[go: up one dir, main page]

JP2014049317A - Power storage device and method for manufacturing the same - Google Patents

Power storage device and method for manufacturing the same Download PDF

Info

Publication number
JP2014049317A
JP2014049317A JP2012192176A JP2012192176A JP2014049317A JP 2014049317 A JP2014049317 A JP 2014049317A JP 2012192176 A JP2012192176 A JP 2012192176A JP 2012192176 A JP2012192176 A JP 2012192176A JP 2014049317 A JP2014049317 A JP 2014049317A
Authority
JP
Japan
Prior art keywords
conductive member
welded
positive electrode
electrode
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012192176A
Other languages
Japanese (ja)
Inventor
Yohei Hamaguchi
陽平 濱口
Motoaki Okuda
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012192176A priority Critical patent/JP2014049317A/en
Publication of JP2014049317A publication Critical patent/JP2014049317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of suppressing deformation of a conductive member accompanied with performing resistance welding of a laminate to the conductive member, and also to provide a method for manufacturing the power storage device.SOLUTION: A positive electrode 23 has a positive electrode tab 23c preventing an active material from being coated on the surface on which the active material of a metal foil 23a is coated. A positive electrode tab group 26 composed in a layer form of the positive electrode tab 23c is welded and joined to a positive electrode conductive member 19 electrically connected to a positive electrode terminal by resistance welding. On the surface opposite to the surface to which the positive electrode tab group 26 is welded and joined in the positive electrode conductive member 19, a welded part 40 having electrical conduction property is welded and joined.

Description

本発明は、蓄電装置及び蓄電装置の製造方法に関する。   The present invention relates to a power storage device and a method for manufacturing the power storage device.

従来から、車両などに搭載される蓄電装置としては、リチウムイオン二次電池やニッケル水素二次電池がよく知られている。このような二次電池は、金属箔に活物質を塗布した電極が積層又は巻回されて層状をなす電極組立体を備えている。電極組立体には、金属箔において活物質が塗布されていない未塗工部が積層されることにより積層体が構成されている。そして、二次電池では、積層体とケースの外部に露出する電極端子とが導電部材を介して電気的に接続されている(例えば、特許文献1参照)。   Conventionally, lithium ion secondary batteries and nickel metal hydride secondary batteries are well known as power storage devices mounted on vehicles and the like. Such a secondary battery includes an electrode assembly in which an electrode obtained by applying an active material to a metal foil is laminated or wound to form a layer shape. In the electrode assembly, a laminated body is configured by laminating an uncoated portion where no active material is applied on a metal foil. And in a secondary battery, the laminated body and the electrode terminal exposed to the exterior of a case are electrically connected through the electrically-conductive member (for example, refer patent document 1).

特許文献1に記載の二次電池では、積層体の積層方向の両側が導電部材によって挟持された状態で、導電部材の外側から押し当てられた電極棒の間に通電を行うことにより積層体と導電部材とを抵抗溶接によって接合させている。   In the secondary battery described in Patent Document 1, in a state where both sides in the stacking direction of the laminate are sandwiched by the conductive member, the laminate and the laminate are energized between the electrode bars pressed from the outside of the conductive member. The conductive member is joined by resistance welding.

特開2009−32640号公報JP 2009-32640 A

ところで、上記の二次電池では、抵抗溶接により積層体と導電部材とを接合する場合には、導電部材が電極棒に融着することがあり得る。この場合、抵抗溶接が完了した後に電極棒を導電部材から引き離そうとすると、導電部材が電極棒に引っ張られて変形を生じることにより、二次電池の電池性能に影響を及ぼす虞があった。   By the way, in said secondary battery, when joining a laminated body and a conductive member by resistance welding, a conductive member may fuse | fuse to an electrode bar. In this case, if the electrode rod is pulled away from the conductive member after the resistance welding is completed, the conductive member is pulled by the electrode rod to cause deformation, which may affect the battery performance of the secondary battery.

本発明は、このような事情に鑑みてなされたものであり、その目的は、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することにより蓄電性能に影響が及ぶことを抑制できる蓄電装置及び蓄電装置の製造方法を提供することにある。   This invention is made | formed in view of such a situation, The objective is suppressing that an electrical storage performance is affected by a conductive member deform | transforming in connection with resistance welding of a laminated body to a conductive member. An object of the present invention is to provide a power storage device and a method for manufacturing the power storage device.

上記課題を解決するため、請求項1に記載の発明は、金属箔の少なくとも一方の面に活物質が塗布された塗工部を有する正極電極と負極電極との間にセパレータが介在する状態で層状に構成された電極組立体と、前記電極組立体との間で電気を授受する電極端子とを備える蓄電装置であって、前記正極電極及び前記負極電極は、前記金属箔の活物質が塗布された面に活物質が塗布されない未塗工部を有し、前記未塗工部が層状をなして構成される積層体が前記電極組立体、及び前記電極端子の双方と電気的に接続される導電部材に対して抵抗溶接によって溶接接合されており、前記導電部材において前記積層体が溶接接合される面とは反対側の面には、電気伝導性を有する溶接部が溶接接合されていることを要旨とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a state in which a separator is interposed between a positive electrode and a negative electrode each having a coating part in which an active material is applied to at least one surface of a metal foil. A power storage device comprising a layered electrode assembly and an electrode terminal for transferring electricity to and from the electrode assembly, wherein the positive electrode and the negative electrode are coated with an active material of the metal foil A laminated body having an uncoated portion to which an active material is not applied on the formed surface, and the uncoated portion being formed in a layer shape is electrically connected to both the electrode assembly and the electrode terminal. The conductive member is welded by resistance welding, and a welded portion having electrical conductivity is welded to the surface of the conductive member opposite to the surface on which the laminate is welded. This is the gist.

これによれば、電極棒の本体部を溶接部を介して導電部材に接触させつつ積層体と導電部材との抵抗溶接を行う場合には、抵抗溶接が完了した後に電極棒を導電部材から引き離そうとすると、本体部と導電部材との間に介在していた溶接部が導電部材に溶接接合されているため本体部から分離される。そのため、電極棒を導電部材から引き離す際に、電極棒から導電部材に力が作用することが抑制される。したがって、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することにより蓄電性能に影響が及ぶことを抑制できる。   According to this, when performing resistance welding between the laminate and the conductive member while bringing the main body of the electrode rod into contact with the conductive member via the welded portion, the electrode rod is separated from the conductive member after the resistance welding is completed. If it is going to be, since the welding part currently interposed between the main-body part and the electrically-conductive member is weld-joined by the electrically-conductive member, it will isolate | separate from a main-body part. For this reason, when the electrode bar is pulled away from the conductive member, it is possible to suppress a force from acting on the conductive member from the electrode bar. Therefore, it is possible to suppress the storage performance from being affected by the deformation of the conductive member accompanying resistance welding of the laminate to the conductive member.

請求項2に記載の発明は、請求項1に記載の蓄電装置において、前記溶接部における前記導電部材との接合面の面積は、前記溶接部における前記接合面とは反対側の面の面積よりも小さいことを要旨とする。   According to a second aspect of the present invention, in the power storage device according to the first aspect, the area of the joint surface of the welded portion with the conductive member is greater than the area of the surface of the welded portion opposite to the joint surface. Is also small.

これによれば、電極棒の本体部を溶接部における導電部材との接合面とは反対側の面に接触させつつ積層体と導電部材との抵抗溶接を行う場合には、溶接部における導電部材との接合面の面積の方が、溶接部における本体部との接触面の面積よりも小さくなる。そのため、本体部から溶接部を介して導電部材に通電がなされると、溶接部から導電部材に局所的に電流が流れるため、溶接部が導電部材に対して確実に溶接接合される。その結果、電極棒を導電部材から引き離す際に、溶接部が本体部から安定して分離される。したがって、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することを更に抑制できる。   According to this, when performing resistance welding between the laminate and the conductive member while bringing the main body portion of the electrode rod into contact with the surface of the welded portion opposite to the joint surface with the conductive member, the conductive member at the welded portion is used. The area of the joint surface is smaller than the area of the contact surface with the main body portion in the welded portion. Therefore, when the conductive member is energized through the welded portion from the main body portion, a current flows locally from the welded portion to the conductive member, so that the welded portion is reliably welded to the conductive member. As a result, when the electrode rod is pulled away from the conductive member, the welded portion is stably separated from the main body portion. Therefore, it can further suppress that a conductive member deform | transforms in connection with resistance welding a laminated body to a conductive member.

請求項3に記載の発明は、請求項1又は請求項2に記載の蓄電装置において、前記溶接部における前記導電部材との接合面とは反対側の面に凹部が設けられていることを要旨とする。   A third aspect of the present invention is the power storage device according to the first or second aspect, wherein a concave portion is provided on a surface of the welded portion opposite to a joint surface with the conductive member. And

これによれば、電極棒の本体部を溶接部の凹部に嵌合させた場合には、積層体と導電部材との抵抗溶接が安定して行われる。この場合、溶接部に凹部を設けたとしても、溶接部の外形状の大きさが大きくなることはない。そのため、溶接部が導電部材に溶接接合された場合に、電極組立体において溶接部が占める占有領域の大きさは変化せず、電極組立体の大型化を抑制することができる。   According to this, when the main body portion of the electrode rod is fitted into the concave portion of the welded portion, resistance welding between the laminate and the conductive member is stably performed. In this case, even if the recessed portion is provided in the welded portion, the size of the outer shape of the welded portion does not increase. Therefore, when the welded portion is welded to the conductive member, the size of the occupied area occupied by the welded portion in the electrode assembly does not change, and the increase in size of the electrode assembly can be suppressed.

請求項4に記載の発明は、請求項1〜請求項3のうち何れか一項に記載の蓄電装置において、前記溶接部は、前記導電部材と同じ材質によって構成されていることを要旨とする。   The invention according to claim 4 is the power storage device according to any one of claims 1 to 3, wherein the welding portion is made of the same material as the conductive member. .

これによれば、電極棒の本体部を溶接部を介して導電部材に接触させつつ積層体と導電部材との抵抗溶接を行う場合には、溶接部が導電部材に対して確実に溶接接合される。その結果、電極棒を導電部材から引き離す際に、溶接部が本体部から安定して分離される。したがって、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することを更に抑制できる。   According to this, when performing resistance welding between the laminate and the conductive member while bringing the main body portion of the electrode rod into contact with the conductive member via the welded portion, the welded portion is securely welded to the conductive member. The As a result, when the electrode rod is pulled away from the conductive member, the welded portion is stably separated from the main body portion. Therefore, it can further suppress that a conductive member deform | transforms in connection with resistance welding a laminated body to a conductive member.

請求項5に記載の発明は、請求項1〜請求項4のうち何れか一項に記載の蓄電装置において、前記蓄電装置は、二次電池であることを要旨とする。
請求項6に記載の発明は、金属箔の少なくとも一方の面に活物質が塗布された塗工部を有する正極電極と負極電極との間にセパレータが介在する状態で層状に積層された電極組立体と、前記電極組立体との間で電気を授受する電極端子とを備え、前記正極電極及び前記負極電極は、前記金属箔の活物質が塗布された面に活物質が塗布されない未塗工部を有し、前記未塗工部が層状をなして構成される積層体が前記電極組立体、及び前記電極端子の双方と電気的に接続される導電部材に対して抵抗溶接によって溶接接合された蓄電装置の製造方法であって、前記導電部材において前記積層体が溶接接合される面とは反対側の面に電気伝導性を有する溶接部を接触させ、且つ前記溶接部とは分離可能に構成された電極棒の本体部を、前記溶接部における前記導電部材との接合面とは反対側の面に押し付けた状態で前記積層体と前記導電部材とを抵抗溶接により溶接する溶接工程と、前記溶接工程において用いられた前記溶接部から前記本体部を分離する分離工程とを備えたことを要旨とする。
The invention according to claim 5 is the power storage device according to any one of claims 1 to 4, wherein the power storage device is a secondary battery.
The invention according to claim 6 is an electrode assembly in which a separator is interposed between a positive electrode and a negative electrode each having a coating portion in which an active material is applied to at least one surface of a metal foil. A solid body and an electrode terminal for transferring electricity between the electrode assembly, and the positive electrode and the negative electrode are not coated with an active material on the surface of the metal foil on which the active material is applied And a laminate formed by laminating the uncoated part is welded and joined by resistance welding to a conductive member electrically connected to both the electrode assembly and the electrode terminal. A method of manufacturing a power storage device, wherein a contact portion of the conductive member opposite to a surface on which the laminate is welded is brought into contact with a welded portion having electrical conductivity and separable from the welded portion The body part of the configured electrode rod is connected to the welded part. A welding process in which the laminate and the conductive member are welded by resistance welding in a state of being pressed against a surface opposite to a joint surface with the conductive member, and the main body from the welded portion used in the welding process. And a separation step for separating the parts.

電極棒の本体部を溶接部を介して導電部材に接触させつつ積層体と導電部材との抵抗溶接を行う場合には、本体部と導電部材との間に介在していた溶接部が導電部材に溶接接合されることがあり得る。この点、これによれば、本体部が溶接部とは分離可能に構成されているため、抵抗溶接が完了した後に本体部を導電部材から引き離そうとすると、導電部材に溶接接合された溶接部が本体部から分離される。そのため、本体部を導電部材から引き離す際に、本体部から導電部材に力が作用することが抑制される。したがって、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することにより蓄電性能に影響が及ぶことを抑制できる。   When performing resistance welding between the laminate and the conductive member while bringing the main body portion of the electrode rod into contact with the conductive member via the welded portion, the welded portion interposed between the main body portion and the conductive member is the conductive member. May be welded together. In this regard, according to this, since the main body is configured to be separable from the welded portion, when the main body is separated from the conductive member after the resistance welding is completed, the welded portion welded to the conductive member is Separated from the main body. Therefore, when a main body part is pulled away from a conductive member, it is suppressed that force acts on a conductive member from a main body part. Therefore, it is possible to suppress the storage performance from being affected by the deformation of the conductive member accompanying resistance welding of the laminate to the conductive member.

請求項7に記載の発明は、請求項6に記載の蓄電装置の製造方法において、前記溶接工程では、前記本体部に前記溶接部を保持させた状態で前記導電部材に前記溶接部を接触させることを要旨とする。   According to a seventh aspect of the present invention, in the method of manufacturing a power storage device according to the sixth aspect, in the welding step, the welded portion is brought into contact with the conductive member in a state where the welded portion is held by the main body portion. This is the gist.

これによれば、電極棒の本体部に保持された溶接部を導電部材に接触させつつ、本体部から溶接部を通じて導電部材に通電を行うことにより、積層体と導電部材との抵抗溶接を簡便に行うことができる。   According to this, resistance welding between the laminate and the conductive member can be easily performed by energizing the conductive member through the welded portion from the main body portion while bringing the welded portion held by the main body portion of the electrode rod into contact with the conductive member. Can be done.

本発明によれば、積層体を導電部材に抵抗溶接することに伴って導電部材が変形することにより蓄電性能に影響が及ぶことを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress that an electrical storage performance is affected by a conductive member deform | transforming in connection with resistance welding of a laminated body to a conductive member.

実施形態における二次電池の分解斜視図。The disassembled perspective view of the secondary battery in embodiment. ケースに挿入された電極組立体を示す断面図。Sectional drawing which shows the electrode assembly inserted in the case. 電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of an electrode assembly. 正極タブ群と正極導電部材との溶接状態を模式的に示す断面図。Sectional drawing which shows typically the welding state of a positive electrode tab group and a positive electrode electrically-conductive member. 電極棒が正極タブ群及び正極導電部材に接触する前の状態を示す断面図。Sectional drawing which shows the state before an electrode bar contacts a positive electrode tab group and a positive electrode electrically-conductive member. 電極棒が正極タブ群及び正極導電部材に接触した状態を示す断面図。Sectional drawing which shows the state which the electrode rod contacted the positive electrode tab group and the positive electrode electrically-conductive member. 正極タブ群に溶着部位が形成された状態を示す断面図。Sectional drawing which shows the state in which the welding site | part was formed in the positive electrode tab group. 電極棒が正極タブ群及び正極導電部材から離れた状態を示す断面図。Sectional drawing which shows the state in which the electrode rod has left | separated from the positive electrode tab group and the positive electrode electrically-conductive member. 別例の正極タブ群と正極導電部材との溶接状態を模式的に示す断面図。Sectional drawing which shows typically the welding state of the positive electrode tab group of another example, and a positive electrode electrically-conductive member.

以下、本発明を具体化した一実施形態を図1〜図8にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10には、アルミニウム製のケース11に電極組立体12が収容されている。ケース11は、矩形箱状をなすケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状をなす蓋部材14とからなる。なお、本実施形態の二次電池10は、その外形状が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, an electrode assembly 12 is accommodated in a case 11 made of aluminum in a secondary battery 10 as a power storage device. The case 11 includes a case main body 13 having a rectangular box shape and a lid member 14 having a rectangular flat plate shape that closes the opening 13 a of the case main body 13. In addition, the secondary battery 10 of this embodiment is a square battery whose outer shape forms a square shape. Further, the secondary battery 10 of the present embodiment is a lithium ion battery.

図1及び図2に示すように、電極組立体12には、当該電極組立体12との間で電気を授受する電極端子としての正極端子15と、同じく電極端子としての負極端子16が電気的に接続されている。そして、これらの正極端子15と負極端子16は、蓋部材14に所定の間隔をあけて並設された一対の開口孔14aからケース11の外部に露出されている。また、正極端子15及び負極端子16には、各端子15,16とケース11とを電気的に絶縁するための絶縁リング17,18がそれぞれ取り付けられている。そして、電極組立体12は、正極導電部材19を介して正極端子15に対して電気的に接続されると共に、負極導電部材20を介して負極端子16に対して電気的に接続されている。つまり、正極導電部材19は、電極組立体12、及び正極端子15の双方と電気的に接続される一方で、負極導電部材20は、電極組立体12、及び負極端子16の双方と電気的に接続される。また、正極導電部材19及び負極導電部材20は、何れも板状の部材である。また、ケース本体13の内面及び蓋部材14の内面には、電極組立体12とケース本体13及び蓋部材14とを電気的に絶縁するための絶縁シート21,22が取着されている。   As shown in FIGS. 1 and 2, the electrode assembly 12 is electrically connected to a positive terminal 15 as an electrode terminal for transferring electricity to and from the electrode assembly 12 and a negative terminal 16 as an electrode terminal. It is connected to the. The positive electrode terminal 15 and the negative electrode terminal 16 are exposed to the outside of the case 11 through a pair of opening holes 14 a arranged in parallel with the lid member 14 at a predetermined interval. Insulating rings 17 and 18 for electrically insulating the terminals 15 and 16 and the case 11 are attached to the positive terminal 15 and the negative terminal 16, respectively. The electrode assembly 12 is electrically connected to the positive electrode terminal 15 via the positive electrode conductive member 19 and is electrically connected to the negative electrode terminal 16 via the negative electrode conductive member 20. That is, the positive electrode conductive member 19 is electrically connected to both the electrode assembly 12 and the positive electrode terminal 15, while the negative electrode conductive member 20 is electrically connected to both the electrode assembly 12 and the negative electrode terminal 16. Connected. The positive electrode conductive member 19 and the negative electrode conductive member 20 are both plate-shaped members. Insulating sheets 21 and 22 for electrically insulating the electrode assembly 12 from the case main body 13 and the lid member 14 are attached to the inner surface of the case main body 13 and the inner surface of the lid member 14.

図3に示すように、電極組立体12は、金属箔23aの両面に活物質が塗布された塗工部としての活物質層23bを有するシート状の正極電極23、及び金属箔24aの両面に活物質が塗布された塗工部としての活物質層24bを有するシート状の負極電極24の間にシート状のセパレータ25が介在する状態で積層されている。   As shown in FIG. 3, the electrode assembly 12 has a sheet-like positive electrode 23 having an active material layer 23b as a coating portion in which an active material is applied to both surfaces of a metal foil 23a, and both surfaces of the metal foil 24a. The sheet-like negative electrode 24 having an active material layer 24b as a coating portion coated with the active material is laminated with a sheet-like separator 25 interposed therebetween.

正極電極23は、金属箔23aにおいて活物質が塗布されていない未塗工部となる正極タブ23cが正極電極23における活物質層23bの一辺から突出している。負極電極24も同様に、金属箔24aにおいて活物質が塗布されていない未塗工部となる負極タブ24cが負極電極24における活物質層24bの一辺から突出している。そして、正極電極23及び負極電極24は、正極タブ23cと負極タブ24cとが重ならない状態で積層されている。   In the positive electrode 23, a positive electrode tab 23 c that is an uncoated portion where the active material is not applied in the metal foil 23 a protrudes from one side of the active material layer 23 b in the positive electrode 23. Similarly, in the negative electrode 24, a negative electrode tab 24 c that is an uncoated portion where the active material is not applied in the metal foil 24 a protrudes from one side of the active material layer 24 b in the negative electrode 24. The positive electrode 23 and the negative electrode 24 are stacked in a state where the positive electrode tab 23c and the negative electrode tab 24c do not overlap.

図1に示すように、各正極タブ23cは、電極組立体12における積層方向の一端から他端までの範囲に集められて層状をなして積層されることにより積層体としての正極タブ群26を構成している。正極タブ群26には、正極端子15と電気的に接続された金属製の正極導電部材19が抵抗溶接によって接合されている。また同様に、各負極タブ24cは、電極組立体12における積層方向の一端から他端までの範囲に集められて層状をなして積層されることにより積層体としての負極タブ群27を構成している。負極タブ群27には、負極端子16と電気的に接続された金属製の負極導電部材20が抵抗溶接によって接合されている。   As shown in FIG. 1, each positive electrode tab 23 c is collected in a range from one end to the other end in the stacking direction of the electrode assembly 12 and is layered to form a positive electrode tab group 26 as a stacked body. It is composed. A metal positive electrode conductive member 19 electrically connected to the positive electrode terminal 15 is joined to the positive electrode tab group 26 by resistance welding. Similarly, each negative electrode tab 24c is collected in a range from one end to the other end of the electrode assembly 12 in the stacking direction and is layered to form a negative electrode tab group 27 as a stacked body. Yes. A metal negative electrode conductive member 20 electrically connected to the negative electrode terminal 16 is joined to the negative electrode tab group 27 by resistance welding.

詳述すると、図4に示すように、正極タブ群26は、正極導電部材19が接合される側とは反対側に湾曲する曲げ部30と、曲げ部30から積層方向に延出する延出部31とを有している。すなわち、正極導電部材19は、正極タブ群26を構成する正極タブ23cのうち、その湾曲部位が正極タブ群26の曲げ部30の湾曲方向において最も外側に位置する正極タブ23C(図4では左側の正極タブ)と接触する状態で溶接されている。また、正極導電部材19は、電極組立体12において正極タブ23cが突出する端面と平行な状態で正極タブ群26と溶接されている。   More specifically, as shown in FIG. 4, the positive electrode tab group 26 includes a bent portion 30 that curves to the side opposite to the side to which the positive electrode conductive member 19 is joined, and an extension that extends from the bent portion 30 in the stacking direction. Part 31. That is, the positive electrode conductive member 19 has a positive electrode tab 23c (the left side in FIG. 4) whose positive electrode tab 23c is located on the outermost side in the bending direction of the bent portion 30 of the positive electrode tab group 26. The positive electrode tab is welded in a state of contact. The positive electrode conductive member 19 is welded to the positive electrode tab group 26 in a state parallel to the end surface of the electrode assembly 12 from which the positive electrode tab 23 c protrudes.

また同様に、負極タブ群27は、負極導電部材20が接合される側とは反対側に湾曲しており、負極導電部材20は、負極タブ群27を構成する負極タブ24cのうち、負極タブ群27の湾曲方向において最も外側に位置する負極タブ24cと接触する状態で溶接されている。また、負極導電部材20は、電極組立体12において負極タブ24cが突出する端面と平行な状態で負極タブ群27と溶接されている。   Similarly, the negative electrode tab group 27 is curved to the side opposite to the side to which the negative electrode conductive member 20 is bonded, and the negative electrode conductive member 20 is the negative electrode tab 24c of the negative electrode tab group 27. The group 27 is welded in contact with the negative electrode tab 24c located on the outermost side in the bending direction. Further, the negative electrode conductive member 20 is welded to the negative electrode tab group 27 in a state parallel to the end surface of the electrode assembly 12 from which the negative electrode tab 24 c protrudes.

なお、抵抗溶接とは、接合対象を正負一対の溶接用の電極棒で挟み込んで溶着する方式である。そして、図1及び図2に示すように、本実施形態では、抵抗溶接の際に各導電部材19,20に押し付けられる溶接用の電極棒の先端部が溶接部40,41として各導電部材19,20に接合されている。また、本実施形態では、溶接部40,41は各導電部材19,20と同じ材質となる電気伝導性を有する金属材料によって構成されている。   Note that resistance welding is a method in which the objects to be joined are welded by being sandwiched between a pair of positive and negative electrode electrodes for welding. As shown in FIGS. 1 and 2, in this embodiment, the tip portions of the welding electrode rods pressed against the conductive members 19 and 20 during resistance welding are welded portions 40 and 41, respectively. , 20. Moreover, in this embodiment, the welding parts 40 and 41 are comprised with the metal material which has the electrical conductivity used as each conductive member 19 and 20, and becomes the same material.

この場合、溶接部40は、正極導電部材19において正極タブ群26が溶接される面とは反対側の面に溶接されている。溶接部40は、電極組立体12において正極タブ23cが突出する端面側から見た状態で正極導電部材19の端面内に位置している。   In this case, the weld 40 is welded to the surface of the positive electrode conductive member 19 opposite to the surface to which the positive electrode tab group 26 is welded. The weld 40 is located in the end face of the positive electrode conductive member 19 as viewed from the end face side from which the positive electrode tab 23 c protrudes in the electrode assembly 12.

また、溶接部41は、負極導電部材20において負極タブ群27が溶接される面とは反対側の面に溶接されている。溶接部41は、電極組立体12において負極タブ24cが突出する端面側から見た状態で負極導電部材20の端面内に位置している。   Further, the welded portion 41 is welded to the surface of the negative electrode conductive member 20 opposite to the surface to which the negative electrode tab group 27 is welded. The welded portion 41 is located in the end surface of the negative electrode conductive member 20 as viewed from the end surface side where the negative electrode tab 24 c protrudes in the electrode assembly 12.

次に、二次電池10の製造工程のうち、正極電極23及び負極電極24を重ね合わせて各電極タブ23c,24cを積層することにより各電極タブ群26,27を構成した後に、各電極タブ群26,27と各導電部材19,20とを溶接する際の溶接工程を説明する。なお、正極タブ群26と正極導電部材19との溶接工程は負極タブ群27と負極導電部材20との溶接工程と同じであるため、正極タブ群26と正極導電部材19との溶接工程について以下説明する。   Next, in the manufacturing process of the secondary battery 10, after the electrode tab groups 26 and 27 are configured by stacking the electrode tabs 23 c and 24 c by superimposing the positive electrode 23 and the negative electrode 24, A welding process when welding the groups 26 and 27 and the conductive members 19 and 20 will be described. Since the welding process between the positive electrode tab group 26 and the positive electrode conductive member 19 is the same as the welding process between the negative electrode tab group 27 and the negative electrode conductive member 20, the welding process between the positive electrode tab group 26 and the positive electrode conductive member 19 will be described below. explain.

まず、図5に示すように、電極組立体12における積層方向の一端側(図5において右側)から他端側(図5において左側)に向けて正極タブ23cを集めることにより、正極タブ群26を構成する。そして、正極タブ群26における積層方向の他端側の正極タブ23cに対して正極導電部材19を当接させる。また、正極タブ群26において溶接対象となる箇所を挟んで対向する位置に、正負一対の電極棒50,51を配置する。   First, as shown in FIG. 5, the positive electrode tab group 26 is collected by collecting the positive electrode tabs 23c from one end side (right side in FIG. 5) to the other end side (left side in FIG. 5) of the electrode assembly 12 in the stacking direction. Configure. Then, the positive electrode conductive member 19 is brought into contact with the positive electrode tab 23 c on the other end side in the stacking direction in the positive electrode tab group 26. In addition, a pair of positive and negative electrode rods 50 and 51 are arranged at positions facing each other across the portion to be welded in the positive electrode tab group 26.

この場合、正極側の電極棒50(図5では左側の電極棒)は、本体部52と、この本体部52に対して分離可能に構成された溶接部40とを有している。また、溶接部40において本体部52の端面52aに接触する端面40aには円形状の凹部53が形成されている。そして、本体部52の端面52aに形成された円柱状の凸部54が溶接部40の凹部53に対して凹凸嵌合されることにより、溶接部40が本体部52によって保持される。   In this case, the positive electrode rod 50 (left electrode rod in FIG. 5) has a main body 52 and a weld 40 configured to be separable from the main body 52. In addition, a circular recess 53 is formed in the end surface 40 a that contacts the end surface 52 a of the main body 52 in the welded portion 40. The columnar convex portion 54 formed on the end surface 52 a of the main body portion 52 is unevenly fitted to the concave portion 53 of the welded portion 40, so that the welded portion 40 is held by the main body portion 52.

そして次に、溶接工程として、図6に示すように、正負一対の電極棒50,51によって正極タブ群26において溶接対象となる箇所を押圧した状態で、これらの電極棒50,51の間に電圧を印加させる。すると、図7に点線の矢印で示すように、正極側の電極棒50から正極導電部材19及び正極タブ群26を介して負極側の電極棒51へ向かって電流が流れる。   Then, as a welding process, as shown in FIG. 6, in a state where a portion to be welded is pressed in the positive electrode tab group 26 by a pair of positive and negative electrode rods 50, 51, between these electrode rods 50, 51. Apply voltage. Then, as indicated by a dotted arrow in FIG. 7, a current flows from the positive electrode rod 50 toward the negative electrode rod 51 through the positive electrode conductive member 19 and the positive electrode tab group 26.

そして、一対の電極棒50,51の間に電圧を印加してから所定時間が経過し、正極タブ群26が正極導電部材19に対して溶着部位Pによって溶接された状態となると、正極タブ群26の正極導電部材19への抵抗溶接が完了する。   When a predetermined time elapses after the voltage is applied between the pair of electrode rods 50 and 51 and the positive electrode tab group 26 is welded to the positive electrode conductive member 19 by the welding portion P, the positive electrode tab group 26, resistance welding to the positive electrode conductive member 19 is completed.

その後、分離工程として、図8に示すように、一対の電極棒50,51を正極導電部材19及び正極タブ群26から引き離す。この場合、正極側の電極棒50においては、本体部52と正極導電部材19との間に介在していた溶接部40が正極導電部材19に溶接接合されているため、本体部52から分離される。   Thereafter, as a separation step, as shown in FIG. 8, the pair of electrode bars 50 and 51 are separated from the positive electrode conductive member 19 and the positive electrode tab group 26. In this case, in the electrode rod 50 on the positive electrode side, the welded portion 40 that was interposed between the main body portion 52 and the positive electrode conductive member 19 is welded to the positive electrode conductive member 19, so that it is separated from the main body portion 52. The

次に、上記のように構成された二次電池10の作用について説明する。
本実施形態の二次電池10における正極導電部材19には、正極タブ群26の抵抗溶接の際に、一対の電極棒50,51の間に流れる電流に起因して、正極側の電極棒50の本体部52との間に介在していた溶接部40が溶接接合される。
Next, the operation of the secondary battery 10 configured as described above will be described.
The positive electrode conductive member 19 in the secondary battery 10 of the present embodiment has a positive electrode rod 50 due to a current flowing between the pair of electrode rods 50, 51 during resistance welding of the positive electrode tab group 26. The welded portion 40 interposed between the main body portion 52 and the main body portion 52 is welded.

この溶接部40は、先端側に向けて先細りの形状をなしており、溶接部40において端面40aとは反対側の先端面40bは略球面状に滑らかに湾曲している。そのため、溶接部40の先端面40bにおいて正極導電部材19に接触する接触面S1の面積は、溶接部40において本体部52に接触する基端側の端面40aの面積よりも小さくなる。   The welded portion 40 has a tapered shape toward the distal end side, and the distal end surface 40b opposite to the end surface 40a in the welded portion 40 is smoothly curved into a substantially spherical shape. Therefore, the area of the contact surface S <b> 1 that contacts the positive electrode conductive member 19 on the distal end surface 40 b of the welded portion 40 is smaller than the area of the end surface 40 a on the proximal end side that contacts the main body portion 52 in the welded portion 40.

そのため、正負一対の電極棒50,51が正極タブ群26において溶接対象となる箇所を押圧する場合には、溶接部40における正極導電部材19との接触面S1には、電極棒50を正極導電部材19に押し付ける際の荷重が集中する。また、正極側の電極棒50においては、本体部52から端面40aを通じて溶接部40に流れた電流が溶接部40における正極導電部材19との接触面S1に集中する。   Therefore, when the pair of positive and negative electrode rods 50 and 51 presses a portion to be welded in the positive electrode tab group 26, the electrode rod 50 is positively conductive on the contact surface S1 with the positive electrode conductive member 19 in the welded portion 40. The load at the time of pressing against the member 19 is concentrated. Moreover, in the electrode rod 50 on the positive electrode side, the current flowing from the main body portion 52 to the welded portion 40 through the end surface 40a is concentrated on the contact surface S1 with the positive electrode conductive member 19 in the welded portion 40.

すなわち、溶接部40における正極導電部材19との接触面S1には、電流が荷重と併せて局所的に作用する。その結果、正極導電部材19における溶接部40との接触部位が溶融し易くなる。そのため、溶接部40は、正極導電部材19に対して確実に溶接接合される。   That is, the current acts locally on the contact surface S1 of the welded portion 40 with the positive electrode conductive member 19 together with the load. As a result, the contact portion of the positive electrode conductive member 19 with the weld 40 is easily melted. Therefore, the weld 40 is reliably welded to the positive electrode conductive member 19.

その一方で、溶接部40は、正極導電部材19との接触面S1よりも広い面積を有する端面40aを介して本体部52に接触している。そのため、本体部52と溶接部40の接触界面の面積は比較的大きく設定されている。その結果、本体部52と溶接部40の接触界面には電流や荷重が分散して作用する。したがって、抵抗溶接の際に、本体部52と溶接部40との接触界面において本体部52と溶接部40とが融着し難い。   On the other hand, the welded portion 40 is in contact with the main body portion 52 via an end surface 40a having a larger area than the contact surface S1 with the positive electrode conductive member 19. Therefore, the area of the contact interface between the main body portion 52 and the welded portion 40 is set to be relatively large. As a result, current and load act on the contact interface between the main body 52 and the weld 40 in a distributed manner. Therefore, at the time of resistance welding, the main body portion 52 and the welded portion 40 are hardly fused at the contact interface between the main body portion 52 and the welded portion 40.

なお、負極側の電極棒51においても、正極タブ群26に接触する先端部51aが先細り形状となっている。そのため、電極棒51の先端部51aにおいて正極タブ群26に接触する接触面S2には、正極タブ群26から流れる電流が荷重と併せて局所的に作用する。しかしながら、本実施形態では、正極タブ群26の熱容量は正極導電部材19の熱容量よりも大きく、且つ、正極タブ群26の電気抵抗は正極導電部材19の電気抵抗よりも小さい。そのため、正極タブ群26における電極棒51の先端部51aとの接触部位に電流や荷重が集中したとしても、当該接触部位における電気抵抗による発熱量は小さく、且つ、当該接触部位における発熱に伴う温度変化も小さい。その結果、正極タブ群26における電極棒51の先端部51aとの接触部位は抵抗溶接の際に溶融し難く、電極棒51の先端部51aが正極タブ群26に対して溶接接合され難い。   In addition, also in the electrode rod 51 on the negative electrode side, the tip portion 51a that contacts the positive electrode tab group 26 has a tapered shape. Therefore, the current flowing from the positive electrode tab group 26 locally acts on the contact surface S2 that contacts the positive electrode tab group 26 at the tip 51a of the electrode bar 51 together with the load. However, in this embodiment, the heat capacity of the positive electrode tab group 26 is larger than the heat capacity of the positive electrode conductive member 19, and the electric resistance of the positive electrode tab group 26 is smaller than the electric resistance of the positive electrode conductive member 19. Therefore, even if a current or a load is concentrated on the contact portion of the positive electrode tab group 26 with the tip 51a of the electrode bar 51, the amount of heat generated by the electrical resistance at the contact portion is small, and the temperature associated with the heat generation at the contact portion. Change is small. As a result, the contact portion of the positive electrode tab group 26 with the tip 51a of the electrode bar 51 is difficult to melt during resistance welding, and the tip 51a of the electrode bar 51 is difficult to be welded to the positive electrode tab group 26.

したがって、上記実施形態によれば、以下に示す効果を得ることができる。
(1)電極棒50の溶接部40,41が抵抗溶接の際に各導電部材19,20に対して溶接接合される。その一方で、電極棒50において本体部52と溶接部40,41とが、抵抗溶接の際に両者の接触界面において融着し難くなっている。そのため、抵抗溶接が完了した後に電極棒50を各導電部材19,20から引き離そうとすると、電極棒50の溶接部40,41が本体部52から分離される。その結果、電極棒50を各導電部材19,20から引き離す際に、電極棒50から各導電部材19,20に力が作用することが抑制される。したがって、各電極タブ群26,27を各導電部材19,20に抵抗溶接することに伴って各導電部材19,20が変形することにより二次電池10の電池性能に影響が及ぶことを抑制できる。
Therefore, according to the above embodiment, the following effects can be obtained.
(1) The welded portions 40 and 41 of the electrode rod 50 are welded to the conductive members 19 and 20 during resistance welding. On the other hand, in the electrode rod 50, the main body 52 and the welded portions 40 and 41 are difficult to fuse at the contact interface between the two during resistance welding. Therefore, when the electrode rod 50 is to be separated from the conductive members 19 and 20 after the resistance welding is completed, the welded portions 40 and 41 of the electrode rod 50 are separated from the main body portion 52. As a result, when the electrode bar 50 is pulled away from the conductive members 19 and 20, it is suppressed that a force acts on the conductive members 19 and 20 from the electrode bar 50. Therefore, it is possible to suppress the battery performance of the secondary battery 10 from being affected by the deformation of the conductive members 19 and 20 due to the resistance welding of the electrode tab groups 26 and 27 to the conductive members 19 and 20. .

(2)溶接部40,41における各導電部材19,20との接触面S1の面積は、溶接部40,41における接触面S1とは反対側の端面の面積よりも小さい。したがって、抵抗溶接の際には、溶接部40,41における各導電部材19,20との接触面S1に電流及び荷重が局所的に作用するため、溶接部40,41が各導電部材19,20に対して確実に溶接接合される。その結果、電極棒50を各導電部材19,20から引き離す際に、溶接部40,41が本体部52から安定して分離される。したがって、各電極タブ群26,27を各導電部材19,20に抵抗溶接することに伴って各導電部材19,20が変形することを更に抑制できる。また、二次電池10を組み立てた後に、溶接部40,41が各導電部材19,20から剥離することを抑制できる。   (2) The area of the contact surface S1 with the respective conductive members 19 and 20 in the welded portions 40 and 41 is smaller than the area of the end surface opposite to the contact surface S1 in the welded portions 40 and 41. Therefore, when resistance welding is performed, current and load locally act on the contact surfaces S1 of the welded portions 40 and 41 with the conductive members 19 and 20, so that the welded portions 40 and 41 are connected to the conductive members 19 and 20 respectively. Reliably welded. As a result, the welded portions 40 and 41 are stably separated from the main body portion 52 when the electrode rod 50 is pulled away from the conductive members 19 and 20. Therefore, it is possible to further suppress deformation of the conductive members 19 and 20 due to resistance welding of the electrode tab groups 26 and 27 to the conductive members 19 and 20. Moreover, it can suppress that the welding parts 40 and 41 peel from each electrically-conductive member 19 and 20 after the secondary battery 10 is assembled.

(3)溶接部40,41における各導電部材19,20との接触面S1とは反対側の端面に凹部53が設けられている。したがって、電極棒50の本体部52に設けられた凸部54を溶接部40,41の凹部53に嵌合させることにより、各電極タブ群26,27と各導電部材19,20との抵抗溶接を安定して行うことができる。この場合、溶接部40,41に凹部53を設けたとしても、溶接部40,41の外形状の大きさが大きくなることはないため、電極組立体12の大型化を抑制することができる。   (3) The recessed part 53 is provided in the end surface on the opposite side to contact surface S1 with each electroconductive member 19 and 20 in the welding parts 40 and 41. As shown in FIG. Accordingly, by fitting the convex portion 54 provided on the main body portion 52 of the electrode rod 50 into the concave portion 53 of the welding portions 40 and 41, resistance welding between the electrode tab groups 26 and 27 and the conductive members 19 and 20 is performed. Can be performed stably. In this case, even if the recessed portions 53 are provided in the welded portions 40 and 41, the size of the outer shape of the welded portions 40 and 41 does not increase, so that the increase in size of the electrode assembly 12 can be suppressed.

(4)溶接部40,41と各導電部材19,20とが同じ材質によって構成されているため、抵抗溶接の際には、溶接部40,41と各導電部材19,20とが融着し易く、溶接部40,41が各導電部材19,20に対して良好に溶接接合される。したがって、溶接部40,41が本体部52から安定して分離されるため、各電極タブ群26,27を各導電部材19,20に抵抗溶接することに伴って各導電部材19,20が変形することを更に抑制できる。   (4) Since the welded portions 40 and 41 and the respective conductive members 19 and 20 are made of the same material, the welded portions 40 and 41 and the respective conductive members 19 and 20 are fused during resistance welding. The welded portions 40 and 41 are easily welded to the respective conductive members 19 and 20 easily. Therefore, since the welded portions 40 and 41 are stably separated from the main body portion 52, the conductive members 19 and 20 are deformed as the electrode tab groups 26 and 27 are resistance-welded to the conductive members 19 and 20, respectively. This can be further suppressed.

(5)電極棒50の本体部52に溶接部40,41を保持させた状態で各導電部材19,20に溶接部40,41を接触させる。したがって、各電極タブ群26,27と各導電部材19,20との抵抗溶接を簡便に行うことができる。   (5) The welded portions 40 and 41 are brought into contact with the conductive members 19 and 20 while the welded portions 40 and 41 are held on the main body portion 52 of the electrode rod 50. Therefore, resistance welding between the electrode tab groups 26 and 27 and the conductive members 19 and 20 can be easily performed.

(6)各導電部材19,20に対して金属製の溶接部40,41が溶接接合されている。その結果、溶接部40,41が溶接接合されていない場合と比較して、各導電部材19,20における熱容量が溶接部40,41の熱容量の分だけ増大する。そのため、二次電池10の充放電時に各導電部材19,20に対して電流が流れた際に、各導電部材19,20に生じる温度変化を低減できる。   (6) Metal welds 40 and 41 are welded to the respective conductive members 19 and 20. As a result, the heat capacity of each of the conductive members 19 and 20 is increased by the heat capacity of the welded portions 40 and 41 as compared with the case where the welded portions 40 and 41 are not welded. For this reason, when current flows through the conductive members 19 and 20 during charging and discharging of the secondary battery 10, it is possible to reduce temperature changes that occur in the conductive members 19 and 20.

なお、実施形態は、以下のように変更してもよい。
○ 実施形態において、図9に示すように、正極導電部材19は、正極タブ群26を構成する正極タブ23cのうち、その湾曲部位が正極タブ群26における曲げ部30の湾曲方向において最も内側に位置する正極タブ23C(図9では右側の正極タブ)に溶接されてもよい。この場合、溶接部40は、正極タブ群26を折り曲げることによって内方に形成される空間域Rに配置される。また同様に、負極導電部材20は、負極タブ群27を構成する負極タブ24cのうち、その湾曲部位が負極タブ群27における曲げ部30の湾曲方向において最も内側に位置する負極タブ24cに溶接されてもよい。
In addition, you may change embodiment as follows.
In the embodiment, as shown in FIG. 9, the positive electrode conductive member 19 has the curved portion of the positive electrode tab group 23 c that constitutes the positive electrode tab group 26 at the innermost side in the bending direction of the bent portion 30 in the positive electrode tab group 26. You may weld to the positive electrode tab 23C (FIG. 9 right-side positive electrode tab) located. In this case, the welding part 40 is arrange | positioned in the space area R formed inward by bending the positive electrode tab group 26. FIG. Similarly, the negative electrode conductive member 20 is welded to the negative electrode tab 24 c that is located on the innermost side in the bending direction of the bending portion 30 in the negative electrode tab group 27 among the negative electrode tabs 24 c constituting the negative electrode tab group 27. May be.

○ 実施形態において、溶接部40,41は、各導電部材19,20と異なる材質で構成してもよい。この場合、抵抗溶接の際に溶接部40,41と各導電部材19,20とを確実に溶接接合させるために、溶接部40,41を構成する材質として、各導電部材19,20を構成する材質と融点が近い材質を選択することが望ましい。   In the embodiment, the welded portions 40 and 41 may be made of a material different from that of the conductive members 19 and 20. In this case, the conductive members 19 and 20 are configured as materials constituting the welded portions 40 and 41 in order to reliably weld and join the welded portions 40 and 41 and the conductive members 19 and 20 during resistance welding. It is desirable to select a material having a melting point close to that of the material.

○ 実施形態において、電極棒50は、溶接部40,41において本体部52に接触する端面に凸部を設けてもよい。この場合、本体部52の端面に形成された凹部が溶接部40,41の凸部に対して嵌合されることにより、溶接部40,41が本体部52によって保持される。   In the embodiment, the electrode rod 50 may be provided with a convex portion on the end surface that contacts the main body portion 52 in the welded portions 40 and 41. In this case, the concave portions formed on the end surface of the main body portion 52 are fitted to the convex portions of the weld portions 40 and 41, whereby the weld portions 40 and 41 are held by the main body portion 52.

○ 実施形態において、電極棒50において溶接部40,41を本体部52に保持する保持機構は凹凸による嵌合構造に限定されない。例えば、本体部52において溶接部40,41に接触する端面に磁石を設け、この磁石の磁力によって溶接部40,41を本体部52に保持する構成としてもよい。なお、その場合には溶接部40,41の全体又は一部が磁性体である必要がある。また、溶接部40,41を本体部52に対してクランプ機構によって機械的に固定して保持する構成としてもよい。   In embodiment, the holding mechanism which hold | maintains the welding parts 40 and 41 in the main-body part 52 in the electrode rod 50 is not limited to the fitting structure by an unevenness | corrugation. For example, it is good also as a structure which provides a magnet in the end surface which contacts the welding parts 40 and 41 in the main-body part 52, and hold | maintains the welding parts 40 and 41 in the main-body part 52 with the magnetic force of this magnet. In that case, the whole or part of the welds 40 and 41 needs to be magnetic. Further, the welded portions 40 and 41 may be mechanically fixed and held with respect to the main body portion 52 by a clamp mechanism.

○ 実施形態において、抵抗溶接の際に、電極棒50において溶接部40,41が本体部52に保持されていない構成としてもよい。すなわち、抵抗溶接の際に、各導電部材19,20における溶接の対象部位に溶接部40,41を載置した後に、載置された溶接部40,41に対して本体部52を押し当ててもよい。   In embodiment, it is good also as a structure by which the welding parts 40 and 41 are not hold | maintained at the main-body part 52 in the electrode rod 50 in the case of resistance welding. That is, during resistance welding, after placing the welded portions 40 and 41 on the welding target portions of the conductive members 19 and 20, the main body 52 is pressed against the placed welded portions 40 and 41. Also good.

○ 実施形態において、溶接部40,41は、必ずしも先端側に向けて先細りの形状に構成する必要はない。例えば、溶接部40,41の形状を、長さ方向に一定の太さを有する柱体状に構成してもよい。この場合、溶接部40,41における各導電部材19,20との接触面S1の面積は、溶接部40,41における各導電部材19,20との接触面S1とは反対側の端面の面積と等しくなる。   In the embodiment, the welded portions 40 and 41 are not necessarily configured to be tapered toward the distal end side. For example, you may comprise the shape of the welding parts 40 and 41 in the column shape which has fixed thickness in a length direction. In this case, the area of the contact surface S1 with the respective conductive members 19 and 20 in the welded portions 40 and 41 is the area of the end surface opposite to the contact surface S1 with the respective conductive members 19 and 20 in the welded portions 40 and 41. Will be equal.

○ 実施形態では、各電極タブ群26,27と各導電部材19,20とを抵抗溶接した後に、各電極タブ群26,27を折り曲げた上で電極組立体12をケース11に収容する構成としたが、抵抗溶接の後に、各電極タブ群26,27を折り曲げることなく電極組立体12をケース11に収容する構成としてもよい。   In the embodiment, after the electrode tab groups 26 and 27 and the conductive members 19 and 20 are resistance welded, the electrode assembly 12 is accommodated in the case 11 after the electrode tab groups 26 and 27 are bent. However, the electrode assembly 12 may be accommodated in the case 11 without bending the electrode tab groups 26 and 27 after resistance welding.

○ 実施形態では、本発明を積層型の二次電池10に適用したが、帯状の正極と帯状の負極を巻回して層状に積層した巻回型の二次電池に適用してもよい。
○ 実施形態では、二次電池10はリチウムイオン二次電池であったが、これに限らず、ニッケル水素等の他の二次電池であってもよい。
In the embodiment, the present invention is applied to the laminated secondary battery 10, but may be applied to a wound secondary battery in which a belt-like positive electrode and a belt-like negative electrode are wound and laminated in layers.
In the embodiment, the secondary battery 10 is a lithium ion secondary battery, but is not limited thereto, and may be another secondary battery such as nickel metal hydride.

○ 蓄電装置は、二次電池10に限らず、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等のようなキャパシタであってもよい。   The power storage device is not limited to the secondary battery 10 and may be a capacitor such as an electric double layer capacitor or a lithium ion capacitor.

S1…接合面としての接触面、10…蓄電装置としての二次電池、12…電極組立体、19…導電部材としての正極導電部材、20…導電部材としての負極導電部材、23…正極電極、23a…金属箔、23b…塗工部としての活物質層、24…負極電極、24a…金属箔、24b…塗工部としての活物質層、25…セパレータ、26…積層体としての正極タブ群、27…積層体としての負極タブ群、40,41…溶接部、50…電極棒、52…本体部、53…凹部。   S1... Contact surface as bonding surface, 10... Secondary battery as power storage device, 12... Electrode assembly, 19... Positive electrode conductive member as conductive member, 20. 23a ... Metal foil, 23b ... Active material layer as coating part, 24 ... Negative electrode, 24a ... Metal foil, 24b ... Active material layer as coating part, 25 ... Separator, 26 ... Positive electrode tab group as laminate 27 ... Negative electrode tab group as a laminated body, 40, 41 ... Welded part, 50 ... Electrode rod, 52 ... Main part, 53 ... Recessed part.

Claims (7)

金属箔の少なくとも一方の面に活物質が塗布された塗工部を有する正極電極と負極電極との間にセパレータが介在する状態で層状に構成された電極組立体と、前記電極組立体との間で電気を授受する電極端子とを備える蓄電装置であって、
前記正極電極及び前記負極電極は、前記金属箔の活物質が塗布された面に活物質が塗布されない未塗工部を有し、前記未塗工部が層状をなして構成される積層体が前記電極組立体、及び前記電極端子の双方と電気的に接続される導電部材に対して抵抗溶接によって溶接接合されており、
前記導電部材において前記積層体が溶接接合される面とは反対側の面には、電気伝導性を有する溶接部が溶接接合されていることを特徴とする蓄電装置。
An electrode assembly configured in a layered manner with a separator interposed between a positive electrode and a negative electrode having a coating portion coated with an active material on at least one surface of a metal foil, and the electrode assembly A power storage device comprising electrode terminals for transferring electricity between them,
The positive electrode and the negative electrode have a non-coated portion where the active material is not applied on the surface of the metal foil applied with the active material, and the uncoated portion is formed in a layered structure. It is welded and joined by resistance welding to a conductive member electrically connected to both the electrode assembly and the electrode terminal,
A power storage device, wherein a welded portion having electrical conductivity is welded to a surface of the conductive member opposite to a surface to which the laminate is welded.
前記溶接部における前記導電部材との接合面の面積は、前記溶接部における前記接合面とは反対側の面の面積よりも小さい請求項1に記載の蓄電装置。 The power storage device according to claim 1, wherein an area of a joint surface with the conductive member in the welded portion is smaller than an area of a surface of the welded portion on the opposite side to the joint surface. 前記溶接部における前記導電部材との接合面とは反対側の面に凹部が設けられている請求項1又は請求項2に記載の蓄電装置。 The power storage device according to claim 1, wherein a concave portion is provided on a surface of the welded portion opposite to a joint surface with the conductive member. 前記溶接部は、前記導電部材と同じ材質によって構成されている請求項1〜請求項3のうち何れか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 3, wherein the welding portion is made of the same material as the conductive member. 前記蓄電装置は、二次電池である請求項1〜請求項4のうち何れか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 4, wherein the power storage device is a secondary battery. 金属箔の少なくとも一方の面に活物質が塗布された塗工部を有する正極電極と負極電極との間にセパレータが介在する状態で層状に積層された電極組立体と、前記電極組立体との間で電気を授受する電極端子とを備え、前記正極電極及び前記負極電極は、前記金属箔の活物質が塗布された面に活物質が塗布されない未塗工部を有し、前記未塗工部が層状をなして構成される積層体が前記電極組立体、及び前記電極端子の双方と電気的に接続される導電部材に対して抵抗溶接によって溶接接合された蓄電装置の製造方法であって、
前記導電部材において前記積層体が溶接接合される面とは反対側の面に電気伝導性を有する溶接部を接触させ、且つ前記溶接部とは分離可能に構成された電極棒の本体部を、前記溶接部における前記導電部材との接合面とは反対側の面に押し付けた状態で前記積層体と前記導電部材とを抵抗溶接により溶接する溶接工程と、
前記溶接工程において用いられた前記溶接部から前記本体部を分離する分離工程と
を備えたことを特徴とする蓄電装置の製造方法。
An electrode assembly layered in a state in which a separator is interposed between a positive electrode and a negative electrode having a coating portion in which an active material is applied to at least one surface of a metal foil, and the electrode assembly The positive electrode and the negative electrode have an uncoated portion where the active material is not applied to the surface of the metal foil on which the active material is applied, and the uncoated A method of manufacturing a power storage device in which a laminated body having a layered portion is welded and joined to a conductive member electrically connected to both the electrode assembly and the electrode terminal by resistance welding. ,
A main body portion of an electrode rod configured to contact a welded portion having electrical conductivity with a surface opposite to a surface on which the laminate is welded and joined in the conductive member, and to be separable from the welded portion, A welding step of welding the laminate and the conductive member by resistance welding in a state of being pressed against a surface opposite to the joint surface with the conductive member in the weld portion;
And a separation step of separating the main body portion from the weld portion used in the welding step.
前記溶接工程では、前記本体部に前記溶接部を保持させた状態で前記導電部材に前記溶接部を接触させる請求項6に記載の蓄電装置の製造方法。 The method for manufacturing a power storage device according to claim 6, wherein in the welding step, the welded portion is brought into contact with the conductive member in a state where the welded portion is held by the main body portion.
JP2012192176A 2012-08-31 2012-08-31 Power storage device and method for manufacturing the same Pending JP2014049317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012192176A JP2014049317A (en) 2012-08-31 2012-08-31 Power storage device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192176A JP2014049317A (en) 2012-08-31 2012-08-31 Power storage device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014049317A true JP2014049317A (en) 2014-03-17

Family

ID=50608783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192176A Pending JP2014049317A (en) 2012-08-31 2012-08-31 Power storage device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014049317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110246A1 (en) * 2015-12-21 2017-06-29 株式会社豊田自動織機 Electrode assembly and manufacturing method for power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110246A1 (en) * 2015-12-21 2017-06-29 株式会社豊田自動織機 Electrode assembly and manufacturing method for power storage device

Similar Documents

Publication Publication Date Title
EP2284930B1 (en) Secondary battery
JP5300788B2 (en) Secondary battery
KR102568341B1 (en) Energy storage device
JP6274034B2 (en) Power storage device
JP2019061779A (en) Power storage device and method of manufacturing power storage device
WO2013179811A1 (en) Joint structure, joining method, secondary battery, and method for manufacturing secondary battery
WO2014027606A1 (en) Electrical storage device
JP2018107030A (en) Power storage device and manufacturing method of power storage device
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
JP2016091659A (en) Power storage device, and manufacturing method of power storage device
WO2017158701A1 (en) Electrical storage device
JP2014018810A (en) Resistance welding apparatus and resistance welding method using the same
WO2012133329A1 (en) Method for manufacturing rectangular secondary battery
JP2016189323A (en) Power storage element
JP2017022060A (en) Power storage device
JP2018006113A (en) Power storage device and manufacturing method for power storage device
JP5962280B2 (en) Electrode manufacturing method
JP6447015B2 (en) Power storage device and method for manufacturing power storage device
JP2011204439A (en) Battery pack, resistance welding method, and method for manufacturing battery pack
JP5158435B2 (en) Battery and manufacturing method thereof
JP2019061892A (en) Power storage element
JP5454649B1 (en) Power storage device and welding method
JP2014049317A (en) Power storage device and method for manufacturing the same
JPWO2018235768A1 (en) Storage element
JP2014056672A (en) Power storage device and manufacturing method of power storage device