[go: up one dir, main page]

JP2014047980A - Latent heat recovery type hot water supply device - Google Patents

Latent heat recovery type hot water supply device Download PDF

Info

Publication number
JP2014047980A
JP2014047980A JP2012191485A JP2012191485A JP2014047980A JP 2014047980 A JP2014047980 A JP 2014047980A JP 2012191485 A JP2012191485 A JP 2012191485A JP 2012191485 A JP2012191485 A JP 2012191485A JP 2014047980 A JP2014047980 A JP 2014047980A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
water supply
primary
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012191485A
Other languages
Japanese (ja)
Inventor
Yu Fujimoto
悠 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2012191485A priority Critical patent/JP2014047980A/en
Priority to US14/011,570 priority patent/US20140060458A1/en
Publication of JP2014047980A publication Critical patent/JP2014047980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/124Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/44Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40
    • F24H1/445Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40 with integrated flue gas condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/288Accumulation of deposits, e.g. lime or scale
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a latent heat recovery type hot water supply device capable of accurately detecting occurrence of abnormality such as attachment of scale to a primary heat exchanger regardless of thing that the primary heat exchanger and a secondary heat exchanger are bypass-connected or not.SOLUTION: A latent heat recovery type hot water supply device A includes: a heat transfer tube-type primary heat exchanger 1 and a secondary heat exchanger 2 for successively recovering sensible heat and latent heat from a combustion gas generated from a burner 3; and a control portion 4 capable of calculating heat exchanging efficiency η of the secondary heat exchanger 2, and water enters from the secondary heat exchanger 2. The control portion 4 compares the heat exchanging efficiency η of the secondary heat exchanger with a prescribed threshold value Th, determines whether the primary heat exchanger 1 is normal or not, and changes the threshold value Th corresponding to a water entering temperature to the secondary heat exchanger 2.

Description

本発明は、潜熱回収型給湯装置、さらに詳しくは、いわゆる缶石付着や排気閉塞などの異常が生じたことを検出できるように構成された潜熱回収型給湯装置に関する。   The present invention relates to a latent heat recovery type hot water supply device, and more particularly to a latent heat recovery type hot water supply device configured to be able to detect the occurrence of an abnormality such as so-called scale stone adhesion or exhaust blockage.

本出願人は、潜熱回収型給湯装置の一例として、特許文献1に記載のものを先に提案している。
同文献に記載された給湯装置は、バーナにより発生された燃焼ガスから1次熱交換器および2次熱交換器を利用して顕熱および潜熱を順次回収するように構成されている。加熱対象となる湯水は、2次熱交換器を通過した後に1次熱交換器に供給されるように構成されている。これは、2次熱交換器への入水温度を高くすると、潜熱回収効率が低くなるため、これを回避するためである。
The present applicant has previously proposed the one described in Patent Document 1 as an example of a latent heat recovery type hot water supply apparatus.
The hot water supply apparatus described in this document is configured to sequentially recover sensible heat and latent heat from combustion gas generated by a burner using a primary heat exchanger and a secondary heat exchanger. Hot water to be heated is configured to be supplied to the primary heat exchanger after passing through the secondary heat exchanger. This is to avoid the latent heat recovery efficiency that is lowered when the temperature of water entering the secondary heat exchanger is increased.

前記したような給湯装置を比較的長期間にわたって使用する場合、1次熱交換器の伝熱管への缶石付着を生じる場合がある。缶石付着は、伝熱管の内部に、炭酸カルシウムなどの缶石(スケール)が付着し、堆積する現象であり、伝熱管への供給水が硬水の場合にとくに生じ易い。2次熱交換器については、伝熱管内部が比較的低温であるために缶石付着は生じ難い。前記した缶石付着は、1次熱交換器の熱交換効率の低下要因になるだけではなく、その現象が顕著になると故障などを招く。したがって、そのような現象を適切に検出できるようにすることが望まれる。   When the hot water supply apparatus as described above is used for a relatively long period of time, there is a case where scale stone adheres to the heat transfer tube of the primary heat exchanger. The adhesion of scale stone is a phenomenon in which scale stone such as calcium carbonate adheres and accumulates inside the heat transfer tube, and is particularly likely to occur when the water supplied to the heat transfer tube is hard water. As for the secondary heat exchanger, since the inside of the heat transfer tube is relatively low in temperature, adhesion of scale stones hardly occurs. The above-described adhesion of scales not only causes a decrease in the heat exchange efficiency of the primary heat exchanger, but also causes a failure when the phenomenon becomes significant. Therefore, it is desirable to appropriately detect such a phenomenon.

ただし、缶石付着に起因して1次熱交換器の熱交換効率が低下しても、その分だけ、2次熱交換器による熱回収量は増える。給湯装置全体としては、熱回収量は大きく低下しない。このことが、1次熱交換器の缶石付着の検出を難しくする要因となっている。   However, even if the heat exchange efficiency of the primary heat exchanger decreases due to adhesion of scale stone, the amount of heat recovered by the secondary heat exchanger increases accordingly. As a whole hot water supply apparatus, the amount of heat recovery is not greatly reduced. This is a factor that makes it difficult to detect adhesion of scale stones in the primary heat exchanger.

特許文献1においては、前記した缶石付着を検出するための手段として、1次熱交換器および2次熱交換器のそれぞれの熱交換効率を演算し、その比率を求めている。1次熱交換器に缶石付着が生じていれば、相対的に2次熱交換器の熱交換比率が高くなる。したがって、前記手段により缶石付着を検出することが可能である。   In Patent Document 1, as a means for detecting the above-described scale stone adhesion, the heat exchange efficiencies of the primary heat exchanger and the secondary heat exchanger are calculated, and the ratios are obtained. If scale stone adheres to the primary heat exchanger, the heat exchange ratio of the secondary heat exchanger becomes relatively high. Therefore, it is possible to detect adhesion of scale stone by the means.

しかしながら、特許文献1の手段では、次に述べるように未だ改善すべき余地があった。   However, the means of Patent Document 1 still has room for improvement as described below.

すなわち、1次熱交換器と2次熱交換器との熱交換効率の比率は、缶石付着の有無のみに基づいて変化する訳ではなく、これとは別の要因、たとえば2次熱交換器への入水温度条件によっても変化する。2次熱交換器への入水温度が低いほど、2次熱交換器の相対的な熱交換効率比率は高くなる。したがって、特許文献1の手段では、缶石付着の検出精度の点で未だ改善すべき余地がある。
また、特許文献1の手段では、2次熱交換器を通過した湯水の全量が1次熱交換器に供給されることが条件とされる。したがって、後述する図1のバイパス流路54に相当する手段が設けられて、2次熱交換器を通過した湯水の一部のみが1次熱交換器に供給されるような構成においては、特許文献1の手段を適用することができない。
That is, the ratio of the heat exchange efficiency between the primary heat exchanger and the secondary heat exchanger does not change based only on the presence or absence of scale stone, but other factors such as the secondary heat exchanger. It also changes depending on the water temperature conditions. The lower the incoming water temperature to the secondary heat exchanger, the higher the relative heat exchange efficiency ratio of the secondary heat exchanger. Therefore, the means of Patent Document 1 still has room for improvement in terms of detection accuracy of scale stone adhesion.
Moreover, in the means of Patent Document 1, it is a condition that the entire amount of hot water that has passed through the secondary heat exchanger is supplied to the primary heat exchanger. Therefore, in a configuration in which means corresponding to the bypass flow path 54 in FIG. 1 described later is provided and only a part of hot water that has passed through the secondary heat exchanger is supplied to the primary heat exchanger, the patent The means of document 1 cannot be applied.

以上は、1次熱交換器に缶石付着が生じる場合を例として説明したが、フィン閉塞タイプの排気閉塞が生じる場合についても同様である。この排気閉塞は、1次熱交換器のフィンに燃焼ガス中の煤が付着し、堆積することにより生じる。2次熱交換器は、1次熱交換器を通過した後の燃焼ガスを受けるために、そのような排気閉塞は生じ難い。   Although the case where scale stone adhesion occurs in the primary heat exchanger has been described above as an example, the same applies to the case where fin block type exhaust blockage occurs. This exhaust clogging occurs when soot in the combustion gas adheres to and accumulates on the fins of the primary heat exchanger. Since the secondary heat exchanger receives the combustion gas after passing through the primary heat exchanger, such exhaust blockage is unlikely to occur.

特開2009−264684号公報JP 2009-264684 A

本発明は、前記したような事情のもとで考え出されたものであり、1次熱交換器と2次熱交換器とがバイパス接続されているか否かといったことを問わず、1次熱交換器に缶石付着や排気閉塞などの異常を生じた際には、その旨を正確に検出することが可能な潜熱回収型給湯装置を提供することを、その課題としている。   The present invention has been conceived under the circumstances as described above, regardless of whether the primary heat exchanger and the secondary heat exchanger are bypass-connected or not. It is an object of the present invention to provide a latent heat recovery type hot water supply device capable of accurately detecting the occurrence of abnormalities such as sticking stones or exhaust blockage in the exchanger.

上記の課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本発明により提供される潜熱回収型給湯装置は、バーナにより発生された燃焼ガスから顕熱を回収するための伝熱管を有する1次熱交換器と、この1次熱交換器によって熱回収を終えた後の燃焼ガスから潜熱を回収するための伝熱管を有する2次熱交換器と、前記2次熱交換器の熱交換効率を算出可能な制御部と、を備えており、前記2次熱交換器に入水して加熱された後の湯水が、前記1次熱交換器に送られてさらに加熱されるように構成されている、潜熱回収型給湯装置であって、前記制御部は、前記2次熱交換器の熱交換効率を算出した場合には、この熱交換効率を所定の閾値と比較し、この閾値よりも前記算出した熱交換効率が大きい場合には異常があると判断する一方、そうでない場合には異常はないと判断するとともに、前記閾値については、前記2次熱交換器への入水温度に対応させて変更するように構成されていることを特徴としている。
本発明においては、前記2次熱交換器を通過した後の湯水の一部を、前記1次熱交換器に供給することなく前記1次熱交換器の出湯側経路に流れさせるためのバイパス流路を備えている構成とすることができる。
The latent heat recovery type hot water supply apparatus provided by the present invention includes a primary heat exchanger having a heat transfer tube for recovering sensible heat from combustion gas generated by a burner, and heat recovery by the primary heat exchanger. A secondary heat exchanger having a heat transfer tube for recovering latent heat from the burned combustion gas, and a controller capable of calculating the heat exchange efficiency of the secondary heat exchanger. The hot water after entering the exchanger and being heated is sent to the primary heat exchanger and further heated, wherein the controller is configured to When the heat exchange efficiency of the secondary heat exchanger is calculated, the heat exchange efficiency is compared with a predetermined threshold, and when the calculated heat exchange efficiency is larger than the threshold, it is determined that there is an abnormality. Otherwise, it is determined that there is no abnormality and the threshold is For it is characterized by being configured to vary in correspondence with the incoming water temperature to the secondary heat exchanger.
In the present invention, a bypass flow for causing a part of hot water after passing through the secondary heat exchanger to flow to the outlet side path of the primary heat exchanger without being supplied to the primary heat exchanger. It can be set as the structure provided with the path.

このような構成によれば、次のような効果が得られる。
まず、1次熱交換器に缶石付着あるいは排気閉塞を生じ、この現象が顕著になると、1次熱交換器の熱交換効率は低下する一方、2次熱交換器の熱交換効率は上昇する。本発明では、このような現象のうち、2次熱交換器の熱交換効率が上昇する現象に着目し、2次熱交換器の熱交換効率が所定の閾値を超えるほど高くなった場合には、缶石付着あるいは排気閉塞などの異常が生じたものと判断する手法を採用している。ただし、本発明では、2次熱交換器の熱交換効率は、入水温度の影響を受け易いことを考慮し、入水温度に応じて閾値を変更する。したがって、本発明によれば、前記従来技術と比較して、缶石付着や排気閉塞などの異常をより精度よく検出することが可能となる。
加えて、本発明においては、前記従来技術とは異なり、1次熱交換器の熱交換効率を考慮する必要はない。したがって、2次熱交換器を通過した後の湯水の全量が1次熱交換器に供給されない構成(図1のバイパス流路54が設けられた構成)が採用された場合であっても、缶石付着や排気閉塞などの異常の有無を的確に判断することができる利点も得られる。
According to such a configuration, the following effects can be obtained.
Firstly, if the phenomenon becomes noticeable and sticks or exhausts are clogged in the primary heat exchanger, the heat exchange efficiency of the primary heat exchanger decreases, while the heat exchange efficiency of the secondary heat exchanger increases. . In the present invention, paying attention to the phenomenon that the heat exchange efficiency of the secondary heat exchanger increases among such phenomena, when the heat exchange efficiency of the secondary heat exchanger exceeds a predetermined threshold, A method is adopted in which it is determined that an abnormality such as sticking stone or exhaust blockage has occurred. However, in the present invention, considering that the heat exchange efficiency of the secondary heat exchanger is easily influenced by the incoming water temperature, the threshold value is changed according to the incoming water temperature. Therefore, according to the present invention, it is possible to more accurately detect abnormalities such as adhesion of scales and exhaust blockage, as compared with the prior art.
In addition, in the present invention, unlike the prior art, it is not necessary to consider the heat exchange efficiency of the primary heat exchanger. Therefore, even if a configuration in which the entire amount of hot water after passing through the secondary heat exchanger is not supplied to the primary heat exchanger (a configuration in which the bypass channel 54 of FIG. 1 is provided) is employed, the can There is also an advantage that it is possible to accurately determine whether there is an abnormality such as stone adhesion or exhaust blockage.

本発明において、好ましくは、前記制御部は、前記2次熱交換器への入水温度と閾値との対応関係を示すデータを記憶した記憶部を有しており、前記2次熱交換器の熱交換効率との比較対象となる閾値は、前記記憶部に記憶されたデータに基づいて決定するように構成されている。   In this invention, Preferably, the said control part has a memory | storage part which memorize | stored the data which show the corresponding | compatible relationship between the incoming water temperature to the said secondary heat exchanger, and a threshold value, The heat | fever of the said secondary heat exchanger The threshold value to be compared with the exchange efficiency is configured to be determined based on the data stored in the storage unit.

このような構成によれば、閾値を決定する処理を、記憶部に記憶されたデータに基づい
て迅速に行なうことができる。
According to such a structure, the process which determines a threshold value can be rapidly performed based on the data memorize | stored in the memory | storage part.

本発明のその他の特徴および利点は、添付図面を参照して以下に行なう発明の実施の形態の説明から、より明らかになるであろう。   Other features and advantages of the present invention will become more apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

本発明に係る潜熱回収型給湯装置を模式的に示す説明図である。It is explanatory drawing which shows typically the latent heat recovery type hot-water supply apparatus which concerns on this invention. 図1に示す潜熱回収型給湯装置に具備された制御部に記憶されている閾値のデータの一例を模式的に示す図である。It is a figure which shows typically an example of the data of the threshold value memorize | stored in the control part with which the latent heat recovery type hot-water supply apparatus shown in FIG. 1 was equipped. 図1に示す潜熱回収型給湯装置に具備された制御部の動作処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation processing procedure of the control part with which the latent heat recovery type hot water supply apparatus shown in FIG. 1 was equipped.

以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1に示す潜熱回収型給湯装置Aは、ガスバーナなどのバーナ3、このバーナ3によって発生された燃焼ガスから顕熱を回収するための1次熱交換器1、この1次熱交換器1を通過した後の燃焼ガスから潜熱を回収するための2次熱交換器2、および制御部4を備えている。   A latent heat recovery type hot water supply apparatus A shown in FIG. 1 includes a burner 3 such as a gas burner, a primary heat exchanger 1 for recovering sensible heat from the combustion gas generated by the burner 3, and the primary heat exchanger 1. A secondary heat exchanger 2 for recovering latent heat from the combustion gas after passing, and a control unit 4 are provided.

1次熱交換器1および2次熱交換器2は、内部に湯水を流通させる伝熱管10,20を備えており、入水口50に供給された湯水は、流路51を通過して2次熱交換器2に入水して加熱された後に、流路52を介して1次熱交換器1に送られる。ただし、流路52は、1次熱交換器1の出湯側の流路53に対し、バイパス流路54を介して繋がっており、1次熱交換器1には、流路52中の湯水の全量は供給されず、一部の湯水が供給されるように構成されている。このような構成によれば、1次熱交換器1の湯水流量が少量化されるために、1次熱交換器1の高温化が図られ、1次熱交換器1における結露防止性能を高めることができる。バイパス流路54を通過した湯水は、1次熱交換器1の出湯側の流路53に合流し、それらの混合湯水が出湯口55から所望の給湯先に供給される。流路51,52には、入水温度および2次熱交換器出湯温度を検出するための温度センサSa,Sbや、入水流量検出用の流量センサScなどが設けられている。   The primary heat exchanger 1 and the secondary heat exchanger 2 are provided with heat transfer pipes 10 and 20 for circulating hot water therein, and the hot water supplied to the water inlet 50 passes through the flow path 51 and is secondary. After entering the heat exchanger 2 and being heated, it is sent to the primary heat exchanger 1 through the flow path 52. However, the flow path 52 is connected to the flow path 53 on the outlet side of the primary heat exchanger 1 via a bypass flow path 54, and the hot water in the flow path 52 is connected to the primary heat exchanger 1. The whole amount is not supplied, and a part of hot water is supplied. According to such a configuration, since the hot water flow rate of the primary heat exchanger 1 is reduced, the temperature of the primary heat exchanger 1 is increased, and the dew condensation prevention performance in the primary heat exchanger 1 is enhanced. be able to. The hot water that has passed through the bypass channel 54 joins the channel 53 on the outlet side of the primary heat exchanger 1, and the mixed hot water is supplied from the outlet port 55 to a desired hot water supply destination. The flow paths 51 and 52 are provided with temperature sensors Sa and Sb for detecting an incoming water temperature and a secondary heat exchanger hot water temperature, a flow sensor Sc for detecting an incoming water flow rate, and the like.

制御部4は、マイクロコンピュータなどを用いて構成されており、潜熱回収型給湯装置Aの各部の動作制御を実行可能であるが、これに加えて、1次熱交換器1に缶石付着や排気閉塞などの異常が生じていないか否かの判断処理も実行する。その具体的な内容については後述するが、前記判断処理を行なうためのデータとして、制御部4の記憶部40には、図2に示すような閾値ThのデータD1が記憶されている。   The control unit 4 is configured using a microcomputer or the like, and can control the operation of each part of the latent heat recovery hot water supply device A. In addition to this, the primary heat exchanger 1 A process for determining whether or not an abnormality such as exhaust blockage has occurred is also executed. Although the specific contents will be described later, data D1 of a threshold value Th as shown in FIG. 2 is stored in the storage unit 40 of the control unit 4 as data for performing the determination process.

図2において、破線で示すデータD0は、入水温度と、1次熱交換器1が正常(缶石付着なし、排気閉塞なしの状態)である場合の2次熱交換器2の熱交換効率を示すものである。閾値ThのデータD1は、前記した熱交換効率の値に、所定の値α(たとえば、3%など)を上乗せしたものであり、様々な入水温度に対応して設定されている。   In FIG. 2, data D0 indicated by a broken line represents the water exchange temperature and the heat exchange efficiency of the secondary heat exchanger 2 when the primary heat exchanger 1 is normal (the state in which there is no scale deposit and no exhaust blockage). It is shown. The data Th1 of the threshold value Th is obtained by adding a predetermined value α (for example, 3%) to the above-described heat exchange efficiency value, and is set corresponding to various incoming water temperatures.

次に、前記した潜熱回収型給湯装置の作用について説明する。併せて、制御部4の動作処理手順の一例について、図3のフローチャートを参照しつつ説明する。   Next, the operation of the above-described latent heat recovery type hot water supply apparatus will be described. In addition, an example of the operation processing procedure of the control unit 4 will be described with reference to the flowchart of FIG.

まず、2次熱交換器2および1次熱交換器1に湯水供給がなされ、かつバーナ3が燃焼駆動を開始すると、制御部4は、2次熱交換器2の熱交換効率ηの演算処理を行なう(S1)。熱交換効率ηは、次の式1により求めることができる。
η=Q1/Q2 …式1
Q1は、2次熱交換器2による湯水加熱量であり、Q1=(T2−T1)・W で求められる。T1は入水温度、T2は2次熱交換器出湯温度、Wは入水流量であり、これらは温度センサSa,Sb、および流量センサScを用いて検出される。
Q2は、バーナ3の燃焼熱量であり、たとえばバーナ3の燃料ガス消費量と燃料ガスの発熱量との積として求めることができる。
First, when hot water is supplied to the secondary heat exchanger 2 and the primary heat exchanger 1 and the burner 3 starts combustion driving, the control unit 4 calculates the heat exchange efficiency η of the secondary heat exchanger 2. (S1). The heat exchange efficiency η can be obtained by the following equation 1.
η = Q1 / Q2 Equation 1
Q1 is the amount of hot water heated by the secondary heat exchanger 2, and is obtained by Q1 = (T2-T1) · W. T1 is the incoming water temperature, T2 is the secondary heat exchanger tapping temperature, W is the incoming water flow rate, and these are detected using the temperature sensors Sa and Sb and the flow rate sensor Sc.
Q2 is the amount of combustion heat of the burner 3, and can be obtained, for example, as the product of the amount of fuel gas consumed by the burner 3 and the amount of heat generated by the fuel gas.

次いで、制御部4は、図2に示したデータD1から、入水温度T1に対応する閾値Thのデータを選択し、この閾値Thと前記した熱交換効率ηとを比較する(S2,S3)。この比較により、η>Th の関係が成立し、この関係が所定時間以上継続すれば、その時点で1次熱交換器1に缶石付着あるいは排気閉塞などの異常が生じたものと判断される(S3:YES,S4:YES,S5)。図3には示されていないが、この場合には異常が生じた旨の報知動作や、バーナ3の運転停止措置が採られる。これとは異なり、η>Th の関係が成立しない場合には、異常がある旨の判断はなされない(S3:NO,S6)。前記した一連の処理は、潜熱回収型給湯装置Aの運転中は継続して繰り返し実行される。   Next, the control unit 4 selects data on the threshold value Th corresponding to the incoming water temperature T1 from the data D1 shown in FIG. 2, and compares this threshold value Th with the above-described heat exchange efficiency η (S2, S3). As a result of this comparison, a relationship of η> Th is established, and if this relationship continues for a predetermined time or more, it is determined that abnormality such as adhesion of stone or exhaust blockage has occurred in the primary heat exchanger 1 at that time. (S3: YES, S4: YES, S5). Although not shown in FIG. 3, in this case, a notification operation that an abnormality has occurred and a measure to stop the operation of the burner 3 are taken. On the other hand, if the relationship of η> Th is not established, it is not determined that there is an abnormality (S3: NO, S6). The series of processes described above are repeatedly executed continuously while the latent heat recovery type hot water supply apparatus A is in operation.

前記した一連の処理によれば、1次熱交換器1に缶石付着あるいは排気閉塞が生じることに起因して、2次熱交換器2の熱交換効率が大きく上昇する現象を生じると、この旨を的確に察知することができる。2次熱交換器2の熱交換効率は、入水温度に左右されるが、前記した処理においては、入水温度によって熱交換効率が変動することを考慮した上で異常の有無が判断されているために、この判断は正確なものとなる。また、異常が生じた場合に、これを早期に発見する上でも好ましいものとなる。さらに、潜熱回収型給湯装置Aには、バイパス流路54が設けられており、1次熱交換器1と2次熱交換器2とに供給される湯水の流量が相違するものの、前記した処理によれば、そのようなことには関係なく、異常の有無についての的確な判断を行なうことが可能である。   According to the above-described series of processing, if a phenomenon occurs in which the heat exchange efficiency of the secondary heat exchanger 2 greatly increases due to the occurrence of scale or exhaust clogging in the primary heat exchanger 1, The effect can be accurately detected. The heat exchange efficiency of the secondary heat exchanger 2 depends on the incoming water temperature, but in the above-described process, it is determined whether there is an abnormality in consideration of the fluctuation of the heat exchange efficiency depending on the incoming water temperature. In addition, this judgment is accurate. In addition, when an abnormality occurs, it is preferable for early detection. Further, the latent heat recovery type hot water supply apparatus A is provided with a bypass flow path 54, and although the flow rates of hot water supplied to the primary heat exchanger 1 and the secondary heat exchanger 2 are different, the above-described processing is performed. Therefore, it is possible to make an accurate determination as to whether or not there is an abnormality regardless of such a situation.

本発明は、上述した実施形態の内容に限定されない。本発明に係る潜熱回収型給湯装置の各部の具体的な構成は、本発明の意図する範囲内において種々に設計変更自在である。   The present invention is not limited to the contents of the above-described embodiment. The specific configuration of each part of the latent heat recovery type hot water supply apparatus according to the present invention can be variously modified within the range intended by the present invention.

本発明においては、上述した実施形態のバイパス流路54を無くした構成とすることもできる。1次熱交換器および2次熱交換器は、伝熱管を用いて熱回収を図るタイプであればよい。バーナは、ガスバーナに代えて、オイルバーナとすることもできる。   In this invention, it can also be set as the structure which eliminated the bypass flow path 54 of embodiment mentioned above. The primary heat exchanger and the secondary heat exchanger may be any type that performs heat recovery using a heat transfer tube. The burner may be an oil burner instead of the gas burner.

A 潜熱回収型給湯装置
1 1次熱交換器
2 2次熱交換器
3 バーナ
4 制御部
10 伝熱管
20 伝熱管
40 記憶部
A latent heat recovery type hot water supply device 1 primary heat exchanger 2 secondary heat exchanger 3 burner 4 control unit 10 heat transfer tube 20 heat transfer tube 40 storage unit

Claims (3)

バーナにより発生された燃焼ガスから顕熱を回収するための伝熱管を有する1次熱交換器と、
この1次熱交換器によって熱回収を終えた後の燃焼ガスから潜熱を回収するための伝熱管を有する2次熱交換器と、
前記2次熱交換器の熱交換効率を算出可能な制御部と、
を備えており、
前記2次熱交換器に入水して加熱された後の湯水が、前記1次熱交換器に送られてさらに加熱されるように構成されている、潜熱回収型給湯装置であって、
前記制御部は、前記2次熱交換器の熱交換効率を算出した場合には、この熱交換効率を所定の閾値と比較し、この閾値よりも前記算出した熱交換効率が大きい場合には異常があると判断する一方、そうでない場合には異常はないと判断するとともに、前記閾値については、前記2次熱交換器への入水温度に対応させて変更するように構成されていることを特徴とする、潜熱回収型給湯装置。
A primary heat exchanger having a heat transfer tube for recovering sensible heat from the combustion gas generated by the burner;
A secondary heat exchanger having a heat transfer tube for recovering latent heat from the combustion gas after heat recovery by the primary heat exchanger;
A control unit capable of calculating the heat exchange efficiency of the secondary heat exchanger;
With
A latent heat recovery type hot water supply device configured such that hot water after entering and heating the secondary heat exchanger is sent to the primary heat exchanger and further heated,
When calculating the heat exchange efficiency of the secondary heat exchanger, the control unit compares the heat exchange efficiency with a predetermined threshold value, and abnormal when the calculated heat exchange efficiency is larger than the threshold value. While it is determined that there is no abnormality, it is determined that there is no abnormality, and the threshold value is configured to be changed in accordance with the temperature of water entering the secondary heat exchanger. A latent heat recovery type hot water supply device.
請求項1に記載の潜熱回収型給湯装置であって、
前記2次熱交換器を通過した後の湯水の一部を、前記1次熱交換器に供給することなく前記1次熱交換器の出湯側経路に流れさせるためのバイパス流路を備えている、潜熱回収型給湯装置。
The latent heat recovery hot water supply device according to claim 1,
A bypass flow path is provided for allowing a part of the hot water after passing through the secondary heat exchanger to flow to the hot water outlet side path of the primary heat exchanger without being supplied to the primary heat exchanger. , Latent heat recovery type hot water supply device.
請求項1または2に記載の潜熱回収型給湯装置であって、
前記制御部は、前記2次熱交換器への入水温度と閾値との対応関係を示すデータを記憶した記憶部を有しており、
前記2次熱交換器の熱交換効率との比較対象となる閾値は、前記記憶部に記憶されたデータに基づいて決定するように構成されている、潜熱回収型給湯装置。
The latent heat recovery type hot water supply device according to claim 1 or 2,
The control unit has a storage unit that stores data indicating a correspondence relationship between a temperature of water entering the secondary heat exchanger and a threshold value;
The latent heat recovery type hot water supply apparatus configured to determine a threshold value to be compared with a heat exchange efficiency of the secondary heat exchanger based on data stored in the storage unit.
JP2012191485A 2012-08-31 2012-08-31 Latent heat recovery type hot water supply device Pending JP2014047980A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012191485A JP2014047980A (en) 2012-08-31 2012-08-31 Latent heat recovery type hot water supply device
US14/011,570 US20140060458A1 (en) 2012-08-31 2013-08-27 Latent heat recovery type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191485A JP2014047980A (en) 2012-08-31 2012-08-31 Latent heat recovery type hot water supply device

Publications (1)

Publication Number Publication Date
JP2014047980A true JP2014047980A (en) 2014-03-17

Family

ID=50185672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191485A Pending JP2014047980A (en) 2012-08-31 2012-08-31 Latent heat recovery type hot water supply device

Country Status (2)

Country Link
US (1) US20140060458A1 (en)
JP (1) JP2014047980A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205709A (en) * 2015-04-22 2016-12-08 株式会社パロマ Water heater
JP2017026280A (en) * 2015-07-28 2017-02-02 株式会社ノーリツ Water heater
JP2018159486A (en) * 2017-03-22 2018-10-11 株式会社ノーリツ Hot water supply system and control method for the same
JP2018159487A (en) * 2017-03-22 2018-10-11 株式会社ノーリツ Hot water supply system and control method for the same
US10168047B2 (en) 2015-10-20 2019-01-01 Noritz Corporation Water heating apparatus and system having a scale detecting function
JP2020085278A (en) * 2018-11-19 2020-06-04 株式会社パロマ Water heater
US11639799B2 (en) 2020-12-17 2023-05-02 Noritz Corporation Hot water supply device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586646B1 (en) * 2014-03-17 2016-01-19 주식회사 경동나비엔 A hot water heating latent heat exchanger and a condensing gas boiler comprising the same
KR101601709B1 (en) * 2014-04-22 2016-03-10 주식회사 경동나비엔 Method for sensing exhaust port closure of gas boiler
US9726400B2 (en) 2014-07-30 2017-08-08 Rinnai Corporation Hot water supply device
EP2980506B1 (en) * 2014-08-01 2016-06-29 Rinnai Corporation Hot water supply device
CN104501397B (en) * 2014-11-25 2017-12-15 江苏四方锅炉有限公司 A kind of compound backwater condensing natural gas hot water's boiler of fin panel casing
JP6674789B2 (en) * 2016-02-12 2020-04-01 リンナイ株式会社 Combustion water heater
US10612869B2 (en) * 2016-06-24 2020-04-07 Robert Bosch Gmbh Managing a passivation layer of a heat exchanger
CN106440372B (en) * 2016-10-21 2018-01-02 电子科技大学 A kind of discrete type water recovery apparatus, system and its control method based on human testing
CN112146265A (en) * 2020-09-04 2020-12-29 珠海格力电器股份有限公司 Multistage accurate temperature control water heater and control method
US20230375228A1 (en) * 2022-05-20 2023-11-23 Rheem Manufacturing Company Systems and methods for detecting scale deposits in a fluid heating device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910000677B1 (en) * 1985-07-15 1991-01-31 도오도오 기기 가부시기가이샤 Multiple-purpose instantaneous gas water heater
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
PT853221E (en) * 1994-07-21 2004-01-30 Mitsubishi Electric Corp CONTROL DETECTION APPARATUS FOR A REFRIGERATION CONDITIONING APPLIANCE USING A REFRIGERANT NOT AZEOTROPE
US7058457B2 (en) * 2003-03-04 2006-06-06 Noritz Corporation Hot water supply system
JP4250127B2 (en) * 2004-08-06 2009-04-08 高木産業株式会社 Hot water supply apparatus and freeze prevention method thereof
JP2011047566A (en) * 2009-08-26 2011-03-10 Paloma Industries Ltd Water heater
US9557752B2 (en) * 2010-02-24 2017-01-31 Purpose Company Limited Hot water supply apparatus and heat medium control method
US8695539B2 (en) * 2010-10-19 2014-04-15 Purpose Company Limited Water heater and control method therefor
JP5742553B2 (en) * 2011-07-28 2015-07-01 株式会社ノーリツ Combustion device
JP6085967B2 (en) * 2012-12-26 2017-03-01 株式会社ノーリツ Heat exchanger and water heater provided with the same
JP6236784B2 (en) * 2013-01-10 2017-11-29 株式会社ノーリツ Heat exchanger and water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205709A (en) * 2015-04-22 2016-12-08 株式会社パロマ Water heater
JP2017026280A (en) * 2015-07-28 2017-02-02 株式会社ノーリツ Water heater
US10168047B2 (en) 2015-10-20 2019-01-01 Noritz Corporation Water heating apparatus and system having a scale detecting function
JP2018159486A (en) * 2017-03-22 2018-10-11 株式会社ノーリツ Hot water supply system and control method for the same
JP2018159487A (en) * 2017-03-22 2018-10-11 株式会社ノーリツ Hot water supply system and control method for the same
JP2020085278A (en) * 2018-11-19 2020-06-04 株式会社パロマ Water heater
US11639799B2 (en) 2020-12-17 2023-05-02 Noritz Corporation Hot water supply device

Also Published As

Publication number Publication date
US20140060458A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2014047980A (en) Latent heat recovery type hot water supply device
JP6370136B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP4854020B2 (en) Heat exchanger abnormality detection device and heat exchanger abnormality detection method
JP6398325B2 (en) Water heater
US11920923B2 (en) Water heater, and scale detection system and method
JP5370807B2 (en) Latent heat recovery water heater
JP6598003B2 (en) Water heater
JP6168958B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP5018200B2 (en) Combustion device
JP6551783B2 (en) Heat pump device and hot water supply device provided with the same
CN113252844B (en) Method for detecting scale formation of heat exchange part of gas water heater and gas water heater
JP5826539B2 (en) Boiler blow control device and blow control method
JP2008215657A (en) Hot water heater
JP5975956B2 (en) Abnormality notification method in water heater and water heater
JP3923496B2 (en) Supply control device for working medium in heat exchanger
JP4827093B2 (en) Boiler equipment
JP2020176729A (en) Heat source device
US11639799B2 (en) Hot water supply device
JP2015092129A (en) Water heating system and abnormality notification method in the same
JP2019124366A (en) Highly efficient water heater
JP7165593B2 (en) Combustion device
CN110873462B (en) Carbon deposition reminding control method for gas water heater with carbon deposition reminding function
JP6045108B2 (en) One can two water channel combustion equipment
JP6798249B2 (en) Boiler efficiency calculation method for latent heat recovery boiler
JP2016114311A (en) Hot water boiler