[go: up one dir, main page]

JP2013256740A - Yield-improving agent for paper manufacturing and paper manufacturing method using the same - Google Patents

Yield-improving agent for paper manufacturing and paper manufacturing method using the same Download PDF

Info

Publication number
JP2013256740A
JP2013256740A JP2012143473A JP2012143473A JP2013256740A JP 2013256740 A JP2013256740 A JP 2013256740A JP 2012143473 A JP2012143473 A JP 2012143473A JP 2012143473 A JP2012143473 A JP 2012143473A JP 2013256740 A JP2013256740 A JP 2013256740A
Authority
JP
Japan
Prior art keywords
papermaking
monomer
polymer compound
mass
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143473A
Other languages
Japanese (ja)
Other versions
JP5847657B2 (en
Inventor
Ken Takeda
健 竹田
Takafumi Inaba
孝文 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT AquaPolymer Inc
Original Assignee
MT AquaPolymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MT AquaPolymer Inc filed Critical MT AquaPolymer Inc
Priority to JP2012143473A priority Critical patent/JP5847657B2/en
Publication of JP2013256740A publication Critical patent/JP2013256740A/en
Application granted granted Critical
Publication of JP5847657B2 publication Critical patent/JP5847657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Abstract

【課題】 填料を多く含む紙料を抄紙する工程に添加することにより、紙料の歩留率、特に填料の歩留率を効果的に向上できる両性高分子化合物からなる製紙用歩留向上剤およびそれを用いた製紙方法を提供する。
【解決手段】 アニオン性基を有する重量平均分子量Mwが1000〜100万の高分子化合物Aの存在下に、カチオン性単量体を必須とする単量体の混合物を重合して得られる両性高分子化合物からなり、前記単量体混合物100質量部に対する高分子化合物Aの量が0.1〜10質量部である製紙用歩留向上剤を、抄紙工程で紙料に添加することにより達成できる。
【選択図】なし
PROBLEM TO BE SOLVED: To improve a yield rate for papermaking comprising an amphoteric polymer compound capable of effectively improving a yield rate of a stock material, particularly a yield rate of a filler material, by adding a stock material containing a large amount of a filler material to a papermaking process. And a papermaking method using the same.
[MEANS FOR SOLVING PROBLEMS] An amphoteric polymer obtained by polymerizing a mixture of monomers essentially containing a cationic monomer in the presence of a polymer compound A having an anionic group and a weight average molecular weight Mw of 1,000 to 1,000,000. It can be achieved by adding a yield improver for papermaking comprising a molecular compound and having a polymer compound A amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the monomer mixture to the stock in the papermaking process. .
[Selection figure] None

Description

本発明は、製紙工業の分野で抄紙時の歩留向上剤またはろ水性向上剤として使用される水溶性の両性高分子化合物を含んでなる製紙用歩留向上剤およびそれを用いた製紙方法に関する。  The present invention relates to a paper yield improver comprising a water-soluble amphoteric polymer compound used as a yield improver or freeness improver during papermaking in the field of paper industry, and a papermaking method using the same. .

従来、製紙工業における抄紙工程においては、パルプや填料を含む紙料を抄紙機に送入する前に、抄紙網を通過する白水中へのパルプおよび填料流出を抑制して歩留率を向上させ、ろ水性を向上させて乾燥の負荷を低減させるなどの目的で、歩留向上剤等の水溶性高分子化合物が添加されている。  Conventionally, in the papermaking process in the paper industry, before feeding the stock containing pulp and filler into the paper machine, the yield of the pulp and filler flowing into the white water passing through the papermaking net is suppressed and the yield rate is improved. For the purpose of improving drainage and reducing drying load, a water-soluble polymer compound such as a yield improver is added.

上記のような目的に使用される水溶性高分子化合物としては、通常、水溶性の高分子量ポリエチレンオキサイドやカチオン性ポリアクリルアミド等の水溶性重合体が用いられている。しかしながら、近年の抄紙pHの中性化および原料パルプの節減に伴う填料添加率の増加に対し、これら水溶性高分子化合物は、パルプ等の歩留率をある程度向上させる効果はあるものの、填料の歩留率はいまだ十分に高いとは言えないものであった。  As the water-soluble polymer compound used for the above purpose, water-soluble polymers such as water-soluble high molecular weight polyethylene oxide and cationic polyacrylamide are usually used. However, in contrast to the recent neutralization of papermaking pH and the increase in filler addition rate due to the reduction of raw material pulp, these water-soluble polymer compounds have the effect of improving the yield rate of pulp to some extent, The yield rate was still not high enough.

これらの問題を解決するため、種々の方法が提案されている。例えば、全歩留率の向上を目的とした手法として、カチオン性重合体とアニオン性化合物または重合体を併用するデュアルシステムと呼ばれる方法が脚光を浴びている。その代表例としては、カチオン性重合体を添加後にベントナイト等のアニオン性無機化合物を添加する方法や、カチオン性重合体の添加後にアニオン性コロイダルシリカを添加する方法等が挙げられる(特許文献1〜3)。しかしながら、これらの方法は紙質を維持させつつ歩留率を向上させる効果はあるものの、填料の歩留りにおいてはいまだ十分ではなかった。  In order to solve these problems, various methods have been proposed. For example, as a method for the purpose of improving the total yield, a method called a dual system using a cationic polymer in combination with an anionic compound or a polymer is in the spotlight. Typical examples include a method of adding an anionic inorganic compound such as bentonite after the addition of the cationic polymer, a method of adding anionic colloidal silica after the addition of the cationic polymer, etc. 3). However, although these methods have the effect of improving the yield rate while maintaining the paper quality, they are still not sufficient in the yield of the filler.

また、特に炭酸カルシウム填料の歩留率を向上させることを目的とし、両性のアクリルアミド系ポリマーとアルミニウム化合物を併用する方法が提案されている(特許文献4)。しかしながら、この方法は上記特許文献1〜3と同様に薬剤の添加場所、添加率等を精密に制御する必要があり、抄紙工程の管理を煩雑化させる問題があった。  In particular, a method of using an amphoteric acrylamide polymer and an aluminum compound in combination has been proposed for the purpose of improving the yield of the calcium carbonate filler (Patent Document 4). However, this method, like Patent Documents 1 to 3 described above, requires precise control of the location and rate of addition of the drug, and has the problem of complicating the papermaking process.

さらに、上記のような2剤以上による処理の問題を改善する目的で、特定の構造修飾ポリマーからなる製紙用添加剤を使用する方法や、カチオン性水溶性高分子と両性の水溶性高分子を含む組成物を添加する方法が提案されている(特許文献5〜6)。これらは1剤でも歩留率を向上させる効果は見られるものの、やはり填料の歩留率においては十分とは言い難かった。  Furthermore, for the purpose of improving the problem of treatment with two or more agents as described above, a method of using a paper additive made of a specific structure-modified polymer, a cationic water-soluble polymer and an amphoteric water-soluble polymer The method of adding the composition containing is proposed (patent documents 5-6). Although these agents have an effect of improving the yield rate even with one agent, it is still difficult to say that the yield rate of the filler is sufficient.

一方、填料と、カチオン性高分子化合物とを予め混合することにより填料を前処理し、これを紙料に添加し抄紙する方法や、添加される填料をあらかじめ微細粒子からなる水溶性重合体分散液を含有する填料処理剤で処理して填料スラリーとした後、紙料に添加する方法(特許文献7〜8)、または予め軽質炭酸カルシウムスラリーにアニオン性ポリマーを添加し凝集させた後、パルプスラリーに添加して抄紙する方法が提案されている(特許文献9)。これらはいずれも填料の歩留率の向上に一定の効果がみられるが、処理後あるいは凝集後の填料スラリーの安定性が低いため添加直前に煩雑な処理工程を設ける必要があった。  On the other hand, the filler and the cationic polymer compound are mixed in advance to pre-process the filler, and this is added to the paper to make paper, and the added filler is preliminarily made of fine particles. A method of adding a liquid slurry to a filler slurry after treating with a filler treatment agent (Patent Documents 7 to 8), or adding an anionic polymer to a light calcium carbonate slurry in advance and aggregating the pulp A method of making paper by adding to a slurry has been proposed (Patent Document 9). All of these have a certain effect in improving the yield rate of the filler. However, since the stability of the filler slurry after processing or after aggregation is low, it is necessary to provide a complicated processing step immediately before the addition.

特開平4−281095号公報(特許請求の範囲)JP-A-4-281095 (Claims) 特許第2945761号公報(特許請求の範囲)Japanese Patent No. 2945761 (Claims) 特開2006−214028号公報(特許請求の範囲)JP 2006-214028 A (Claims) 特開昭62−125096号公報(特許請求の範囲)JP-A-62-125096 (Claims) 特開2007−326952号公報(特許請求の範囲)JP 2007-326952 A (Claims) 特再WO 06/070853公報(特許請求の範囲)Japanese Patent Publication No. WO 06/070853 (Claims) 特開2006−118092号公報(解決手段)JP 2006-118092 A (Solution means) 特開2012−31530号公報(解決手段)JP 2012-31530 A (Solution means) 特開2012−242994号公報(解決手段)JP 2012-242994 A (Solution means)

本発明が解決しようとする課題は、上記問題の解決にあたり、1剤でも有効でありかつ高い填料歩留率を示す両性高分子化合物からなる製紙用歩留向上剤およびこれを用いる製紙方法を提供することにある。  The problem to be solved by the present invention is to provide a paper yield improving agent comprising an amphoteric polymer compound which is effective even with one agent and exhibits a high filler yield in solving the above problems, and a paper manufacturing method using the same. There is to do.

本発明者らは、上記課題を解決するために種々の高分子化合物を検討した結果、アニオン性基を有する高分子化合物の存在下で、カチオン性単量体を必須として重合された両性高分子化合物からなる製紙用組成物を、抄紙工程のパルプスラリーに添加することにより、パルプのみならず炭酸カルシウムに代表される填料も高い歩留率で保持でき、かつろ水性、搾水性も良好なパルプシートを形成させることができることを知得し、本発明を完成するに至った。上記課題を達成する本発明は、以下に記載するものである。  As a result of studying various polymer compounds in order to solve the above problems, the present inventors have found that amphoteric polymers polymerized with a cationic monomer as an essential component in the presence of a polymer compound having an anionic group. By adding a papermaking composition comprising a compound to a pulp slurry in a papermaking process, not only pulp but also a filler typified by calcium carbonate can be retained at a high yield, and pulp having good drainage and squeezability Knowing that a sheet can be formed, the present invention has been completed. The present invention that achieves the above-described problems is described below.

〔1〕 アニオン性基を有する重量平均分子量Mwが1000〜100万の高分子化合物Aの存在下に、カチオン性単量体を必須とする単量体混合物を重合して得られる両性高分子化合物からなり、前記単量体混合物100質量部に対する高分子化合物Aの量が0.1〜10質量部である製紙用歩留向上剤。  [1] Amphoteric polymer compound obtained by polymerizing a monomer mixture containing a cationic monomer in the presence of polymer compound A having an anionic group and a weight average molecular weight Mw of 1,000 to 1,000,000 The yield improving agent for paper manufacture which consists of 0.1-10 mass parts of polymer compounds A with respect to 100 mass parts of said monomer mixtures.

〔2〕 高分子化合物Aの一部または全部が、カチオン性単量体を必須とする単量体混合物の重合体と化学的に結合していることを特徴とする〔1〕に記載の製紙用歩留向上剤。  [2] Papermaking according to [1], wherein a part or all of the polymer compound A is chemically bonded to a polymer of a monomer mixture essentially comprising a cationic monomer. Yield improver.

〔3〕 高分子化合物Aが、下記式(1)(但し、式(1)中、R11は水素原子またはメチル基、Mは水素原子、アンモニウム基、アルカリ金属またはアルカリ土類金属を示す。)で表される単量体単位を含むことを特徴とする〔1〕または〔2〕に記載の製紙用歩留向上剤。[3] The polymer compound A is represented by the following formula (1) (in the formula (1), R 11 represents a hydrogen atom or a methyl group, M represents a hydrogen atom, an ammonium group, an alkali metal or an alkaline earth metal). The yield improving agent for papermaking as described in [1] or [2], comprising a monomer unit represented by

Figure 2013256740
Figure 2013256740

〔4〕 単量体混合物がノニオン性単量体単位を含む〔1〕〜〔3〕のいずれかに記載の製紙用歩留向上剤。  [4] The yield improver for papermaking according to any one of [1] to [3], wherein the monomer mixture contains a nonionic monomer unit.

〔5〕 単量体混合物がアニオン性単量体単位を含む〔1〕〜〔4〕のいずれかに記載の製紙用歩留向上剤。  [5] The yield improver for papermaking according to any one of [1] to [4], wherein the monomer mixture contains an anionic monomer unit.

〔6〕 紙料に対して、〔1〕〜〔5〕のいずれかに記載の製紙用歩留向上剤を添加した後、抄紙することを特徴とする製紙方法。  [6] A papermaking method, wherein papermaking is performed after adding the papermaking yield improver according to any one of [1] to [5] to the stock.

〔7〕 紙料が、パルプの絶乾質量100部に対して17質量部以上の填料を含むことを特徴とする〔6〕に記載の製紙方法  [7] The papermaking method according to [6], wherein the paper stock contains 17 parts by weight or more of filler with respect to 100 parts by weight of the dry mass of pulp.

〔8〕 全填料のうち、炭酸カルシウムが50質量%以上である〔7〕に記載の製紙方法。  [8] The papermaking method according to [7], wherein calcium carbonate is 50% by mass or more of the total filler.

本発明における両性高分子化合物は、填料、特に炭酸カルシウムと強い親和性を有しており、これらとパルプを効果的に結合できるので極めて高い凝集作用およびろ水性向上作用を有する。よって抄紙系の紙料の歩留率を向上、抄紙系内の安定化および乾燥負荷の大幅な低減ができる。  The amphoteric polymer compound in the present invention has a strong affinity for fillers, particularly calcium carbonate, and can bind these and pulp effectively, so that it has an extremely high coagulation action and drainage improvement action. Therefore, it is possible to improve the yield rate of the papermaking material, to stabilize the papermaking system, and to greatly reduce the drying load.

以下、本発明を詳細に説明する。
なお、本明細書においては、アクリロイル基またはメタクリロイル基を(メタ)アクリロイル基と表し、アクリル酸またはメタクリル酸を(メタ)アクリル酸と表し、アクリレートまたはメタクリレートを(メタ)アクリレートと表す。
Hereinafter, the present invention will be described in detail.
In this specification, an acryloyl group or a methacryloyl group is represented as a (meth) acryloyl group, acrylic acid or methacrylic acid is represented as (meth) acrylic acid, and acrylate or methacrylate is represented as (meth) acrylate.

(a)両性高分子化合物
本発明における両性高分子化合物は、アニオン性基を有する重量平均分子量Mwが1000〜100万の高分子化合物Aの存在下に、カチオン性単量体を必須とする単量体の混合物を重合して得られる。
(A) Amphoteric polymer compound The amphoteric polymer compound in the present invention is a single compound which essentially comprises a cationic monomer in the presence of the polymer compound A having an anionic group and a weight average molecular weight Mw of 1,000 to 1,000,000. It is obtained by polymerizing a mixture of monomers.

両性高分子化合物は、高分子化合物Aの一部または全部が、カチオン性単量体を必須とする単量体混合物の重合物と化学的に結合していることが好ましい。即ち、本発明の両性高分子化合物は、カチオン性単量体単位を有する主鎖と、アニオン性基を有する重量平均分子量Mwが1000〜100万の高分子化合物Aの側鎖と、から構成されるグラフト共重合体を含んで成ることが好ましい。  In the amphoteric polymer compound, it is preferable that a part or all of the polymer compound A is chemically bonded to a polymer of a monomer mixture in which a cationic monomer is essential. That is, the amphoteric polymer compound of the present invention is composed of a main chain having a cationic monomer unit and a side chain of the polymer compound A having an anionic group and having a weight average molecular weight Mw of 1,000 to 1,000,000. It is preferable to comprise a graft copolymer.

(b)高分子化合物A
本発明における両性高分子化合物を製造する際の原料として用いられる高分子化合物Aは、アニオン性基を有している。重量平均分子量は1000〜100万であり、5000〜50万であることが好ましく、8000〜25万であることが特に好ましい。重量平均分子量が1000未満の場合、得られる重合体の填料との作用能力が乏しい。一方、重量平均分子量が100万を超える場合、得られる重合体の不溶解分が多くなり、水溶性化合物としての機能を発揮し難い。なお、高分子化合物Aの重量平均分子量Mwは、標準PEO(ポリエチレンオキサイド)を分子量標準としたゲル・パーミエーション・クロマトグラフィーによる測定値である。
(B) Polymer compound A
The polymer compound A used as a raw material when producing the amphoteric polymer compound in the present invention has an anionic group. The weight average molecular weight is 1,000 to 1,000,000, preferably 5,000 to 500,000, and particularly preferably 8,000 to 250,000. When the weight average molecular weight is less than 1000, the ability of the resulting polymer to act as a filler is poor. On the other hand, when a weight average molecular weight exceeds 1 million, the insoluble content of the polymer obtained increases and it is difficult to exhibit the function as a water-soluble compound. The weight average molecular weight Mw of the polymer compound A is a value measured by gel permeation chromatography using standard PEO (polyethylene oxide) as a molecular weight standard.

高分子化合物Aは、下記式(1)の単量体単位を有していることが好ましい。  The polymer compound A preferably has a monomer unit represented by the following formula (1).

Figure 2013256740
Figure 2013256740

式(1)中、R11は水素原子またはメチル基、Mは水素原子、アンモニウム基、アルカリ金属またはアルカリ土類金属を示す。アルカリ金属としては、ナトリウム、カリウムが好ましい。In formula (1), R 11 represents a hydrogen atom or a methyl group, M represents a hydrogen atom, an ammonium group, an alkali metal or an alkaline earth metal. As an alkali metal, sodium and potassium are preferable.

高分子化合物Aは、ビニル基を1個有する不飽和カルボン酸単量体の重合により製造される。特に(メタ)アクリル酸の重合により製造される高分子化合物が好ましい。重合の方法は、水溶液重合、逆相懸濁重合、逆相エマルション重合等が採用できる。簡便且つ容易に取扱いが可能である水溶液重合が好ましい。  The polymer compound A is produced by polymerization of an unsaturated carboxylic acid monomer having one vinyl group. Particularly preferred are polymer compounds produced by polymerization of (meth) acrylic acid. As a polymerization method, aqueous solution polymerization, reverse phase suspension polymerization, reverse phase emulsion polymerization, or the like can be employed. Aqueous polymerization is preferred because it can be handled easily and easily.

水溶液重合の場合、上記単量体の濃度は、30〜70質量%とすることが好ましく、40〜60質量%とすることが特に好ましい。反応温度は50〜150℃の範囲から適宜選択される。
得られた重合体は水溶液の状態または乾燥、粉砕等の工程を経て粉末化して使用される。
In the case of aqueous solution polymerization, the concentration of the monomer is preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. The reaction temperature is appropriately selected from the range of 50 to 150 ° C.
The obtained polymer is used in the form of an aqueous solution or powdered through steps such as drying and grinding.

重合の際に用いられる重合開始剤は特に制限されない。例えば、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、過酢酸、t−ブチルハイドロパーオキシド、ベンゾイルパーオキシド、ジ−t−ブチルパーオキシド等の過酸化物からなるラジカル重合開始剤、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩、アゾビスシアノバレリン酸、2,2′−アゾビスイソブチロニトリルおよび2,2′−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド、アゾビスシアノバレロニトリル、アゾビスイソブチロニトリル等のアゾ化合物からなるアゾ系開始剤、過酸化水素、過硫酸ナトリウム等の過酸化物と、重亜硫酸ナトリウム、重亜硫酸カリウム、硫酸第一鉄、アスコルビン酸等還元剤との組み合わせからなるレドックス系開始剤、および光重合開始剤等を、重合方法に応じて適宜利用できる。重合開始剤の使用量は単量体の合計質量に対し0.05〜20質量%が好ましい。  The polymerization initiator used in the polymerization is not particularly limited. For example, radical polymerization initiators comprising peroxides such as potassium persulfate, ammonium persulfate, hydrogen peroxide, peracetic acid, t-butyl hydroperoxide, benzoyl peroxide, di-t-butyl peroxide, 2,2 ′ -Azobis (2-methylpropionamidine) dihydrochloride, azobiscyanovaleric acid, 2,2'-azobisisobutyronitrile and 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -Azo initiators composed of azo compounds such as propionamide, azobiscyanovaleronitrile, azobisisobutyronitrile, peroxides such as hydrogen peroxide and sodium persulfate, sodium bisulfite, potassium bisulfite, sulfuric acid Redox initiators composed of combinations with reducing agents such as ferrous iron and ascorbic acid, and photopolymerization initiators It can be properly used depending on the polymerization method. The amount of the polymerization initiator used is preferably 0.05 to 20% by mass relative to the total mass of the monomers.

分子量を調節する目的で連鎖移動剤を使用しても良い。連鎖移動剤としては、メタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、メチルアミン、ジメチルアミン等のアミン類、メタンチオール、エタンチオール、メタリルスルホン酸メルカプトエタノールおよびメルカプトプロピオン酸等のチオール化合物や、亜硫酸ナトリウム、重亜硫酸水素ナトリウムおよび次亜リン酸ナトリウム等の還元性無機塩類等が挙げられる。  A chain transfer agent may be used for the purpose of adjusting the molecular weight. Chain transfer agents include alcohols such as methanol, isopropyl alcohol, ethylene glycol and propylene glycol, amines such as methylamine and dimethylamine, thiols such as methanethiol, ethanethiol, methallylsulfonic acid mercaptoethanol and mercaptopropionic acid. Examples thereof include compounds and reducing inorganic salts such as sodium sulfite, sodium bisulfite and sodium hypophosphite.

不飽和カルボン酸単量体の重合の際には、不飽和カルボン酸単量体と共重合可能な他の単量体を含んでいても良い。共重合可能な単量体としては、特に制限されないが、以下に記載するビニル基を1個有するアニオン性単量体やビニル基を1個有するノニオン性単量体が例示される。  In the polymerization of the unsaturated carboxylic acid monomer, another monomer copolymerizable with the unsaturated carboxylic acid monomer may be included. Although it does not restrict | limit especially as a monomer which can be copolymerized, The nonionic monomer which has one vinyl group and one vinyl group which are described below is illustrated.

アニオン性単量体としては、ビニルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、マレイン酸、およびこれらのアルカリ金属塩またはアンモニウム塩が例示される。ノニオン性単量体としては、(メタ)アクリルアミド、スチレン、アクリロニトリル、酢酸ビニル、(メタ)アクリル酸アルキルが例示される。これらの共重合可能な他の単量体は単独でも、2種以上を混合して使用しても良い。  Examples of the anionic monomer include vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, maleic acid, and alkali metal salts or ammonium salts thereof. Examples of the nonionic monomer include (meth) acrylamide, styrene, acrylonitrile, vinyl acetate, and alkyl (meth) acrylate. These other copolymerizable monomers may be used alone or in admixture of two or more.

また、高分子化合物Aとしては、市販のポリ(メタ)アクリル酸(塩)類も使用できる。  As the polymer compound A, commercially available poly (meth) acrylic acid (salts) can also be used.

(c)両性高分子化合物の製造方法
本発明に用いられる両性高分子化合物は、高分子化合物Aの存在下,カチオン性単量体を必須成分とし、共重合可能な他の単量体を任意成分とする単量体混合物を重合して製造される。
(C) Production method of amphoteric polymer compound The amphoteric polymer compound used in the present invention comprises a cationic monomer as an essential component in the presence of polymer compound A, and any other copolymerizable monomer is arbitrarily selected. It is produced by polymerizing a monomer mixture as a component.

カチオン性単量体としては、下記式(2)で示される化合物が好ましい。  As the cationic monomer, a compound represented by the following formula (2) is preferable.

Figure 2013256740
Figure 2013256740

式(2)中、R21は水素原子またはメチル基を示す。Aは酸素原子またはNHを示す。R22は炭素数が2〜8のアルキレン基を示す。R23は水素原子、炭素数1〜8のアルキル基、ヒドロキシアルキル基またはベンジル基を示す。R24およびR25は炭素数1〜8のアルキル基を示し、それぞれは同一であっても異なっていても良い。(X)は陰イオンを示す。(X)としては、塩素イオン等のハロゲンイオンや硫酸イオンが例示される。In formula (2), R 21 represents a hydrogen atom or a methyl group. A represents an oxygen atom or NH. R 22 represents an alkylene group having 2 to 8 carbon atoms. R 23 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group or a benzyl group. R 24 and R 25 represent an alkyl group having 1 to 8 carbon atoms, and each may be the same or different. (X) represents an anion. (X) is exemplified by halogen ions such as chlorine ions and sulfate ions.

上記式(2)で示されるカチオン性単量体の具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートや、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミドの塩酸塩および硫酸塩が例示される。また、ジアルキルアミノアルキル(メタ)アクリレートやジアルキルアミノアルキル(メタ)アクリルアミドのメチルクロライド付加物または塩化ベンジル付加物等の第4級塩が例示される。  Specific examples of the cationic monomer represented by the above formula (2) include dialkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate, and N, N-dimethylamino. Examples thereof include hydrochlorides and sulfates of dialkylaminoalkyl (meth) acrylamides such as propyl (meth) acrylamide. Further, quaternary salts such as dialkylaminoalkyl (meth) acrylate and methyl chloride adduct or dibenzylamino chloride adduct of dialkylaminoalkyl (meth) acrylamide are exemplified.

上記の他、本発明において使用できるカチオン単量体としては以下の化合物が例示される。
(メタ)アクリロイルオキシ−2−ヒドロキシプロピルジメチルアミンおよびその塩酸塩または硫酸塩、(メタ)アクリロイルオキシエチルジエチルメチルアンモニウムクロライド、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウムメチルサルフェート、ジアリルジメチルアンモニウムクロライド等のジアリルジアルキルアンモニウムハライドなどが例示され、これらのカチオン性単量体は単独でも、2種以上を混合して使用しても良い。
In addition to the above, examples of the cationic monomer that can be used in the present invention include the following compounds.
(Meth) acryloyloxy-2-hydroxypropyldimethylamine and its hydrochloride or sulfate, (meth) acryloyloxyethyl diethylmethylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium methyl sulfate, diallyldimethylammonium chloride Diallyldialkylammonium halides such as these are exemplified, and these cationic monomers may be used alone or in admixture of two or more.

共重合可能な単量体としては、特に制限されないが、以下に記載するノニオン性単量体やアニオン性単量体が例示される。  Although it does not restrict | limit especially as a monomer which can be copolymerized, The nonionic monomer and anionic monomer which are described below are illustrated.

ノニオン性単量体としては、(メタ)アクリルアミド、スチレン、アクリロニトリル、酢酸ビニル、(メタ)アクリル酸アルキルが例示される。  Examples of the nonionic monomer include (meth) acrylamide, styrene, acrylonitrile, vinyl acetate, and alkyl (meth) acrylate.

特に好ましいノニオン性単量体としては、下記式(3)で示される(メタ)アクリルアミド化合物を挙げることができる。  Particularly preferred nonionic monomers include (meth) acrylamide compounds represented by the following formula (3).

Figure 2013256740
Figure 2013256740

式(3)中、R31は水素原子またはメチル基、R32、R33はそれぞれ独立に水素原子、炭素数1〜8のアルキル基である。In formula (3), R 31 is a hydrogen atom or a methyl group, R 32 and R 33 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.

これらのうちでも、特にアクリルアミドが好ましい。
これらのノニオン性単量体は単独でも、2種以上を混合して使用しても良い。
Of these, acrylamide is particularly preferable.
These nonionic monomers may be used alone or in combination of two or more.

アニオン性単量体としては、下記式(4)で示される(メタ)アクリル酸およびこれらの塩類が例示される。塩類としてはアンモニウム塩、またはナトリウム塩、カリウム塩等のアルカリ金属塩が好ましい。  Examples of the anionic monomer include (meth) acrylic acid represented by the following formula (4) and salts thereof. As the salts, ammonium salts, or alkali metal salts such as sodium salts and potassium salts are preferable.

Figure 2013256740
Figure 2013256740

式(4)中、R41は水素原子またはメチル基を示す。Mは水素原子、アンモニウム基またはアルカリ金属を示す。In the formula (4), R 41 represents a hydrogen atom or a methyl group. M represents a hydrogen atom, an ammonium group or an alkali metal.

アニオン性単量体としては、この他にビニルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、マレイン酸、およびこれらのアルカリ金属塩等が例示される。
これらのアニオン性単量体は単独でも、2種以上を混合して使用しても良い。
Other examples of the anionic monomer include vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, maleic acid, and alkali metal salts thereof.
These anionic monomers may be used alone or in combination of two or more.

単量体混合物中の各単量体の配合比(モル比)は、カチオン性単量体:ノニオン性単量体:アニオン性単量体=1〜100:0〜99:0〜99モル%である。ノニオン性単量体を用いる場合、単量体混合物中におけるノニオン性単量体の含有量は、5〜95モル%が好ましく、10〜85モル%が特に好ましい。  The mixing ratio (molar ratio) of each monomer in the monomer mixture is as follows: cationic monomer: nonionic monomer: anionic monomer = 1 to 100: 0 to 99: 0 to 99 mol%. It is. When using a nonionic monomer, 5-95 mol% is preferable and, as for content of the nonionic monomer in a monomer mixture, 10-85 mol% is especially preferable.

本発明の両性高分子化合物を構成する単量体混合物に対する高分子化合物Aの配合量は、単量体混合物の合計質量100部に対して、0.1〜10質量部であり、0.5〜8質量部が好ましく、0.75〜5質量部が特に好ましい。配合量が0.1質量部未満の場合、得られる重合体の歩留能力が乏しい。一方、10質量部を超える場合、得られる化合物が溶解時にゲル化または析出してしまい、化合物としての機能を大きく低減させる。  The compounding quantity of the high molecular compound A with respect to the monomer mixture which comprises the amphoteric high molecular compound of this invention is 0.1-10 mass parts with respect to 100 mass of total mass of a monomer mixture, 0.5 -8 mass parts is preferable, and 0.75-5 mass parts is especially preferable. When the amount is less than 0.1 part by mass, the yield ability of the resulting polymer is poor. On the other hand, when it exceeds 10 mass parts, the compound obtained will gelatinize or precipitate at the time of melt | dissolution, and the function as a compound will be reduced significantly.

重合の方法は、水溶液ゲル重合、水溶液重合、逆相懸濁重合、逆相エマルション重合等が採用できる。簡便且つ容易に取扱いが可能である水溶液ゲル重合または逆相エマルション重合が好ましい。  As a polymerization method, aqueous gel polymerization, aqueous solution polymerization, reverse phase suspension polymerization, reverse phase emulsion polymerization, or the like can be employed. Aqueous solution gel polymerization or reverse phase emulsion polymerization, which can be easily and easily handled, is preferred.

水溶液ゲル重合の場合、上記単量体混合物の濃度は、25〜60質量%とすることが好ましく、35〜55質量%とすることが特に好ましい。単量体水溶液のpHは2〜4に調製することが好ましい。  In the case of aqueous gel polymerization, the concentration of the monomer mixture is preferably 25 to 60% by mass, particularly preferably 35 to 55% by mass. The pH of the monomer aqueous solution is preferably adjusted to 2 to 4.

逆相エマルション重合の場合、上記単量体混合物の濃度は、全体量に対して25〜50質量%とすることが好ましく、35〜45質量%とすることが特に好ましい。単量体水溶液のpHは2〜6に調製することが好ましい。  In the case of reverse phase emulsion polymerization, the concentration of the monomer mixture is preferably 25 to 50% by mass, particularly preferably 35 to 45% by mass, based on the total amount. The pH of the aqueous monomer solution is preferably adjusted to 2-6.

重合の際に用いられる重合開始剤は特に制限されない。上記(b)に記載の重合開始剤が同様に使用できる。重合開始剤の使用量は高分子化合物Aおよび単量体の合計質量対し0.005〜2質量%が好ましい。  The polymerization initiator used in the polymerization is not particularly limited. The polymerization initiator described in the above (b) can be used similarly. The amount of the polymerization initiator used is preferably 0.005 to 2% by mass with respect to the total mass of the polymer compound A and the monomer.

また、必要に応じて連鎖移動剤を使用してもよい。上記(b)に記載の連鎖移動剤が同様に使用できる。重合開始剤の使用量は連鎖移動剤の種類および目的とする0.5%塩粘度(分子量)により適宜調整される。  Moreover, you may use a chain transfer agent as needed. The chain transfer agent described in the above (b) can be used similarly. The amount of the polymerization initiator used is appropriately adjusted depending on the type of chain transfer agent and the target 0.5% salt viscosity (molecular weight).

また、必要に応じて架橋剤を使用してもよい。架橋剤としては、N,N−メチレンビス(メタ)アクリルアミド、アクリル酸グリシジル、ジメタクリル酸エチレングリコール、N−ビニルアクリルアミド等を挙げることができる。  Moreover, you may use a crosslinking agent as needed. Examples of the crosslinking agent include N, N-methylenebis (meth) acrylamide, glycidyl acrylate, ethylene glycol dimethacrylate, N-vinylacrylamide and the like.

本発明における両性高分子化合物の0.5%塩粘度は、25〜100mPa・sであることが好ましい。0.5%塩粘度は、平均分子量の代替指標であり、測定方法は後述する。25〜100mPa・sの範囲は重量平均分子量Mwが概ね100万〜1000万の範囲に相当する。  The 0.5% salt viscosity of the amphoteric polymer compound in the present invention is preferably 25 to 100 mPa · s. 0.5% salt viscosity is an alternative index of average molecular weight, and the measurement method will be described later. The range of 25 to 100 mPa · s corresponds to the range where the weight average molecular weight Mw is about 1 to 10 million.

0.5%塩粘度が25mPa・sより低いと十分な大きさのフロックができない。また100mPa・sを超えると溶解した際の不溶解物が発生しやすくなる。また処理水の粘度上昇により反応性が低下するなどの問題が生じる。
なお,上記の重量平均分子量Mwは、JIS K7361−1に準じて1.0N−硝酸ナトリウム水溶液を溶媒としてpH=3.0±0.1、30℃で測定した固有粘度[η](dl/g)から、下記式により求めたポリアクリルアミド換算分子量である。
[η] =3.73×10−4×Mw0.66 (式1)
When the 0.5% salt viscosity is lower than 25 mPa · s, a sufficiently large floc cannot be obtained. On the other hand, when it exceeds 100 mPa · s, an insoluble matter is easily generated when dissolved. Moreover, problems such as a decrease in reactivity occur due to an increase in the viscosity of the treated water.
In addition, said weight average molecular weight Mw is intrinsic viscosity [η] (dl / dl) measured at pH = 3.0 ± 0.1 and 30 ° C. using 1.0N-sodium nitrate aqueous solution as a solvent according to JIS K7361-1. It is the polyacrylamide conversion molecular weight calculated | required by the following formula from g).
[Η] = 3.73 × 10 −4 × Mw 0.66 (Formula 1)

このような方法で製造される両性高分子化合物は、カチオン性単量体単位を有する主鎖と、アニオン性基を有する重量平均分子量Mwが1000〜100万の側鎖と、から構成されるグラフト共重合体を含み、かつ高分子化合物A、および高分子化合物Aと結合していない単量体混合物の重合体との混合物であると考えられる。上記グラフト共重合体は、両性高分子化合物100質量部に対して0.1〜10質量部含まれることが好ましい。  The amphoteric polymer compound produced by such a method is a graft composed of a main chain having a cationic monomer unit and a side chain having an anionic group and having a weight average molecular weight Mw of 1,000 to 1,000,000. The polymer is considered to be a mixture of the polymer compound A and a polymer of a monomer mixture that is not bonded to the polymer compound A. It is preferable that 0.1-10 mass parts of said graft copolymers are contained with respect to 100 mass parts of amphoteric polymer compounds.

本発明においては、上記混合物からグラフト共重合体を分離して、これのみを両性高分子化合物として用いてもよい。または、上記混合物を分離せずにそのまま用いてもよい。  In the present invention, the graft copolymer may be separated from the above mixture and used alone as the amphoteric polymer compound. Or you may use the said mixture as it is, without isolate | separating.

このグラフト共重合体が良好な歩留性能を示す理由は定かではないが、本発明者らは主鎖から離れて局在化するアニオン性基が、炭酸カルシウム等の無機填料に対し高い親和性を示し、かつカチオン性を有する主鎖がパルプ等と有効に結合できるためと考えている。  The reason why this graft copolymer exhibits good yield performance is not clear, but the present inventors have a high affinity for inorganic fillers such as calcium carbonate because the anionic groups localized away from the main chain It is considered that the main chain having a cationic property can be effectively bonded to pulp or the like.

(d)製紙用歩留向上剤
本発明の製紙用歩留向上剤は、少なくとも上記両性高分子化合物を含んでなる。この組成物は、本発明の効果を阻害しない範囲で、他の水溶性高分子化合物を含めることができる。他の水溶性高分子化合物としては、特に制限されないが、上記式(2)で示されるカチオン性単量体からなるカチオン性水溶性高分子、上記式(2)および式(4)で示される単量体からなる両性水溶性高分子、ポリアルキレンオキサイド、ポリビニルアルコール等があげられる。
(D) Yield improver for papermaking The yield improver for papermaking of the present invention comprises at least the amphoteric polymer compound. This composition can contain other water-soluble polymer compounds as long as the effects of the present invention are not impaired. Although it does not restrict | limit especially as another water-soluble high molecular compound, It shows by the cationic water-soluble polymer which consists of a cationic monomer shown by the said Formula (2), and the said Formula (2) and Formula (4) Examples thereof include amphoteric water-soluble polymers composed of monomers, polyalkylene oxide, and polyvinyl alcohol.

また本発明の製紙用歩留向上剤は、本発明の効果を阻害しない範囲で、pH調整剤、消泡剤、酸化防止剤等の添加剤を加えてもよい。特に両性高分子化合物の溶解安定性を高めるためにpH調整剤を含めることが好ましい。pH調整剤としては酸性物質であれば特に制限されないが、安全性、粉末とした場合の取り扱いの容易性から、有機酸類が推奨される。有機酸類としては、スルファミン酸、クエン酸(塩)類、リンゴ酸等が揚げられる。添加量としては特に制限されないが、製紙用歩留向上剤全質量に対し2〜20質量%、好ましくは5〜10質量%である。  Moreover, the yield improving agent for paper manufacture of this invention may add additives, such as a pH adjuster, an antifoamer, and antioxidant, in the range which does not inhibit the effect of this invention. In particular, it is preferable to include a pH adjusting agent in order to increase the dissolution stability of the amphoteric polymer compound. The pH adjuster is not particularly limited as long as it is an acidic substance, but organic acids are recommended because of safety and ease of handling when powdered. Examples of organic acids include sulfamic acid, citric acid (salts), malic acid and the like. Although it does not restrict | limit especially as addition amount, It is 2-20 mass% with respect to the total mass of the paper making yield improver, Preferably it is 5-10 mass%.

これらの組成物の調整法は、両性高分子化合物が水溶液ゲル重合による乾燥粉末品であれば、必要な水溶性高分子化合物および添加剤を常法で混合すればよい。逆相エマルジョン重合品に他の水溶性高分子化合物のエマルジョン重合品を混合する場合は、エマルジョン状態のまま混合することが可能である。  As a method for preparing these compositions, if the amphoteric polymer compound is a dry powder product by aqueous gel polymerization, the necessary water-soluble polymer compound and additives may be mixed by a conventional method. When an emulsion polymer of another water-soluble polymer compound is mixed with the reversed phase emulsion polymer, it can be mixed in an emulsion state.

また、これらを別々に水溶液としてから、混合して使用することもできる。  In addition, these can be separately used as an aqueous solution and then mixed.

(e)製紙方法
本発明の製紙用歩留向上剤を用いる製紙方法は、紙種は制限されない。通常の製紙工程で使用されるものであればよく、通常、少なくともパルプおよび填料を含み、必要に応じて填料以外の添加剤、具体的には、サイズ剤、定着剤、紙力増強剤および着色剤等を含むものである。抄紙機の形式も特に制限されることはなく、長網式抄紙機、ツインワイヤー式抄紙機、円筒型抄紙機等いずれの形式でも使用できる。
(E) Papermaking method The papermaking method using the papermaking yield improver of the present invention is not limited by paper type. What is necessary is just to be used in a normal papermaking process, and usually contains at least pulp and filler, and if necessary, additives other than filler, specifically, sizing agent, fixing agent, paper strength enhancer and coloring. Including agents. The type of the paper machine is not particularly limited, and any type of paper machine such as a long net paper machine, a twin-wire paper machine, or a cylindrical paper machine can be used.

本発明の製紙用歩留向上剤は填料を多く含む紙料に好適である。填料としては、白土、カオリン、アガライト、タルク、重質または軽質炭酸カルシウム、炭酸マグネシウム、硫酸石灰、硫酸バリウム、酸化亜鉛および酸化チタン等が挙げられる。特に重質または軽質炭酸カルシウムを多く含む紙料の抄紙に適する。具体的な紙種としてはオフセット印刷用紙、コピー用紙などの上質紙、インクジェット印刷用紙、中性新聞用紙等があげられる。また、填料のほか再生パルプを多く含む紙種にも好適に使用される。  The yield improver for papermaking of the present invention is suitable for a paper stock containing a large amount of filler. Examples of the filler include clay, kaolin, agarite, talc, heavy or light calcium carbonate, magnesium carbonate, lime sulfate, barium sulfate, zinc oxide and titanium oxide. In particular, it is suitable for paper making of a paper containing a lot of heavy or light calcium carbonate. Specific paper types include high-quality paper such as offset printing paper and copy paper, ink jet printing paper, and neutral newsprint paper. In addition to the filler, it is also suitably used for paper types containing a large amount of recycled pulp.

添加方法は常法に従えばよい。本発明の組成物はあらかじめ水溶液の状態とされ、通常はファンポンプの前段からの抄紙機のヘッドボックス直前の工程で注入される。添加する水溶液の濃度としては特に制限されないが、0.01〜2質量%が好ましい。  The addition method may follow a conventional method. The composition of the present invention is in the form of an aqueous solution in advance, and is usually injected in the process immediately before the head box of the paper machine from the front stage of the fan pump. Although it does not restrict | limit especially as a density | concentration of the aqueous solution to add, 0.01-2 mass% is preferable.

添加割合としては、紙料中の絶乾パルプ質量当たり、50〜500ppmが好ましく、より好ましくは100〜500ppmである。  The addition ratio is preferably 50 to 500 ppm, more preferably 100 to 500 ppm, based on the mass of absolutely dry pulp in the stock.

添加後の紙料のpHとしては、5〜9に維持することが好ましく、より好ましくは6〜8である。抄紙温度は特に制限されないが、60℃以下が好ましい。  The pH of the paper stock after addition is preferably maintained at 5 to 9, more preferably 6 to 8. The papermaking temperature is not particularly limited, but is preferably 60 ° C. or lower.

本発明の製紙用歩留向上剤は、1剤でも高い歩留性能を示すものであるが、必要に応じて無機凝結剤、有機カチオン性凝結剤またはアニオン性物質を併用することができる。これらは本発明の製紙用歩留向上剤の添加前または添加後のいずれかの工程で注入されるが、それぞれの添加物が紙料と個々に反応できる間隔を採ることが好ましい。  The yield improver for papermaking of the present invention exhibits high yield performance even with one agent, but an inorganic coagulant, an organic cationic coagulant or an anionic substance can be used in combination as necessary. These are injected either before or after the addition of the paper yield improving agent of the present invention, and it is preferable to take an interval at which each additive can individually react with the stock.

無機凝結剤としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第一鉄、ポリ硫酸鉄、ポリシリカ鉄が例示される。  Examples of the inorganic coagulant include aluminum sulfate (sulfate band), polyaluminum chloride (PAC), ferric chloride, ferrous sulfate, polyiron sulfate, and polysilica iron.

有機カチオン性凝結剤としては、ジアルキルアミン類とエピハロヒドリン重縮合物、アルキレンジアミン類とジアルキルアミンおよびエピハロヒドリンの重縮合物、ポリジアリルジメチルアンモニウム塩化物塩、ジシアンジアミドとホルムアルデヒド重縮合物、ジシアンジアミドとホルムアルデヒドと塩化アンモニウム重縮合物、ポリアルキレンイミン、(メタ)アクリレート系カチオン性基を含む水溶性高分子、およびカチオン性界面活性剤が例示される。  Organic cationic coagulants include dialkylamines and epihalohydrin polycondensates, alkylenediamines and dialkylamines and epihalohydrins polycondensates, polydiallyldimethylammonium chloride salts, dicyandiamide and formaldehyde polycondensates, dicyandiamide and formaldehyde and chloride. Examples include ammonium polycondensates, polyalkyleneimines, water-soluble polymers containing (meth) acrylate-based cationic groups, and cationic surfactants.

アニオン性物質としては、アニオン性ポリアクリルアミド等の有機アニオン性高分子化合物、コロイダルシリカやベントナイト等の無機アニオン性物質、有機アニオン性微粒子等が例示される。  Examples of the anionic substance include organic anionic polymer compounds such as anionic polyacrylamide, inorganic anionic substances such as colloidal silica and bentonite, and organic anionic fine particles.

抄出された紙料マットは、通常の工程で搾水・乾燥され、オンコート処理、カレンダー処理等を経て製品紙となる。  The extracted paper mat is squeezed and dried in a normal process, and becomes a product paper through an on-coating process, a calendar process, and the like.

以下、本発明における物性の測定方法および性能の評価方法、また製造例および実施例を示し、さらに具体的に本発明を説明するが、本発明はこれら実施例に限定されるものではない。
なお、各単量体の名称を以下の通り略記する。
AA : アクリル酸
AM : アクリルアミド
DAC : ジメチルアミノエチルアクリレート塩化メチル4級塩
DMC : ジメチルアミノエチルメタクリレート塩化メチル4級塩
Hereinafter, the physical property measurement method and the performance evaluation method, the production examples and the examples in the present invention will be described, and the present invention will be described more specifically. However, the present invention is not limited to these examples.
In addition, the name of each monomer is abbreviated as follows.
AA: Acrylic acid AM: Acrylamide DAC: Dimethylaminoethyl acrylate methyl chloride quaternary salt DMC: Dimethylaminoethyl methacrylate methyl chloride quaternary salt

〔0.1%不溶解分量〕
純水400mLに試料(重合体)を0.1質量%となる量を加えて十分に溶解し、目開き180μm(83メッシュ)の網でろ過後の残渣をメスシリンダーを用いて測定した。
[0.1% insoluble content]
An amount of 0.1% by mass of a sample (polymer) was added to 400 mL of pure water and dissolved sufficiently, and the residue after filtration through a net of 180 μm (83 mesh) was measured using a graduated cylinder.

〔0.5%塩粘度〕
純水500mLに塩化ナトリウム20.8g、および試料(高分子化合物)の濃度が0.50質量%となる量を加えて十分に溶解し、試料溶液を調製した。液温を25±1℃に調整し、M1ローターを付けた東機産業社製TV−10M型B型粘度計を用いて30rpm、3分間回転後の値を読み取りこれを0.5%溶液粘度とした。粘度がM1ローターの測定上限を超えた場合は、M2ローターを使用した。
[0.5% salt viscosity]
A sample solution was prepared by adding 20.8 g of sodium chloride and a concentration of the sample (polymer compound) of 0.50% by mass to 500 mL of pure water and sufficiently dissolving. The liquid temperature was adjusted to 25 ± 1 ° C, and the value after rotating at 30 rpm for 3 minutes was read using a TV-10M type B viscometer manufactured by Toki Sangyo Co., Ltd. with an M1 rotor, and this was 0.5% solution viscosity. It was. When the viscosity exceeded the measurement upper limit of the M1 rotor, the M2 rotor was used.

〔絶乾質量〕
紙料の約1gを秤量びんに採り、105℃に設定した乾燥機中で恒量になるまで乾燥した後の質量を測定した。
[Absolute dry mass]
About 1 g of the paper stock was taken in a weighing bottle, and the mass after drying until constant weight was measured in a dryer set at 105 ° C.

〔パルプのろ水度〕
JIS 8221「パルプのろ水度試験法」に準じて、カナディアンスタンダードフリーネス(CSF)値として求めた。
〔全歩留率〕
BTG社製Mutec−DFR05型自動リテンション測定器を用い、全歩留率を測定した。抄網は24メッシュサイズを用い、ろ過時の撹拌回転数を800rpmとした。その他の設定はメーカーの推奨値によった。
[Freeness of pulp]
It was determined as a Canadian Standard Freeness (CSF) value according to JIS 8221 “Pulp Freeness Test Method”.
[Total yield rate]
The total yield was measured using a BTG Mutec-DFR05 type automatic retention measuring device. The paper mesh used a 24 mesh size, and the stirring rotation speed during filtration was 800 rpm. Other settings were according to manufacturer's recommended values.

〔填料歩留率〕
全歩留率と同装置が示すファイン歩留率を填料歩留率とした。なお填料歩留率は、別途灰分歩留率をJIS 8251「紙、板紙およびパルプ−灰分試験方法−525℃燃焼法」により求め、この測定値をもとに検量線を作成して求めた。
[Filling yield rate]
The total yield rate and the fine yield rate indicated by the device were used as the filler yield rate. The filler yield rate was obtained by separately obtaining the ash yield rate according to JIS 8251 “Paper, paperboard and pulp-ash content test method—525 ° C. combustion method”, and preparing a calibration curve based on this measured value.

〔高分子化合物A〕
(高分子化合物A1〜A3)
高分子化合物Aとして、市販されているポリアクリル酸ナトリウムA1〜A3を使用した。それぞれの重量平均分子量を表1に示す。
[Polymer Compound A]
(Polymer compounds A1 to A3)
As the polymer compound A, commercially available sodium polyacrylates A1 to A3 were used. The respective weight average molecular weights are shown in Table 1.

(製造例1 高分子化合物A4の製造)
還流冷却器および攪拌機を備えた容量3リットルのガラスフラスコに水400gを仕込み、80℃に加温した。次いで、80質量%AA水溶液625gと、30質量%の過硫酸ナトリウム(以下「NaPS」)水溶液33.3g(AA100質量部に対してNaPSとして2質量部)と、30質量%亜硫酸水素ナトリウム(以下「NaHSO3」と略す)33.3g(AA100質量部に対してNaHSO3として5質量部)とを、それぞれ滴下ノズルから4時間かけて攪拌下に反応器に滴下した。滴下終了後さらに30分間反応液を80℃に保持し重合を完結させた。
(Production Example 1 Production of Polymer Compound A4)
A glass flask having a capacity of 3 liters equipped with a reflux condenser and a stirrer was charged with 400 g of water and heated to 80 ° C. Next, 625 g of an 80% by mass AA aqueous solution, 33.3 g of an aqueous 30% by mass sodium persulfate (hereinafter “NaPS”) solution (2 parts by mass as NaPS with respect to 100 parts by mass of AA), and 30% by mass sodium bisulfite (hereinafter referred to as “NAPS”) 33.3 g (abbreviated as “NaHSO 3”) (5 parts by mass as NaHSO 3 with respect to 100 parts by mass of AA) was added dropwise to the reactor with stirring over 4 hours. After completion of the dropping, the reaction solution was kept at 80 ° C. for 30 minutes to complete the polymerization.

重合終了後、反応液を攪拌し、その中に48%水酸化ナトリウム水溶液575gを滴下して中和した。このようにして固形分濃度が41%のポリアクリル酸ナトリウム水溶液A4(以下A4と略記する。以下同様)を得た。この高分子化合物物A4の重量平均分子量Mwをゲル・パーミエーション・クロマトグラフィーで測定したところ、重量平均分子量Mwは25万であった。その結果を表1に示す。  After completion of the polymerization, the reaction solution was stirred, and 575 g of 48% aqueous sodium hydroxide solution was added dropwise to neutralize it. In this way, a sodium polyacrylate aqueous solution A4 (hereinafter abbreviated as A4; hereinafter the same) having a solid content concentration of 41% was obtained. When the weight average molecular weight Mw of this high molecular compound substance A4 was measured by the gel permeation chromatography, the weight average molecular weight Mw was 250,000. The results are shown in Table 1.

(製造例2〜4 高分子化合物A5〜A7の製造)
NaPSとNaHSOを表1に示した添加量とした以外は、製造例1と同様の操作を行い、高分子化合物A5〜A7を得た。その結果を表1に示す。
(Production Examples 2 to 4 Production of polymer compounds A5 to A7)
Except that NaPS and NaHSO 3 were added in amounts shown in Table 1, the same operations as in Production Example 1 were performed to obtain polymer compounds A5 to A7. The results are shown in Table 1.

Figure 2013256740
Figure 2013256740

(製造例5 両性高分子化合物B1の製造;水溶液ゲル重合)
ステンレス製反応容器に、79質量%DAC水溶液を88.3g、50質量%AM水溶液を461g投入し、さらに蒸留水を451g加え、全単量体の合計濃度が30質量%で全質量が1.0kgとなる重合液とした。これに高分子化合物A5の21.0gを添加し均一に混合した。この重合液の高分子化合物Aおよび単量体の組成比は表2に示したとおりである。
この溶液をpH=4に調整し、窒素ガスを60分間溶液に吹き込みながら溶液温度を10℃に調節した。その後、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩(以下「V−50」と略記する)およびNaHSO3を、各単量体の合計質量に対して固形分換算で、それぞれ2000ppm、20ppmとなるように加えた。次いで、反応容器の上方からこの溶液に光照射して重合を行い、含水ゲル状の重合体を得た。光照射には13Wブラックライトを用いた。照射強度は0.4mW/cmで、照射時間は60分間である。
得られた含水ゲル状の重合体を、容器から取り出して細断した。これを温度80℃で5時間乾燥後、粉砕して粉末状の両性高分子化合物(B1と略記する。以下同様)を得た。B1の0.1%不溶解分量および0.5%塩粘度を測定した。その結果を表2に示す。
(Production Example 5 Production of amphoteric polymer compound B1; aqueous gel polymerization)
Into a stainless steel reaction vessel, 88.3 g of a 79% by mass DAC aqueous solution and 461 g of a 50% by mass AM aqueous solution are added, and 451 g of distilled water is further added. The total concentration of all monomers is 30% by mass and the total mass is 1. The polymerization solution was 0 kg. To this, 21.0 g of the polymer compound A5 was added and mixed uniformly. The composition ratio of the polymer compound A and the monomer in this polymerization solution is as shown in Table 2.
The solution was adjusted to pH = 4, and the solution temperature was adjusted to 10 ° C. while blowing nitrogen gas into the solution for 60 minutes. Then, 2,2′-azobis (2-methylpropionamidine) dihydrochloride (hereinafter abbreviated as “V-50”) and NaHSO 3 were each 2000 ppm in terms of solid content with respect to the total mass of each monomer. , 20 ppm was added. Next, polymerization was performed by irradiating the solution with light from above the reaction vessel to obtain a hydrogel polymer. A 13 W black light was used for light irradiation. The irradiation intensity is 0.4 mW / cm 2 and the irradiation time is 60 minutes.
The obtained hydrogel polymer was taken out of the container and chopped. This was dried at a temperature of 80 ° C. for 5 hours and then pulverized to obtain a powdery amphoteric polymer compound (abbreviated as B1, hereinafter the same). The 0.1% insoluble content and 0.5% salt viscosity of B1 were measured. The results are shown in Table 2.

この重合体B1の分子量分布をゲル・パーミエーション・クロマトグラフィーで観察したところ、高分子化合物Aを含まない重合体(下記R1)にA5を配合比が同量となるよう混合したものと比較して、A5のピークが明らかに減少していた。よってB1では、A5が他の単量体重合物と化学的に結合しているものと推定された。When the molecular weight distribution of this polymer B1 was observed by gel permeation chromatography, it was compared with that obtained by mixing A5 with a polymer not containing polymer compound A (R1 below) so that the blending ratio was the same. The A5 peak was clearly reduced. Therefore, in B1, A5 was estimated to be chemically bonded to other monomeric polymer.

(製造例6〜13 両性高分子化合物B2〜B9の製造、製造例14〜20比較高分子化合物R1〜R7の製造)
高分子化合物A1〜A7を表2および表3に示した配合比となるよう仕込み量を調整した以外は実施例3と同様に操作し、高分子化合物B2〜B9および比較高分子化合物R1〜R7を得た。これらの0.1%不溶解分量および0.5%塩粘度を表2および表3に示す。
(Production Examples 6 to 13 Production of amphoteric polymer compounds B2 to B9, Production Examples 14 to 20 Production of comparative polymer compounds R1 to R7)
Polymer compounds B2 to B9 and comparative polymer compounds R1 to R7 were operated in the same manner as in Example 3 except that the amounts of polymer compounds A1 to A7 were adjusted so that the blending ratios shown in Tables 2 and 3 were adjusted. Got. Tables 2 and 3 show these 0.1% insoluble content and 0.5% salt viscosity.

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

重量平均分子量Mw(以下「Mw」と略す)が8000〜80万のA1〜A2およびA4〜A6を添加して製造した重合体は、全単量体量に対し10質量部まで添加しても水への溶解性が良好であった。一方、Mwが150万のA3を添加して重合したR3は3.0質量部でも不溶解分が多かった。また、Mwが8000のA1を15質量部、25万のA4を12質量部添加して重合したR5およびR7は、不溶解分が非常に多くほとんど溶解しなかった。R3は、不溶解分が生じるため実際の溶解濃度が低くなり、0.5%塩粘度が下がっている。  A polymer produced by adding A1 to A2 and A4 to A6 having a weight average molecular weight Mw (hereinafter abbreviated as “Mw”) of 8000 to 800,000 may be added up to 10 parts by mass with respect to the total monomer amount. The solubility in water was good. On the other hand, R3 polymerized by adding A3 having Mw of 1,500,000 had a large amount of insoluble matter even at 3.0 parts by mass. Further, R5 and R7 polymerized by adding 15 parts by mass of A1 having an Mw of 8000 and 12 parts by mass of A4 having 250,000 were very insoluble and hardly dissolved. R3 has an insoluble content, so the actual dissolved concentration is lowered, and the salt viscosity is reduced by 0.5%.

(製紙用歩留向上剤の調製)
両性高分子化合物B1〜B9、R1〜R4およびR6の90質量部に対して10質量部(全組成物質量の10質量%)のクエン酸無水塩を添加、混合し製紙用歩留向上剤とした。R5およびR7は実質溶解しなかったので使用しなかった。
(Preparation of paper yield improver)
10 mass parts (10 mass% of the total composition amount) of citric acid anhydride is added to and mixed with 90 mass parts of the amphoteric polymer compounds B1 to B9, R1 to R4 and R6; did. R5 and R7 were not used because they did not substantially dissolve.

(実施例1〜9、比較例1〜7)
市販の広葉樹由来の原料パルプ(以下LBKPと表す)をナイアガラビーターで叩解したものと、国内製紙会社から入手した脱墨パルプ(以下DIPと表す)の約5質量%のスラリーおよび填料を混合し、表4に示した組成の紙料を得た。歩留向上剤を0.10質量%に溶解し、添加率を対絶乾パルプ質量で400ppmとして全歩留率、填料歩留率を測定した。その結果を表5および表6に示す。
なお比較例6および比較例7は、実施例3で使用したB3および実施例7で使用したB7と同一の単量体組成となるように、R1にそれぞれA1およびA4を混合したものを使用したものである。
(Examples 1-9, Comparative Examples 1-7)
Mixing a commercially available hardwood-derived raw material pulp (hereinafter referred to as LBKP) with a Niagara beater and about 5% by mass slurry and filler of deinked pulp (hereinafter referred to as DIP) obtained from a domestic paper company, A paper stock having the composition shown in Table 4 was obtained. The yield improver was dissolved in 0.10% by mass, and the total yield rate and filler yield rate were measured with an addition rate of 400 ppm in terms of dry pulp mass. The results are shown in Tables 5 and 6.
In Comparative Example 6 and Comparative Example 7, R1 mixed with A1 and A4 were used so as to have the same monomer composition as B3 used in Example 3 and B7 used in Example 7, respectively. Is.

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

本発明の歩留向上剤を用いた実施例1〜9は、高分子化合物Aを含まないR1を使用した比較例1と比較し、全歩留率、填料歩留率とも高い値を示した。高分子化合物Aの分子量が1000未満のR2を使用した比較例2は、比較例1と同程度の歩留性能であり実施例1〜9のいずれよりも劣った。高分子化合物Aの添加率が0.1質量部に満たないR4とR6を使用した比較例4と5も比較例1と同程度の歩留性能であり、高分子化合物Aの添加による効果は見られなかった。高分子化合物Aの分子量が100万を超えるR3を使用した比較例3は、さらに歩留性能が劣った。実質的に溶解している濃度が低かったためと考えられる。
後から高分子化合物Aを両性高分子化合物に混合することにより調整した比較例6および7は、比較例1と比べるといくらか歩留性能は向上しているものの、同様の単量体組成となる実施例3および実施例7と比べると填料歩留率が劣った。
以上より、本発明の歩留向上剤は、高い歩留性能を示し、特に填料歩留率の向上に有効といえる。
Examples 1 to 9 using the yield improver of the present invention showed high values for both the total yield rate and the filler yield rate, as compared with Comparative Example 1 using R1 not containing polymer compound A. . The comparative example 2 which uses R2 whose molecular weight of the high molecular compound A is less than 1000 is a yield performance comparable as the comparative example 1, and was inferior to any of Examples 1-9. Comparative Examples 4 and 5 using R4 and R6 in which the addition rate of the polymer compound A is less than 0.1 parts by mass have the same yield performance as that of Comparative Example 1, and the effect of the addition of the polymer compound A is I couldn't see it. The comparative example 3 using R3 in which the molecular weight of the polymer compound A exceeds 1,000,000 was further inferior in yield performance. This is probably because the concentration at which the substance was substantially dissolved was low.
Comparative Examples 6 and 7 prepared by mixing polymer compound A into the amphoteric polymer compound later have a similar monomer composition although yield performance is somewhat improved as compared with comparative example 1. Compared with Example 3 and Example 7, the filler yield rate was inferior.
From the above, it can be said that the yield improver of the present invention exhibits high yield performance and is particularly effective in improving the filler yield rate.

(製造例21 両性高分子化合物B10の製造;エマルション重合)
1000ml四つ口セパラブルフラスコに79質量%DAC水溶液を91.2g、79質量%DMC水溶液を3.9g、50質量%AM水溶液を196.3g、80質量%AA水溶液を8.4g、連鎖移動剤としてイソプロピルアルコール4.6g(単量体合計質量に対し2.0質量%)、および蒸留水を投入し、濃硫酸でpHを4に調整した後、V−50を0.04g含む20gの水溶液を添加し、全量400gの単量体水溶液になるように調製した。これに高分子化合物A5の22.0gを添加し均一に混合した。この単量体水溶液の高分子化合物Aおよび単量体の組成比は表6に示したとおりである。さらに、この単量体水溶液をHLB8.0のノニオン性界面活性剤10.0gを溶解したパラフィン油155gに加え、ホモジナイザーにて約1分間高速攪拌し乳化した。
フラスコに窒素ガス吹き込み管、還流冷却器、温度計を取り付け、攪拌機を通常の化学反応用の攪拌機に代え、攪拌しながらこの乳化液中に30分間窒素ガスを通し脱気した後、50℃に昇温して、窒素ガス雰囲気下で重合を行った。重合終了後、HLBが13.0のノニオン性界面活性剤17.2gを加えてエマルション型の両性高分子化合物B10とした。
(Production Example 21 Production of Amphoteric Polymer Compound B10; Emulsion Polymerization)
In a 1000 ml four-necked separable flask, 91.2 g of 79 wt% DAC aqueous solution, 3.9 g of 79 wt% DMC aqueous solution, 196.3 g of 50 wt% AM aqueous solution, 8.4 g of 80 wt% AA aqueous solution, chain transfer As an agent, 4.6 g of isopropyl alcohol (2.0% by mass with respect to the total mass of the monomer) and distilled water were added, and after adjusting the pH to 4 with concentrated sulfuric acid, 20 g of 0.04 g of V-50 was contained. An aqueous solution was added to prepare a monomer aqueous solution having a total amount of 400 g. To this, 22.0 g of the polymer compound A5 was added and mixed uniformly. The composition ratio of polymer compound A and monomer in this aqueous monomer solution is as shown in Table 6. Further, this monomer aqueous solution was added to 155 g of paraffin oil in which 10.0 g of nonionic surfactant of HLB 8.0 was dissolved, and emulsified by stirring at high speed for about 1 minute with a homogenizer.
Attach a nitrogen gas blowing tube, a reflux condenser, and a thermometer to the flask, replace the stirrer with an ordinary stirrer for chemical reaction, and degas by passing nitrogen gas through the emulsion for 30 minutes while stirring. The temperature was raised and polymerization was performed in a nitrogen gas atmosphere. After completion of the polymerization, 17.2 g of a nonionic surfactant having an HLB of 13.0 was added to obtain an emulsion type amphoteric polymer compound B10.

(製造例21〜28 両性高分子化合物B10〜B17の製造、製造例29〜33 比較高分子化合物R8〜R12の製造)
高分子化合物A1〜A7(A2を除く)を表7および表8に示した配合比となるよう仕込み量を調整した以外は実施例20と同様に操作し、両性高分子化合物B10〜B17、比較高分子化合物R8〜R12を得た。これらの0.1%不溶解分量および0.5%塩粘度を表7および表8に示す。
(Production Examples 21 to 28 Production of amphoteric polymer compounds B10 to B17, Production Examples 29 to 33 Production of comparative polymer compounds R8 to R12)
The polymer compounds A1 to A7 (excluding A2) were operated in the same manner as in Example 20 except that the amount charged was adjusted so that the blending ratios shown in Table 7 and Table 8 were obtained, and the amphoteric polymer compounds B10 to B17 were compared. Polymer compounds R8 to R12 were obtained. Tables 7 and 8 show these 0.1% insoluble content and 0.5% salt viscosity.

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

Mwが8000〜80万のA1およびA4〜A6を添加して製造した重合体B10〜B18は、全単量体量に対し10質量部まで添加しても水への溶解性が良好であった。一方、Mwが150万のA3を添加して重合したR10は5.0質量部でも溶解時にゲル化するものであった。また、Mwが25万のA4を12質量部添加して重合したR12も溶解時にゲル化した。  Polymers B10 to B18 produced by adding A1 and A4 to A6 having Mw of 8000 to 800,000 had good solubility in water even when added up to 10 parts by mass with respect to the total amount of monomers. . On the other hand, R10 polymerized by adding A3 having Mw of 1,500,000 gelled even at 5.0 parts by mass. Moreover, R12 polymerized by adding 12 parts by mass of A4 having an Mw of 250,000 gelled when dissolved.

(製紙用歩留向上剤)
両性高分子化合物B10〜B18および比較高分子化合物R8、R9およびR11は、他の成分を添加せずそのまま製紙用歩留向上剤として使用した。R10およびR12は実質溶解しなかったため使用しなかった。
(Yield improver for papermaking)
The amphoteric polymer compounds B10 to B18 and the comparative polymer compounds R8, R9, and R11 were used as they were as a yield improver for papermaking without adding other components. R10 and R12 were not used because they did not substantially dissolve.

(実施例10〜17、比較例8〜10)
市販のLBKPをナイアガラビーターで叩解したものおよび填料を混合し、表9に示した組成の紙料を得た。歩留向上剤を重合体濃度として0.10質量%に溶解し、添加率を対絶乾パルプ質量で350ppmとして全歩留率、填料歩留率を測定した。その結果を表10および表11に示す。
(Examples 10 to 17, Comparative Examples 8 to 10)
A commercially available LBKP beaten with a Niagara beater and a filler were mixed to obtain a paper stock having the composition shown in Table 9. The yield improver was dissolved in 0.10% by mass as the polymer concentration, and the total yield and filler yield were measured at an addition rate of 350 ppm by dry pulp mass. The results are shown in Table 10 and Table 11.

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

Figure 2013256740
Figure 2013256740

本発明の歩留向上剤を用いた実施例10〜17は、高分子化合物Aを含まないR8を使用した比較例8と比較し、全歩留率、填料歩留率とも高い値を示した。特に填料歩留率は全歩留率との相対比較において比較例8より高い比率であった。高分子化合物Aの分子量が1000未満のR9を使用した比較例9は、比較例8と同程度の歩留性能であり実施例10〜17のいずれよりも劣った。高分子化合物Aの添加率が0.1質量部に満たないR11を使用した比較例10は比較例8と同程度の歩留性能であり、高分子化合物Aの添加による効果は見られなかった。
以上より、本発明の両性高分子化合物を使用した歩留向上剤は、高い歩留性能を示し、特に填料歩留率の向上に有効といえる。
In Examples 10 to 17 using the yield improver of the present invention, both the total yield rate and the filler yield rate were higher than those in Comparative Example 8 using R8 not containing the polymer compound A. . In particular, the filler yield rate was higher than that of Comparative Example 8 in relative comparison with the total yield rate. Comparative Example 9 using R9 having a molecular weight of polymer compound A of less than 1000 had a yield performance comparable to that of Comparative Example 8 and was inferior to any of Examples 10-17. The comparative example 10 using R11 in which the addition rate of the polymer compound A is less than 0.1 parts by mass has the same yield performance as the comparative example 8, and the effect of the addition of the polymer compound A was not observed. .
From the above, it can be said that the yield improver using the amphoteric polymer compound of the present invention exhibits high yield performance and is particularly effective in improving the filler yield rate.

Claims (8)

アニオン性基を有する重量平均分子量Mwが1000〜100万の高分子化合物Aの存在下に、カチオン性単量体を必須とする単量体混合物を重合して得られる両性高分子化合物からなり、前記単量体混合物100質量部に対する高分子化合物Aの量が0.1〜10質量部である製紙用歩留向上剤。  An amphoteric polymer compound obtained by polymerizing a monomer mixture containing a cationic monomer in the presence of a polymer compound A having an anionic group and a weight average molecular weight Mw of 1,000 to 1,000,000, The yield improving agent for paper manufacture whose quantity of the high molecular compound A is 0.1-10 mass parts with respect to 100 mass parts of said monomer mixtures. 高分子化合物Aの一部または全部が、カチオン性単量体を必須とする単量体混合物の重合体と化学的に結合していることを特徴とする請求項1に記載の製紙用歩留向上剤。  The yield for papermaking according to claim 1, wherein a part or all of the polymer compound A is chemically bonded to a polymer of a monomer mixture containing a cationic monomer as an essential component. Improver. 高分子化合物Aが、下記式(1)で表される単量体単位を含むことを特徴とする請求項1または請求項2に記載の製紙用高分子組成物。
Figure 2013256740
(但し、式(1)中、R11は水素原子またはメチル基、Mは水素原子、アンモニウム基、アルカリ金属またはアルカリ土類金属を示す。)
The polymer composition for papermaking according to claim 1 or 2, wherein the polymer compound A contains a monomer unit represented by the following formula (1).
Figure 2013256740
(In the formula (1), R 11 represents a hydrogen atom or a methyl group, M represents a hydrogen atom, an ammonium group, an alkali metal or an alkaline earth metal.)
単量体混合物がノニオン性単量体単位を含む請求項1〜請求項3のいずれかに記載の製紙用高分子組成物。  The polymer composition for papermaking according to any one of claims 1 to 3, wherein the monomer mixture contains a nonionic monomer unit. 単量体混合物がアニオン性単量体単位を含む請求項1〜請求項4のいずれかに記載の製紙用高分子組成物。  The polymer composition for papermaking according to any one of claims 1 to 4, wherein the monomer mixture contains an anionic monomer unit. 紙料に対して、請求項1〜請求項5のいずれかに記載の製紙用歩留向上剤を添加した後、抄紙することを特徴とする製紙方法。  A papermaking method, wherein papermaking is performed after adding the yield improving agent for papermaking according to any one of claims 1 to 5 to the paper stock. 紙料が、パルプの絶乾質量100部に対して17質量部以上の填料を含むことを特徴とする請求項6に記載の製紙方法  The papermaking method according to claim 6, wherein the paper stock contains 17 parts by weight or more of a filler with respect to 100 parts of the dry mass of pulp. 全填料のうち、炭酸カルシウムが50質量%以上である請求項7に記載の製紙方法。  The papermaking method according to claim 7, wherein calcium carbonate is 50% by mass or more of the total filler.
JP2012143473A 2012-06-11 2012-06-11 Yield improver for papermaking and papermaking method using the same Active JP5847657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143473A JP5847657B2 (en) 2012-06-11 2012-06-11 Yield improver for papermaking and papermaking method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143473A JP5847657B2 (en) 2012-06-11 2012-06-11 Yield improver for papermaking and papermaking method using the same

Publications (2)

Publication Number Publication Date
JP2013256740A true JP2013256740A (en) 2013-12-26
JP5847657B2 JP5847657B2 (en) 2016-01-27

Family

ID=49953397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143473A Active JP5847657B2 (en) 2012-06-11 2012-06-11 Yield improver for papermaking and papermaking method using the same

Country Status (1)

Country Link
JP (1) JP5847657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172935A (en) * 2015-03-16 2016-09-29 栗田工業株式会社 Paper dust reducing agent, paper dust reducing method and paper manufacturing method
JPWO2015053349A1 (en) * 2013-10-08 2017-03-09 ソマール株式会社 Yield agent and paper manufacturing method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523462A (en) * 2000-01-24 2003-08-05 アトフィナ Salt-free aqueous dispersions of water-soluble copolymers based on cationic monomers, processes for their preparation and their use
JP2006257606A (en) * 2005-03-18 2006-09-28 Harima Chem Inc Filler-attached paper and method for producing the same
JP2010077541A (en) * 2008-09-24 2010-04-08 Arakawa Chem Ind Co Ltd Water-soluble polymer dispersion, paper-strengthening agent, freeness-improving agent for making paper and yield-improving agent for making paper
JP2011226042A (en) * 2010-03-31 2011-11-10 Arakawa Chem Ind Co Ltd Water soluble polymer dispersion, paper-strengthening agent, paper making freeness improver and paper making yield improver
JP2013078755A (en) * 2011-09-22 2013-05-02 Mt Aquapolymer Inc Amphoteric polymer flocculant, method of manufacturing the same, and sludge dehydration method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523462A (en) * 2000-01-24 2003-08-05 アトフィナ Salt-free aqueous dispersions of water-soluble copolymers based on cationic monomers, processes for their preparation and their use
JP2006257606A (en) * 2005-03-18 2006-09-28 Harima Chem Inc Filler-attached paper and method for producing the same
JP2010077541A (en) * 2008-09-24 2010-04-08 Arakawa Chem Ind Co Ltd Water-soluble polymer dispersion, paper-strengthening agent, freeness-improving agent for making paper and yield-improving agent for making paper
JP2011226042A (en) * 2010-03-31 2011-11-10 Arakawa Chem Ind Co Ltd Water soluble polymer dispersion, paper-strengthening agent, paper making freeness improver and paper making yield improver
JP2013078755A (en) * 2011-09-22 2013-05-02 Mt Aquapolymer Inc Amphoteric polymer flocculant, method of manufacturing the same, and sludge dehydration method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015053349A1 (en) * 2013-10-08 2017-03-09 ソマール株式会社 Yield agent and paper manufacturing method using the same
JP2016172935A (en) * 2015-03-16 2016-09-29 栗田工業株式会社 Paper dust reducing agent, paper dust reducing method and paper manufacturing method

Also Published As

Publication number Publication date
JP5847657B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
RU2205847C2 (en) Polymer compositions, their manufacture and use
AU2008315917B2 (en) Inverse emulsion polymers containing a polymeric coagulant
KR100628365B1 (en) Polyammonium Quaternary Polymers for Inhibiting Anionic Tresches and Pitch Sedimentation and Treating Coated Brokes
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP2015515526A (en) New cationic polymer
CN101094891B (en) Highly cationic polymer dispersions, method for producing them and their use
CA2592586C (en) Cationic polymer dispersions, method for the production thereof, and use thereof
JP5847657B2 (en) Yield improver for papermaking and papermaking method using the same
JP4886228B2 (en) Water-soluble polymer dispersion and paper making method using the same
JP5733947B2 (en) Powdered coagulation dewatering agent and organic sludge coagulation dehydration method
JP5069513B2 (en) Method for producing inorganic body
JP5940881B2 (en) Amphoteric polymer flocculant, method for producing the same and sludge dewatering method using the same
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP4232189B2 (en) Paper manufacturing method
JP4236953B2 (en) Paper making method
JP2009024125A (en) Stable water-soluble polymer dispersion and method for producing the same
JP2000212229A (en) Papermaking additive and method for producing the same
JP4465646B2 (en) Paper additive and paper using the paper additive
JP2019037962A (en) Method of reforming organic waste
JP2018034083A (en) Dewatering method of organic sludge
JP4868282B2 (en) Dirt prevention method
JP2004300629A (en) Additive for papermaking and paper using additive for papermaking
JP4784857B2 (en) Paper manufacturing method
JPH08188982A (en) Papermaking additives
JP4925234B2 (en) Papermaking raw material processing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250