JP2014056197A - Method for manufacturing electrophotographic photoreceptor - Google Patents
Method for manufacturing electrophotographic photoreceptor Download PDFInfo
- Publication number
- JP2014056197A JP2014056197A JP2012202210A JP2012202210A JP2014056197A JP 2014056197 A JP2014056197 A JP 2014056197A JP 2012202210 A JP2012202210 A JP 2012202210A JP 2012202210 A JP2012202210 A JP 2012202210A JP 2014056197 A JP2014056197 A JP 2014056197A
- Authority
- JP
- Japan
- Prior art keywords
- conductive support
- temperature
- layer
- induction heating
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 108091008695 photoreceptors Proteins 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title abstract description 18
- 230000006698 induction Effects 0.000 claims abstract description 84
- 238000010438 heat treatment Methods 0.000 claims abstract description 71
- 239000011247 coating layer Substances 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 72
- 238000005259 measurement Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 abstract description 27
- 238000000576 coating method Methods 0.000 description 51
- 239000011248 coating agent Substances 0.000 description 47
- 239000010408 film Substances 0.000 description 36
- 239000000463 material Substances 0.000 description 35
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- 230000005855 radiation Effects 0.000 description 21
- -1 cyclic ether compounds Chemical class 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 16
- 239000000049 pigment Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 230000005674 electromagnetic induction Effects 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000009529 body temperature measurement Methods 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 239000001023 inorganic pigment Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920000180 alkyd Polymers 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000007602 hot air drying Methods 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical class NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical class C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 1
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 1
- WQGWMEKAPOBYFV-UHFFFAOYSA-N 1,5,7-trinitrothioxanthen-9-one Chemical compound C1=CC([N+]([O-])=O)=C2C(=O)C3=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C3SC2=C1 WQGWMEKAPOBYFV-UHFFFAOYSA-N 0.000 description 1
- HNOMCSPPPVREEA-UHFFFAOYSA-N 1-nitrodibenzothiophene 5,5-dioxide Chemical compound [N+](=O)([O-])C1=CC=CC=2S(C3=C(C=21)C=CC=C3)(=O)=O HNOMCSPPPVREEA-UHFFFAOYSA-N 0.000 description 1
- JOERSAVCLPYNIZ-UHFFFAOYSA-N 2,4,5,7-tetranitrofluoren-9-one Chemical compound O=C1C2=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C2C2=C1C=C([N+](=O)[O-])C=C2[N+]([O-])=O JOERSAVCLPYNIZ-UHFFFAOYSA-N 0.000 description 1
- FVNMKGQIOLSWHJ-UHFFFAOYSA-N 2,4,5,7-tetranitroxanthen-9-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)C3=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C3OC2=C1[N+]([O-])=O FVNMKGQIOLSWHJ-UHFFFAOYSA-N 0.000 description 1
- VHQGURIJMFPBKS-UHFFFAOYSA-N 2,4,7-trinitrofluoren-9-one Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C2C3=CC=C([N+](=O)[O-])C=C3C(=O)C2=C1 VHQGURIJMFPBKS-UHFFFAOYSA-N 0.000 description 1
- HJCNIHXYINVVFF-UHFFFAOYSA-N 2,6,8-trinitroindeno[1,2-b]thiophen-4-one Chemical compound O=C1C2=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C2C2=C1C=C([N+](=O)[O-])S2 HJCNIHXYINVVFF-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- HCSGQHDONHRJCM-CCEZHUSRSA-N 9-[(e)-2-phenylethenyl]anthracene Chemical class C=12C=CC=CC2=CC2=CC=CC=C2C=1\C=C\C1=CC=CC=C1 HCSGQHDONHRJCM-CCEZHUSRSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- MKYQPGPNVYRMHI-UHFFFAOYSA-N Triphenylethylene Chemical class C=1C=CC=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 MKYQPGPNVYRMHI-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- QLNFINLXAKOTJB-UHFFFAOYSA-N [As].[Se] Chemical compound [As].[Se] QLNFINLXAKOTJB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical class O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002469 indenes Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SJHHDDDGXWOYOE-UHFFFAOYSA-N oxytitamium phthalocyanine Chemical compound [Ti+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 SJHHDDDGXWOYOE-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002102 polyvinyl toluene Polymers 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- RCYFOPUXRMOLQM-UHFFFAOYSA-N pyrene-1-carbaldehyde Chemical compound C1=C2C(C=O)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 RCYFOPUXRMOLQM-UHFFFAOYSA-N 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical group N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本発明は、電子写真感光体の製造方法に関するものである。 The present invention relates to a method for producing an electrophotographic photosensitive member.
電子写真法に用いる感光体として、有機感光体が広く使用されている。
この有機感光体は、導電性支持体上に少なくとも、無機顔料を分散した中間層、電荷発生層及び電荷輸送層をこの順で有する感光体と、電荷発生材料および電荷輸送物質を含む感光層を単一の層として設けた単層感光体とがある。
Organic photoreceptors are widely used as photoreceptors used in electrophotography.
The organic photoreceptor includes a photoreceptor having at least an intermediate layer in which an inorganic pigment is dispersed, a charge generation layer, and a charge transport layer in this order on a conductive support, and a photosensitive layer containing a charge generation material and a charge transport material. There is a single-layer photoconductor provided as a single layer.
この感光体の製造方法に関して、塗布方法としては浸漬、スプレー、ブレードコーター方式等の種々の方法があり、均一な塗膜を得られやすい円筒状の導電性支持体を塗工液中に浸漬する方式が多く用いられている。 Regarding the method for producing this photoreceptor, there are various coating methods such as dipping, spraying, blade coater, etc., and a cylindrical conductive support that is easy to obtain a uniform coating film is immersed in the coating solution. Many methods are used.
また、塗布層の乾燥には、加熱乾燥装置による熱風式乾燥により乾燥及び又は硬化を行う。以降、円筒状の導電性支持体は必要に応じて塗布、加熱乾燥の工程を繰り返して必要な塗布層を形成される。 In addition, the coating layer is dried and / or cured by hot air drying using a heat drying apparatus. Thereafter, the cylindrical conductive support is formed with a necessary coating layer by repeating the coating and heat-drying steps as necessary.
熱風による加熱乾燥は多く用いられているが、乾燥装置内の温度が不均一になりやすく、特に熱風の上流から下流にかけて温度勾配を生ずることが多く、塗布膜の乾燥や硬化が不均一になりやすく、電子写真特性に悪影響が生ずる。
このような熱風乾燥での不具合を改善するために、特許文献1には、円筒状の導電性支持体の外側に螺旋状に巻きつけた高周波誘導コイルを用いた誘導加熱方法、特許文献2には、ループ状の高周波誘導コイルを用いた誘導加熱方法が開示されている。
Heat drying with hot air is often used, but the temperature in the drying device tends to be non-uniform, and in particular, a temperature gradient often occurs from the upstream to the downstream of the hot air, resulting in non-uniform drying and curing of the coating film. Easily and adversely affects electrophotographic characteristics.
In order to improve the problem caused by such hot air drying, Patent Document 1 discloses an induction heating method using a high-frequency induction coil spirally wound around the outside of a cylindrical conductive support. Discloses an induction heating method using a loop-shaped high-frequency induction coil.
しかしながら、これらはいずれも円筒状の導電性支持体の軸方向の温度の十分な均一性は十分とはいえない。一般に円筒状の導電性支持体に塗布された塗布膜を乾燥するためには、この円筒状の導電性支持体の上部、或いは下部、又は上下の両方を把持治具により把持される。
この時、誘導加熱中の円筒状の導電性支持体では、円筒状の導電性支持体から把持治具へ熱の移動が生ずる。熱が把持治具に移動した箇所では温度が低くなり、それにより温度分布が変わる現象が起こる。この現象は温度を一定に制御する段階で顕著に現れる。これにより加熱中の円筒状の導電性支持体の温度の均一性が悪くなり、電子写真特性が不均一になる。
However, it cannot be said that these all have sufficient uniformity of the temperature in the axial direction of the cylindrical conductive support. In general, in order to dry a coating film applied to a cylindrical conductive support, the upper, lower, or both upper and lower sides of the cylindrical conductive support are held by a holding jig.
At this time, heat transfer from the cylindrical conductive support to the holding jig occurs in the cylindrical conductive support during induction heating. At the location where the heat has moved to the gripping jig, the temperature becomes low, thereby causing a phenomenon that the temperature distribution changes. This phenomenon appears remarkably at the stage where the temperature is controlled to be constant. As a result, the uniformity of the temperature of the cylindrical conductive support during heating becomes poor, and the electrophotographic characteristics become non-uniform.
また、円筒状の導電性支持体に塗布された塗布膜を乾燥するためには、温度を制御する必要がある。非接触型放射温度計を用いれば乾燥中の塗布膜の温度を直接測定することが可能であり、この方法が用いられることが多い。
しかしながら、この方法によると塗布膜の材料によっては塗布膜の厚さにより測定される温度が実際の温度と違うということが発生する。また塗布膜の下地の形状などの影響を受けることもあり、正確に測定することができないことがある。温度を正確に測定できないと適切な塗布膜の乾燥が行われず、電子写真特性に影響を与える。
Moreover, in order to dry the coating film apply | coated to the cylindrical electroconductive support body, it is necessary to control temperature. If a non-contact type radiation thermometer is used, the temperature of the coating film during drying can be directly measured, and this method is often used.
However, according to this method, depending on the material of the coating film, the temperature measured by the thickness of the coating film may be different from the actual temperature. In addition, it may be affected by the shape of the base of the coating film, so that accurate measurement may not be possible. If the temperature cannot be measured accurately, the appropriate coating film is not dried, which affects the electrophotographic characteristics.
本発明の目的は、上記の熱風乾燥での乾燥の不均一による電子写真特性の不均一性や、更に高周波誘導コイルを用いた誘導加熱方法での乾燥の不均一による電子写真特性の不均一性を解決し、均一な電子写真特性を有する電子写真感光体の製造方法を提供することにある。 The object of the present invention is to provide non-uniformity of electrophotographic characteristics due to non-uniform drying by hot air drying, and non-uniformity of electrophotographic characteristics due to non-uniform drying by an induction heating method using a high frequency induction coil. And to provide a method for producing an electrophotographic photosensitive member having uniform electrophotographic characteristics.
本発明者らは、導電性支持体上に塗布形成した層、及び又はその上に積層した層を高周波誘導加熱により乾燥及び又は硬化させる工程を有する電子写真感光体の製造方法において、導電性支持体の軸方向の両側の端部に高周波誘導コイルにより渦電流が発生し加熱可能な部材(誘導発熱部材)を配置し、かつ高周波誘導コイルの長さを前記誘導発熱部材に高周波により渦電流が発生する長さでとすることにより、上記の課題を解決することができることを見出した。
すなわち、本発明は以下に記載する通りの電子写真感光体の製造方法に係るものである。
The inventors of the present invention provide a method for producing an electrophotographic photosensitive member having a step of drying and / or curing a layer formed by coating on a conductive support and / or a layer laminated thereon by high-frequency induction heating. A member (induction heating member) capable of generating and heating an eddy current by a high-frequency induction coil is disposed at both ends in the axial direction of the body, and the length of the high-frequency induction coil is set to the induction heating member by a high frequency. It has been found that the above problem can be solved by setting the length to be generated.
That is, the present invention relates to a method for producing an electrophotographic photoreceptor as described below.
上記課題は本発明の「導電性支持体上に塗布層を形成して電子写真感光体を製造する方法であって、導電性支持体の軸方向の両側の端部に高周波誘導コイルにより渦電流が発生し加熱可能な誘導発熱部材を配置し、かつ高周波誘導コイルの長さを、前記誘導発熱部材に高周波により渦電流が発生する長さとし、導電性支持体および前記誘導発熱部材を誘導加熱することにより塗布層を乾燥・硬化させることを特徴とする電子写真感光体の製造方法。」により解決することができる。 The above-mentioned problem is a method for producing an electrophotographic photosensitive member by forming a coating layer on a conductive support according to the present invention, wherein eddy currents are generated by high-frequency induction coils at both ends in the axial direction of the conductive support. An induction heating member that can be heated and disposed is disposed, and the length of the high-frequency induction coil is set such that an eddy current is generated by high frequency in the induction heating member, and the conductive support and the induction heating member are induction-heated. This can be solved by “a method for producing an electrophotographic photosensitive member, wherein the coating layer is dried and cured.”
本発明によれば、乾燥温度の不均一による電子写真特性の不均一性を解決し、均一な電子写真特性を有する電子写真感光体の製造方法が提供される。 According to the present invention, a non-uniformity of electrophotographic characteristics due to nonuniform drying temperature is solved, and a method for producing an electrophotographic photoreceptor having uniform electrophotographic characteristics is provided.
以下、本発明をさらに詳細に説明する。
本発明の円筒状の導電性支持体を用いた電子写真感光体の製造方法においては、塗布された塗布膜の加熱乾燥及び/又は硬化を、熱風を使用することなく、高周波誘導コイルを使用して導電性支持体そのものを加熱させることにより、塗布膜を加熱乾燥及び硬化させることを特徴とする。
すなわち、本発明においては、高周波誘導コイルによる磁力線を導電性支持体に作用させて、その結果発生する渦電流により導電性支持体を直接加熱することで、短時間に乾燥の設定温度まで昇温させることができる高周波誘導コイルによる加熱原理を用いる。
Hereinafter, the present invention will be described in more detail.
In the method for producing an electrophotographic photosensitive member using the cylindrical conductive support of the present invention, a high frequency induction coil is used for heating and drying and / or curing of the coated film without using hot air. By heating the conductive support itself, the coating film is heat-dried and cured.
In other words, in the present invention, the line of magnetic force generated by the high-frequency induction coil is applied to the conductive support, and the conductive support is directly heated by the eddy current generated as a result, so that the temperature is raised to the set temperature for drying in a short time. The heating principle with a high frequency induction coil that can be used is used.
次に導電性支持体に塗布された塗布膜を軸方向に均一に乾燥する方法を具体的に説明する。
本発明のドラム状の導電性支持体の両側に配置する誘導発熱部材について説明する。
図1は、高周波誘導コイル2の形状が螺旋状のものを用いた従来の加熱装置を示すものである。
本発明においては、図2に示すように円筒状の導電性支持体1の軸方向の端部の両側に高周波誘導コイル2により渦電流が発生し加熱可能な誘導発熱部材3、4を配置し、かつ高周波誘導コイル2は、図2のように誘導発熱部材にかかる長さとし高周波誘導コイル2により誘導発熱部材に渦電流を発生させる。誘導発熱部材の材質としては、アルミニウム、銅、ステンレス、ニッケルなどの金属、カーボン等の導電性顔料を分散したプラスチック;絶縁性支持体(プラスチックまたはプラスチックフィルムのごときもの)上に金属を蒸着した又は導電性塗料を塗布したものが例示できる。また、両側の誘導発熱部材は同じである必要はなく、それぞれの乾燥温度の分布に合わせて誘導発熱部材の材質や長さや厚さなどの形状を設定することができる。
Next, a method for uniformly drying the coating film coated on the conductive support in the axial direction will be specifically described.
The induction heating member disposed on both sides of the drum-like conductive support of the present invention will be described.
FIG. 1 shows a conventional heating device using a high-
In the present invention, as shown in FIG. 2, induction heat generating members 3 and 4 that can be heated by generating an eddy current by the high
本発明によれば、円筒状の導電性支持体の上下に配置した誘導発熱部材も導電性支持体と同様に高周波誘導コイルにより誘導加熱され、導電性支持体は軸方向の乾燥温度が均一となり、良好な電子写真特性を有する電子写真感光体を得ることができる。 According to the present invention, the induction heating members arranged above and below the cylindrical conductive support are also induction-heated by the high frequency induction coil in the same manner as the conductive support, and the conductive support has a uniform drying temperature in the axial direction. Thus, an electrophotographic photoreceptor having good electrophotographic characteristics can be obtained.
次に、本発明における温度の測定方法について説明する。
乾燥温度を制御するために温度を測定する必要があるが、温度は円筒状の導電性支持体の端部に配置した誘導発熱部材上で測定する(図2参照)。測定方法としては、テープ型熱電対温度計を接触させる方法や非接触型放射温度計5を用いる方法などが可能である。
非接触型放射温度計5を用いる場合、非接触型放射温度計5の測定精度を高めるために、誘導発熱部材の表面に塗料などを塗布しても良い。これは非接触型放射温度計は塗膜の材質や反射率により検知の度合いが変わるからで、予め確認して決めれば良い。
また、温度制御は、非接触型放射温度計により測定した温度データをプログラムユニットにて制御を行い高周波誘導コイルへ流す電流を変化させれば可能である。
Next, the temperature measuring method in the present invention will be described.
Although it is necessary to measure the temperature in order to control the drying temperature, the temperature is measured on the induction heating member arranged at the end of the cylindrical conductive support (see FIG. 2). As a measuring method, a method in which a tape-type thermocouple thermometer is brought into contact or a method in which a non-contact
When the non-contact
Further, temperature control is possible by controlling the temperature data measured by the non-contact type radiation thermometer with the program unit and changing the current flowing through the high frequency induction coil.
電磁誘導加熱に使用する高周波誘導コイルの形状は、螺旋状、ループ状、渦巻状などの形状が使用できる。
また、高周波誘導コイルと導電性支持体に塗布された塗布膜との距離は、接触しない範囲で短いほど電磁誘導による磁力線により円筒状の導電性支持体に発生する渦電流が多く、距離が長くなると電磁誘導による磁力線により発生する渦電流が少なくなるので10mm以下であることが好ましい。
コイルの導電性支持体と反対側にフェライト、銅等の材料を配置すると加熱効率が良くなり好ましい。
The shape of the high frequency induction coil used for electromagnetic induction heating can be a spiral shape, a loop shape, a spiral shape, or the like.
In addition, the shorter the distance between the high frequency induction coil and the coating film applied to the conductive support, the more eddy current is generated in the cylindrical conductive support due to the lines of magnetic force due to electromagnetic induction, and the longer the distance is. In this case, the eddy current generated by the lines of magnetic force due to electromagnetic induction is reduced.
It is preferable to arrange a material such as ferrite or copper on the side of the coil opposite to the conductive support, since the heating efficiency is improved.
また、電磁誘導加熱時の円筒状の導電性支持体の温度はコイル直下の部分が最も高温になる。そこで、加熱中に円筒状の導電性支持体を周方向に適当な速度で回転させると温度が均一になり塗布膜の乾燥の均一性が良くなるので好ましい。
更には、高周波誘導コイルに冷却水を通すことができるようにして冷却すると過熱防止ができるので好ましい。
Further, the temperature of the cylindrical conductive support during electromagnetic induction heating is highest at the portion directly below the coil. Therefore, it is preferable to rotate the cylindrical conductive support at an appropriate speed in the circumferential direction during heating since the temperature becomes uniform and the drying uniformity of the coating film is improved.
Furthermore, it is preferable to cool so that cooling water can be passed through the high-frequency induction coil, because overheating can be prevented.
本発明の電子写真感光体の製造方法が用いられる電子写真感光体について説明する。
本発明の電子写真感光体の製造方法が用いられる電子写真感光体は、円筒状の導電性支持体上に有機光導電性物質を含有する感光層を形成した円筒状の電子写真感光体である。
この感光層は、感光層用塗工液を塗布した後に乾燥及び又は硬化することで形成される。
電子写真感光体が積層型の場合は、機能毎の各層用の塗工液を塗布し乾燥及び又は硬化する工程を複数回繰り返す。この時任意の塗布層の乾燥及び/又は硬化の工程で本発明の電子写真感光体の製造方法を用いることができる。
An electrophotographic photoreceptor for which the method for producing an electrophotographic photoreceptor of the present invention is used will be described.
The electrophotographic photosensitive member in which the method for producing an electrophotographic photosensitive member of the present invention is used is a cylindrical electrophotographic photosensitive member in which a photosensitive layer containing an organic photoconductive substance is formed on a cylindrical conductive support. .
This photosensitive layer is formed by drying and / or curing after applying the photosensitive layer coating solution.
When the electrophotographic photosensitive member is a laminated type, the process of applying the coating liquid for each layer for each function, drying and / or curing is repeated a plurality of times. At this time, the method for producing an electrophotographic photosensitive member of the present invention can be used in the step of drying and / or curing an arbitrary coating layer.
本発明で使用する導電性支持体としては、アルミニウム、ニッケル、ステンレスなどの金属;カーボン等の導電性顔料を分散したプラスチック;絶縁性支持体(プラスチックまたはプラスチックフィルムのごときもの)上に金属を蒸着したまたは導電性塗料を塗工したもの等が例示できる。 Examples of the conductive support used in the present invention include metals such as aluminum, nickel, and stainless steel; plastic in which conductive pigments such as carbon are dispersed; metal is deposited on an insulating support (such as plastic or plastic film). Or those coated with a conductive paint.
次に導電性支持体上に設けられる中間層について説明する。中間層に用いる無機顔料は、一般に用いられている顔料でよいが、可視光および近赤外光に吸収のほとんど無い白色またはそれに近いものが感光体の高感度化を考えた時に望ましい。
例えば、酸化チタン、亜鉛華、硫酸亜鉛、鉛白、リトポン等の白色顔料や酸化アルミ、シリカ、炭酸カルシウム、硫酸バリウム等の体質顔料等があげられる。
このなかでも酸化チタンは他の白色顔料に比較して屈折率が大きく、化学的にも物理的にも安定であり、隠蔽力が大きく、白色度も大きいため好ましい。
Next, the intermediate layer provided on the conductive support will be described. The inorganic pigment used in the intermediate layer may be a commonly used pigment, but white or a pigment with almost no absorption in visible light and near infrared light is desirable when considering higher sensitivity of the photoreceptor.
Examples thereof include white pigments such as titanium oxide, zinc white, zinc sulfate, lead white, and lithopone, and extender pigments such as aluminum oxide, silica, calcium carbonate, and barium sulfate.
Of these, titanium oxide is preferable because it has a higher refractive index than other white pigments, is chemically and physically stable, has a large hiding power, and has a high degree of whiteness.
また、本発明に用いる中間層用結着剤樹脂としては、適宜のものを用いることができる。
例えば、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、エポキシ樹脂等の三次元網目構造を形成する硬化型樹脂などが挙げられる。
Further, as the intermediate layer binder resin used in the present invention, an appropriate one can be used.
For example, water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, curable resins that form a three-dimensional network structure such as polyurethane, melamine resin, and epoxy resin Etc.
中間層用塗工液は、上記結着剤樹脂を溶剤で溶解し無機顔料と共に、ボールミル、ロールミル、サンドミル、アトライターなどで分散させることによって作製することができる。
この分散液をブレード塗工、ナイフ塗工、スプレー塗工、浸漬塗工等の塗工方法を用いて導電性支持体上に塗工する。
The intermediate layer coating solution can be prepared by dissolving the binder resin in a solvent and dispersing it together with an inorganic pigment using a ball mill, roll mill, sand mill, attritor or the like.
This dispersion is coated on the conductive support using a coating method such as blade coating, knife coating, spray coating, or dip coating.
中間層における結着剤樹脂/無機顔料の質量比範囲は1/15〜2/1の範囲が好ましい。
中間層の厚さは、0.5μm以上20.0μm以下が好ましいが、繰り返し使用による地肌よごれが発生しにくい高耐久感光体とするには、中間層の膜厚が厚いほど有利となるため、3.0μm以上の中間層とすることが望ましい。
また、帯電手段が接触帯電手段である場合、放電破壊を防止するためにも3.0μm以上の中間層とすることがより望ましい。
The mass ratio range of the binder resin / inorganic pigment in the intermediate layer is preferably in the range of 1/15 to 2/1.
The thickness of the intermediate layer is preferably 0.5 μm or more and 20.0 μm or less. However, in order to obtain a highly durable photoreceptor that is less likely to be stained due to repeated use, the thicker the intermediate layer, the more advantageous. An intermediate layer of 3.0 μm or more is desirable.
Further, when the charging means is a contact charging means, it is more desirable to use an intermediate layer of 3.0 μm or more in order to prevent discharge breakdown.
中間層上に設ける感光層は、単層型でも積層型でもよい。
しかし、どちらの場合でも感光層用塗工液に使用する溶剤は、環状エーテル系化合物、ケトン系化合物および芳香族系炭化水素化合物から選ばれた1種以上の溶剤である。
感光層の膜厚は、繰り返し使用しても異常画像を発生させないためには、20μm以上とすることが望ましいく、好ましくは、25〜50μmである。
The photosensitive layer provided on the intermediate layer may be a single layer type or a laminated type.
However, in either case, the solvent used in the photosensitive layer coating solution is at least one solvent selected from cyclic ether compounds, ketone compounds, and aromatic hydrocarbon compounds.
The film thickness of the photosensitive layer is desirably 20 μm or more, and preferably 25 to 50 μm, in order not to generate an abnormal image even when used repeatedly.
感光体は、繰り返し使用により接触部材により摩耗し膜厚が減少する。
その結果感光体にかかる電界強度が大きくなり、導電性支持体からの電荷注入により地肌汚れ等の異常画像が発生する。
そこで、感光層の膜厚を厚くしておくほうが、繰り返し使用しても高品質な画像を提供し続けることができる。
ここでいう感光層の膜厚とは、感光層が電荷発生層と電荷輸送層の積層から構成されている場合、電荷発生層と電荷輸送層との合計の膜厚であり、また感光層が単層の場合は、その感光層そのものの膜厚である。
The photoreceptor is worn by the contact member due to repeated use, and the film thickness decreases.
As a result, the electric field strength applied to the photosensitive member increases, and abnormal images such as background stains are generated by charge injection from the conductive support.
Therefore, by increasing the thickness of the photosensitive layer, it is possible to continue to provide high-quality images even after repeated use.
The film thickness of the photosensitive layer here is the total film thickness of the charge generation layer and the charge transport layer when the photosensitive layer is composed of a stack of a charge generation layer and a charge transport layer. In the case of a single layer, it is the film thickness of the photosensitive layer itself.
まず、感光層が電荷発生層と電荷輸送層で構成される場合から述べる。
電荷発生層は、電荷発生材料を主成分とする層である。
電荷発生材料には、無機および有機材料が用いられ、その代表としてモノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン系顔料、キノン系縮合多環化合物、スクアリック酸系染料、フタロシアニン系顔料、ナフタロシアニン系顔料、アズレニウム塩系染料、セレン、セレン−テルル、セレン−ヒ素合金、アモルファス・シリコン等が挙げられ用いられる。
電荷発生材料は、単独で或いは2種類以上混合して用いられる。
First, the case where the photosensitive layer is composed of a charge generation layer and a charge transport layer will be described.
The charge generation layer is a layer mainly composed of a charge generation material.
As the charge generation material, inorganic and organic materials are used, and representative examples include monoazo pigments, disazo pigments, trisazo pigments, perylene pigments, perinone pigments, quinacridone pigments, quinone condensed polycyclic compounds, squalic acid dyes, Examples include phthalocyanine pigments, naphthalocyanine pigments, azurenium salt dyes, selenium, selenium-tellurium, selenium-arsenic alloys, and amorphous silicon.
The charge generation material may be used alone or in combination of two or more.
電荷発生層は、電荷発生材料を適宜バインダー樹脂とともに、環状エーテル系化合物、ケトン系化合物、および/または芳香族系炭化水素化合物を用いてボールミル、アトライター、サンドミルなどにより分散し、分散液を塗布することにより形成する。
塗布は、浸漬塗工法やスプレーコート、ビードコート法などを用いて行なうことができる。
For the charge generation layer, the charge generation material is dispersed with a binder resin and a cyclic ether compound, ketone compound, and / or aromatic hydrocarbon compound using a ball mill, attritor, sand mill, etc., and a dispersion is applied. To form.
The coating can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.
適宜用いられるバインダー樹脂としては、前記有機溶剤に溶解可能なポリウレタン、ポリエステル、エポキシ樹脂、ポリカーボネート、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリスチレン、ポリアクリルアミドなどが挙げられ用いられる。 Examples of the binder resin that is appropriately used include polyurethane, polyester, epoxy resin, polycarbonate, acrylic resin, polyvinyl butyral, polyvinyl formal, polystyrene, and polyacrylamide that are soluble in the organic solvent.
電荷発生層の膜厚は0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
電荷発生材料の量はバインダー樹脂100質量部に対し、10〜10000質量部、好ましくは20〜5000質量部が適当である。
電荷輸送層は、電荷輸送物質および結着樹脂を環状エーテル系化合物、ケトン系化合物、および/または芳香族系炭化水素化合物に溶解ないし分散し、これを電荷発生層上に塗布、乾燥する事により形成できる。
また、必要により可塑剤、レベリング剤等を添加することもできる。
The thickness of the charge generation layer is suitably about 0.01 to 5 μm, preferably 0.1 to 2 μm.
The amount of the charge generating material is suitably 10 to 10000 parts by mass, preferably 20 to 5000 parts by mass with respect to 100 parts by mass of the binder resin.
The charge transport layer is obtained by dissolving or dispersing a charge transport material and a binder resin in a cyclic ether compound, a ketone compound, and / or an aromatic hydrocarbon compound, and applying and drying the solution on the charge generation layer. Can be formed.
Moreover, a plasticizer, a leveling agent, etc. can also be added as needed.
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ[1,2−b]チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質があげられる。
Charge transport materials include hole transport materials and electron transport materials.
Examples of the electron transporting material include chloroanil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one, 1,3,7-tri Examples thereof include electron-accepting substances such as nitrodibenzothiophene-5,5-dioxide and benzoquinone derivatives.
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサール誘導体、オキサジアール誘導体、イミダール誘導体、モノアールアミン誘導体、ジアールアミン誘導体、トリアールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラジン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体、ビススチルベン誘導体、エナミン誘導体、その他ポリマー化された正孔輸送物質等公知の材料があげられる。 Examples of hole transport materials include poly-N-vinylcarbazole and derivatives thereof, poly-γ-carbazolylethyl glutarate and derivatives thereof, pyrene-formaldehyde condensates and derivatives thereof, polyvinylpyrene, polyvinylphenanthrene, polysilane, and oxal derivatives. Oxadiar derivative, imidazole derivative, monoaramine derivative, diaramine derivative, triaramine derivative, stilbene derivative, α-phenylstilbene derivative, benzidine derivative, diarylmethane derivative, triarylmethane derivative, 9-styrylanthracene derivative, pyrazoline derivative, divinyl Benzene derivatives, hydrazine derivatives, indene derivatives, butadiene derivatives, pyrene derivatives, bisstilbene derivatives, enamine derivatives, other polymers And known materials such as hole transport materials.
電荷輸送層に用いられる結着樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂、特開平5−158250号公報、特開平6−51544号公報記載の各種ポリカーボネート共重合体等の熱可塑性または熱硬化性樹脂があげられる。 Examples of the binder resin used for the charge transport layer include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer. Coalescence, polyvinyl acetate, polyvinylidene chloride, polyarylate, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N-vinyl carbazole, acrylic resin, silicone resin, epoxy resin, There are thermoplastic or thermosetting resins such as melamine resin, urethane resin, phenol resin, alkyd resin, and various polycarbonate copolymers described in JP-A-5-158250 and JP-A-6-51544. It is.
電荷輸送物質の量は結着樹脂100質量部に対し、20〜300質量部、好ましくは40〜150質量部が適当である。
正孔輸送物質の量は結着樹脂100質量部に対し、20〜300質量部、好ましくは40〜150質量部が適当である。
The amount of the charge transport material is appropriately 20 to 300 parts by mass, preferably 40 to 150 parts by mass with respect to 100 parts by mass of the binder resin.
The amount of the hole transport material is appropriately 20 to 300 parts by mass, preferably 40 to 150 parts by mass with respect to 100 parts by mass of the binder resin.
本発明においては電荷輸送層にレベリング剤、酸化防止剤を添加しても良い。
レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用でき、その使用量は結着剤樹脂100質量部に対して0〜1質量部が適当である。
In the present invention, a leveling agent and an antioxidant may be added to the charge transport layer.
As the leveling agent, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, polymers or oligomers having a perfluoroalkyl group in the side chain can be used, and the amount used is 100 parts by mass of the binder resin. 0 to 1 part by mass is appropriate.
酸化防止剤としては、ヒンダードフェノール系化合物、硫黄系化合物、燐系化合物、ヒンダードアミン系化合物、ピリジン誘導体、ピペリジン誘導体、モルホリン誘導体等の酸化防止剤を使用でき、その使用量は結着剤樹脂100質量部に対して0〜5質量部程度が適当である。 Antioxidants such as hindered phenol compounds, sulfur compounds, phosphorus compounds, hindered amine compounds, pyridine derivatives, piperidine derivatives, morpholine derivatives can be used as the antioxidant, and the amount used is binder resin 100. About 0-5 mass parts is suitable with respect to mass parts.
次に、感光層が単層構成の場合について述べる。
この場合、少なくとも電荷発生材料および電荷輸送物質を、バインダー樹脂、フェノール系化合物、有機硫黄系化合物を環状エーテル系化合物、ケトン系化合物および芳香族系炭化水素化合物から選ばれた1種以上の溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。
また、必要により可塑剤等を添加することもできる。
Next, the case where the photosensitive layer has a single layer structure will be described.
In this case, at least the charge generating material and the charge transporting material are used as a binder resin, a phenol compound, and an organic sulfur compound as one or more solvents selected from cyclic ether compounds, ketone compounds, and aromatic hydrocarbon compounds. It can be formed by dissolving or dispersing, coating and drying.
Moreover, a plasticizer etc. can also be added as needed.
バインダー樹脂としては、先に電荷輸送層で挙げた結着樹脂をそのまま用いることができる他に、電荷発生層で挙げたバインダー樹脂を混合してもよい。
本発明の感光体においては、感光層保護の目的で、保護層が感光層の上に設けられることもある。
As the binder resin, the binder resin mentioned above in the charge transport layer can be used as it is, and the binder resin mentioned in the charge generation layer may be mixed.
In the photoreceptor of the present invention, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer.
保護層に使用される材料としてはABS樹脂、ACS樹脂、オレフイン−ビニルモノマー共重合体、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアタリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルペンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。 Materials used for the protective layer include ABS resin, ACS resin, olefin-vinyl monomer copolymer, chlorinated polyether, allyl resin, phenolic resin, polyacetal, polyamide, polyamideimide, polyacrylate, polyallylsulfone, polybutylene. , Polybutylene terephthalate, polycarbonate, polyethersulfone, polyethylene, polyethylene terephthalate, polyimide, acrylic resin, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, polystyrene, AS resin, butadiene-styrene copolymer, polyurethane, polyvinyl chloride, Examples of the resin include polyvinylidene chloride and epoxy resin.
保護層にはその他、耐摩耗性を向上する目的でポリテトラフルオロエチレンのような弗素樹脂、シリコーン樹脂、およびこれらの樹脂に酸化チタン、アルミナ、シリカ、酸化錫、チタン酸カリウム等の無機材料を分散したもの等を添加することができる。
無機材料の中でも金属酸化物が有効に使用される。
特に酸化チタン、アルミナ、シリカは有効に使用される。
In addition to the protective layer, fluorine resins such as polytetrafluoroethylene, silicone resins, and inorganic materials such as titanium oxide, alumina, silica, tin oxide, and potassium titanate are used for the purpose of improving wear resistance. A dispersed product or the like can be added.
Among inorganic materials, metal oxides are effectively used.
In particular, titanium oxide, alumina, and silica are effectively used.
また、保護層に電荷輸送物質を併用することは有効な手段である。
電荷輸送物資としては、低分子電荷輸送物質および高分子電荷輸送物質を使用することができ、電荷輸送層の説明に記載された材料が有効に使用できる。
In addition, it is an effective means to use a charge transport material in combination with the protective layer.
As the charge transport material, a low molecular charge transport material and a polymer charge transport material can be used, and the materials described in the description of the charge transport layer can be used effectively.
保護層の形成法としては通常の塗布法(スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等)が採用される。
保護層の厚さは0.1〜10[μm]程度が適当である。
また、以上のほかに真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層として用いることができる。
As a method for forming the protective layer, a normal coating method (spray coating, beat coating, nozzle coating, spinner coating, ring coating, etc.) is employed.
The thickness of the protective layer is suitably about 0.1 to 10 [μm].
In addition to the above, a known material such as a-C or a-SiC formed by a vacuum thin film forming method can be used as the protective layer.
以下、本発明を実施例および比較例により更に説明するが、本発明は下記例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.
実施例1と比較例1で誘導発熱部材の有無による導電性支持体(塗膜なし)の温度分布を非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ FTシリーズ)にて測定した。 In Example 1 and Comparative Example 1, the temperature distribution of the conductive support (without the coating film) with and without the induction heating member was measured with a non-contact type radiation thermometer (digital radiation temperature sensor FT series manufactured by KEYENCE).
[実施例1]
ドラム状の導電性支持体を加熱する電磁誘導加熱装置を以下のような構成とした(図3参照)。
(高周波誘導コイル)
形状:螺旋状のパイプ形状
コイル巻外径:130mm
コイル巻きピッチ:30mm(13巻き)
コイル長さ:410mm
コイル径:12mm
[Example 1]
An electromagnetic induction heating device for heating the drum-like conductive support was configured as follows (see FIG. 3).
(High frequency induction coil)
Shape: Spiral pipe shape Coil winding outer diameter: 130mm
Coil winding pitch: 30 mm (13 windings)
Coil length: 410mm
Coil diameter: 12mm
(加熱条件)
電流367A、周波数190KHzで加熱後、150℃維持するようPID制御しながら、円筒状の導電性支持体を周方向に毎分10回転の速さで回転する加熱条件とした。尚、コイルの内部には冷却水を通して使用した。
この時、温度制御は、非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ)とKEYENCE社製 PLCユニットを用いて、円筒状導電性支持体の軸方向の中央部の温度測定により行った。
(Heating conditions)
After heating at a current of 367 A and a frequency of 190 KHz, the cylindrical conductive support was heated at a speed of 10 revolutions per minute in the circumferential direction while PID control was performed to maintain 150 ° C. The coil was used through cooling water.
At this time, temperature control was performed by measuring the temperature in the axial center of the cylindrical conductive support using a non-contact type radiation thermometer (a digital radiation temperature sensor made by KEYENCE) and a PLC unit made by KEYENCE. .
(導電性支持体)
材質:アルミニウム
外径:100mm
長さ:270mm
厚さ:1.2mm
(誘導発熱部材)
材質:アルミニウム
外径:100mm
長さ:60mm
厚さ:2.0mm、一部0.8mm
(Conductive support)
Material: Aluminum Outer diameter: 100mm
Length: 270mm
Thickness: 1.2mm
(Induction heating member)
Material: Aluminum Outer diameter: 100mm
Length: 60mm
Thickness: 2.0mm, some 0.8mm
[比較例1]
ドラム状の導電性支持体を加熱する電磁誘導加熱装置を以下のような構成とした(図4参照)。
(高周波誘導コイル)
形状:螺旋状のパイプ形状
コイル巻外径:130mm
コイル巻きピッチ:30mm(9巻き)
コイル長さ:290mm
コイル径:12mm
[Comparative Example 1]
The electromagnetic induction heating device for heating the drum-shaped conductive support was configured as follows (see FIG. 4).
(High frequency induction coil)
Shape: Spiral pipe shape Coil winding outer diameter: 130mm
Coil winding pitch: 30 mm (9 windings)
Coil length: 290mm
Coil diameter: 12mm
(加熱条件)
電流367A、周波数190KHzで加熱後、150℃維持するようPID制御しながら、円筒状の導電性支持体を周方向に毎分10回転の速さで回転する加熱条件とした。尚、コイルの内部には冷却水を通して使用した。
この時、温度制御は、非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ)とKEYENCE社製 PLCユニットを用いて、円筒状導電性支持体の軸方向の中央部の温度測定により行った。
(Heating conditions)
After heating at a current of 367 A and a frequency of 190 KHz, the cylindrical conductive support was heated at a speed of 10 revolutions per minute in the circumferential direction while PID control was performed to maintain 150 ° C. The coil was used through cooling water.
At this time, temperature control was performed by measuring the temperature in the axial center of the cylindrical conductive support using a non-contact type radiation thermometer (a digital radiation temperature sensor made by KEYENCE) and a PLC unit made by KEYENCE. .
(導電性支持体)
材質:アルミニウム
直径:100mm
長さ:270mm
厚さ:1.2mm
実施例1と比較例1の結果を表1に示す。また、温度の測定位置は図5に示す。
(Conductive support)
Material: Aluminum Diameter: 100mm
Length: 270mm
Thickness: 1.2mm
The results of Example 1 and Comparative Example 1 are shown in Table 1. The temperature measurement position is shown in FIG.
表1から分かるように、円筒状の導電性支持体の両側に誘導発熱部材を配置し高周波誘導コイルを誘導発熱部材上に高周波誘導コイルによる渦電流が生じる長さにすることで、導電性支持体の良好な温度均一性が得られる。 As can be seen from Table 1, conductive support is provided by arranging induction heating members on both sides of a cylindrical conductive support and making the high-frequency induction coil have a length that causes eddy currents due to the high-frequency induction coil on the induction heating member. Good body temperature uniformity is obtained.
以下に記載する実施例2と比較例2で、導電性支持体に液を塗布して誘導発熱部材の有無で乾燥を行い、画像ムラの評価を行った。 In Example 2 and Comparative Example 2 described below, a liquid was applied to the conductive support and dried with or without an induction heating member to evaluate image unevenness.
[実施例2]
アルキド樹脂ベッコゾール1307−60EL(固形分60質量%)(大日本インキ化学製)80質量部、ブチル化ベンゾグアナミン樹脂スーパーベッカミンTD−126(固形分60質量%)(大日本インキ化学製)55質量部をメチルエチルケトン350質量部に溶解し、これに酸化チタン粉末CR−EL(石原産業製)350質量部をアルミナボールを使用して48時間ボールミル分散し、中間層用塗工液を作成した。
このようにして得られた中間層用塗工液を、実施例1の導電性支持体に浸漬塗布し、実施例1と同じ電磁誘導加熱により設定温度150℃で、塗布済みの円筒状の導電性支持体を周方向に毎分10回転の速さで回転しながら乾燥を行い、膜厚3.5μmの中間層を得た。
この時、温度制御は、非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ)とKEYENCE社製 PLCユニットを用いて、円筒状導電性支持体の軸方向の中央部の塗布膜上の温度測定により行った。
[Example 2]
Alkyd resin Beccosol 1307-60EL (solid content 60% by mass) (manufactured by Dainippon Ink Chemical) 80 parts by mass, Butylated benzoguanamine resin Super Becamine TD-126 (solid content 60% by mass) (manufactured by Dainippon Ink Chemical) 55 mass A part was dissolved in 350 parts by mass of methyl ethyl ketone, and 350 parts by mass of titanium oxide powder CR-EL (manufactured by Ishihara Sangyo) was ball-milled for 48 hours using alumina balls to prepare an intermediate layer coating solution.
The intermediate layer coating solution thus obtained is dip-coated on the conductive support of Example 1, and the applied cylindrical conductive material is applied at the set temperature of 150 ° C. by the same electromagnetic induction heating as in Example 1. The support was dried while rotating in the circumferential direction at a speed of 10 revolutions per minute to obtain an intermediate layer having a thickness of 3.5 μm.
At this time, the temperature is controlled by using a non-contact type radiation thermometer (a digital radiation temperature sensor made by KEYENCE) and a PLC unit made by KEYENCE, and the temperature on the coating film at the center in the axial direction of the cylindrical conductive support. Performed by measurement.
次にチタニルフタロシアニン顔料20質量部をφ2mmのジルコニアビーズとともにガラスポットに入れ、更にテトラヒドロフラン350質量部を加えて、25℃の室温で20時間ボールミリングを行った。
その後、ポリビニルブチラール樹脂エスレックBX−1(積水化学製)10質量部を600質量部のメチルエチルケトンに溶解させた樹脂溶液を添加して、さらに2時間ボールミリングを行うことによって電荷発生層用塗工液を作成した。
Next, 20 parts by mass of titanyl phthalocyanine pigment was placed in a glass pot together with zirconia beads having a diameter of 2 mm, and 350 parts by mass of tetrahydrofuran was further added, followed by ball milling at room temperature of 25 ° C. for 20 hours.
Thereafter, a resin solution prepared by dissolving 10 parts by mass of polyvinyl butyral resin ESREC BX-1 (manufactured by Sekisui Chemical Co., Ltd.) in 600 parts by mass of methyl ethyl ketone is added, and ball milling is further performed for 2 hours to thereby apply a coating solution for charge generation layer. It was created.
このようにして得られた電荷発生層用塗工液を前記中間層上に浸漬塗布し、実施例1の導電性支持体に浸漬塗布し、実施例1と同じ電磁誘導加熱により設定温度65℃で、塗布済みの円筒状の導電性支持体を周方向に毎分10回転の速さで回転しながら乾燥を行い、膜厚0.5μm電荷発生層を得た。
この時、温度制御は、非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ)とKEYENCE社製 PLCユニットを用いて、円筒状導電性支持体の軸方向の中央部の塗布膜上の温度測定により行った。
The charge generation layer coating solution thus obtained is dip-coated on the intermediate layer, dip-coated on the conductive support of Example 1, and set temperature 65 ° C. by the same electromagnetic induction heating as in Example 1. Then, the coated cylindrical conductive support was dried while rotating in the circumferential direction at a speed of 10 revolutions per minute to obtain a charge generation layer having a thickness of 0.5 μm.
At this time, the temperature is controlled by using a non-contact type radiation thermometer (a digital radiation temperature sensor made by KEYENCE) and a PLC unit made by KEYENCE, and the temperature on the coating film at the center in the axial direction of the cylindrical conductive support. Performed by measurement.
次に下記構造式(1)の電荷輸送物質70質量部、ポリカーボネート樹脂ユーピロンZ−200(三菱瓦斯化学製)100質量部、シリコーンオイルKF−50(信越化学工業製)0.002質量部を770質量部のテトラヒドロフランに溶解した。 Next, 770 parts by weight of a charge transport material of the following structural formula (1), 100 parts by weight of polycarbonate resin Iupilon Z-200 (Mitsubishi Gas Chemical), 0.002 parts by weight of silicone oil KF-50 (Shin-Etsu Chemical Co., Ltd.) Dissolved in parts by mass of tetrahydrofuran.
このようにして得られた電荷輸送層用塗工液を前記電荷発生層上に浸漬塗布し、実施例1の導電性支持体に浸漬塗布し、実施例1と同じ電磁誘導加熱により設定温度135℃で、塗布済みの円筒状の導電性支持体を周方向に毎分10回転の速さで回転しながら乾燥を行い、膜厚25μmの電荷輸送層を形成し、電子写真感光体を作成した。
この時、温度制御は、非接触型放射温度計(KEYENCE社製 デジタル放射温度センサ)とKEYENCE社製 PLCユニットを用いて、円筒状導電性支持体の軸方向の中央部の塗布膜上の温度測定により行った。
The charge transport layer coating solution thus obtained is dip-coated on the charge generation layer, dip-coated on the conductive support of Example 1, and set temperature 135 by the same electromagnetic induction heating as in Example 1. The coated cylindrical conductive support was dried at 10 ° C. while rotating at a speed of 10 revolutions per minute in the circumferential direction to form a charge transport layer having a film thickness of 25 μm, thereby producing an electrophotographic photosensitive member. .
At this time, the temperature is controlled by using a non-contact type radiation thermometer (a digital radiation temperature sensor made by KEYENCE) and a PLC unit made by KEYENCE, and the temperature on the coating film at the center in the axial direction of the cylindrical conductive support. Performed by measurement.
[比較例2]
実施例2と同じ円筒状の導電性支持体と比較例1と同じ高周波誘導コイルを用いて、実施例2と同様に乾燥を行い電子写真感光体を得た。
次に得られた実施例2及び比較例2の電子写真感光体をイマジオMF−7070(リコー製)の改造機に搭載し、ハーフトーン画像の評価を行った。
ハーフトーン画像評価は、目視で観察し以下のように行った。
○ :画像ムラがなく良好な画像
△ :一部で画像ムラの発生がある画像
× :画像ムラの発生が多く実用上支障がある画像
結果を表2に示す。
[Comparative Example 2]
Using the same cylindrical conductive support as in Example 2 and the same high-frequency induction coil as in Comparative Example 1, drying was performed in the same manner as in Example 2 to obtain an electrophotographic photosensitive member.
Next, the obtained electrophotographic photosensitive members of Example 2 and Comparative Example 2 were mounted on a remodeled machine of IMAGIO MF-7070 (manufactured by Ricoh), and halftone images were evaluated.
The halftone image evaluation was visually observed and performed as follows.
○: Good image with no image unevenness Δ: Image with some image unevenness ×: Image results with many image unevenness and practical problems are shown in Table 2.
表2から分かるように、高周波誘導加熱において、円筒状の導電性支持体の両側に誘導発熱部材を配置し高周波誘導コイルを誘導発熱部材上に高周波誘導コイルによる渦電流が生じる長さにすることで、画像のムラがなく良好な画像が得られる。 As can be seen from Table 2, in high-frequency induction heating, induction heating members are arranged on both sides of a cylindrical conductive support, and the high-frequency induction coil is made long enough to generate eddy currents on the induction heating member. Thus, a good image can be obtained without unevenness of the image.
[実施例3]
アルキド樹脂ベッコゾール1307−60EL(固形分60質量%)(大日本インキ化学製)80質量部、ブチル化ベンゾグアナミン樹脂スーパーベッカミンTD−126(固形分60質量%)(大日本インキ化学製)55質量部をメチルエチルケトン350質量部に溶解し、これに酸化チタン粉末CR−EL(石原産業製)350質量部をアルミナボールを使用して48時間ボールミル分散し、中間層用塗工液を作成した。
このようにして得られた中間層用塗工液を、実施例1の導電性支持体に浸漬塗布し、膜厚3.5μmとし、実施例1と同じ電磁誘導加熱により、設定温度150℃で、塗布済みの円筒状の導電性支持体を周方向に毎分10回転の速さで回転しながら乾燥、硬化を行い中間層を得た。
この時、温度制御のための温度測定は、円筒状の導電性支持体の両側に配置した誘導発熱部材表面上にあらかじめ膜厚3.5μmの中間層を形成した誘導発熱部材表面で行った。
[Example 3]
Alkyd resin Beccosol 1307-60EL (solid content 60% by mass) (manufactured by Dainippon Ink and Chemicals) 80 parts by mass, Butylated benzoguanamine resin Superbecamine TD-126 (solid content 60% by mass) (manufactured by Dainippon Ink and Chemicals) 55 mass A part was dissolved in 350 parts by mass of methyl ethyl ketone, and 350 parts by mass of titanium oxide powder CR-EL (manufactured by Ishihara Sangyo) was ball-milled for 48 hours using alumina balls to prepare an intermediate layer coating solution.
The intermediate layer coating solution thus obtained was dip-coated on the conductive support of Example 1 to a film thickness of 3.5 μm, and by the same electromagnetic induction heating as in Example 1, at a set temperature of 150 ° C. The coated cylindrical conductive support was dried and cured while rotating in the circumferential direction at a speed of 10 revolutions per minute to obtain an intermediate layer.
At this time, temperature measurement for temperature control was performed on the surface of the induction heating member in which an intermediate layer having a film thickness of 3.5 μm was formed in advance on the surface of the induction heating member arranged on both sides of the cylindrical conductive support.
[実施例4]
実施例3と同様にして膜厚4.5μmの中間層を得た。
この時、温度制御のための温度測定は、実施例3と同じ円筒状の導電性支持体の両側に配置した誘導発熱部材表面上にあらかじめ膜厚3.5μmの中間層を形成した誘導発熱部材表面で行った。
[Example 4]
In the same manner as in Example 3, an intermediate layer having a thickness of 4.5 μm was obtained.
At this time, the temperature measurement for temperature control is performed by the induction heating member in which an intermediate layer having a film thickness of 3.5 μm is formed in advance on the surface of the induction heating member arranged on both sides of the same cylindrical conductive support as in Example 3. Done on the surface.
[比較例3]
温度制御のための温度測定を円筒状の導電性支持体上の塗布膜の軸方向の中央部で行ったこと以外は実施例3と同様にして膜厚3.5μmの中間層を得た。
[Comparative Example 3]
An intermediate layer having a thickness of 3.5 μm was obtained in the same manner as in Example 3 except that the temperature measurement for temperature control was performed at the central portion in the axial direction of the coating film on the cylindrical conductive support.
[比較例4]
比較例3と同様の温度制御のための温度測定を行ったこと以外は実施例4と同様にして膜厚4.5μmの中間層を得た。
[Comparative Example 4]
An intermediate layer having a thickness of 4.5 μm was obtained in the same manner as in Example 4 except that the temperature measurement for temperature control similar to that in Comparative Example 3 was performed.
実施例3、4及び比較例3、4において、円筒状導電性支持体の高周波誘導加熱中の温度の測定として、円筒状の導電性支持体上の塗布膜の軸方向の中央部の表面の温度を非接触型放射温度計で測定し、更に同じ位置の円筒状支持体の塗布膜と逆側(円筒状支持体の内側)を接触型の熱電対方式の温度計で測定を行った。
その結果を表3に示す。
In Examples 3 and 4 and Comparative Examples 3 and 4, as a measurement of the temperature during high-frequency induction heating of the cylindrical conductive support, the surface of the central portion in the axial direction of the coating film on the cylindrical conductive support was measured. The temperature was measured with a non-contact type radiation thermometer, and the coating film of the cylindrical support at the same position and the opposite side (inside the cylindrical support) were measured with a contact-type thermocouple thermometer.
The results are shown in Table 3.
表3から分かるように、上記中間層において塗布膜上の温度で温度制御のための温度測定を行うと塗布膜の膜厚により、非接触型放射温度計の測定値が実際の温度とズレが生じるが、塗布済みの誘導発熱部材表面の温度で温度制御のための温度測定を行えば塗布膜の膜厚によらず同じ温度で制御可能である。 As can be seen from Table 3, when the temperature measurement for temperature control is performed at the temperature on the coating film in the intermediate layer, the measured value of the non-contact type radiation thermometer differs from the actual temperature due to the film thickness of the coating film. However, the temperature can be controlled at the same temperature regardless of the thickness of the coating film by measuring the temperature for controlling the temperature on the surface of the coated induction heating member surface.
前記の実施例および比較例から、塗布形成された塗布膜を高周波誘導加熱により乾燥・硬化を行う電子写真感光体の製造方法において、導電性支持体の軸方向の両側の端部に高周波誘導コイルにより渦電流が発生し加熱可能な部材(誘導発熱部材)を配置し、かつ高周波誘導コイルの長さが、前記誘導発熱部材に高周波により渦電流が発生する長さにすることで、均一な乾燥温度が得られることが分かる。更に温度制御を誘導発熱部材表面上の温度を測定することで狙い通りの温度で乾燥・硬化を行うことが可能なことが分かる。 In the method of manufacturing an electrophotographic photosensitive member in which a coating film formed by coating is dried and cured by high-frequency induction heating, the high-frequency induction coil is formed at both ends in the axial direction of the conductive support. By arranging a member (induction heating member) capable of generating and heating an eddy current due to the high frequency induction coil, the induction heating member has a length that generates an eddy current due to a high frequency. It can be seen that the temperature is obtained. Further, it can be seen that drying and curing can be performed at a target temperature by measuring the temperature on the surface of the induction heating member with temperature control.
1 導電性支持体
2 高周波誘導コイル
3 誘導発熱部材
4 誘導発熱部材
5 非接触型放射温度計
6 温度測定位置
7 高周波電源
DESCRIPTION OF SYMBOLS 1
Claims (4)
The method of manufacturing an electrophotographic photosensitive member according to claim 1, wherein a surface temperature of the induction heating member is measured and temperature control is performed based on the measurement signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012202210A JP2014056197A (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012202210A JP2014056197A (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing electrophotographic photoreceptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014056197A true JP2014056197A (en) | 2014-03-27 |
Family
ID=50613526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012202210A Pending JP2014056197A (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014056197A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018032511A (en) * | 2016-08-24 | 2018-03-01 | キヤノン株式会社 | Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor |
JP2020129471A (en) * | 2019-02-08 | 2020-08-27 | キヤノン株式会社 | Induction heating apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139174A (en) * | 1987-11-26 | 1989-05-31 | Nordson Kk | Coating of coating material and its ageing method |
JP2003275670A (en) * | 2001-12-28 | 2003-09-30 | Canon Inc | Method and apparatus for manufacturing cylindrical member |
JP2005043807A (en) * | 2003-07-25 | 2005-02-17 | Canon Inc | Method and apparatus for manufacturing electrophotographic photoreceptor |
JP2005043805A (en) * | 2003-07-25 | 2005-02-17 | Canon Inc | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and image forming apparatus |
JP2009134119A (en) * | 2007-11-30 | 2009-06-18 | Canon Inc | Method for manufacturing cylindrical photoreceptor |
JP2010197664A (en) * | 2009-02-25 | 2010-09-09 | Canon Inc | Method of manufacturing electrophotographic photoreceptor |
JP2010197663A (en) * | 2009-02-25 | 2010-09-09 | Canon Inc | Method of manufacturing electrophotographic photoreceptor |
-
2012
- 2012-09-14 JP JP2012202210A patent/JP2014056197A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139174A (en) * | 1987-11-26 | 1989-05-31 | Nordson Kk | Coating of coating material and its ageing method |
JP2003275670A (en) * | 2001-12-28 | 2003-09-30 | Canon Inc | Method and apparatus for manufacturing cylindrical member |
JP2005043807A (en) * | 2003-07-25 | 2005-02-17 | Canon Inc | Method and apparatus for manufacturing electrophotographic photoreceptor |
JP2005043805A (en) * | 2003-07-25 | 2005-02-17 | Canon Inc | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and image forming apparatus |
JP2009134119A (en) * | 2007-11-30 | 2009-06-18 | Canon Inc | Method for manufacturing cylindrical photoreceptor |
JP2010197664A (en) * | 2009-02-25 | 2010-09-09 | Canon Inc | Method of manufacturing electrophotographic photoreceptor |
JP2010197663A (en) * | 2009-02-25 | 2010-09-09 | Canon Inc | Method of manufacturing electrophotographic photoreceptor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018032511A (en) * | 2016-08-24 | 2018-03-01 | キヤノン株式会社 | Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor |
JP2020129471A (en) * | 2019-02-08 | 2020-08-27 | キヤノン株式会社 | Induction heating apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5755162B2 (en) | Method for producing electrophotographic photosensitive member | |
KR101645777B1 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method for producing electrophotographic photosensitive member | |
JP6108842B2 (en) | Method for producing electrophotographic photosensitive member | |
KR101476578B1 (en) | Process for producing electrophotographic photosensitive member | |
KR20130132999A (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member | |
JP2020085991A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
KR20120045061A (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
KR20140097002A (en) | Method for producing electrophotographic photosensitive member | |
JP6711107B2 (en) | Photoreceptor, image forming apparatus, and process cartridge | |
JP4010536B2 (en) | Coating method, coating apparatus, electrophotographic photosensitive member produced by the coating method, image forming method, and image forming apparatus | |
JP2016109844A (en) | Electrophotographic photoreceptor, image formation device, and process cartridge | |
JP2016099421A (en) | Electrophotographic photoreceptor, image formation apparatus and process cartridge | |
JP6667099B2 (en) | Photoconductor, image forming apparatus, and process cartridge | |
JP2007188003A (en) | Method for manufacturing electrophotographic photoreceptor | |
JP2014056197A (en) | Method for manufacturing electrophotographic photoreceptor | |
JP2008026482A (en) | Electrophotographic photoreceptor | |
JP4180562B2 (en) | Method for producing electrophotographic photoreceptor and method for drying coating film | |
JP6024954B2 (en) | Method for producing electrophotographic photosensitive member | |
JP6421599B2 (en) | Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus | |
JP2012108187A (en) | Method for manufacturing electrophotographic photoreceptor | |
JP2010197663A (en) | Method of manufacturing electrophotographic photoreceptor | |
JP4485294B2 (en) | Method for producing electrophotographic photosensitive member | |
JP5446333B2 (en) | Electrophotographic photoreceptor and method for producing the same | |
JP2005043805A (en) | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and image forming apparatus | |
JP6922587B2 (en) | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge, and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161013 |