[go: up one dir, main page]

JP2014007908A - Rapid charging method and apparatus - Google Patents

Rapid charging method and apparatus Download PDF

Info

Publication number
JP2014007908A
JP2014007908A JP2012143519A JP2012143519A JP2014007908A JP 2014007908 A JP2014007908 A JP 2014007908A JP 2012143519 A JP2012143519 A JP 2012143519A JP 2012143519 A JP2012143519 A JP 2012143519A JP 2014007908 A JP2014007908 A JP 2014007908A
Authority
JP
Japan
Prior art keywords
storage battery
power
charging
receiving side
external storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012143519A
Other languages
Japanese (ja)
Inventor
Seijiro Yajima
誠次郎 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012143519A priority Critical patent/JP2014007908A/en
Publication of JP2014007908A publication Critical patent/JP2014007908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】外部蓄電池の連続充電を可能とし、更に、設備用蓄電池の容量を小さくする。
【解決手段】外部蓄電池50を、商用電源10からの受電側の電力と共に充電するための設備用蓄電池22を用いる急速充電方法において、充電前半の定電流充電時は、受電側からの電力と共に設備用蓄電池22から外部蓄電池50へ電力を供給し、充電後半の定電圧充電時は、受電側から設備用蓄電池22へ電力を供給して該設備用蓄電池22を充電する。
【選択図】図4
An external storage battery can be continuously charged, and the capacity of the storage battery for facilities is reduced.
In a rapid charging method using a storage battery for facilities 22 for charging an external storage battery 50 together with power on the power receiving side from a commercial power supply 10, the equipment is installed together with power from the power receiving side during constant current charging in the first half of charging. Electric power is supplied from the storage battery 22 to the external storage battery 50, and at the time of constant voltage charging in the second half of charging, the power is supplied from the power receiving side to the equipment storage battery 22 to charge the equipment storage battery 22.
[Selection] Figure 4

Description

本発明は、急速充電方法及び装置に係り、特に、電気自動車(EVとも称する)に搭載された動力用のリチウムイオン蓄電池を連続して急速充電する際に用いるのに好適な、急速充電方法及び装置に関する。   The present invention relates to a rapid charging method and apparatus, and more particularly, to a rapid charging method and apparatus suitable for use in continuously charging a power lithium ion storage battery mounted on an electric vehicle (also referred to as EV). Relates to the device.

近年、石油資源の枯渇や地球温暖化の対策として、電気エネルギーを駆動源とする電気自動車が市場に普及してきているが、電気自動車に対しても、通常の自動車給油と同等時間で充電できる急速充電装置が求められている。   In recent years, electric vehicles that use electric energy as a driving source have become widespread in the market as a countermeasure against the depletion of petroleum resources and global warming. However, electric vehicles can also be rapidly charged in the same amount of time as ordinary car refueling. There is a need for a charging device.

従来、急速充電できる装置として、例えば大容量の設備用蓄電池を用意し、電気自動車への充電休止時に、この設備用蓄電池を低電流で長時間をかけて充電しておき、電気自動車の外部蓄電池を充電するときには、設備用蓄電池から大電流を放電する装置が開発されている(例えば特許文献1参照)。   Conventionally, as a device capable of rapid charging, for example, a large-capacity facility storage battery is prepared, and when the charging to the electric vehicle is stopped, the facility storage battery is charged over a long time with a low current, and the external storage battery of the electric vehicle When charging a battery, a device for discharging a large current from a storage battery for equipment has been developed (see, for example, Patent Document 1).

ところで、現在発表されている電気自動車の外部蓄電池に対する急速充電装置の仕様としては、直流400V、電流125Aクラスの急速充電装置が想定され、それに伴って商用電源ラインからの電源供給も回路効率90%として、出力50KWの時、入力電力は55KWを超えることが想定される。これを満足する大電力の供給を受けるためには、50KW未満の低電力受電の場合と異なり、例えば6600Vの高圧から200Vの低圧に変換する変圧設備が必要となり、電力会社との契約が大規模となるという問題があった。   By the way, as the specifications of the quick charging device for the external storage battery of the electric vehicle which is currently announced, a quick charging device of DC 400V, current 125A class is assumed, and accordingly, the power supply from the commercial power supply line also has a circuit efficiency of 90%. When the output is 50 KW, the input power is assumed to exceed 55 KW. In order to receive the supply of large power that satisfies this requirement, unlike the case of low power reception of less than 50 KW, for example, a transformer facility that converts from a high voltage of 6600 V to a low voltage of 200 V is required, and the contract with the power company is large. There was a problem of becoming.

このような問題点を解決するべく、出願人らは、特許文献2で、商用電源の交流電力を直流電力に変換する直流電源器の出力と設備用蓄電器の出力を直列回路で加算して外部蓄電池に供給することを提案し、特許文献3では、動力用の外部蓄電池を充電する際に、設備用蓄電池に加えて、商用電源を用いて充電する直流電源器を、設備用蓄電池と直列又は並列に接続して、外部蓄電池への充電に用いることを提案している。   In order to solve such problems, the applicants in Patent Document 2 add the output of the DC power supply that converts the AC power of the commercial power source to DC power and the output of the facility capacitor in a series circuit to externally Proposed to supply to a storage battery, in Patent Document 3, when charging an external storage battery for power, in addition to a storage battery for equipment, a DC power supply that is charged using a commercial power source is connected in series with the storage battery for equipment or It is proposed to connect in parallel and use it for charging external storage batteries.

特開平5−207668号公報JP-A-5-207668 特開2011−200104号公報JP 2011-200104 A 特開2012−19602号公報JP 2012-19602 A

しかしながら、特許文献2や3に記載の技術では、外部蓄電池に充電する時に、適切な電流電圧制御ができないという問題点を有していた。   However, the techniques described in Patent Documents 2 and 3 have a problem that appropriate current voltage control cannot be performed when charging an external storage battery.

特に、近年、電気自動車の外部蓄電池として広く用いられるようになっているリチウムイオン蓄電池では、図1に例示する如く、最初に300V(図では350V)〜400Vで125A程度の定電流充電をし、例えばSOC(State of Charge)50%となった充電進行後は、安全のため400Vを上限とした定電圧充電を電流が125Aから0Aになるまで行うのが通常である。   In particular, in recent years, in a lithium ion storage battery that has been widely used as an external storage battery of an electric vehicle, as illustrated in FIG. 1, first, constant current charging of about 125 A is performed from 300 V (350 V in the figure) to 400 V, For example, after charging progresses to a SOC (State of Charge) of 50%, constant voltage charging with an upper limit of 400 V is usually performed until the current changes from 125 A to 0 A for safety.

しかしながら、特許文献2や3の構成では、外部蓄電池の充電が連続すると、図2に例示する如く、設備用蓄電池の残量が低下していき、図3に例示する如く、途中で充電停止となり、充電を連続的に行うことは困難であった。   However, in the configurations of Patent Documents 2 and 3, when the external storage battery continues to be charged, the remaining amount of the storage battery for facilities decreases as illustrated in FIG. 2, and charging is stopped halfway as illustrated in FIG. It was difficult to continuously charge.

また、設備用蓄電池に必要な充電量を確保するために、設備用蓄電池の容量を大きくする必要があり、大型、且つ高価になるという問題もあった。   Moreover, in order to ensure the charge amount required for the storage battery for facilities, it is necessary to increase the capacity of the storage battery for facilities, and there is also a problem that it is large and expensive.

本発明は、前記従来の問題点を解消するべくなされたもので、外部蓄電池の連続充電を可能とし、更に、設備用蓄電池の容量を小さくすることができるようにすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and it is an object of the present invention to enable continuous charging of an external storage battery and to further reduce the capacity of a storage battery for facilities.

本発明は、外部蓄電池を、商用電源からの受電側の電力と共に充電するための設備用蓄電池を用いる急速充電方法において、図4に例示する如く、充電前半の定電流充電時は、受電側からの電力と共に設備用蓄電池から外部蓄電池へ電力を供給し、充電後半の定電圧充電時は、受電側から設備用蓄電池へ電力を供給して該設備用蓄電池を充電することにより、前記課題を解決したものである。   In the rapid charging method using the storage battery for facilities for charging the external storage battery together with the power on the power receiving side from the commercial power source, as illustrated in FIG. 4, at the time of constant current charging in the first half of charging, from the power receiving side. The above problem is solved by supplying power from the storage battery for equipment to the external storage battery together with the power of the battery, and charging the storage battery for power supply by supplying power from the power receiving side to the storage battery for equipment during the constant voltage charging in the second half of charging. It is a thing.

また、外部蓄電池を、商用電源からの受電側の電力と共に充電するための設備用蓄電池を有する急速充電装置において、充電前半の定電流充電時は、受電側からの電力と共に設備用蓄電池から外部蓄電池へ電力を供給し、充電後半の定電圧充電時は、受電側から設備用蓄電池へ電力を供給して該設備用蓄電池を充電する双方向充電制御手段を備えたことを特徴とする急速充電装置を提供するものである。   In addition, in the rapid charging apparatus having the storage battery for facilities for charging the external storage battery together with the power on the power receiving side from the commercial power source, during the constant current charging in the first half of charging, the power storage battery for the external storage battery is connected to the external storage battery from the power receiving side. Quick charge device comprising bidirectional charging control means for supplying power to the facility storage battery from the power receiving side during constant voltage charging in the second half of charging and charging the facility storage battery Is to provide.

ここで、前記双方向充電制御手段が、受電側の電力と外部蓄電池への充電に必要な電力を比較するコントローラと、該コントローラの比較結果に応じて、受電側の電力が外部蓄電池への充電に不足する時は、設備用蓄電池からも外部蓄電池へ電力を供給し、受電側の電力が外部蓄電池への充電に必要な電力より大である時は、受電側から設備用蓄電池へ電力を供給するように制御される双方向直流電源器を含むようにすることができる。   Here, the bidirectional charging control unit compares the power on the power receiving side with the power required for charging the external storage battery, and the power on the power receiving side charges the external storage battery according to the comparison result of the controller. When power is insufficient, supply power from the storage battery to the external storage battery, and when the power on the power receiving side is greater than the power required to charge the external storage battery, supply power from the power receiving side to the storage battery for equipment. A bidirectional DC power supply that is controlled to do so can be included.

また、前記双方向直流電源器を、双方向DC/DCコンバータとすることができる。   The bidirectional DC power supply can be a bidirectional DC / DC converter.

更に、前記双方向DC/DCコンバータの外部蓄電池側の電圧を一定に制御することができる。   Furthermore, the voltage on the external storage battery side of the bidirectional DC / DC converter can be controlled to be constant.

本発明によれば、外部蓄電池の充電休止時だけでなく、外部蓄電池への充電中であっても、その充電量が少ない時に同時平行して、設備用蓄電池に充電することができ、外部蓄電池への連続充電性能を向上することができる。従って、設備用蓄電池の必要な容量が小さくてすみ、例えば1/2に減らすことによって、急速充電装置のコストの大部分を占める設備用蓄電池のコストを1/2に減らすことができる。   According to the present invention, not only when charging of an external storage battery is stopped, but also during charging of the external storage battery, the storage battery for facilities can be charged in parallel at the same time when the amount of charge is small. Continuous charging performance can be improved. Accordingly, the required capacity of the facility storage battery is small, and for example, by reducing it to 1/2, the cost of the facility storage battery that occupies most of the cost of the rapid charging apparatus can be reduced to 1/2.

リチウムイオン蓄電池の充電状態の例を示す図The figure which shows the example of the charge condition of a lithium ion storage battery 従来例の問題点を示すタイムチャートTime chart showing the problems of the conventional example 従来例と本発明の実施例におけるEV充電回数と蓄電池残量の関係の例を比較して示すタイムチャートThe time chart which compares and shows the example of the relationship between the number of times of EV charge in the prior art example and the embodiment of the present invention and the remaining battery capacity 本発明の原理を示す図Diagram showing the principle of the present invention 本発明の実施形態の基本的な構成を示す図The figure which shows the basic composition of embodiment of this invention. 同じく詳細構成を示す図Figure showing the same detailed configuration 前記実施形態における充電時間と蓄電池残量の関係の例を示すタイムチャートThe time chart which shows the example of the relationship between the charging time and storage battery residual amount in the said embodiment

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の基本的な構成を図5に示す。   A basic configuration of the present embodiment is shown in FIG.

本実施形態は、電気自動車の動力用蓄電池等の外部蓄電池50を、商用電源10からの受電側の電力と共に充電するための設備用蓄電池22を有する急速充電装置20において、前記商用電源10から供給される受電側の電力を外部蓄電池50や設備用蓄電池22への充電に適した直流電力に変換するための直流電源器24と、受電側の電力と外部蓄電池50への充電に必要な電力を比較するコントロ−ラ26と、該コントローラ26の比較結果に応じて、受電側の電力が外部蓄電池50への充電に不足する時は、設備用蓄電池22からも外部蓄電池50へ電力を供給し、受電側の電力が外部蓄電池50への充電に必要な電力より大であるときは、受電側から設備用蓄電池22へ電流を供給して、該設備用蓄電池22を充電するように制御される双方向直流電源器28を備えている。   In the present embodiment, an external storage battery 50 such as a power storage battery for an electric vehicle is supplied from the commercial power supply 10 in the quick charging device 20 having the storage battery 22 for facilities together with the power on the power receiving side from the commercial power supply 10. DC power supply 24 for converting the power on the power receiving side to DC power suitable for charging the external storage battery 50 or the facility storage battery 22, and the power required for charging the power on the power receiving side and the external storage battery 50 According to the comparison result of the controller 26 to be compared with the controller 26, when the power on the power receiving side is insufficient for charging the external storage battery 50, the power is supplied from the facility storage battery 22 to the external storage battery 50, When the power on the power receiving side is larger than the power required for charging the external storage battery 50, the current is supplied from the power receiving side to the facility storage battery 22 so that the facility storage battery 22 is charged. That includes a bidirectional DC power source 28.

前記急速充電装置20の具体的な構成例を図6に示す。図において、22Aは、設備用蓄電池22を構成するリチウムイオン蓄電池、22Bは、同じくバッテリー監視モジュール、24Aは、直流電源器24を構成するAC/DCコンバータ、24Bは、同じくDC/ACインバータ、24Cは、同じく例えば15kHzの絶縁トランス、24Dは、同じく整流器、28Aは、双方向直流電源器28を構成する双方向DC/DCコンバータ、30は、入力側に設けられた、地絡検出時に遮断されるブレーカ、32は、非常時にコントローラ26からの指令により切断されるメインスイッチ、34は電圧計、36は電流計、38はヒューズ、40はダイオード、42は地絡検出器、44は、リチウムイオン蓄電池22Aが過熱した時に、これを切離すためのスイッチである。   A specific configuration example of the quick charging device 20 is shown in FIG. In the figure, 22A is a lithium ion storage battery constituting the facility storage battery 22, 22B is the same battery monitoring module, 24A is an AC / DC converter constituting the DC power supply 24, 24B is also a DC / AC inverter, 24C. Similarly, for example, a 15 kHz isolation transformer, 24D is also a rectifier, 28A is a bidirectional DC / DC converter constituting the bidirectional DC power supply 28, and 30 is provided on the input side and is cut off when a ground fault is detected. Breaker, 32 is a main switch that is cut in response to an instruction from the controller 26, 34 is a voltmeter, 36 is an ammeter, 38 is a fuse, 40 is a diode, 42 is a ground fault detector, and 44 is a lithium ion This is a switch for disconnecting the storage battery 22A when it overheats.

前記双方向DC/DCコンバータ28Aは、内部のIGBT素子で電流を切り分けて直流電源を出し入れしており、受電側の電力と外部蓄電池50への必要充電電力を見ながら、外部蓄電池50に必要な時は設備用蓄電池22から外部蓄電池50側へ、余った時は受電側から設備用蓄電池22側へ電力を流すよう制御される。実際は、中央のDC合流部Aが一定の電圧となるように、コントローラ26が双方向DC/DCコンバータ28Aを制御している。   The bi-directional DC / DC converter 28A separates a current by an internal IGBT element and puts in and out a direct current power source, and is necessary for the external storage battery 50 while observing the power on the power receiving side and the necessary charging power to the external storage battery 50. The power is controlled to flow from the facility storage battery 22 to the external storage battery 50 side, and when it is left, the power is supplied from the power receiving side to the facility storage battery 22 side. Actually, the controller 26 controls the bidirectional DC / DC converter 28A so that the central DC junction A has a constant voltage.

ここで、ブレーカ30、メインスイッチ32、AC/DCコンバータ24A、DC/ACインバータ24B、絶縁トランス24C、整流器24Dを含む、図の上段の構成は一般的な構成であるため、詳細な説明は省略する。   Here, since the configuration in the upper part of the drawing including the breaker 30, the main switch 32, the AC / DC converter 24A, the DC / AC inverter 24B, the isolation transformer 24C, and the rectifier 24D is a general configuration, detailed description is omitted. To do.

図6のような構成において、リチウムイオン蓄電池22Aの蓄電量が十分であり、DC合流部Aの電圧が十分である場合には、商用電源10側から最大電力を受け、不足分だけ設備用蓄電池22から供給する。一方、設備用蓄電池22の充電量が不足して、その電池電圧が下がっても、双方向DC/DCコンバータ28Aで昇圧し、中央のDC合流部Aには影響しない。ただし、設備用蓄電池22が空になった場合には、商用電源10側からの最大電力は出せず、急速充電が中程度の充電に遅くなる。なお、図4に示した如く、定電圧充電に移行して、外部蓄電池50への充電に余裕がある場合には、外部蓄電池50の充電中であっても設備用蓄電池22が補充電され、図3中に示した如く、外部蓄電池50の充電終了後に設備用蓄電池22の蓄電量が不足することが回避される。   In the configuration as shown in FIG. 6, when the storage amount of the lithium ion storage battery 22A is sufficient and the voltage of the DC junction section A is sufficient, the storage battery for facilities receives the maximum power from the commercial power supply 10 side and only the shortage. 22 is supplied. On the other hand, even if the charge amount of the facility storage battery 22 is insufficient and the battery voltage drops, the voltage is boosted by the bidirectional DC / DC converter 28A and does not affect the central DC junction A. However, when the facility storage battery 22 becomes empty, the maximum power from the commercial power supply 10 side cannot be output, and the quick charge is delayed to a medium charge. In addition, as shown in FIG. 4, when it transfers to constant voltage charge and there is a margin in the charge to the external storage battery 50, the storage battery 22 for facilities is supplementarily charged even during the charge of the external storage battery 50, As shown in FIG. 3, it is avoided that the storage amount of the facility storage battery 22 is insufficient after the external storage battery 50 is charged.

さらに、図7に示したように、図6の構成にすることによって設備用蓄電池22の残量低下はなくなり、充電を連続的に行うことが可能となった。   Furthermore, as shown in FIG. 7, by using the configuration of FIG. 6, the remaining capacity of the facility storage battery 22 is not reduced, and charging can be performed continuously.

このように、商用電源10の交流電源からの直流電源器24の直流電力と、設備用蓄電池22の直流電力を双方向直流電源器28で並列回路で加算して外部蓄電池50に供給するようにしたので、きめ細かい電流電圧制御が可能となって、設備用蓄電池22の残量が低下しても、外部蓄電池50に充電可能となり、最適充電ができる。更に、外部蓄電池50の充電中であっても、設備用蓄電池22を補充電することができるため、設備用蓄電池22の残量低下を補うことができ、従来は困難であった外部蓄電池50への連続充電が可能となる。   In this way, the DC power of the DC power supply 24 from the AC power supply of the commercial power supply 10 and the DC power of the facility storage battery 22 are added together in a parallel circuit by the bidirectional DC power supply 28 and supplied to the external storage battery 50. Therefore, fine current / voltage control is possible, and even when the remaining capacity of the facility storage battery 22 is reduced, the external storage battery 50 can be charged and optimal charging can be performed. Furthermore, even when the external storage battery 50 is being charged, the facility storage battery 22 can be supplementarily charged. Therefore, a decrease in the remaining capacity of the facility storage battery 22 can be compensated, and the external storage battery 50 that has been difficult in the past can be compensated. Can be continuously charged.

本実施形態においては、双方向直流電源器28を用いているので、きめ細かい電流電圧制御が可能となり、外部蓄電池50への連続充電に寄与している。特に双方向DC/DCコンバータ28Aを用いて、中央のDC合流部Aの電圧を一定に維持するようにした場合は、制御が容易である。なお、双方向直流電源器28の構成や制御方法は、これに限定されない。   In this embodiment, since the bidirectional DC power supply 28 is used, fine current / voltage control is possible, which contributes to continuous charging of the external storage battery 50. In particular, when the bidirectional DC / DC converter 28A is used to keep the voltage of the central DC junction A constant, the control is easy. The configuration and control method of the bidirectional DC power supply 28 are not limited to this.

また、前記実施形態においては、設備用蓄電池22がリチウムイオン蓄電池22Aとされていたが、設備用蓄電池22はこれに限定されない。更に、外部蓄電池50も電気自動車の動力用蓄電池に限定されず、リチウムイオン蓄電池と同様に、充電初期に定電流充電を行い、充電後半に定電圧充電を行う外部蓄電池であれば、本発明を同様に適応できる。   Moreover, in the said embodiment, although the storage battery 22 for facilities was made into the lithium ion storage battery 22A, the storage battery 22 for facilities is not limited to this. Further, the external storage battery 50 is not limited to a power storage battery for an electric vehicle. As in the case of a lithium ion storage battery, the present invention can be applied to any external storage battery that performs constant-current charging at the beginning of charging and constant-voltage charging at the latter half of charging. The same can be applied.

10…商用電源
20…急速充電装置
22…設備用蓄電池
22A…リチウムイオン蓄電池
22B…バッテリー監視モジュール
24…直流電源器
24A…AC/DCコンバータ
24B…DC/ACインバータ
24C…絶縁トランス
24D…整流器
26…コントローラ
28…双方向直流電源器
28A…双方向DC/DCコンバータ
50…外部蓄電池
DESCRIPTION OF SYMBOLS 10 ... Commercial power supply 20 ... Rapid charging device 22 ... Facility storage battery 22A ... Lithium ion storage battery 22B ... Battery monitoring module 24 ... DC power supply 24A ... AC / DC converter 24B ... DC / AC inverter 24C ... Insulation transformer 24D ... Rectifier 26 ... Controller 28 ... Bidirectional DC power supply 28A ... Bidirectional DC / DC converter 50 ... External storage battery

Claims (5)

外部蓄電池を、商用電源からの受電側の電力と共に充電するための設備用蓄電池を用いる急速充電方法において、
充電前半の定電流充電時は、受電側からの電力と共に設備用蓄電池から外部蓄電池へ電力を供給し、充電後半の定電圧充電時は、受電側から設備用蓄電池へ電力を供給して該設備用蓄電池を充電することを特徴とする急速充電方法。
In the quick charging method using the storage battery for facilities for charging the external storage battery together with the power on the power receiving side from the commercial power supply,
During constant current charging in the first half of charging, power is supplied from the storage battery to the external storage battery together with power from the power receiving side, and during constant voltage charging in the second half of charging, power is supplied from the power receiving side to the storage battery for equipment. A rapid charging method, characterized by charging a storage battery.
外部蓄電池を、商用電源からの受電側の電力と共に充電するための設備用蓄電池を有する急速充電装置において、
充電前半の定電流充電時は、受電側からの電力と共に設備用蓄電池から外部蓄電池へ電力を供給し、充電後半の定電圧充電時は、受電側から設備用蓄電池へ電力を供給して該設備用蓄電池を充電する双方向充電制御手段を備えたことを特徴とする急速充電装置。
In the quick charging device having the storage battery for facilities for charging the external storage battery together with the power on the power receiving side from the commercial power supply,
During constant current charging in the first half of charging, power is supplied from the storage battery to the external storage battery together with power from the power receiving side, and during constant voltage charging in the second half of charging, power is supplied from the power receiving side to the storage battery for equipment. A rapid charging apparatus comprising bidirectional charge control means for charging a storage battery for use.
前記双方向充電制御手段が、
受電側の電力と外部蓄電池への充電に必要な電力を比較するコントローラと、
該コントローラの比較結果に応じて、受電側の電力が外部蓄電池への充電に不足する時は、設備用蓄電池からも外部蓄電池へ電力を供給し、受電側の電力が外部蓄電池への充電に必要な電力より大である時は、受電側から設備用蓄電池へ電力を供給するように制御される双方向直流電源器と、
を含むことを特徴とする請求項2に記載の急速充電装置。
The bidirectional charging control means is
A controller that compares the power on the receiving side with the power required to charge the external storage battery;
Depending on the comparison result of the controller, when the power on the power receiving side is insufficient to charge the external storage battery, power is also supplied from the storage battery for facilities to the external storage battery, and the power on the power receiving side is required for charging the external storage battery. A bidirectional DC power supply that is controlled to supply power from the power receiving side to the facility storage battery,
The rapid charging apparatus according to claim 2, wherein
前記双方向直流電源器が、双方向DC/DCコンバータであることを特徴とする請求項3に記載の急速充電装置。   The rapid charging apparatus according to claim 3, wherein the bidirectional DC power supply is a bidirectional DC / DC converter. 前記双方向DC/DCコンバータの外部蓄電池側の電圧が一定に制御されていることを特徴とする請求項4に記載の急速充電装置。   5. The rapid charging apparatus according to claim 4, wherein the voltage on the external storage battery side of the bidirectional DC / DC converter is controlled to be constant.
JP2012143519A 2012-06-26 2012-06-26 Rapid charging method and apparatus Pending JP2014007908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143519A JP2014007908A (en) 2012-06-26 2012-06-26 Rapid charging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143519A JP2014007908A (en) 2012-06-26 2012-06-26 Rapid charging method and apparatus

Publications (1)

Publication Number Publication Date
JP2014007908A true JP2014007908A (en) 2014-01-16

Family

ID=50105189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143519A Pending JP2014007908A (en) 2012-06-26 2012-06-26 Rapid charging method and apparatus

Country Status (1)

Country Link
JP (1) JP2014007908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214014A (en) * 2015-05-13 2016-12-15 株式会社キューヘン Quick charger
JP2017053657A (en) * 2015-09-07 2017-03-16 東洋電機製造株式会社 Battery testing device
CN111624506A (en) * 2020-06-01 2020-09-04 江西优特汽车技术有限公司 Method for testing performance of power lithium ion battery at normal temperature
JP2021048667A (en) * 2019-09-17 2021-03-25 河村電器産業株式会社 Vehicle charging device
JP2021097463A (en) * 2019-12-16 2021-06-24 古河電気工業株式会社 Charger and charging method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099518A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Charger
JPH1023681A (en) * 1996-06-28 1998-01-23 Toshiba Corp Portable electronic apparatus
JP2003199260A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Method and apparatus for charging secondary battery
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2010041819A (en) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The Charging controller for photovoltaic power generating device
JP2011130660A (en) * 2009-12-18 2011-06-30 General Electric Co <Ge> Rapid charging device and method using shared electric and electronic equipment
JP2012019602A (en) * 2010-07-07 2012-01-26 Jfe Engineering Corp Method of quick charging and quick charger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099518A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Charger
JPH1023681A (en) * 1996-06-28 1998-01-23 Toshiba Corp Portable electronic apparatus
JP2003199260A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Method and apparatus for charging secondary battery
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2010041819A (en) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The Charging controller for photovoltaic power generating device
JP2011130660A (en) * 2009-12-18 2011-06-30 General Electric Co <Ge> Rapid charging device and method using shared electric and electronic equipment
JP2012019602A (en) * 2010-07-07 2012-01-26 Jfe Engineering Corp Method of quick charging and quick charger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214014A (en) * 2015-05-13 2016-12-15 株式会社キューヘン Quick charger
JP2017053657A (en) * 2015-09-07 2017-03-16 東洋電機製造株式会社 Battery testing device
JP2021048667A (en) * 2019-09-17 2021-03-25 河村電器産業株式会社 Vehicle charging device
JP7365829B2 (en) 2019-09-17 2023-10-20 河村電器産業株式会社 vehicle charging device
JP2021097463A (en) * 2019-12-16 2021-06-24 古河電気工業株式会社 Charger and charging method
CN111624506A (en) * 2020-06-01 2020-09-04 江西优特汽车技术有限公司 Method for testing performance of power lithium ion battery at normal temperature

Similar Documents

Publication Publication Date Title
JP4954335B2 (en) Quick charger
EP2369712A1 (en) Battery charging apparatus
US10464428B2 (en) Battery-backed DC fast charging system
CN103166278A (en) Recharge systems and methods
KR20200048913A (en) Stand-alone household energy storage system based on waste battery
CN105375539B (en) Automatic balance charger for power battery
KR20130054754A (en) Power applying system for connecting photovoltaic power generating apparatus
JP5632771B2 (en) AC current supply device controller and AC current supply method
CN106385101B (en) Method and device for realizing power supply of high-power elevator automatic rescue device
WO2012144358A1 (en) Power supply device, control method for power supply device, and dc power supply system
WO2020001265A1 (en) External charging method and device for vehicle
KR20130129568A (en) Inverter-charger combined device for electric vehicles
KR20160122918A (en) Apparatus for battery charging of electric vehicle
JP2014007908A (en) Rapid charging method and apparatus
JP2014023231A (en) Onboard charge control unit
KR101437349B1 (en) Charging power feeding system for ev charging infra based on multi function energy storage system of railway traction system
KR20120011363A (en) Charge balancing device and method and system-connected battery charge / discharge system using same
JP2012100443A (en) Fast charging method and device
KR102011507B1 (en) Smart Grid Electric Vehicle and Smart Grid Network System
US20200139834A1 (en) Battery-backed dc fast charging system
KR20180092203A (en) Energy storage apparatus to stabilize power based on wireless power supply for railway vehicles
KR101525727B1 (en) Battery charging type converter and operation mode converting method thereof
JP6099145B2 (en) Charging control device and charging system provided with the same
JP2014073023A (en) Charging control device for vehicles
KR102482466B1 (en) Battery energy storage system for multi-bus fast charger of parking station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020