JP2014049191A - Conductive paste and substrate with conductive membrane - Google Patents
Conductive paste and substrate with conductive membrane Download PDFInfo
- Publication number
- JP2014049191A JP2014049191A JP2012188815A JP2012188815A JP2014049191A JP 2014049191 A JP2014049191 A JP 2014049191A JP 2012188815 A JP2012188815 A JP 2012188815A JP 2012188815 A JP2012188815 A JP 2012188815A JP 2014049191 A JP2014049191 A JP 2014049191A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- component
- conductive paste
- copper particles
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title abstract description 20
- 239000012528 membrane Substances 0.000 title abstract 3
- 239000002245 particle Substances 0.000 claims abstract description 338
- 239000010949 copper Substances 0.000 claims abstract description 256
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 238
- 229910052802 copper Inorganic materials 0.000 claims abstract description 236
- 229920005989 resin Polymers 0.000 claims abstract description 64
- 239000011347 resin Substances 0.000 claims abstract description 64
- -1 dimethylsiloxane Chemical class 0.000 claims abstract description 62
- 239000011230 binding agent Substances 0.000 claims abstract description 29
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 17
- 239000002738 chelating agent Substances 0.000 claims description 25
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 17
- 229910001431 copper ion Inorganic materials 0.000 claims description 17
- 239000005011 phenolic resin Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 125000000524 functional group Chemical group 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- ORIHZIZPTZTNCU-YVMONPNESA-N salicylaldoxime Chemical compound O\N=C/C1=CC=CC=C1O ORIHZIZPTZTNCU-YVMONPNESA-N 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 239000004640 Melamine resin Substances 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 150000001491 aromatic compounds Chemical class 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- HBROZNQEVUILML-UHFFFAOYSA-N salicylhydroxamic acid Chemical compound ONC(=O)C1=CC=CC=C1O HBROZNQEVUILML-UHFFFAOYSA-N 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 description 27
- 238000002156 mixing Methods 0.000 description 22
- LTYZGLKKXZXSEC-UHFFFAOYSA-N copper dihydride Chemical compound [CuH2] LTYZGLKKXZXSEC-UHFFFAOYSA-N 0.000 description 20
- 229910000050 copper hydride Inorganic materials 0.000 description 20
- 150000001879 copper Chemical class 0.000 description 19
- 230000008859 change Effects 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000004570 mortar (masonry) Substances 0.000 description 12
- 239000011246 composite particle Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000001723 curing Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229920006243 acrylic copolymer Polymers 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000013007 heat curing Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 239000005751 Copper oxide Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229910000431 copper oxide Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N N-methylaminoacetic acid Natural products C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 108010077895 Sarcosine Proteins 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229940043230 sarcosine Drugs 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- DXCXWVLIDGPHEA-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-[(4-ethylpiperazin-1-yl)methyl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCN(CC1)CC DXCXWVLIDGPHEA-UHFFFAOYSA-N 0.000 description 1
- DHKVCYCWBUNNQH-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,5,7-tetrahydropyrazolo[3,4-c]pyridin-6-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)C=NN2 DHKVCYCWBUNNQH-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- GPBBNPPLBQIADY-UHFFFAOYSA-N 4,4-dimethyloxane Chemical class CC1(C)CCOCC1 GPBBNPPLBQIADY-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010338 mechanical breakdown Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、導電性ペーストおよびこれを用いた導電膜付き基材に関する。 The present invention relates to a conductive paste and a substrate with a conductive film using the same.
従来から、電子部品やプリント配線基板等の配線導体の形成に、導電性の高い金属粒子を含有する導電性ペーストを用いる方法が知られている。このうち、プリント配線基板の製造は、絶縁基材上に導電性ペーストを所望のパターン形状に塗布し硬化して、配線パターンをなす導電膜を形成して行われている。 Conventionally, a method using a conductive paste containing highly conductive metal particles is known for forming wiring conductors such as electronic components and printed wiring boards. Among these, a printed wiring board is manufactured by applying a conductive paste in a desired pattern shape on an insulating base material and curing it to form a conductive film forming a wiring pattern.
導電性ペーストとしては、金属粒子として銀粒子を含有する銀ペーストが従来主流であったが(特許文献1)、マイグレーションの点で問題があった。この点、金属粒子として銅粒子を含有する銅ペーストは、マイグレーション現象が生じにくいため、電気回路の接続信頼性を高めることができる。 As the conductive paste, silver paste containing silver particles as metal particles has been the mainstream in the past (Patent Document 1), but there is a problem in terms of migration. In this respect, a copper paste containing copper particles as metal particles is less likely to cause a migration phenomenon, so that the connection reliability of an electric circuit can be improved.
プリント配線基板等の配線導体には様々な特性が要求されるが、比抵抗や耐久性などの配線導体の導電性は、電気回路の設計に重要な影響を及ぼすため、最も重要な特性の一つである。 Various characteristics are required for wiring conductors such as printed wiring boards. Conductivity of wiring conductors, such as specific resistance and durability, has an important influence on the design of electrical circuits, so it is one of the most important characteristics. One.
導電性が良好な導電膜を形成する導電性ペーストとしては、酸と還元剤と炭素数8以上の脂肪酸のアルカリ金属塩とを含有する水溶液で処理した、銅または銅合金からなる導電粉を用いた導電性ペースト(特許文献2)や、銅粉末、熱硬化性樹脂、サルコシン化合物、ポリアミンを含有する導電性組成物(特許文献3)が知られている。 As a conductive paste for forming a conductive film having good conductivity, a conductive powder made of copper or a copper alloy treated with an aqueous solution containing an acid, a reducing agent and an alkali metal salt of a fatty acid having 8 or more carbon atoms is used. Known conductive paste (Patent Document 2), conductive composition containing copper powder, thermosetting resin, sarcosine compound, and polyamine (Patent Document 3) are known.
特許文献2においては、銅または銅合金からなる球状粉を、酸と還元剤と炭素数8以上の脂肪酸のアルカリ金属塩とを含有する水溶液で処理した導電粉を、有機ビヒクルと混練してペースト化することで形成した導電膜の導電性を評価している。形成した導電膜は、形成直後は優れた導電性を有するが、耐久性が不十分であるため、室温、空気中の保存で導電性が大幅に増加するため、電子機器の配線には使用できないといった問題を有している。 In Patent Document 2, conductive powder obtained by treating spherical powder made of copper or a copper alloy with an aqueous solution containing an acid, a reducing agent, and an alkali metal salt of a fatty acid having 8 or more carbon atoms is kneaded with an organic vehicle and pasted. The electroconductivity of the conductive film formed by converting is evaluated. The formed conductive film has excellent conductivity immediately after the formation, but since the durability is insufficient, the conductivity is greatly increased by storage in the air at room temperature, so it cannot be used for wiring of electronic devices. Have the problem.
特許文献3においては、電解銅粉と熱硬化性樹脂、サルコシン化合物、ポリアミンを含有した導電ペーストから形成した導電膜の導電性を評価している。形成した導電膜は、耐久性には優れるものの、初期導電性が悪いために電子機器の配線での使用は限定的となってしまうといった問題を有している。 In patent document 3, the electroconductivity of the electrically conductive film formed from the electroconductive copper powder, the thermosetting resin, the sarcosine compound, and the electrically conductive paste containing polyamine is evaluated. Although the formed conductive film is excellent in durability, it has a problem that its use in wiring of electronic equipment is limited due to poor initial conductivity.
本発明は、上記した従来技術の問題点を解決するため、導電性が良好で、かつ、耐久性に優れた、具体的には、高温高湿環境での保持前後での導電性の変化(低下)が抑制された、導電膜を形成できる導電性ペーストと、そのような導電性ペーストを使用して形成された導電膜付きの基材の提供を目的とする。 In order to solve the above-described problems of the prior art, the present invention has good conductivity and excellent durability, specifically, changes in conductivity before and after holding in a high-temperature and high-humidity environment ( It is an object of the present invention to provide a conductive paste capable of forming a conductive film and a substrate with a conductive film formed using such a conductive paste.
上記した目的を達成するため、本発明は、(A)銅粒子と、(B)変性ジメチルシロキサンと、(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂と、を含有する導電性ペーストであって、
前記銅粒子は、該銅粒子のFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、前記長軸方向のFeret径と、前記短軸方向のFeret径と、の平均値を、該銅粒子の粒子径とするとき、該銅粒子の粒子径の平均値が1.0〜15μmであり、前記銅粒子の粒子径と、該銅粒子の厚さと、の比の平均値(粒子径/厚さの平均値)が、2〜10となる、扁平形状の銅粒子であり、
前記導電性ペースト中、(A)成分の銅粒子を78〜94.99質量%含有し、前記(C)成分のバインダ樹脂を5〜20質量%含有し、前記(B)成分の変性ジメチルシロキサンを0.01〜2質量%含有することを特徴とする導電性ペーストを提供する。
In order to achieve the above object, the present invention provides a conductive material containing (A) copper particles, (B) modified dimethylsiloxane, and (C) a binder resin made of a thermosetting resin containing formaldehyde as one component. Sex paste,
When the copper particle has a major axis as a radial direction in which the Feret diameter of the copper particle is a maximum value and an axis perpendicular to the major axis is a minor axis, the Feret diameter in the major axis direction and the minor axis direction When the average value of the Feret diameter is the particle diameter of the copper particles, the average value of the particle diameter of the copper particles is 1.0 to 15 μm, the particle diameter of the copper particles, and the copper particles The average value of the ratio of the thickness and the average value (particle diameter / average thickness) is 2 to 10 flat copper particles,
The conductive paste contains 78 to 94.99% by mass of the copper particles of the component (A), 5 to 20% by mass of the binder resin of the component (C), and the modified dimethylsiloxane of the component (B). Is contained in an amount of 0.01 to 2% by mass.
本発明の導電性ペーストにおいて、前記(B)成分の変性ジメチルシロキサンは、ジメチルシロキサンの一部のメチル基がポリエーテルあるいはポリエステルに置換した構造を有することが好ましい。 In the conductive paste of the present invention, the modified dimethylsiloxane as the component (B) preferably has a structure in which some methyl groups of dimethylsiloxane are substituted with polyether or polyester.
本発明の導電性ペーストにおいて、前記(C)成分のバインダ樹脂は、フェノール樹脂、メラミン樹脂、キシレン樹脂、および、尿素樹脂からなる群から選択される1種以上であることが好ましい。 In the conductive paste of the present invention, the binder resin as the component (C) is preferably at least one selected from the group consisting of a phenol resin, a melamine resin, a xylene resin, and a urea resin.
本発明の導電性ペーストは、さらに、(D)25℃でイオン強度が0.1mol/Lにおける銅イオンとの安定度定数logKCuが5〜15である化合物からなるキレート剤をさらに含有することが好ましい。
ここで、前記成分の(D)のキレート剤は、窒素原子を含む官能基(a)と、窒素原子以外の孤立電子対を有する原子を含む官能基(b)とが、芳香環のオルト位に配置された芳香族化合物であることが好ましい。
また、前記(D)成分のキレート剤が、サリチルヒドロキサム酸、サリチルアルドキシム、o−アミノフェノールからなる群から選択される1種以上であることが好ましい。
また、本発明の導電性ペーストは、前記導電性ペースト中、前記(D)成分のキレート剤を0.01〜1質量%含有することが好ましい。
The conductive paste of the present invention further contains (D) a chelating agent made of a compound having a stability constant logK Cu of 5 to 15 with copper ions at 25 ° C. and an ionic strength of 0.1 mol / L. Is preferred.
Here, in the chelating agent (D) of the component, the functional group (a) containing a nitrogen atom and the functional group (b) containing an atom having a lone electron pair other than the nitrogen atom are ortho positions of the aromatic ring. It is preferable that it is an aromatic compound arrange | positioned.
Moreover, it is preferable that the chelating agent of the said (D) component is 1 or more types selected from the group which consists of a salicyl hydroxamic acid, a salicyl aldoxime, and o-aminophenol.
Moreover, it is preferable that the electrically conductive paste of this invention contains 0.01-1 mass% of chelating agents of the said (D) component in the said electrically conductive paste.
また、本発明の導電性ペーストにおいて、前記(A)成分の銅粒子の個数基準の粒子径分布において、小粒子径側からの積算値が10%のときの粒子径をD10、50%のときの粒子径をD50、90%のときの粒子径をD90とするとき、D90/D50の値が4以下、かつ、D90/D10の値が3以上であることが好ましい。 In the conductive paste of the present invention, in the particle size distribution based on the number of copper particles of the component (A), the particle size when the integrated value from the small particle size side is 10% is D10, 50%. When the particle diameter of D50 is 90% and the particle diameter is D90, the value of D90 / D50 is preferably 4 or less, and the value of D90 / D10 is preferably 3 or more.
また、本発明の導電性ペーストにおいて、前記(A)成分の銅粒子は、表面酸素量が0.5以下の銅粒子であることが好ましい。 In the conductive paste of the present invention, the copper particles of the component (A) are preferably copper particles having a surface oxygen content of 0.5 or less.
また、本発明は、前記した本発明の導電性ペーストを塗布し硬化させてなる導電膜を基材上に有することを特徴とする導電膜付き基材を提供する。 Moreover, this invention provides the base material with an electrically conductive film characterized by having on a base material the electrically conductive film formed by apply | coating and hardening the above-mentioned electrically conductive paste of this invention.
本発明の導電ペーストによれば、導電性が良好で、かつ優れた耐久性を有する導電膜を得ることができる。具体的には、初期の比抵抗が25μΩcm以下で、後述する実施例に記載の手順にしたがって測定される、高温高湿環境での保持前後での比抵抗の変化量(低下量)が20%以下に抑制される。
また、このような導電ペーストを用いることで、配線基板等としての信頼性が高く、また酸化被膜の形成による導電性の悪化が抑制された導電膜付き基材を得ることができる。
According to the conductive paste of the present invention, a conductive film having good conductivity and excellent durability can be obtained. Specifically, the initial specific resistance is 25 μΩcm or less, and the specific resistance change amount (reduction amount) before and after holding in a high-temperature and high-humidity environment is 20%, which is measured according to the procedure described in the examples described later. It is suppressed to the following.
In addition, by using such a conductive paste, it is possible to obtain a substrate with a conductive film that has high reliability as a wiring board or the like and in which deterioration of conductivity due to formation of an oxide film is suppressed.
以下、本発明の実施の形態について説明する。なお、本発明は、以下の説明に限定して解釈されるものではない。 Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.
<導電性ペースト>
本発明の導電性ペーストは、(A)銅粒子と、(B)変性ジメチルシロキサンと、(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂と、を含有する導電性ペーストであって、前記銅粒子は、該銅粒子のFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、前記長軸方向のFeret径と、前記短軸方向のFeret径と、の平均値を、該銅粒子の粒子径とするとき、該銅粒子の粒子径の平均値が1μm〜15μmであり、前記銅粒子の粒子径と、該銅粒子の厚さと、の比の平均値(粒子径/厚さの平均値)が、2〜10となる、扁平形状の銅粒子であり、前記導電性ペースト中、(A)成分の銅粒子を78〜94.99質量%含有し、前記(C)成分のバインダ樹脂を5〜20質量%含有し、前記(B)成分の変性ジメチルシロキサンを0.01〜2質量%含有することを特徴とする。
以下、導電性ペーストを構成する各成分について、詳細に説明する。
<Conductive paste>
The conductive paste of the present invention is a conductive paste containing (A) copper particles, (B) modified dimethylsiloxane, and (C) a binder resin made of a thermosetting resin containing formaldehyde as one component. The copper particles have a major axis in the radial direction in which the Feret diameter of the copper particles is a maximum value, and a minor axis is an axis perpendicular to the major axis. When the average value of the Feret diameter in the axial direction is the particle diameter of the copper particles, the average particle diameter of the copper particles is 1 μm to 15 μm, and the particle diameter of the copper particles and the copper particles It is a flat copper particle having an average value (particle diameter / thickness average) ratio of 2 to 10 in thickness, and the copper paste of component (A) is 78 to 78 in the conductive paste. 99.99% by mass, 5-20% by mass of the binder resin of component (C) A, characterized in that it contains 0.01 to 2% by weight of modified dimethylsiloxane of the component (B).
Hereinafter, each component constituting the conductive paste will be described in detail.
(A)銅粒子
(A)成分の銅粒子は、導電性ペーストの導電成分である。
(A) Copper particle The copper particle of (A) component is an electroconductive component of an electroconductive paste.
(A)成分の銅粒子は、後述する定義による粒子径の平均値が1.0〜15μmであって、該銅粒子の粒子径と、厚さと、の比の平均値(粒子径/厚さの平均値)が、2〜10となる、扁平形状の銅粒子である。なお、このような扁平形状の銅粒子は、球形状の銅粒子をボールミルなどで変形させることにより得ることができる。
また、(A)成分の銅粒子としては、後述するように銅粒子、表面改質銅粒子、銅複合粒子の1種以上が使用できる。
The copper particles of component (A) have an average particle diameter of 1.0 to 15 μm according to the definition described later, and an average value of the ratio between the particle diameter and the thickness of the copper particles (particle diameter / thickness Of the flat copper particles having an average value of 2 to 10. Such flat copper particles can be obtained by deforming spherical copper particles with a ball mill or the like.
Moreover, as a copper particle of (A) component, 1 type or more of a copper particle, surface modification copper particle, and copper composite particle can be used so that it may mention later.
本明細書における銅粒子の粒子径は、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ1個の銅粒子のFeret径を測定し、Feret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、(長軸方向のFeret径+短軸方向のFeret径)/2)として算出される。
本明細書における銅粒子の粒子径の平均値は、SEM像の中から無作為に選んだ100個の銅粒子について、上記の粒子径の算出方法により個々の銅粒子の粒子径を算出した後、100個の銅粒子の粒子径の平均(数平均)をとったものである。
In this specification, the particle diameter of the copper particles is determined by measuring the Feret diameter of one copper particle randomly selected from the image of a scanning electron microscope (hereinafter referred to as “SEM”). When the radial direction as a major axis is the major axis and the axis perpendicular to the major axis is the minor axis, the value is calculated as (Feret diameter in the major axis direction + Feret diameter in the minor axis direction) / 2).
The average value of the particle diameter of the copper particles in the present specification is obtained by calculating the particle diameter of each copper particle by the above-described particle diameter calculation method for 100 copper particles randomly selected from the SEM image. The average (number average) of the particle diameter of 100 copper particles is taken.
(A)成分の銅粒子の粒子径の平均値が、上記の範囲を満たしていることで、銅粒子を含む導電性ペーストの流動特性が良好となり、該導電性ペーストにより微細配線を作製しやすい。銅粒子の粒子径の平均値が1.0μm未満であると、導電性ペーストとしたときに、十分な流動特性を得られない。一方、銅粒子の粒子径の平均値が20μmを超えると、得られる導電性ペーストによる、微細配線の作製が困難となるおそれがある。
(A)成分の銅粒子の粒子径の平均値は、1.0〜10μmであることが好ましい。
(A) The average value of the particle diameter of the copper particle of a component satisfy | fills said range, the flow characteristic of the electrically conductive paste containing a copper particle becomes favorable, and it is easy to produce fine wiring with this electrically conductive paste. . When the average particle diameter of the copper particles is less than 1.0 μm, sufficient flow characteristics cannot be obtained when a conductive paste is obtained. On the other hand, when the average value of the particle diameter of the copper particles exceeds 20 μm, it may be difficult to produce fine wiring by the obtained conductive paste.
(A) It is preferable that the average value of the particle diameter of the copper particle of a component is 1.0-10 micrometers.
本明細書における銅粒子の粒子径と、厚さと、の比は以下の手順で算出する。
上記の手順で銅粒子の粒子径を算出する際に、算出に用いた1個の銅粒子の厚さを測定し、銅粒子の粒子径と、厚さと、の比(粒子径/厚さ)を求める。
本明細書における銅粒子の粒子径と、厚さと、の比の平均値(粒子径/厚さの平均値)は、SEM像の中から無作為に選んだ100個の銅粒子について、上記により算出された銅粒子の(粒子径/厚さ)を平均(数平均)したものである。
The ratio between the particle diameter and the thickness of the copper particles in this specification is calculated by the following procedure.
When calculating the particle diameter of the copper particles by the above procedure, the thickness of one copper particle used for the calculation is measured, and the ratio between the particle diameter of the copper particles and the thickness (particle diameter / thickness). Ask for.
The average value of the particle diameter and thickness ratio of the copper particles in this specification (average particle diameter / thickness value) is as follows for 100 copper particles randomly selected from the SEM image. This is an average (number average) of (particle diameter / thickness) of the calculated copper particles.
粒子径の平均値が上記の範囲で、かつ、粒子径と、厚さと、の比の平均値(粒子径/厚さの平均値)が上記の範囲を満たす扁平形状の銅粒子を、導電性ペーストに用いることにより、導電性が良好で、かつ、優れた耐久性を有する導電膜が得られる。この理由について、本願発明者らは、以下のように推察する。
粒子径の平均値が上記の範囲で、かつ、粒子径/厚さの平均値が上記の範囲を満たすことで、粒子径と、形状が均一の扁平形状の銅粒子が導電性ペースト中に存在することになる。このような導電性ペーストを基材に塗布すると、ペースト中の銅粒子が、その長軸方向が同一方向に配向するように、密に整列する。具体的には、導電性ペーストが塗布された基材の面方向に配向するように密に整列する。この状態で、導電性ペーストを硬化させて得られる導電膜でも、この銅粒子が密に整列した状態が維持されるため、導電膜の導電性が良好になる。また、導電膜を高温高湿環境に保持すると、導電膜の酸化や膨潤が起こるが、扁平形状の銅粒子が密に整列した状態が維持されるため、高温高湿環境での保持前後での導電性の変化(低下)が抑制される。よって、導電膜は優れた耐久性を有する。
Flat copper particles having an average particle diameter in the above range and an average ratio of particle diameter to thickness (average particle diameter / thickness) satisfying the above range are electrically conductive. By using it for the paste, a conductive film having good conductivity and excellent durability can be obtained. About this reason, this inventor infers as follows.
When the average value of the particle diameter is in the above range and the average value of the particle diameter / thickness satisfies the above range, flat copper particles having a uniform particle diameter and shape are present in the conductive paste. Will do. When such a conductive paste is applied to a substrate, the copper particles in the paste are closely aligned so that the major axis direction is oriented in the same direction. Specifically, it arranges closely so that it may orient in the surface direction of the base material with which the conductive paste was applied. Even in the conductive film obtained by curing the conductive paste in this state, the state in which the copper particles are closely aligned is maintained, so that the conductivity of the conductive film is improved. In addition, when the conductive film is maintained in a high temperature and high humidity environment, the conductive film is oxidized and swelled. However, since the flat copper particles are maintained in a closely aligned state, before and after the retention in the high temperature and high humidity environment. The change (decrease) in conductivity is suppressed. Therefore, the conductive film has excellent durability.
銅粒子の粒子径/厚さの平均値が、2よりも小さいと、球形状の銅粒子を多く含むため、導電性ペーストを基材に塗布した際に、ペースト中の銅粒子が密に整列した状態とはならない。このため、形成される導電膜の導電性が低くなり、かつ、高温高湿環境での保持前後での導電性の変化(低下)が大きくなる。
扁平形状の銅粒子は、上述したように、球形状の銅粒子をボールミルなどで変形させることにより得られるが、銅粒子の粒子径/厚さが10よりも大きいものを得るためには、銅粒子を過度に変形させることになるため、得られる銅粒子の表面には凹凸が生じていると考えられる。銅粒子の粒子径/厚さの平均値が10よりも大きいと、このような凹凸が生じた銅粒子を多く含むため、導電性ペーストを基材に塗布した際に、ペースト中の銅粒子が密に整列した状態とはならない。このため、形成される導電膜の導電性が低くなり、かつ、高温高湿環境での保持前後での導電性の変化(低下)が大きくなる。
(A)成分の銅粒子の粒子径/厚さの平均値は3〜8であることが好ましい。
If the average value of the particle diameter / thickness of the copper particles is smaller than 2, it contains a lot of spherical copper particles, so when the conductive paste is applied to the substrate, the copper particles in the paste are closely aligned It will not be in the state. For this reason, the electroconductivity of the electrically conductive film formed becomes low, and the change (decrease) of electroconductivity before and behind holding | maintenance in a high-temperature, high-humidity environment becomes large.
As described above, the flat copper particles can be obtained by deforming the spherical copper particles with a ball mill or the like. To obtain a copper particle having a particle diameter / thickness greater than 10, Since the particles are excessively deformed, it is considered that the surface of the obtained copper particles is uneven. When the average value of the particle diameter / thickness of the copper particles is larger than 10, since the copper particles containing such irregularities are included, when the conductive paste is applied to the substrate, the copper particles in the paste It will not be closely aligned. For this reason, the electroconductivity of the electrically conductive film formed becomes low, and the change (decrease) of electroconductivity before and behind holding | maintenance in a high-temperature, high-humidity environment becomes large.
(A) It is preferable that the average value of the particle diameter / thickness of the copper particle of a component is 3-8.
(A)成分の銅粒子としては、粒子径の平均値、および、粒子径/厚さの平均値が、上記範囲の銅粒子(A1)に加えて、銅粒子の表面に平均凝集粒子径20〜400nmの水素化銅微粒子が付着した銅複合粒子(A2)や、銅粒子の表面に平均凝集粒子径が20〜400nmの銅微粒子が付着した銅複合粒子(A3)も用いることができる。
水素化銅微粒子は、加熱することで水素化銅が金属銅に変換され、銅微粒子となる。すなわち、水素化銅微粒子が付着した銅複合粒子(A2)は、加熱されることにより銅微粒子が付着した銅複合粒子(A3)となる。
なお、(A)成分の銅粒子として、これらの銅複合粒子(A2),(A3)を用いる場合、銅微粒子または水素化銅微粒子が付着した複合銅粒子の状態における、粒子径の平均値、および、粒子径/厚さの平均値が上記の範囲を満たす必要がある。
As the copper particles of the component (A), the average particle diameter and the average particle diameter / thickness are in addition to the copper particles (A1) in the above range, and the average aggregate particle diameter 20 on the surface of the copper particles. Copper composite particles (A2) to which copper hydride fine particles of ˜400 nm are attached and copper composite particles (A3) to which copper fine particles having an average aggregate particle diameter of 20 to 400 nm are attached to the surface of the copper particles can also be used.
When the copper hydride fine particles are heated, the copper hydride is converted into metallic copper to form copper fine particles. That is, the copper composite particles (A2) to which the copper hydride fine particles are attached become the copper composite particles (A3) to which the copper fine particles are attached by being heated.
In addition, when using these copper composite particles (A2) and (A3) as the copper particles of the component (A), the average value of the particle diameters in the state of the composite copper particles to which the copper fine particles or the copper hydride fine particles are attached, And the average value of particle diameter / thickness needs to satisfy said range.
また、(A)成分の銅粒子の個数基準の粒子径分布において、小粒子径側からの積算値が10%のときの粒子径をD10、50%のときの粒子径をD50、90%のときの粒子径をD90とするとき、D90/D50の値が4以下、かつ、D90/D10の値が3以上であることが好ましい。D90/D50の値が4以下であれば、導電性ペーストを用いて微細配線を作製しやすくなる。D90/D10の値が3以上であれば、導電膜ペーストを用いて形成される導電膜中の銅粒子密度が向上して導電性が良くなる。
(A)成分の銅粒子の個数基準の粒子径分布は、上記の手順で得られた粒子径の測定結果から求める。具体的には、小粒子径側からの積算値を求め、小粒子径側からの積算値が10%のときの粒子径をD10とし、小粒子径側からの積算値が50%のときの粒子径をD50、小粒子径側からの積算値が90%のときの粒子径をD90とする。
In addition, in the particle size distribution based on the number of copper particles of the component (A), the particle size when the integrated value from the small particle size side is 10% is D10, and the particle size when 50% is D50 and 90%. When the particle diameter is D90, it is preferable that the value of D90 / D50 is 4 or less and the value of D90 / D10 is 3 or more. If the value of D90 / D50 is 4 or less, it becomes easy to produce a fine wiring using a conductive paste. If the value of D90 / D10 is 3 or more, the copper particle density in the conductive film formed using the conductive film paste is improved and the conductivity is improved.
The number-based particle size distribution of the component (A) copper particles is determined from the particle size measurement results obtained by the above procedure. Specifically, the integrated value from the small particle diameter side is obtained, the particle diameter when the integrated value from the small particle diameter side is 10% is D10, and the integrated value from the small particle diameter side is 50%. The particle diameter is D50, and the particle diameter when the integrated value from the small particle diameter side is 90% is D90.
また、(A)成分の銅粒子は、表面酸素量が0.5以下のものが好ましい。表面酸素量が0.5以下の銅粒子を使用すると、銅粒子間の接触抵抗がより小さくなり、得られる導電膜の導電性が向上する。
本発明における「表面酸素量」は、銅粒子の表面銅濃度(単位:原子%)に対する表面酸素濃度(単位:原子%)の割合で表される。なお、銅粒子の表面銅濃度と表面酸素濃度とは、X線光電子分光分析により求められる。測定は、粒子表面から中心へ向けて約3nmの深さまでの範囲に対して行われる。この範囲について測定がなされていれば、粒子表面の状態を十分に把握できる。
表面酸素量が0.5以下の銅粒子としては、銅粒子表面を還元処理してなる「表面改質銅粒子」、または銅粒子表面の少なくとも一部に銅微粒子が付着した「複合金属銅粒子」を好ましく使用できる。
Further, the copper particles as the component (A) preferably have a surface oxygen amount of 0.5 or less. When copper particles having a surface oxygen content of 0.5 or less are used, the contact resistance between the copper particles becomes smaller, and the conductivity of the obtained conductive film is improved.
The “surface oxygen amount” in the present invention is represented by the ratio of the surface oxygen concentration (unit: atomic%) to the surface copper concentration (unit: atomic%) of the copper particles. In addition, the surface copper concentration and surface oxygen concentration of a copper particle are calculated | required by X-ray photoelectron spectroscopy analysis. Measurements are made over a range from the particle surface to the center to a depth of about 3 nm. If the measurement is performed in this range, the state of the particle surface can be sufficiently grasped.
As the copper particles having a surface oxygen amount of 0.5 or less, “surface modified copper particles” formed by reducing the surface of the copper particles, or “composite metal copper particles having copper fine particles attached to at least a part of the surface of the copper particles” Can be preferably used.
本発明における「表面改質銅粒子」は、上述した銅粒子(A1)の表面を、pH値が3以下の分散媒中で還元処理して得られるものであり、例えば、(1)銅粒子を分散媒に分散して「銅分散液」とした後、(2)銅分散液のpH値を所定値以下に調整し、(3)銅分散液に還元剤を添加する、湿式還元法により製造できる。
なお、(A)成分の銅粒子として、表面改質銅粒子を用いる場合、銅粒子表面の還元処理後の状態における、平均粒子径、および、平均粒子径/厚さが上記の範囲を満たす必要がある。
The “surface-modified copper particles” in the present invention are obtained by reducing the surface of the above-described copper particles (A1) in a dispersion medium having a pH value of 3 or less. For example, (1) copper particles (2) adjusting the pH value of the copper dispersion to a predetermined value or less, and (3) adding a reducing agent to the copper dispersion by a wet reduction method. Can be manufactured.
In addition, when using surface-modified copper particles as the copper particles of the component (A), the average particle diameter and the average particle diameter / thickness in the state after the reduction treatment on the surface of the copper particles must satisfy the above ranges. There is.
本発明における「複合金属銅粒子」は、金属銅粒子表面の少なくとも一部に、金属銅微粒子を付着させたものであり、金属銅粒子表面に水素化銅微粒子が付着してなる「銅複合粒子」を加熱し、水素化銅微粒子を金属銅微粒子に変換して得られるものである。したがって、ここでいう「銅複合粒子」は、上述した銅複合粒子(A2)に該当する。また、ここでいう「複合金属銅粒子」は、上述した銅複合粒子(A3)に該当する。
なお、金属銅粒子表面の微粒子の付着の有無は、SEM像を観察して確認することができる。また、金属銅粒子の表面に付着した水素化銅微粒子は、X線回折装置(リガク社製、TTR−III)を用いて同定できる。
The “composite metal copper particles” in the present invention are obtained by attaching metal copper fine particles to at least a part of the surface of the metal copper particles, and “copper composite particles obtained by attaching copper hydride fine particles to the surface of the metal copper particles. Is heated to convert the copper hydride fine particles into metal copper fine particles. Therefore, the “copper composite particles” referred to here correspond to the copper composite particles (A2) described above. Further, the “composite metal copper particles” referred to here corresponds to the copper composite particles (A3) described above.
In addition, the presence or absence of adhesion of fine particles on the surface of the metal copper particles can be confirmed by observing the SEM image. Moreover, the copper hydride fine particles adhering to the surface of the metal copper particles can be identified using an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).
銅複合粒子における水素化銅微粒子は、主として1〜20nm程度の一次粒子が凝集した二次粒子として存在しており、その粒子形状は球状であってもよく、板状であってもよい。水素化銅微粒子の平均凝集粒子径は、20〜400nmが好ましく、30〜300nmがより好ましく、50〜200nmがさらに好ましい。特に好ましくは80〜150nmである。水素化銅微粒子の平均凝集粒子径が20nm未満であると、水素化銅微粒子の融着・成長が生じ易くなり、導電膜としたときに、体積収縮に伴うクラック等の不具合が発生するおそれがある。一方、水素化銅微粒子の平均凝集粒子径が400nmを超えると、粒子表面積が十分でなく、表面融解現象が生じにくくなり、緻密な導電膜を形成することが困難となる。水素化銅微粒子の平均凝集粒子径は、透過型電子顕微鏡(以下、「TEM」と記す。)像の中から無作為に抽出した100個の水素化銅微粒子の粒子径を測定し、その測定値を平均して算出したものである。 The copper hydride fine particles in the copper composite particles are present mainly as secondary particles in which primary particles of about 1 to 20 nm are aggregated, and the particle shape may be spherical or plate-like. The average aggregate particle diameter of the copper hydride fine particles is preferably 20 to 400 nm, more preferably 30 to 300 nm, and still more preferably 50 to 200 nm. Most preferably, it is 80-150 nm. If the average agglomerated particle diameter of the copper hydride fine particles is less than 20 nm, the copper hydride fine particles are likely to be fused and grown, and there is a possibility that defects such as cracks due to volume shrinkage may occur when the conductive film is formed. is there. On the other hand, when the average agglomerated particle diameter of the copper hydride fine particles exceeds 400 nm, the particle surface area is not sufficient, the surface melting phenomenon hardly occurs, and it becomes difficult to form a dense conductive film. The average agglomerated particle size of the copper hydride fine particles was measured by measuring the particle size of 100 copper hydride fine particles randomly extracted from a transmission electron microscope (hereinafter referred to as “TEM”) image. It is calculated by averaging the values.
金属銅粒子表面に付着する水素化銅微粒子の量は、金属銅粒子の量の5〜50質量%であることが好ましく、10〜35質量%であることがより好ましい。水素化銅微粒子の量が金属銅粒子の量の5質量%未満であると、金属銅粒子間に導電パスが十分に形成されず、導電膜の導電性が良好にならないおそれがある。一方、水素化銅微粒子の量が金属銅粒子の量の50質量%を超えると、導電性ペーストとして十分な流動性を確保するのが困難となる。なお、金属銅粒子の表面に付着した水素化銅微粒子の量は、例えば、還元剤を加える前の水溶性銅化合物溶液中の銅イオン濃度と、水素化銅微粒子生成終了後の反応液中に残存する銅イオン濃度との差から算出できる。 The amount of the copper hydride fine particles adhering to the surface of the metal copper particles is preferably 5 to 50% by mass, and more preferably 10 to 35% by mass of the amount of the metal copper particles. When the amount of the copper hydride fine particles is less than 5% by mass of the amount of the metal copper particles, the conductive path is not sufficiently formed between the metal copper particles, and the conductivity of the conductive film may not be improved. On the other hand, when the amount of copper hydride fine particles exceeds 50% by mass of the amount of metal copper particles, it becomes difficult to ensure sufficient fluidity as a conductive paste. The amount of copper hydride fine particles adhering to the surface of the metal copper particles is, for example, the copper ion concentration in the water-soluble copper compound solution before adding the reducing agent and the reaction liquid after the completion of copper hydride fine particle production. It can be calculated from the difference from the remaining copper ion concentration.
本発明の導電性ペーストにおいて、(A)成分の銅粒子の配合量は、導電性ペースト中、78〜94.99質量%である。 In the conductive paste of the present invention, the blending amount of the copper particles as the component (A) is 78 to 94.99% by mass in the conductive paste.
(B)変性ジメチルシロキサン
(B)成分の変性ジメチルシロキサンは、ポリジメチルシロキサンを基本構造とし、ジメチルシロキサンの一部のメチル基が置換部に置き換わった構造をしている。シリコン骨格と置換部の性質が特性を決める大きな要因であり、シリコン骨格の数は2〜400が好ましく、40〜400がより好ましい。また、置換部についてはメチル基がポリエーテルあるいはポリエステルに置換した構造を有していることが好ましい。
(B) Modified dimethylsiloxane The modified dimethylsiloxane of component (B) has a structure in which polydimethylsiloxane is a basic structure, and some methyl groups of dimethylsiloxane are replaced with substituted parts. The nature of the silicon skeleton and the substitution part is a major factor that determines the characteristics, and the number of silicon skeletons is preferably 2 to 400, more preferably 40 to 400. Further, the substituted part preferably has a structure in which a methyl group is substituted with polyether or polyester.
導電性粒子として、銀粒子を用いた導電性ペーストでは、低温かつ短時間での硬化が可能であるという理由から、ポリエステル樹脂、フェノキシ樹脂等の熱可塑性樹脂がバインダ樹脂として用いられている。
これに対して、本発明の導電性ペーストの場合、(A)成分の銅粒子が、銀粒子に比べて酸化されやすいため、導電膜の信頼性を向上させるという観点から、後述するように、(C)成分のバインダ樹脂として、熱硬化性樹脂が用いられる。
In the conductive paste using silver particles as the conductive particles, a thermoplastic resin such as a polyester resin or a phenoxy resin is used as the binder resin because it can be cured at a low temperature in a short time.
On the other hand, in the case of the conductive paste of the present invention, since the copper particles of the component (A) are more easily oxidized than the silver particles, from the viewpoint of improving the reliability of the conductive film, as described later, As the binder resin of component (C), a thermosetting resin is used.
しかしながら、バインダ樹脂として、熱硬化性樹脂を使用した場合、加熱硬化中に銅粒子の流動性が確保しにくくなる傾向がある。その理由は、熱可塑性樹脂は加熱時に軟化するが、熱硬化性樹脂の場合は加熱時に硬化が進み、高粘度化していくためである。特に、本発明の導電性ペーストでは、(A)成分として、扁平形状の銅粒子を用いるため、加熱硬化中に銅粒子の流動性が十分に確保しにくい。そのため、導電性ペースト中の銅粒子が密に整列することが困難になる場合がある。 However, when a thermosetting resin is used as the binder resin, the fluidity of the copper particles tends to be difficult to ensure during the heat curing. The reason is that the thermoplastic resin softens when heated, but in the case of a thermosetting resin, the curing progresses when heated and the viscosity increases. In particular, since the conductive paste of the present invention uses flat copper particles as the component (A), it is difficult to ensure sufficient fluidity of the copper particles during heat curing. Therefore, it may be difficult for the copper particles in the conductive paste to be closely aligned.
これに対し、本発明の導電性ペーストでは、(B)成分として、変性ジメチルシロキサンを配合することで、導電性ペースト中の銅粒子が密に整列することが容易となる。この理由について、本願発明者らは以下のような作用機序を推定している。
(B)成分の変性ジメチルシロキサンは、レベリング剤としても使用されることから、(C)成分のバインダ樹脂の表面張力を低下させ、導電性ペーストのレベリング性を向上させることにより、導電性ペースト中の銅粒子が密に整列することが容易となる。
On the other hand, in the conductive paste of the present invention, by blending modified dimethylsiloxane as the component (B), it becomes easy for the copper particles in the conductive paste to be closely aligned. For this reason, the present inventors have estimated the following mechanism of action.
Since the modified dimethylsiloxane of the component (B) is also used as a leveling agent, the surface tension of the binder resin of the component (C) is reduced and the leveling property of the conductive paste is improved. It becomes easy for the copper particles to be closely aligned.
ただし、一般的にレベリング剤として用いられるアクリル共重合物を、(B)成分として使用した場合、導電性が良好な導電膜が得られない。この理由について、(B)成分と、(C)成分のバインダ樹脂との相溶性の違いによるものと本願発明者らは推定している。
すなわち、(B)成分の変性ジメチルシロキサンと、アクリル共重合物と、を比較した場合、(C)成分のバインダ樹脂との相溶性は、変性ジメチルシロキサンのほうが高い。そのため、変性ジメチルシロキサンは、加熱硬化時に(C)成分のバインダ樹脂中に分散し、密に整列した銅粒子同士の界面にはあまり存在せず、形成される導電膜の導電性が良好になる。一方、(C)成分のバインダ樹脂との相溶性が低いアクリル共重合物は、加熱硬化時に(C)成分のバインダ樹脂中にはあまり存在することができず、密に整列した銅粒子同士の界面に存在するアクリル共重合体により、導電が阻害される結果、形成される導電膜の導電性が低くなる。
However, when an acrylic copolymer generally used as a leveling agent is used as the component (B), a conductive film having good conductivity cannot be obtained. For this reason, the present inventors presume that this is due to the difference in compatibility between the component (B) and the binder resin of the component (C).
That is, when the modified dimethylsiloxane as the component (B) is compared with the acrylic copolymer, the modified dimethylsiloxane has a higher compatibility with the binder resin as the component (C). Therefore, the modified dimethylsiloxane is dispersed in the binder resin of the component (C) at the time of heat curing and does not exist so much at the interface between the closely aligned copper particles, and the conductivity of the formed conductive film is improved. . On the other hand, an acrylic copolymer having a low compatibility with the binder resin of the component (C) cannot exist so much in the binder resin of the component (C) at the time of heat curing, and between the closely aligned copper particles. As a result of the conductivity being hindered by the acrylic copolymer present at the interface, the conductivity of the formed conductive film is lowered.
(B)成分を構成する変性ジメチルシロキサンとしては、市販品を用いてもよい。市販品の具体例としては、BYK(登録商標)310、BYK(登録商標)322、BYK(登録商標)323、BYK(登録商標)307、BYK(登録商標)315、BYK(登録商標)322、BYK(登録商標)323、BYK(登録商標)330、BYK(登録商標)333(いずれも、ビックケミージャパン株式会社製)がある。 A commercially available product may be used as the modified dimethylsiloxane constituting the component (B). Specific examples of commercially available products include BYK (registered trademark) 310, BYK (registered trademark) 322, BYK (registered trademark) 323, BYK (registered trademark) 307, BYK (registered trademark) 315, BYK (registered trademark) 322, There are BYK (registered trademark) 323, BYK (registered trademark) 330, and BYK (registered trademark) 333 (all manufactured by Big Chemie Japan Co., Ltd.).
本発明の導電性ペーストにおいて、(B)成分の変性ジメチルシロキサンの配合量は、導電性ペースト中、0.01〜2質量%である。
(B)成分の変性ジメチルシロキサンの配合量が上記の範囲を満たしていることで、導電性ペーストを用いて形成される導電膜が、良好な導電性と、優れた耐久性を有する。
(B)成分の変性ジメチルシロキサンの配合量が、導電性ペースト中、0.01質量%未満だと、導電性ペースト中の銅粒子が密に整列することが困難になる。このため、形成される導電膜の導電性が低くなり、かつ、高温高湿環境での保持前後での導電性の変化(低下)が大きくなる。
一方、(B)成分の変性ジメチルシロキサンの配合量が、導電性ペースト中、2質量%超だと、(C)成分のバインダ樹脂との相溶性が高い変性ジメチルシロキサンであっても、加熱硬化時に、密に整列した銅粒子同士の界面に存在するようになり、導電が阻害される結果、形成される導電膜の導電性が低くなると考えられる。
In the conductive paste of the present invention, the amount of the component (B) modified dimethylsiloxane is 0.01 to 2% by mass in the conductive paste.
Since the blending amount of the component (B) modified dimethylsiloxane satisfies the above range, the conductive film formed using the conductive paste has good conductivity and excellent durability.
When the blending amount of the component (B) -modified dimethylsiloxane is less than 0.01% by mass in the conductive paste, it is difficult to arrange the copper particles in the conductive paste in a dense arrangement. For this reason, the electroconductivity of the electrically conductive film formed becomes low, and the change (decrease) of electroconductivity before and behind holding | maintenance in a high-temperature, high-humidity environment becomes large.
On the other hand, if the blending amount of the component (B) modified dimethylsiloxane exceeds 2% by mass in the conductive paste, even if it is a modified dimethylsiloxane having a high compatibility with the component (C) binder resin, heat curing is performed. It is considered that the conductivity of the formed conductive film is lowered as a result of being present at the interface between the closely aligned copper particles and impeding the conductivity.
(C)バインダ樹脂
上述したように、導電性粒子として銅粒子を用いた導電性ペーストでは、バインダ樹脂として熱硬化性樹脂が用いられる。本発明の導電性ペーストでは、(C)成分のバインダ樹脂として、ホルムアルデヒドを一成分とする熱硬化性樹脂からなるものを用いる。その理由はホルムアルデヒドから生成するメチロール基の還元作用により銅粒子表面の酸化を抑制でき、さらに適度に硬化収縮が進行して銅粒子同士の接触が確保されるためである。
ホルムアルデヒドを一成分とする熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、キシレン樹脂、尿素樹脂が例示される。中でもフェノール樹脂がメチロール基の還元作用と硬化収縮の程度から好ましい。硬化収縮が大きすぎると導電膜内に不要な応力が蓄積し、機械的破壊の原因になる。硬化収縮が少なすぎると銅粒子同士の接触が十分に確保できない。
また、本発明の導電性ペーストでは、上述したように、(B)成分の変性ジメチルシロキサンと、(C)成分のバインダ樹脂と、の相溶性が高いため、導電性ペースト中の銅粒子が密に整列することが容易となるが、エポキシ樹脂のように、変性ジメチルシロキサンに対する相溶性が低い熱硬化性樹脂をバインダ樹脂として用いた場合、導電性ペースト中の銅粒子が密に整列することが困難になる。その結果、形成される導電膜の導電性が低くなり、かつ、高温高湿環境での保持前後での導電性の変化(低下)が大きくなる。
(C) Binder Resin As described above, in the conductive paste using copper particles as the conductive particles, a thermosetting resin is used as the binder resin. In the conductive paste of the present invention, a binder resin made of a thermosetting resin containing formaldehyde as one component is used as the binder resin of component (C). The reason is that the reduction of the methylol group produced from formaldehyde can suppress the oxidation of the surface of the copper particles, and further the curing shrinkage proceeds to ensure the contact between the copper particles.
Examples of the thermosetting resin containing formaldehyde as one component include phenol resin, melamine resin, xylene resin, and urea resin. Of these, a phenol resin is preferred from the viewpoint of the reducing action of the methylol group and the degree of cure shrinkage. If the curing shrinkage is too large, unnecessary stress accumulates in the conductive film, causing mechanical breakdown. If the curing shrinkage is too small, sufficient contact between the copper particles cannot be ensured.
In the conductive paste of the present invention, as described above, the compatibility between the component (B) modified dimethylsiloxane and the component (C) binder resin is high, so that the copper particles in the conductive paste are dense. However, when a thermosetting resin having low compatibility with the modified dimethylsiloxane is used as the binder resin, such as an epoxy resin, the copper particles in the conductive paste may be closely aligned. It becomes difficult. As a result, the conductivity of the conductive film formed becomes low, and the change (decrease) in the conductivity before and after holding in a high temperature and high humidity environment becomes large.
本発明の導電性ペーストにおいて、(C)成分のバインダ樹脂の配合量は、(A)成分の銅粒子の体積と、銅粒子間に存在する空隙部の体積と、の比率に応じて適宜選択できるが、導電性ペースト中、5〜20質量%であることが好ましく、5〜10質量%がより好ましい。5質量%以上であれば、導電性ペーストの流動特性が良好となる。20質量%以下であれば、導電ペーストを用いて形成される導電膜の導電性が良好になる。 In the conductive paste of the present invention, the blending amount of the binder resin as the component (C) is appropriately selected according to the ratio between the volume of the copper particles as the component (A) and the volume of the voids existing between the copper particles. However, it is preferable that it is 5-20 mass% in an electrically conductive paste, and 5-10 mass% is more preferable. If it is 5 mass% or more, the flow characteristics of the conductive paste will be good. If it is 20 mass% or less, the electroconductivity of the electrically conductive film formed using an electrically conductive paste will become favorable.
本発明の導電性ペーストは、上記(A)〜(C)の各成分に加えて、(D)成分として、25℃でイオン強度が0.1mol/Lにおける銅イオンとの安定度定数logKCuが5〜15である化合物からなるキレート剤を含有することが好ましい。(D)成分として、このようなキレート剤を含有することにより、導電性ペーストを用いて形成される導電膜の耐久性がさらに向上する。その理由は、25℃でイオン強度が0.1mol/Lにおける銅イオンとの安定度定数logKCuが5〜15である化合物からなるキレート剤が、導電成分である(A)成分の銅粒子から生じた銅イオンと錯体を形成することにより、導電性ペースト中での酸化銅の形成を抑制するためであると考えられる。 In addition to the components (A) to (C) described above, the conductive paste of the present invention has, as component (D), a stability constant logK Cu with copper ions at 25 ° C. and an ionic strength of 0.1 mol / L. It is preferable to contain the chelating agent which consists of a compound whose is 5-15. By containing such a chelating agent as component (D), the durability of the conductive film formed using the conductive paste is further improved. The reason for this is that the chelating agent comprising a compound having a stability constant logK Cu of 5 to 15 with a copper ion at an ionic strength of 0.1 mol / L at 25 ° C. is derived from the copper particles of the component (A) which is a conductive component. This is thought to be due to the formation of a complex with the generated copper ions to suppress the formation of copper oxide in the conductive paste.
本発明における「安定度定数logKCu」に関し、種々の化合物についての具体的な数値としては、例えば、化学便覧(丸善)、Stability Constants of Metal−Ion Complexes(PERGAMON PRESS)、Journal of Chemical Engineering Data(ACS Publications)等の文献に記載されている。 With regard to the “stability constant logK Cu ” in the present invention, specific numerical values for various compounds include, for example, Chemical Handbook (Maruzen), Stability Constants of Metal-Ion Complexes (PERGAMON PRESS), Journal of Chemical Engine ( (ACS Publications).
(D)成分のキレート剤として、25℃でイオン強度が0.1mol/Lにおける銅イオンとの安定度定数logKCuが5以上の化合物を配合することで、導電性ペースト内で生じた銅イオンの少なくとも一部は、該化合物と錯体を形成すると考えられる。そのため、大気中の水分や酸素等(例えばO2、H2O等。)と反応する銅イオンの量を低減でき、ペースト内での酸化銅の形成を抑制できる。
また、銅イオンと錯体を形成した上記の化合物は、銅イオンから解離しにくいため、高湿度の環境下で放置しても錯体の状態を長期間維持できる。そのため、導電膜中でも酸化銅の形成が抑制され、その結果、高温高湿環境での保持前後での導電性の変化(低下)が抑制された導電膜を形成可能な導電ペーストとなる。
As a chelating agent for component (D), a copper ion generated in a conductive paste by blending a compound having a stability constant logK Cu of 5 or more with a copper ion at an ionic strength of 0.1 mol / L at 25 ° C. At least a part of is considered to form a complex with the compound. Therefore, the amount of copper ions that react with moisture, oxygen, etc. (for example, O 2 , H 2 O, etc.) in the atmosphere can be reduced, and the formation of copper oxide in the paste can be suppressed.
In addition, the above-described compound that forms a complex with copper ions is unlikely to dissociate from the copper ions, so that the complex state can be maintained for a long time even when left in a high humidity environment. Therefore, the formation of copper oxide is suppressed even in the conductive film, and as a result, a conductive paste capable of forming a conductive film in which a change (decrease) in conductivity before and after holding in a high-temperature and high-humidity environment is suppressed is obtained.
(D)成分のキレート剤として用いる化合物の安定度定数logKCuが5未満であると、銅イオンに対する結合力が十分でないため、大気中の水分や酸素等と反応する銅イオンの量を十分に低減できず、酸化銅の生成を抑制することが困難となる。
一方、(D)成分のキレート剤として用いる化合物の安定度数logKCuが15を超えると、(D)成分のキレート剤として用いる化合物の銅イオンに対する結合力が強すぎて、銅粒子同士の接触を阻害し、導電性を低下させるおそれがある。これは、(D)成分のキレート剤として用いる化合物が、導電性ペースト中に存在する銅イオンだけでなく、銅粒子にも作用するためと推定される。
(D)成分のキレート剤として用いる化合物の安定度定数logKCuは、より好ましくは7〜14である。
When the stability constant logK Cu of the compound used as the chelating agent of component (D) is less than 5, the binding force to copper ions is not sufficient, so the amount of copper ions that react with moisture, oxygen, etc. in the atmosphere is sufficient. It cannot be reduced, and it becomes difficult to suppress the production of copper oxide.
On the other hand, when the stability number logK Cu of the compound used as the chelating agent of the component (D) exceeds 15, the binding force of the compound used as the chelating agent of the component (D) to the copper ion is too strong, and the contact between the copper particles is caused. There is a risk of hindering and reducing conductivity. This is presumably because the compound used as the chelating agent for component (D) acts not only on the copper ions present in the conductive paste but also on the copper particles.
The stability constant logK Cu of the compound used as the chelating agent for component (D) is more preferably 7-14.
本発明の導電性ペーストにおいて、(D)成分のキレート剤の配合量は、導電性ペースト中、0.01〜1質量%の割合であることが好ましい。
キレート剤(D)の含有量が0.01質量%未満であると、導電膜としたとき、高温高湿環境での保持前後での導電性の変化(低下)を抑制する効果を十分に得られないおそれがある。一方、キレート剤(D)の含有量が1質量%を超えると、銅粒子同士の接触を阻害し、導電性を低下させるおそれがある。
In the conductive paste of the present invention, the blending amount of the (D) component chelating agent is preferably 0.01 to 1% by mass in the conductive paste.
When the content of the chelating agent (D) is less than 0.01% by mass, a sufficient effect of suppressing the change (decrease) in conductivity before and after holding in a high temperature and high humidity environment can be obtained. There is a risk of not being able to. On the other hand, when content of a chelating agent (D) exceeds 1 mass%, there exists a possibility that the contact of copper particles may be inhibited and electroconductivity may be reduced.
(D)成分のキレート剤としては、窒素原子を含む官能基(a)と、窒素原子以外の孤立電子対を有する原子を含む官能基(b)とが、芳香環のオルト位に配置された芳香族化合物を用いることができる。ここで、窒素原子を含む官能基(a)としては、アミノ基アミド基、またはイミノ基が例示される。窒素原子以外の孤立電子対を有する原子を含む官能基(b)としては、水酸基、またはカルボキシル基が例示される。 As the chelating agent of component (D), a functional group (a) containing a nitrogen atom and a functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring. Aromatic compounds can be used. Here, examples of the functional group (a) containing a nitrogen atom include an amino group amide group or an imino group. Examples of the functional group (b) containing an atom having a lone electron pair other than a nitrogen atom include a hydroxyl group or a carboxyl group.
また、(D)成分のキレート剤としては、具体的には、例えばサリチルヒドロキサム酸(logKCu=12)、サリチルアルドキシム(logKCu=13)、o−アミノフェノール(logKCu=7.8)から選択される少なくとも1種以上の化合物を用いることができる。 Specific examples of the chelating agent for component (D) include salicylhydroxamic acid (logK Cu = 12), salicylaldoxime (logK Cu = 13), o-aminophenol (logK Cu = 7.8). At least one or more compounds selected from can be used.
(E)その他の成分
本発明の導電性ペーストは、上記(A)〜(D)の各成分に加えて、必要に応じて、溶剤や各種の添加剤(カップリング剤、粘度調整剤等。)を、本発明の効果を損なわない範囲で含んでいてもよい。特に、適度な流動性を有するペーストを得るために、熱硬化性樹脂を溶解し得る溶剤を含有させることが好ましい。
(E) Other components In addition to the components (A) to (D) above, the conductive paste of the present invention includes a solvent and various additives (coupling agent, viscosity modifier, etc.) as necessary. ) May be included as long as the effects of the present invention are not impaired. In particular, in order to obtain a paste having appropriate fluidity, it is preferable to contain a solvent capable of dissolving the thermosetting resin.
溶剤としては、例えば、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートを使用できる。印刷用ペーストとして、適度な粘度範囲とする観点から、導電性ペーストに含有させる溶剤の量は、導電性ペースト中、5〜40質量%であることが好ましい。 Examples of the solvent include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. Diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate can be used. From the viewpoint of setting an appropriate viscosity range as the printing paste, the amount of the solvent contained in the conductive paste is preferably 5 to 40% by mass in the conductive paste.
導電性ペーストは、上記(A)〜(D)の各成分、および必要に応じて前記溶剤等のその他の成分を混合して得ることができる。上記の(A)〜(D)の各成分を混合する時には、熱硬化性樹脂の硬化や溶剤の揮発が生じない程度の温度下で、加熱しながら行うことができる。 The conductive paste can be obtained by mixing the components (A) to (D) above and other components such as the solvent as necessary. When mixing each component of said (A)-(D), it can carry out, heating at the temperature which does not produce the hardening of a thermosetting resin, or volatilization of a solvent.
混合、撹拌時の温度は、10〜40℃とすることが好ましい。より好ましくは、20〜30℃とするのがよい。導電ペーストを調製する時に10℃以上の温度に加熱することで、ペーストの粘度を十分に低下させることができ、撹拌を円滑にかつ十分に行うことができる。一方、導電ペーストを調製するときの温度が120℃を超えると、ペースト中で樹脂の硬化が生じるおそれや、粒子同士の融着が生じるおそれがある。なお、混合時に銅粒子が酸化されるのを防止するため、不活性ガスで置換した容器内で混合することが好ましい。 The temperature during mixing and stirring is preferably 10 to 40 ° C. More preferably, it is good to set it as 20-30 degreeC. By heating to a temperature of 10 ° C. or higher when preparing the conductive paste, the viscosity of the paste can be sufficiently reduced, and stirring can be performed smoothly and sufficiently. On the other hand, if the temperature at which the conductive paste is prepared exceeds 120 ° C., the resin may be cured in the paste or the particles may be fused. In order to prevent the copper particles from being oxidized during mixing, it is preferable to mix in a container substituted with an inert gas.
以上説明した本発明の導電性ペーストにおいては、(A)成分の、粒子径の平均値が1.0μm〜15μmであって、粒子径/厚さの平均値が2〜10となる、扁平形状の銅粒子とともに、(B)成分の変性ジメチルシロキサン、および、(C)成分のホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂を含有しているので、この導電性ペーストにより形成される導電膜は、導電性と耐久性に優れている。そして、導電性ペーストが、(D)成分として、25℃でイオン強度が0.1mol/Lにおける銅イオンとの安定度定数logKCuが5〜15である化合物からなるキレート剤を含有すると、耐久性がさらに向上する。そのため、本発明の導電性ペーストから得られる導電膜は、さらに優れた導電性と耐久性を有する。 In the conductive paste of the present invention described above, the average value of the particle diameter of the component (A) is 1.0 μm to 15 μm, and the average particle diameter / thickness is 2 to 10 in a flat shape In addition to the copper particles, (B) component dimethylsiloxane and (C) binder resin made of thermosetting resin containing formaldehyde as a component are contained. The conductive film is excellent in conductivity and durability. And when a conductive paste contains the chelating agent which consists of a compound whose stability constant logK Cu is 5-15 with copper ion in 25 degreeC and ionic strength 0.1 mol / L as (D) component, it is durable. The nature is further improved. Therefore, the electrically conductive film obtained from the electrically conductive paste of this invention has the further outstanding electroconductivity and durability.
<導電膜付き基材>
本発明の導電膜付き基材は、基材と、この基材上に上述した本発明の導電性ペーストを塗布し硬化させて形成した導電膜とを有する。
基材本体としては、ガラス基板、プラスチック基板(例えば、ポリイミド基板、ポリエステル基板等)、繊維強化複合材料からなる基板(例えば、ガラス繊維強化樹脂基板等)が挙げられる。
<Substrate with conductive film>
The base material with a conductive film of the present invention has a base material and a conductive film formed by applying and curing the above-described conductive paste of the present invention on the base material.
Examples of the substrate main body include a glass substrate, a plastic substrate (for example, a polyimide substrate, a polyester substrate, etc.), and a substrate (for example, a glass fiber reinforced resin substrate, etc.) made of a fiber reinforced composite material.
導電性ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。これらの中でもスクリーン印刷法が好ましい。 Examples of the method of applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating. Among these, the screen printing method is preferable.
塗布層の硬化は、温風加熱、熱輻射加熱等の方法で加熱し、導電性ペースト中の樹脂(熱硬化性樹脂)を硬化させることにより行う。 The coating layer is cured by heating with a method such as warm air heating or heat radiation heating to cure the resin (thermosetting resin) in the conductive paste.
加熱温度および加熱時間は、導電膜に求められる特性に応じて適宜決定すればよい。加熱温度は、80〜200℃が好ましい。加熱温度が80℃以上であれば、バインダ樹脂の硬化が円滑に進行し、銅粒子間の接触が良好になって導電性および耐久性が向上する。加熱温度が200℃以下であれば、基材本体としてプラスチック基板を使用できるので、基材選択の自由度が高まる。 What is necessary is just to determine a heating temperature and a heating time suitably according to the characteristic calculated | required by the electrically conductive film. The heating temperature is preferably 80 to 200 ° C. If heating temperature is 80 degreeC or more, hardening of binder resin will advance smoothly, the contact between copper particles will become favorable, and electroconductivity and durability will improve. If heating temperature is 200 degrees C or less, since a plastic substrate can be used as a base-material main body, the freedom degree of base-material selection increases.
基材上に形成される導電膜の厚さは、安定した導電性と配線形状の維持を確保する観点から、1〜200μmであることが好ましく、5〜100μmの範囲がより好ましい。 The thickness of the conductive film formed on the substrate is preferably 1 to 200 μm and more preferably 5 to 100 μm from the viewpoint of ensuring stable conductivity and maintaining the wiring shape.
導電膜の比抵抗(体積抵抗率ともいう。)は、25μΩcm以下であることが好ましい。導電膜の比抵抗が25μΩcmを超えると、電子機器用の導電体としての使用が困難となる場合がある。
また、後述する実施例に記載の手順で測定される高温高湿環境に保持前後での比抵抗の変化(低下)量が20%以下であることが好ましい。
The specific resistance (also referred to as volume resistivity) of the conductive film is preferably 25 μΩcm or less. When the specific resistance of the conductive film exceeds 25 μΩcm, it may be difficult to use it as a conductor for electronic equipment.
Moreover, it is preferable that the amount of change (decrease) in specific resistance before and after holding in a high-temperature and high-humidity environment measured by the procedure described in the examples described later is 20% or less.
以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されない。例1〜8は実施例、例9〜20は比較例である。なお、銅粒子の粒子径、粒子径/厚さ、導電膜の厚さおよび比抵抗は、それぞれ以下に示す装置を用いて測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. Examples 1 to 8 are examples, and examples 9 to 20 are comparative examples. The particle diameter, particle diameter / thickness, conductive film thickness, and specific resistance of the copper particles were measured using the following apparatuses.
(粒子径)
銅粒子の粒子径は、SEM(日立ハイテクノロジーズ社製、S−4300)により得られたSEM像の中から無作為に選ばれた1個の粒子のFeret径を測定し、各銅粒子におけるFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、該長軸方向のFeret径と、該短軸方向のFeret径と、の平均値((長軸方向のFeret径+短軸方向のFeret径)/2)として算出した。そして、SEM像の中から選んだ100個の銅粒子について、上記の粒子径の算出方法により個々の銅粒子の粒子径を算出した後、算出された銅粒子の粒子径を平均(数平均)することにより粒子径の平均値を求めた。
また、上記の手順で得られた粒子径の測定結果から、銅粒子の個数基準の粒子径分布を求めた。具体的には、小粒子径側からの積算値を求め、小粒子径側からの積算値が10%のときの粒子径をD10とし、小粒子径側からの積算値が50%のときの粒子径をD50、小粒子径側からの積算値が90%のときの粒子径をD90とした。下記表にD90/D50、D90/D10の値を示した。
(Particle size)
The particle diameter of the copper particles was determined by measuring the Feret diameter of one particle randomly selected from the SEM image obtained by SEM (manufactured by Hitachi High-Technologies Corporation, S-4300). When the major axis is the radial direction where the diameter is the maximum, and the minor axis is the axis orthogonal to the major axis, the average value of the Feret diameter in the major axis direction and the Feret diameter in the minor axis direction (( It was calculated as Feret diameter in the major axis direction + Feret diameter in the minor axis direction) / 2). And about 100 copper particles selected from the SEM image, after calculating the particle diameter of each copper particle by the calculation method of said particle diameter, the particle diameter of the calculated copper particle is averaged (number average) Thus, the average value of the particle diameter was obtained.
Further, the particle size distribution based on the number of copper particles was determined from the measurement result of the particle size obtained by the above procedure. Specifically, the integrated value from the small particle diameter side is obtained, the particle diameter when the integrated value from the small particle diameter side is 10% is D10, and the integrated value from the small particle diameter side is 50%. The particle diameter was D50, and the particle diameter when the integrated value from the small particle diameter side was 90% was D90. The values of D90 / D50 and D90 / D10 are shown in the following table.
(粒子径/厚さ)
上記の手順で銅粒子の粒子径を算出する際に、算出に用いた1個の銅粒子の厚さを測定し、銅粒子の粒子径と、厚さと、の比(粒子径/厚さ)を求めた。そして、SEM像の中から無作為に選んだ100個の銅粒子について、上記により算出された銅粒子の(粒子径/厚さ)を平均(数平均)することにより、粒子径/厚さの平均値を求めた。
(Particle diameter / thickness)
When calculating the particle diameter of the copper particles by the above procedure, the thickness of one copper particle used for the calculation is measured, and the ratio between the particle diameter of the copper particles and the thickness (particle diameter / thickness). Asked. Then, for 100 copper particles randomly selected from the SEM image, by averaging (number average) the (particle diameter / thickness) of the copper particles calculated as described above, the particle diameter / thickness The average value was obtained.
(導電膜の厚さ)
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(Thickness of conductive film)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).
(導電膜の比抵抗)
導電膜の比抵抗は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP−T250)を用いて測定した。
(Specific resistance of conductive film)
The specific resistance of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).
例1
ガラス製ビーカー内に、ギ酸3.0gと50質量%の次亜リン酸水溶液9.0gを入れた後、このビーカーをウォーターバスに入れ40℃に保持した。このビーカー内に、粒子径の平均値が6μmで、粒子径/厚さの平均値が7.0の扁平形状の銅粒子(三井金属鉱業株式会社製、商品名:1400YP)5.0gを徐々に添加し、30分間撹拌して銅分散液を得た。
Example 1
In a glass beaker, 3.0 g of formic acid and 9.0 g of a 50 mass% hypophosphorous acid aqueous solution were placed, and the beaker was placed in a water bath and maintained at 40 ° C. In this beaker, 5.0 g of flat copper particles (Mitsui Metal Mining Co., Ltd., trade name: 1400YP) having an average particle diameter of 6 μm and an average particle diameter / thickness of 7.0 are gradually added. And stirred for 30 minutes to obtain a copper dispersion.
得られた銅分散液から、遠心分離器を使用し、回転数3000rpmで10分間遠心分離して沈殿物を回収した。この沈殿物を蒸留水30gに分散させ、遠心分離によって再び凝集物を沈殿させ、沈殿物を分離した。その後、得られた沈殿物を、−35kPaの減圧下、80℃で60分間加熱し、残留水分を揮発させて徐々に除去して、粒子表面が表面改質された銅粒子(A−1)を得た。
表面改質後の銅粒子は、粒子径の平均値、および、粒子径/厚さの平均値が変化せず、それぞれ6μm、および、7.0である。なお、表面改質後の銅粒子は、粒子径の平均値、および、粒子径/厚さの平均値が変化しないことは、以下に示す他の実施例および比較例についても同様である。
The resulting copper dispersion was centrifuged at 3000 rpm for 10 minutes using a centrifuge to collect a precipitate. This precipitate was dispersed in 30 g of distilled water, and the aggregate was precipitated again by centrifugation, thereby separating the precipitate. Thereafter, the obtained precipitate was heated at 80 ° C. for 60 minutes under a reduced pressure of −35 kPa to volatilize and remove residual moisture, and the copper particles (A-1) whose particle surfaces were surface-modified Got.
The surface-modified copper particles have an average particle diameter and an average particle diameter / thickness of 6 μm and 7.0, respectively, without change. It is to be noted that the average value of the particle diameter and the average value of the particle diameter / thickness of the copper particles after the surface modification are not changed in the other examples and comparative examples described below.
得られた銅粒子(A−1)の表面酸素量は、0.16であった。この値は、X線光電子分光分析(アルバック・ファイ株式会社製、PHI5500)によって表面酸素濃度[原子%]と表面銅濃度[原子%]を求め、表面酸素濃度を表面銅濃度で除して算出した。なお、酸素量計(LECOジャパン株式会社製、商品番号:「ROH−600」)を用いて測定したところ、銅粒子(A−1)中の酸素量は460ppmであった。 The surface oxygen content of the obtained copper particles (A-1) was 0.16. This value is calculated by obtaining the surface oxygen concentration [atomic%] and the surface copper concentration [atomic%] by X-ray photoelectron spectroscopy (PHI5500, manufactured by ULVAC-PHI Co., Ltd.), and dividing the surface oxygen concentration by the surface copper concentration. did. In addition, when it measured using the oxygen meter (the product number: "ROH-600" by LECO Japan Co., Ltd.), the oxygen amount in a copper particle (A-1) was 460 ppm.
次いで、得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂(群栄化学社製、商品名:レジトップPL6220、以下の例において全て同じ。)3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加えた。さらに、この混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.048gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.2質量%であった。 Next, 12 g of the obtained surface-modified copper particles (A-1) was added to a phenol resin as a component (C) (manufactured by Gunei Chemical Co., Ltd., trade name: RESITOP PL6220, all the same in the following examples). 0.7 g was added to a resin solution dissolved in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.048 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) is put in a mortar and mixed at room temperature to obtain a copper paste. Obtained. The blending amount of component (B) (polyether-modified dimethylsiloxane) was 0.2% by mass in the copper paste.
例2
銅粒子を粒子径の平均値が7μmで、粒子径/厚さの平均値が6.0の扁平形状の銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)に変更した以外は例1と同様にして銅ペーストを得た。
Example 2
The copper particles were changed to flat copper particles (trade name: AFS-Cu, manufactured by Nippon Atomizing Co., Ltd.) having an average particle diameter of 7 μm and an average particle diameter / thickness of 6.0. A copper paste was obtained in the same manner as in Example 1.
例3
銅粒子を粒子径の平均値が5μmで、粒子径/厚さの平均値が3.5の扁平形状の銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)に変更した以外は例1と同様にして銅ペーストを得た。
Example 3
The copper particles were changed to flat copper particles (trade name: AFS-Cu, manufactured by Nippon Atomizing Co., Ltd.) with an average particle diameter of 5 μm and an average particle diameter / thickness of 3.5. A copper paste was obtained in the same manner as in Example 1.
例4
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)307)0.048gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.2質量%であった。
Example 4
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Further, together with this mixture, 0.048 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 307) as component (B) is put in a mortar and mixed at room temperature to obtain a copper paste. Obtained. The blending amount of component (B) (polyether-modified dimethylsiloxane) was 0.2% by mass in the copper paste.
例5
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)ポリエステル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)315)0.19g(有効成分:0.048g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエステル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.2質量%であった。
Example 5
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.19 g (active ingredient: 0.048 g) of (B) polyester-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 315) is put in a mortar and mixed at room temperature. A copper paste was obtained. In addition, the compounding quantity of (B) component (polyester modified dimethylsiloxane) was 0.2 mass% in the copper paste.
例6
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.012gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.05質量%であった。
Example 6
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.012 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) is placed in a mortar and mixed at room temperature to obtain a copper paste. Obtained. The amount of component (B) (polyether-modified dimethylsiloxane) was 0.05% by mass in the copper paste.
例7
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.24gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、1.0質量%であった。
Example 7
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.24 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) is placed in a mortar and mixed at room temperature to obtain a copper paste. Obtained. The blending amount of component (B) (polyether-modified dimethylsiloxane) was 1.0% by mass in the copper paste.
例8
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.048g、(D)成分としてのサリチルアルドキシム0.024gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.2質量%であり、(D)成分(キレート剤)の配合量は、銅ペースト中、0.1質量%であった。
Example 8
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.048 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) and 0.024 g of salicylaldoxime as component (D) It was put in a mortar and mixed at room temperature to obtain a copper paste. The blending amount of the component (B) (polyether-modified dimethylsiloxane) is 0.2% by mass in the copper paste, and the blending amount of the component (D) (chelating agent) is 0.00% in the copper paste. It was 1% by mass.
例9
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(B)成分としての変性ジメチルシロキサンを添加しなかった以外は例1と同様にして、室温下で混ぜ合わせて銅ペーストを得た。
Example 9
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1, except that the modified dimethylsiloxane as the component (B) was not added, at room temperature in the same manner as in Example 1. The copper paste was obtained by mixing.
例10
銅粒子を粒子径の平均値が7μmで、粒子径/厚さの平均値が6.0の扁平形状の銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)に変更した以外は実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(B)成分としての変性ジメチルシロキサンを添加しなかった以外は例1と同様にして、室温下で混ぜ合わせて銅ペーストを得た。
Example 10
The copper particles were changed to flat copper particles (trade name: AFS-Cu, manufactured by Nippon Atomizing Co., Ltd.) having an average particle diameter of 7 μm and an average particle diameter / thickness of 6.0. 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1, except that the modified dimethylsiloxane as the component (B) was not added, at room temperature in the same manner as in Example 1. The copper paste was obtained by mixing.
例11
銅粒子を粒子径の平均値が5μmで、粒子径/厚さの平均値が3.5の扁平形状の銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)に変更した以外は例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(B)成分としての変性ジメチルシロキサンを添加しなかった以外は実施例1と同様にして、室温下で混ぜ合わせて銅ペーストを得た。
Example 11
The copper particles were changed to flat copper particles (trade name: AFS-Cu, manufactured by Nippon Atomizing Co., Ltd.) with an average particle diameter of 5 μm and an average particle diameter / thickness of 3.5. 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1, except that the modified dimethylsiloxane as the component (B) was not added, at room temperature in the same manner as in Example 1. The copper paste was obtained by mixing.
例12
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.0012gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.005質量%であった。
Example 12
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.0012 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) is placed in a mortar and mixed at room temperature to obtain a copper paste. Obtained. The blending amount of component (B) (polyether-modified dimethylsiloxane) was 0.005% by mass in the copper paste.
例13
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.72gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルロキサン)の配合量は、銅ペースト中、3.0質量%であった。
Example 13
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Further, together with this mixture, 0.72 g of polyether-modified dimethylsiloxane (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 333) as component (B) is put in a mortar and mixed at room temperature to obtain a copper paste. Obtained. In addition, the compounding quantity of (B) component (polyether modified dimethyloxane) was 3.0 mass% in copper paste.
例14
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B´)成分として、シリコン変性のアクリル系共重合物(ビックケミージャパン株式会社製:BYK(登録商標)3550)0.096g(有効成分:0.048g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B´)成分(シリコン変性のアクリル系共重合物)の配合量は、銅ペースト中、0.2質量%であった。
Example 14
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Further, together with this mixture, 0.096 g (active ingredient: 0.048 g) of silicon-modified acrylic copolymer (BIC Chemie Japan Co., Ltd .: BYK (registered trademark) 3550) as a component (B ′) in a mortar The mixture was mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B ') component (silicon-modified acrylic copolymer) was 0.2 mass% in copper paste.
例15
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分の代わりに(B´)成分として、アクリル系共重合物(ビックケミージャパン株式会社製:BYK(登録商標)350)0.048gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B´)成分(アクリル系共重合物)の配合量は、銅ペースト中、0.2質量%であった。
Example 15
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Further, together with this mixture, 0.048 g of an acrylic copolymer (BYK (registered trademark) 350) manufactured by Big Chemie Japan Co., Ltd. was placed in a mortar as a component (B ′) instead of the component (B) at room temperature. To obtain a copper paste. In addition, the compounding quantity of (B ') component (acrylic-type copolymer) was 0.2 mass% in copper paste.
例16
銅粒子を粒子径の平均値が5μmで、粒子径/厚さの平均値が1.0の球形状の銅粒子(日本アトマイズ加工社製、商品名:HXR−Cu)に変更した以外は例1と同様にして銅ペーストを得た。
Example 16
An example except that the copper particles were changed to spherical copper particles (trade name: HXR-Cu manufactured by Nippon Atomizing Co., Ltd.) having an average particle diameter of 5 μm and an average particle diameter / thickness of 1.0. In the same manner as in No. 1, a copper paste was obtained.
例17
銅粒子を粒子径の平均値が16μmで、粒子径/厚さの平均値が20の扁平形状の銅粒子(日本アトマイズ加工社製、商品名:AFS−Cu)に変更した以外は実施例1と同様にして銅ペーストを得た。
Example 17
Example 1 except that the copper particles were changed to flat copper particles having a mean particle diameter of 16 μm and a mean particle diameter / thickness of 20 (made by Nippon Atomizing Co., Ltd., trade name: AFS-Cu). In the same manner, a copper paste was obtained.
例18
銅粒子を粒子径の平均値が8μmで、粒子径/厚さの平均値が20の扁平形状の銅粒子(日本アトマイズ加工社製、商品名:AFS−Cu)に変更した以外は例1と同様にして銅ペーストを得た。
Example 18
Example 1 except that the copper particles were changed to flat copper particles having a mean particle diameter of 8 μm and a mean particle diameter / thickness of 20 (made by Nippon Atomizing Co., Ltd., trade name: AFS-Cu). A copper paste was obtained in the same manner.
例19
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分の代わりに(B´´)成分として変性が無いジメチルシリコーン(信越化学工業社製:KF−96)0.048gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B´´)成分(ジメチルシリコーン)の配合量は、銅ペースト中、0.2質量%であった。
Example 19
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, with this mixture, 0.048 g of dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: KF-96) as a component (B ″) is placed in a mortar instead of the component (B) and mixed at room temperature. A copper paste was obtained. In addition, the compounding quantity of (B '') component (dimethyl silicone) was 0.2 mass% in copper paste.
例20
例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分の代わりに(C´)としてエポキシ樹脂(三菱化学株式会社製、商品名:jER828)1.9gと硬化剤(味の素ファインテクノ株式会社製、商品名:アミキュアMY−24)0.2gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのポリエーテル変性したジメチルシロキサン(ビックケミージャパン株式会社製:BYK(登録商標)333)0.048gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(ポリエーテル変性したジメチルシロキサン)の配合量は、銅ペースト中、0.2質量%であった。
Example 20
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was replaced with (C ′) instead of the component (C) as an epoxy resin (product name: jER828) 1 .9 g and a curing agent (trade name: Amicure MY-24, manufactured by Ajinomoto Fine Techno Co., Ltd.) 0.2 g were added to a resin solution obtained by dissolving 4.3 g of ethylene glycol monobutyl ether acetate, and together with this mixture, component (B) 0.048 g of polyether-modified dimethylsiloxane (BYK (registered trademark) 333 manufactured by BYK Japan) was put in a mortar and mixed at room temperature to obtain a copper paste. The blending amount of component (B) (polyether-modified dimethylsiloxane) was 0.2% by mass in the copper paste.
次に、例1〜20で得られた銅ペーストを、ガラス基板上にそれぞれ塗布し、150℃で30分間加熱して、(C)成分としてのフェノール樹脂を硬化させ、厚さ10μmの導電膜を形成した。そして、得られた導電膜の電気抵抗値を抵抗値計(ケースレー社製、商品名:ミリオームハイテスタ)を用いて測定し、比抵抗(体積抵抗率;単位μΩcm)を測定した。また、得られた導電膜は85℃85%RHの環境に240時間保管し、比抵抗の変化を合わせて測定した。結果を表1にまとめた。 Next, each of the copper pastes obtained in Examples 1 to 20 was applied on a glass substrate, heated at 150 ° C. for 30 minutes to cure the phenol resin as the component (C), and a conductive film having a thickness of 10 μm. Formed. And the electrical resistance value of the obtained electrically conductive film was measured using the resistance meter (The product name: Milliohm Hitester by the Keithley company), and the specific resistance (volume resistivity; unit microohm cm) was measured. The obtained conductive film was stored in an environment of 85 ° C. and 85% RH for 240 hours, and the change in specific resistance was measured together. The results are summarized in Table 1.
表1からわかるように、粒子径の平均値が1.0〜15μmで、粒子径/厚さの平均値が2〜10の扁平形状の銅粒子とともに、(B)成分としての変性ジメチルシロキサンを、導電性ペースト中、0.01〜2質量%配合した例1〜8の導電性ペーストを用いることにより、該導電性ペーストを基材に塗布し、硬化させた導電膜は、比抵抗が低く、25μΩcm以下であった。また、高温高湿環境での保持前後での導電性の変化(低下)も抑制されており、高温高湿環境に保持前後での比抵抗の変化(低下)量が20%以下であった。(D)成分のキレート剤として、サリチルアルドキシムを、導電性ペースト中、0.01〜1質量%配合した例8の導電性ペーストを用いて作製した導電膜は、比抵抗が特に低く、高温高湿環境に保持前後での比抵抗の変化(低下)量が特に少なかった。
これに対し、(B)成分としての変性ジメチルシロキサンを配合しなかった例9〜11、(B)成分としての変性ジメチルシロキサンの配合量が、導電性ペースト中、0.01質量%未満の例12、3質量%超の例13、(B)成分としての変性ジメチルシロキサンの代わりにアクリル系共重合物を配合した例14,15、(A)成分の銅粒子として、粒子径/厚さの平均値が、2未満の例16、10超の比較例17,18、(B)成分としての変性ジメチルシロキサンの代わりに、変性が無いジメチルシリコーンを配合した例19、(C)成分のバインダ樹脂として、エポキシ樹脂を配合した例20は、いずれも、導電性ペーストを用いて作製した導電膜の比抵抗が高く、基材に塗布し、硬化させた導電膜は、比抵抗が低く、25μΩcm超であった。また、高温高湿環境での保持前後での導電性の変化(低下)が大きく、高温高湿環境に保持前後での比抵抗の変化(低下)量が20%超であった。
As can be seen from Table 1, the modified dimethylsiloxane as the component (B) is used together with the flat copper particles having an average particle diameter of 1.0 to 15 μm and an average particle diameter / thickness of 2 to 10. By using the conductive paste of Examples 1 to 8 blended in an amount of 0.01 to 2% by mass in the conductive paste, the conductive film obtained by applying the conductive paste to a substrate and curing it has a low specific resistance. 25 μΩcm or less. Moreover, the change (decrease) in conductivity before and after holding in a high-temperature and high-humidity environment was also suppressed, and the amount of change (reduction) in specific resistance before and after holding in a high-temperature and high-humidity environment was 20% or less. The conductive film produced using the conductive paste of Example 8 in which 0.01 to 1% by mass of salicylaldoxime is blended in the conductive paste as the chelating agent for component (D) has a particularly low specific resistance and high temperature. The amount of change (decrease) in specific resistance before and after holding in a high humidity environment was particularly small.
In contrast, Examples 9 to 11 in which the modified dimethylsiloxane as the component (B) was not blended, and the blended amount of the modified dimethylsiloxane as the component (B) was less than 0.01% by mass in the conductive paste. 12, Exceeding 3% by mass of Example 13, (B) Examples 14 and 15 in which an acrylic copolymer was blended in place of the modified dimethylsiloxane as the component, (A) As the copper particles of the component, the particle diameter / thickness Examples 16 and 10 having an average value of less than 2 and Comparative Examples 17 and 18 in excess of 10, Example 19 in which dimethyl silicone having no modification was blended in place of modified dimethylsiloxane as component (B), and binder resin of component (C) As for Example 20 which mix | blended epoxy resin, as for all, the specific resistance of the electrically conductive film produced using the electrically conductive paste is high, and the electrically conductive film apply | coated and hardened to the base material has low specific resistance, and exceeds 25 microhm-cm Met. Further, the change (decrease) in conductivity before and after holding in a high temperature and high humidity environment was large, and the amount of change (reduction) in specific resistance before and after holding in a high temperature and high humidity environment was more than 20%.
本発明の導電性ペーストは、様々な用途に利用でき、たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。 The conductive paste of the present invention can be used for various purposes, for example, for the formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components. it can.
Claims (10)
前記銅粒子は、該銅粒子のFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、前記長軸方向のFeret径と、前記短軸方向のFeret径と、の平均値を、該銅粒子の粒子径とするとき、該銅粒子の粒子径の平均値が1.0〜15μmであり、前記銅粒子の粒子径と、該銅粒子の厚さと、の比の平均値(粒子径/厚さの平均値)が、2〜10となる、扁平形状の銅粒子であり、
前記導電性ペースト中、(A)成分の銅粒子を78〜94.99質量%含有し、前記(C)成分のバインダ樹脂を5〜20質量%含有し、前記(B)成分の変性ジメチルシロキサンを0.01〜2質量%含有することを特徴とする導電性ペースト。 A conductive paste containing (A) copper particles, (B) modified dimethylsiloxane, and (C) a binder resin made of a thermosetting resin containing formaldehyde as a component,
When the copper particle has a major axis as a radial direction in which the Feret diameter of the copper particle is a maximum value and an axis perpendicular to the major axis is a minor axis, the Feret diameter in the major axis direction and the minor axis direction When the average value of the Feret diameter is the particle diameter of the copper particles, the average value of the particle diameter of the copper particles is 1.0 to 15 μm, the particle diameter of the copper particles, and the copper particles The average value of the ratio of the thickness and the average value (particle diameter / average thickness) is 2 to 10 flat copper particles,
The conductive paste contains 78 to 94.99% by mass of the copper particles of the component (A), 5 to 20% by mass of the binder resin of the component (C), and the modified dimethylsiloxane of the component (B). In an amount of 0.01 to 2% by mass.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012188815A JP2014049191A (en) | 2012-08-29 | 2012-08-29 | Conductive paste and substrate with conductive membrane |
TW102130924A TW201415487A (en) | 2012-08-29 | 2013-08-28 | Conductive paste and substrate with conductive film |
CN201310385091.0A CN103680679A (en) | 2012-08-29 | 2013-08-29 | Conductive paste and substrate with conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012188815A JP2014049191A (en) | 2012-08-29 | 2012-08-29 | Conductive paste and substrate with conductive membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014049191A true JP2014049191A (en) | 2014-03-17 |
Family
ID=50317966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012188815A Pending JP2014049191A (en) | 2012-08-29 | 2012-08-29 | Conductive paste and substrate with conductive membrane |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014049191A (en) |
CN (1) | CN103680679A (en) |
TW (1) | TW201415487A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106169318A (en) * | 2015-05-22 | 2016-11-30 | 川锡科研有限公司 | Conductive paste composition, conductive structure and forming method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315835A (en) * | 2003-04-10 | 2004-11-11 | Mitsui Mining & Smelting Co Ltd | Copper powder with irregular shape, method for manufacturing the copper powder with irregular shape, and electroconductive paste using the copper powder with irregular shape |
JP2011513934A (en) * | 2008-03-05 | 2011-04-28 | アプライド・ナノテック・ホールディングス・インコーポレーテッド | Additives and modifiers for solvent-based and aqueous conductive metal inks |
WO2012067016A1 (en) * | 2010-11-16 | 2012-05-24 | 旭硝子株式会社 | Conductive paste and base with conductive film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3782522T2 (en) * | 1986-03-31 | 1993-06-03 | Tatsuta Densen Kk | CONDUCTIVE COPPER PASTE COMPOSITION. |
JP3142484B2 (en) * | 1995-07-13 | 2001-03-07 | 住友ベークライト株式会社 | Conductive copper paste composition |
KR101024661B1 (en) * | 2002-10-31 | 2011-03-25 | 교에이샤 케미칼 주식회사 | Manufacturing method of resin composition, transfer material and molded product |
JP5219140B2 (en) * | 2008-10-24 | 2013-06-26 | 東洋紡株式会社 | Low-temperature conductive paste for plating and electrical wiring using the same |
-
2012
- 2012-08-29 JP JP2012188815A patent/JP2014049191A/en active Pending
-
2013
- 2013-08-28 TW TW102130924A patent/TW201415487A/en unknown
- 2013-08-29 CN CN201310385091.0A patent/CN103680679A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315835A (en) * | 2003-04-10 | 2004-11-11 | Mitsui Mining & Smelting Co Ltd | Copper powder with irregular shape, method for manufacturing the copper powder with irregular shape, and electroconductive paste using the copper powder with irregular shape |
JP2011513934A (en) * | 2008-03-05 | 2011-04-28 | アプライド・ナノテック・ホールディングス・インコーポレーテッド | Additives and modifiers for solvent-based and aqueous conductive metal inks |
WO2012067016A1 (en) * | 2010-11-16 | 2012-05-24 | 旭硝子株式会社 | Conductive paste and base with conductive film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106169318A (en) * | 2015-05-22 | 2016-11-30 | 川锡科研有限公司 | Conductive paste composition, conductive structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103680679A (en) | 2014-03-26 |
TW201415487A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102598365B1 (en) | Silver-coated resin particles, method for manufacturing same, and electroconductive paste using same | |
JP4972955B2 (en) | Conductive paste and printed wiring board using the same | |
CN103210452B (en) | Conductive paste and base with conductive film | |
JP2010044967A (en) | Conductive adhesive and led substrate using it | |
WO2012161201A1 (en) | Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film | |
TWI588237B (en) | Conductive adhesive | |
JP2011028985A (en) | Method of manufacturing conductive paste, and the conductive paste | |
TW201232563A (en) | Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material | |
JP2013110010A (en) | Conductive paste and method for preparing conductive paste | |
JP2016110939A (en) | Conductive paste, and wiring board and solid electrolytic capacitor prepared with the conductive paste | |
JP6197504B2 (en) | Conductive paste and substrate with conductive film | |
JP2014049191A (en) | Conductive paste and substrate with conductive membrane | |
JP2011044522A (en) | Laminated body, and method of manufacturing the laminated body | |
JP5849805B2 (en) | Conductive paste and substrate with conductive film | |
JP2013110011A (en) | Conductive paste | |
JP2017130393A (en) | Method for forming conductive paste and silver film | |
JP6869954B2 (en) | Coating liquid for forming a conductive layer, manufacturing method of the conductive layer, and the conductive layer | |
JP2004127537A (en) | Conductive thermosetting resin composition for electrode formation | |
EP3872143A1 (en) | Conductive ink, use thereof, and method for producing electronic circuit using the same | |
CN118460141A (en) | Preparation method of silver-coated nickel-plated copper powder and silver-coated nickel-plated copper powder conductive adhesive | |
TW201516126A (en) | Conductive paste and substrate with conductive film | |
JP2019157271A (en) | Silver-coated copper powder | |
JP2016046136A (en) | Conductive paste and substrate with conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160517 |