用したこと以外は、実施例1と同様の方法で電解液を製造し、さらに、コイン型セルを製造した。
[Comparative Example 3]
Except that only the electrolytic solution (1) obtained in Example 4 was used, an electrolytic solution was produced in the same manner as in Example 1, and further a coin-type cell was produced.

(4)電池性能の評価
実施例1〜10及び比較例1〜3のコイン型セルについて、25℃において0.2Cの定電流定電圧充電を、上限電圧4.2Vとして電流値が0.1Cに収束するまで行った後、0.2Cの定電流放電を2.7Vまで行った。その後、充放電電流を1Cとして同様の方法で、充放電サイクルを数回〜数十回程度繰り返し行い電池の状態を安定化させた。その後、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、100サイクルでの容量維持率(100サイクル目の放電容量(mAh)/1サイクル目の放電容量(mAh))×100を算出した。結果を表2に示す。
(4) Evaluation of Battery Performance For the coin-type cells of Examples 1 to 10 and Comparative Examples 1 to 3, a constant current and constant voltage charge of 0.2 C at 25 ° C. was set to an upper limit voltage of 4.2 V, and a current value of 0.1 C. Then, 0.2C constant current discharge was performed up to 2.7V. Thereafter, the charge / discharge current was set to 1 C and the charge / discharge cycle was repeated several times to several tens of times in the same manner to stabilize the state of the battery. Thereafter, the charge / discharge cycle was repeated in the same manner at a charge / discharge current of 1C, and the capacity retention rate at 100 cycles (discharge capacity at the 100th cycle (mAh) / discharge capacity at the 1st cycle (mAh)) × 100 Was calculated. The results are shown in Table 2.

Figure 2014063710
Figure 2014063710

Figure 2014063710
Figure 2014063710

実施例の結果から明らかなように、第二のリチウム塩としてシュウ酸リチウム−三フッ化ホウ素錯体を含む電解液を用いることにより、比較例のように、第二のリチウム塩を用いない系に比べて、容量維持率が改善し、十分な充放電特性を示した。
なお、実施例5〜7では、参考例よりも容量維持率が低くなっているが、これは、溶媒として、より安全性の高いガンマブチロラクトン(高沸点溶媒であるため安全性は増すものの、電池性能には悪影響を及ぼす)を用いているからである。溶媒としてガンマブチロラクトンを用いた比較例1〜3と、実施例5〜7とを比較すると、実施例5〜7は容量維持率が改善し、十分な充放電特性を示した。
As is clear from the results of the examples, by using an electrolytic solution containing a lithium oxalate-boron trifluoride complex as the second lithium salt, a system that does not use the second lithium salt as in the comparative example. In comparison, the capacity retention rate was improved and sufficient charge / discharge characteristics were exhibited.
In Examples 5 to 7, the capacity retention rate is lower than that of the reference example. This is because the safety of gamma-butyrolactone (which is a high-boiling solvent is increased because of the high-boiling solvent), but the battery has a higher safety. This is because the performance is adversely affected. When Comparative Examples 1 to 3 using gamma-butyrolactone as a solvent were compared with Examples 5 to 7, Examples 5 to 7 showed improved capacity retention and sufficient charge / discharge characteristics.

本発明は、リチウムイオン二次電池の分野で利用可能である。

The present invention can be used in the field of lithium ion secondary batteries.

Claims (6)

第一のリチウム塩を非水溶媒に溶解させた電解液において、さらに第二のリチウム塩として、有機酸リチウム−三フッ化ホウ素錯体が配合されてなることを特徴とする電解液。  An electrolytic solution obtained by dissolving an organic acid lithium-boron trifluoride complex as a second lithium salt in an electrolytic solution in which a first lithium salt is dissolved in a non-aqueous solvent. 前記有機酸リチウム−三フッ化ホウ素錯体が、ギ酸リチウム−三フッ化ホウ素錯体、酢酸リチウム−三フッ化ホウ素錯体、シュウ酸リチウム−三フッ化ホウ素錯体、コハク酸リチウム−三フッ化ホウ素錯体からなる群から選択される一種以上であることを特徴とする請求項1に記載の電解液。  The organic acid lithium-boron trifluoride complex is selected from lithium formate-boron trifluoride complex, lithium acetate-boron trifluoride complex, lithium oxalate-boron trifluoride complex, lithium succinate-boron trifluoride complex. The electrolytic solution according to claim 1, wherein the electrolytic solution is one or more selected from the group consisting of: 前記第一のリチウム塩の配合量:前記有機酸リチウム−三フッ化ホウ素錯体の配合量が99.8:0.2〜50:50(モル比)であることを特徴とする請求項1又は2に記載の電解液。   The blending amount of the first lithium salt: The blending amount of the organic acid lithium-boron trifluoride complex is 99.8: 0.2 to 50:50 (molar ratio). 2. The electrolyte solution according to 2. 前記第一のリチウム塩が、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、過塩素酸リチウム(LiClO)、三フッ化メタンスルホン酸リチウム(LiCFSO)、六フッ化アンチモン酸リチウム(LiSbF)、六フッ化ヒ素酸リチウム(LiAsF)及びテトラフェニルホウ酸リチウム(LiB(C)からなる群から選択される一種以上であることを特徴とする請求項1〜3のいずれか一項に記載の電解液。 The first lithium salt is lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), lithium chlorate (LiClO 4), trifluoromethane sulfonic lithium (LiCF 3 SO 3), lithium hexafluoro antimonate (LiSbF 6), hexafluoroarsenate arsenate periodate lithium (LiAsF 6) and lithium tetraphenylborate ( LiB (C 6 H 5) 4 ) electrolyte solution according to claim 1, characterized in that at least one member selected from the group consisting of. 前記非水溶媒が、環状炭酸エステル、鎖状炭酸エステル、エーテル類、カルボン酸エステル類、ニトリル類、アミド類及びスルホン類からなる群から選択される一種以上が配合されてなることを特徴とする請求項1〜4のいずれか一項に記載の電解液。  The non-aqueous solvent is a mixture of one or more selected from the group consisting of cyclic carbonates, chain carbonates, ethers, carboxylic esters, nitriles, amides and sulfones. The electrolyte solution as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の電解液を用いて得られたことを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery obtained by using the electrolytic solution according to claim 1.
JP2012280097A 2012-08-29 2012-12-21 Electrolytic solution and lithium ion secondary battery Pending JP2014063710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012280097A JP2014063710A (en) 2012-08-29 2012-12-21 Electrolytic solution and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012189172 2012-08-29
JP2012189172 2012-08-29
JP2012280097A JP2014063710A (en) 2012-08-29 2012-12-21 Electrolytic solution and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2014063710A true JP2014063710A (en) 2014-04-10

Family

ID=50618757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280097A Pending JP2014063710A (en) 2012-08-29 2012-12-21 Electrolytic solution and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2014063710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029372A (en) * 2018-09-10 2020-03-18 주식회사 엘지화학 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising the same
CN112448032A (en) * 2019-09-02 2021-03-05 华南师范大学 New application of lithium benzoate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272703A (en) * 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd Electrolyte and nonaqueous electrolyte secondary battery
JP2004259682A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery
JP2013191390A (en) * 2012-03-13 2013-09-26 Asahi Kasei Corp Lithium ion secondary battery
JP2013209355A (en) * 2012-01-13 2013-10-10 Sekisui Chem Co Ltd Lithium carboxylate salt-boron trifluoride complex, method for manufacturing the complex, electrolyte solution, method for manufacturing the electrolyte solution, gel electrolyte, and solid electrolyte
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
JP6034094B2 (en) * 2012-08-21 2016-11-30 積水化学工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272703A (en) * 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd Electrolyte and nonaqueous electrolyte secondary battery
JP2004259682A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery
JP2013209355A (en) * 2012-01-13 2013-10-10 Sekisui Chem Co Ltd Lithium carboxylate salt-boron trifluoride complex, method for manufacturing the complex, electrolyte solution, method for manufacturing the electrolyte solution, gel electrolyte, and solid electrolyte
JP2013191390A (en) * 2012-03-13 2013-09-26 Asahi Kasei Corp Lithium ion secondary battery
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
JP6034094B2 (en) * 2012-08-21 2016-11-30 積水化学工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029372A (en) * 2018-09-10 2020-03-18 주식회사 엘지화학 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising the same
WO2020055110A1 (en) * 2018-09-10 2020-03-19 주식회사 엘지화학 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
KR102465820B1 (en) * 2018-09-10 2022-11-11 주식회사 엘지에너지솔루션 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising the same
US11894516B2 (en) 2018-09-10 2024-02-06 Lg Energy Solution, Ltd. Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the electrolyte
CN112448032A (en) * 2019-09-02 2021-03-05 华南师范大学 New application of lithium benzoate

Similar Documents

Publication Publication Date Title
US10069165B2 (en) Electrolyte composition for a lithium-ion battery
CN103563155B (en) Include the lithium ion electrochemical cells of fluorocarbon additive agent electrolyte
US9979050B2 (en) Fluorinated electrolyte compositions
US11862793B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery and method for producing the same
JP5487458B2 (en) Lithium ion secondary battery
CN104798244B (en) Lithium secondary battery
KR101774263B1 (en) Binder for Secondary Battery And Secondary Battery Comprising The Same
CN102208680A (en) Gel electrolyte and preparation method thereof and corresponding anode and lithium sulfur battery
CN105940544B (en) non-aqueous electrolyte containing monofluorophosphate salt and non-aqueous electrolyte battery using same
CN111864260B (en) Ether gel electrolyte and preparation method and application thereof
JP6684515B2 (en) Flame retardant for electrolytes for batteries
KR101458468B1 (en) Gel polymer electrolyte containing new copolymers and lithium-polymer secondary battery using the same
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
JP5739728B2 (en) Electrolyte and lithium ion secondary battery
CN103400993A (en) Battery anode and lithium ion battery
CN114551914B (en) Electrolyte containing copper ion additive and application of electrolyte in lithium/fluorocarbon battery
JP5592836B2 (en) Electrolyte, gel electrolyte and lithium ion secondary battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2015146240A (en) Positive electrode material, positive electrode, and lithium ion battery
JP2014063710A (en) Electrolytic solution and lithium ion secondary battery
JP6955876B2 (en) Electrolyte for non-water secondary battery and non-water secondary battery
KR20180117868A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising thereof
JP2010218834A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
KR101494154B1 (en) Lithium Secondary Battery of Excellent High-Temperature Storage Properties
WO2021070706A1 (en) Positive electrode-side electrolyte solution and nonaqueous secondary battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718