[go: up one dir, main page]

JP2013226071A - Apparatus and method for manufacturing polyhydroxyalkanoate - Google Patents

Apparatus and method for manufacturing polyhydroxyalkanoate Download PDF

Info

Publication number
JP2013226071A
JP2013226071A JP2012100299A JP2012100299A JP2013226071A JP 2013226071 A JP2013226071 A JP 2013226071A JP 2012100299 A JP2012100299 A JP 2012100299A JP 2012100299 A JP2012100299 A JP 2012100299A JP 2013226071 A JP2013226071 A JP 2013226071A
Authority
JP
Japan
Prior art keywords
pha
microorganism holding
holding member
polyhydroxyalkanoate
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012100299A
Other languages
Japanese (ja)
Other versions
JP6016062B2 (en
Inventor
Akiyoshi Ohashi
晶良 大橋
Hiroya Kodera
博也 小寺
Noriatsu Ozaki
則篤 尾崎
Tomonori Kindaichi
智規 金田一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2012100299A priority Critical patent/JP6016062B2/en
Publication of JP2013226071A publication Critical patent/JP2013226071A/en
Application granted granted Critical
Publication of JP6016062B2 publication Critical patent/JP6016062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】実排水処理に適用可能なポリヒドロキシアルカノエートの生産装置及び生産方法を提供する。
【解決手段】ポリヒドロキシアルカノエートの生産装置1は、PHA蓄積細菌が担持される微生物保持部材11〜14と、微生物保持部材11〜14を排水中への浸漬及び排水中からの取り出しを行う微生物保持部材駆動装置20と、微生物保持部材駆動装置20の駆動を制御する制御装置30とを備える。制御装置30が微生物保持部材駆動装置20を制御し、微生物保持部材11〜14を所定時間排水中に浸漬させ、排水中の有機物をPHA蓄積細菌に摂取させて、PHA蓄積細菌が有機物をPHAに変換して蓄積する嫌気処理、及び、微生物保持部材11〜14を排水中から取り出して所定時間空気中に晒し、PHA蓄積細菌がPHAを消費して増殖する好気処理を繰り返し行う。
【選択図】図1
A polyhydroxyalkanoate production apparatus and production method applicable to actual wastewater treatment are provided.
A polyhydroxyalkanoate production apparatus (1) includes a microorganism holding member (11-14) on which PHA accumulating bacteria are supported, and a microorganism that immerses and removes the microorganism holding member (11-14) from the waste water. A holding member driving device 20 and a control device 30 that controls driving of the microorganism holding member driving device 20 are provided. The control device 30 controls the microorganism holding member driving device 20, soaks the microorganism holding members 11 to 14 in the wastewater for a predetermined time, causes the organic matter in the wastewater to be ingested by the PHA-accumulating bacteria, and the PHA-accumulating bacteria converts the organic matter into the PHA. The anaerobic treatment to be converted and accumulated, and the microorganism holding members 11 to 14 are taken out from the waste water and exposed to the air for a predetermined time, and the aerobic treatment in which the PHA accumulating bacteria consume and proliferate PHA are repeatedly performed.
[Selection] Figure 1

Description

本発明は、ポリヒドロキシアルカノエートの生産装置及び生産方法に関する。   The present invention relates to a polyhydroxyalkanoate production apparatus and production method.

現状、プラスチックのほとんどが石油や天然ガスから生産されている。将来的な化石燃料の枯渇も叫ばれており、天然資源由来のバイオプラスチックが注目されている。   Currently, most plastics are produced from oil and natural gas. The depletion of fossil fuels in the future is also screamed, and bioplastics derived from natural resources are drawing attention.

バイオプラスチックは、バイオマス起源の素材が原料であるため、二酸化炭素の増減に影響を与えないカーボンニュートラルの性質を持っており、地球温暖化対策にも資する。また、バイオプラスチックの多くは、生分解性であり、埋め立てや投棄されても、微生物によって分解されるので、環境にも優しい。   Bioplastics have carbon neutral properties that do not affect the increase or decrease of carbon dioxide because they are derived from biomass, and contribute to global warming countermeasures. In addition, many bioplastics are biodegradable, and even if they are landfilled or dumped, they are decomposed by microorganisms, so they are environmentally friendly.

バイオプラスチックは、主にデンプンや糖の含有量の多いトウモロコシやサトウキビなどから製造されている。しかし、これらの原料は食料と競合するので、食料以外の廃棄物等からバイオプラスチック生産を模索することが望ましい。   Bioplastics are mainly produced from corn, sugarcane, etc. with high starch and sugar content. However, since these raw materials compete with food, it is desirable to seek bioplastic production from waste other than food.

下水等の排水である液状のバイオマス廃棄物も資源として捉える考えが定着してきている。例えば、PHA蓄積細菌は、有機物を摂取し、ポリヒドロキシアルカノエート(Polyhydroxyalkanoate)(以下、PHAとも記す)に変換、蓄積する。このPHA蓄積細菌を利用し、下水から生分解性プラスチック原料として利用可能なPHAを生産するアイデアがあるが、現状、実用化までは至っていない。   The idea of capturing liquid biomass waste as wastewater such as sewage as a resource has become established. For example, a PHA-accumulating bacterium takes an organic substance, converts it into polyhydroxyalkanoate (hereinafter also referred to as PHA), and accumulates it. There is an idea of producing PHA that can be used as a biodegradable plastic raw material from sewage using this PHA-accumulating bacterium, but it has not yet been put into practical use.

その理由として、下水処理の活性汚泥法では、細菌が有機物を分解して増殖して活性汚泥(主に増殖した細菌の集合体)が発生し、その中にPHA蓄積細菌が含まれているが、活性汚泥に占めるPHA蓄積細菌の割合が低いことから、活性汚泥中のPHA含有量が数%と低いことに起因する。したがって、余剰汚泥のほとんどは有効利用されず、廃棄物として処分されているのが実情である。   The reason for this is that in the activated sludge process for sewage treatment, bacteria decompose organic substances and grow to generate activated sludge (mainly an aggregate of bacteria that have grown), which contains PHA accumulating bacteria. This is because the proportion of PHA-accumulating bacteria in the activated sludge is low, and the PHA content in the activated sludge is as low as several percent. Therefore, most of the excess sludge is not effectively used and is actually disposed of as waste.

上記事項に鑑み、活性汚泥中のPHA含有量を高める方法が検討されている。非特許文献1では、排水中の有機物濃度を制御してPHA細菌を優占化させ、余剰汚泥中のPHA濃度を高めている。   In view of the above matters, methods for increasing the PHA content in activated sludge have been studied. In Non-Patent Document 1, the concentration of organic substances in waste water is controlled to make PHA bacteria dominant, and the PHA concentration in excess sludge is increased.

Katja Johnson, Yang Jiang, Robbert kleerebezem, Gerard Muyzer, and Mark C. M. van Loosdrecht; Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity; Biomacromolecules 2009, 10, 670-676Katja Johnson, Yang Jiang, Robbert kleerebezem, Gerard Muyzer, and Mark C. M. van Loosdrecht; Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity; Biomacromolecules 2009, 10, 670-676

非特許文献1に開示の方法では、排出された排水の有機物の濃度を制御する必要がある。排水には種々の有機物を含有し、その濃度も一定ではないことから、実排水処理には適していない。   In the method disclosed in Non-Patent Document 1, it is necessary to control the concentration of organic matter in the discharged waste water. The wastewater contains various organic substances and its concentration is not constant, so it is not suitable for actual wastewater treatment.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、実排水処理に適用可能なポリヒドロキシアルカノエートの生産装置及び生産方法を提供することにある。   This invention is made | formed in view of the said matter, The place made into the objective is to provide the production apparatus and production method of polyhydroxyalkanoate applicable to a real wastewater treatment.

本発明の第1の観点に係るポリヒドロキシアルカノエートの生産装置は、
PHA蓄積細菌が担持される微生物保持部材と、
前記微生物保持部材を排水中への浸漬及び排水中からの取り出しを行う微生物保持部材駆動装置と、
前記微生物保持部材駆動装置の駆動を制御する制御装置と、を備え、
前記制御装置が前記微生物保持部材駆動装置を駆動させて前記微生物保持部材を所定時間排水中に浸漬させ、排水中の有機物を前記PHA蓄積細菌に摂取させて、前記PHA蓄積細菌が有機物をポリヒドロキシアルカノエートに変換して蓄積する嫌気処理を行い、
前記制御装置が前記微生物保持部材駆動装置を駆動させて前記微生物保持部材を排水中から取り出して所定時間空気中に晒し、前記PHA蓄積細菌がポリヒドロキシアルカノエートを消費して増殖する好気処理を行い、
前記制御装置が前記微生物保持部材駆動装置を制御して前記嫌気処理及び前記好気処理を複数回繰り返し行って、前記微生物保持部材に形成される活性汚泥中の前記PHA蓄積細菌の割合を高め、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とする。
An apparatus for producing a polyhydroxyalkanoate according to the first aspect of the present invention,
A microorganism holding member on which PHA accumulating bacteria are supported;
A microorganism holding member driving device for immersing the microorganism holding member in drainage and taking out the wastewater from drainage;
A control device for controlling the driving of the microorganism holding member driving device,
The control device drives the microorganism holding member driving device to immerse the microorganism holding member in the wastewater for a predetermined time, ingest the organic matter in the wastewater into the PHA-accumulating bacteria, and the PHA-accumulating bacteria convert the organic matter to polyhydroxy Anaerobic treatment that converts to alkanoate and accumulates it,
An aerobic treatment in which the control device drives the microorganism holding member driving device to take out the microorganism holding member from the waste water and expose it to the air for a predetermined time so that the PHA-accumulating bacteria consume polyhydroxyalkanoate and proliferate; Done
The control device controls the microorganism holding member driving device and repeats the anaerobic treatment and the aerobic treatment a plurality of times to increase the proportion of the PHA-accumulating bacteria in the activated sludge formed on the microorganism holding member, Increase the content of polyhydroxyalkanoate in activated sludge,
It is characterized by that.

また、前記制御装置は、活性汚泥を回収する前の前記嫌気処理の時間をそれまでの前記嫌気処理よりも長い時間行うよう前記微生物保持部材を制御して、活性汚泥中のポリヒドロキシアルカノエートの含有量を高めることが望ましい。   Further, the control device controls the microorganism holding member so that the time of the anaerobic treatment before recovering the activated sludge is longer than the time of the anaerobic treatment so far, and the polyhydroxyalkanoate in the activated sludge is controlled. It is desirable to increase the content.

また、前記微生物保持部材を複数備え、
前記制御装置は、いずれかの前記微生物保持部材を空気中に晒している際、他の前記微生物保持部材の少なくとも一つを排水中に浸漬させるよう前記微生物保持部材駆動装置を制御することが望ましい。
Also, comprising a plurality of the microorganism holding member,
The control device preferably controls the microorganism holding member driving device so that at least one of the other microorganism holding members is immersed in the waste water when any one of the microorganism holding members is exposed to the air. .

本発明の第2の観点に係るポリヒドロキシアルカノエートの生産方法は、
PHA蓄積細菌が担持される微生物保持部材を所定時間排水中に浸漬させて排水中の有機物を前記PHA蓄積細菌に摂取させ、前記PHA蓄積細菌が有機物をポリヒドロキシアルカノエートに変換して蓄積する嫌気処理工程と、
前記微生物保持部材を排水中から取り出して所定時間空気中に晒し、前記PHA蓄積細菌がポリヒドロキシアルカノエートを消費して増殖する好気処理工程と、を備え、
前記嫌気処理工程及び前記好気処理工程を複数回繰り返し行って、前記微生物保持部材に形成される活性汚泥中の前記PHA蓄積細菌の割合を高め、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とする。
The method for producing a polyhydroxyalkanoate according to the second aspect of the present invention comprises:
An anaerobic structure in which a microorganism holding member carrying PHA accumulating bacteria is immersed in waste water for a predetermined time to ingest organic matter in the waste water into the PHA accumulating bacteria, and the PHA accumulating bacteria convert the organic matter to polyhydroxyalkanoate and accumulate it. Processing steps;
An aerobic treatment step in which the microorganism holding member is taken out from the waste water and exposed to the air for a predetermined time, and the PHA-accumulating bacteria consume polyhydroxyalkanoate and grow,
Repeating the anaerobic treatment step and the aerobic treatment step a plurality of times to increase the proportion of the PHA-accumulating bacteria in the activated sludge formed on the microorganism holding member, and to increase the content of polyhydroxyalkanoate in the activated sludge Increase,
It is characterized by that.

また、活性汚泥を回収する前の前記嫌気処理工程をそれまでの前記嫌気処理工程よりも長い時間行い、活性汚泥中のポリヒドロキシアルカノエートの含有量を高めることが望ましい。   In addition, it is desirable to increase the content of polyhydroxyalkanoate in the activated sludge by performing the anaerobic treatment step before recovering the activated sludge for a longer time than the previous anaerobic treatment step.

また、前記微生物保持部材を複数用い、
いずれかの前記微生物保持部材を空気中に晒している際、他の前記微生物保持部材の少なくとも一つを排水中に浸漬させることが望ましい。
Further, a plurality of the microorganism holding members are used,
When any one of the microorganism holding members is exposed to the air, it is desirable to immerse at least one of the other microorganism holding members in the waste water.

本発明に係るポリヒドロキシアルカノエートの生産装置及び生産方法では、排水中の有機物濃度を制御することなく、排水中の有機物をバイオプラスチックの原料となるPHAを生産させることができるとともに、形成される活性汚泥中のPHAの含有量を高めることができる。また、好気処理において、エアレーションが不要であるため、PHAの生産コストの低減にもつながる。したがって、実排水処理にも適用可能である   In the polyhydroxyalkanoate production apparatus and production method according to the present invention, it is possible to produce PHA as a raw material for bioplastics using organic matter in wastewater without controlling the concentration of organic matter in wastewater. The content of PHA in the activated sludge can be increased. In addition, since aeration is not necessary in the aerobic process, the production cost of PHA is also reduced. Therefore, it can be applied to actual wastewater treatment.

PHA生産装置の概略構成図である。It is a schematic block diagram of a PHA production apparatus. PHA生産装置の動作を説明する図である。It is a figure explaining operation | movement of a PHA production apparatus. PHA生産装置の動作を説明する図である。It is a figure explaining operation | movement of a PHA production apparatus. PHA生産装置の動作を説明する図である。It is a figure explaining operation | movement of a PHA production apparatus. PHA生産装置の動作を説明する図である。It is a figure explaining operation | movement of a PHA production apparatus. PHA生産装置の動作を説明する図である。It is a figure explaining operation | movement of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. PHA生産装置の活性汚泥回収前の動作を説明する図である。It is a figure explaining operation | movement before the activated sludge collection | recovery of a PHA production apparatus. 実施例1にて使用した装置の概略構成図であり、嫌気処理の状態を説明する図である。It is a schematic block diagram of the apparatus used in Example 1, and is a figure explaining the state of anaerobic processing. 実施例1にて使用した装置の概略構成図であり、好気処理の状態を説明する図である。It is a schematic block diagram of the apparatus used in Example 1, and is a figure explaining the state of an aerobic process. 実施例1において流入させる人工下水及び排出される処理水のCOD変化を示すグラフである。It is a graph which shows COD change of the artificial sewage inflow in Example 1, and the discharged | emitted process water. 実施例1における布担体あたりのバイオマス濃度を示すグラフである。2 is a graph showing the biomass concentration per cloth carrier in Example 1. FIG. 実施例1におけるバイオマス組成を示すグラフである。2 is a graph showing a biomass composition in Example 1. FIG. 実施例2におけるバイオマス組成を示すグラフである。6 is a graph showing a biomass composition in Example 2.

図を参照しつつ、ポリヒドロキシアルカノエート(以下、PHAとも記す)の生産装置及び生産方法について詳述する。   The production apparatus and production method of polyhydroxyalkanoate (hereinafter also referred to as PHA) will be described in detail with reference to the drawings.

PHA生産装置1は、図1の概略構成図に示すように、微生物保持部材11〜14と微生物保持部材駆動装置20と、制御装置30とを備える。   As shown in the schematic configuration diagram of FIG. 1, the PHA production apparatus 1 includes microorganism holding members 11 to 14, a microorganism holding member driving device 20, and a control device 30.

微生物保持部材11〜14には、PHA蓄積細菌(Polyhydroxyalkanoate accumulating bacteria)が担持される。微生物保持部材11〜14は、PHA蓄積細菌が担持され、PHA蓄積細菌群の生物膜、即ち、活性汚泥が形成され得るものであればどのようなものでもよい。また、後述の好気処理において、微生物保持部材11〜14を所定時間空気中に晒している際に、微生物保持部材11〜14が乾燥してしまわぬよう、保水性の高い部材であることが好ましい。微生物保持部材11〜14として、例えば、布、スポンジ等の多孔質部材が挙げられる。   The microorganism holding members 11 to 14 carry PHA accumulating bacteria (Polyhydroxyalkanoate accumulating bacteria). The microorganism holding members 11 to 14 may be any member as long as PHA-accumulating bacteria are supported and a biofilm of the PHA-accumulating bacteria group, that is, activated sludge can be formed. In addition, in the aerobic treatment described later, when the microorganism holding members 11 to 14 are exposed to the air for a predetermined time, the microorganism holding members 11 to 14 are members having high water retention so that the microorganism holding members 11 to 14 are not dried. preferable. Examples of the microorganism holding members 11 to 14 include porous members such as cloth and sponge.

PHA蓄積細菌は、細胞内にPHAを蓄積することが可能な微生物であれば特に限定されない。例えば、アエロモナス(Aeromonas)属、アルカリゲネス(Alcaligenes)属、アゾトバクター(Azotobacter)属、バチルス(Bacillus)属、クロストリジウム(Clostridium)属、ハロバクテリウム(Halobacterium)属、ノカルディア(Nocardia)属、ロドスピリルム(Rhodospirillum)属、シュウドモナス(Psuedomonas)属、ラルストニア(Ralstonia)属、ズーグロエア(Zoogloea)属等の微生物が挙げられる。   The PHA-accumulating bacterium is not particularly limited as long as it is a microorganism capable of accumulating PHA in cells. For example, Aeromonas genus, Alcaligenes genus, Azotobacter genus, Bacillus genus, Clostridium genus, Halobacterium genus Nocardia p ) Genus, Psuedomonas genus, Ralstonia genus, Zoogloea genus and the like.

なお、微生物保持部材11〜14にPHA蓄積細菌を担持させてから用いてもよいが、通常、PHA蓄積細菌はどのような排水にも存在するものゆえ、PHA蓄積細菌を担持させずに微生物保持部材11〜14を用いてもよい。   The microorganism holding members 11 to 14 may be used after supporting the PHA accumulating bacteria. However, since the PHA accumulating bacteria are usually present in any waste water, the microorganisms can be retained without supporting the PHA accumulating bacteria. Members 11 to 14 may be used.

微生物保持部材駆動装置20は、微生物保持部材11〜14を排水中に浸漬するとともに、浸漬させた微生物保持部材11〜14を排水中から取り出す機能を備える。一例として、図1に示す微生物保持部材駆動20は、内蔵される不図示のモータ等の駆動源により糸やワイヤ等で吊った微生物保持部材11〜14をそれぞれ独立して昇降可能に構成されている。なお、微生物保持部材駆動装置20は、微生物保持部材11〜14の排水への浸漬及び排水からの取り出しが可能であれば、上記の構成のほか、どのような構成であってもよい。   The microorganism holding member driving device 20 has a function of immersing the microorganism holding members 11 to 14 in the waste water and taking out the immersed microorganism holding members 11 to 14 from the waste water. As an example, the microorganism holding member drive 20 shown in FIG. 1 is configured so that the microorganism holding members 11 to 14 suspended by a thread, a wire, or the like can be moved up and down independently by a drive source such as a built-in motor (not shown). Yes. The microorganism holding member driving device 20 may have any configuration other than the above configuration as long as the microorganism holding members 11 to 14 can be immersed in the drainage and taken out from the drainage.

制御装置30は、微生物保持部材駆動装置20の駆動を制御する装置であり、それぞれの微生物保持部材11〜14を所定時間排水中に浸漬させたり、大気中に晒したりする制御を行う。制御装置30はタイマを備え、予め設定された時間に基づいて、微生物保持部材駆動装置20を制御する。   The control device 30 is a device that controls the driving of the microorganism holding member driving device 20, and controls each of the microorganism holding members 11 to 14 to be immersed in the waste water or exposed to the atmosphere for a predetermined time. The control device 30 includes a timer, and controls the microorganism holding member driving device 20 based on a preset time.

続いて、図2〜図6を参照しつつ、PHA生産装置1を用いたPHA生産方法について説明する。ここでは、嫌気処理を2時間、好気処理を6時間行い、PHA回収前の嫌気処理を4時間行う例について説明する。   Next, a PHA production method using the PHA production apparatus 1 will be described with reference to FIGS. Here, an example will be described in which anaerobic processing is performed for 2 hours, aerobic processing is performed for 6 hours, and anaerobic processing before PHA recovery is performed for 4 hours.

まず、排水Wが流れる流路にPHA生産装置1を配置する。PHA生産装置1は、微生物保持部材11〜14を下降させた際に流路を流れる排水Wに浸漬するとともに、上昇させた際に排水Wから取り出され空気中に晒されるよう配置される。   First, the PHA production apparatus 1 is disposed in the flow path through which the drainage W flows. The PHA production apparatus 1 is disposed so as to be immersed in the waste water W flowing through the flow path when the microorganism holding members 11 to 14 are lowered, and to be taken out from the waste water W and exposed to the air when the microorganism holding members 11 to 14 are raised.

そして、図2に示すように、制御装置30が、微生物保持部材駆動装置20を駆動させ、微生物保持部材11を下降させ排水Wに浸漬させる。これにより、微生物保持部材11は嫌気条件におかれるので、PHA細菌による嫌気処理が行われる。嫌気処理では、微生物保持部材11に担持されたPHA細菌は、排水Wに含まれる有機物を摂取し、PHAへと変換し、細胞内にPHAを蓄積する。   Then, as shown in FIG. 2, the control device 30 drives the microorganism holding member driving device 20 to lower the microorganism holding member 11 and immerse it in the waste water W. Thereby, since the microorganism holding member 11 is subjected to anaerobic conditions, anaerobic treatment with PHA bacteria is performed. In the anaerobic treatment, the PHA bacteria carried on the microorganism holding member 11 ingests organic substances contained in the waste water W, converts them into PHA, and accumulates PHA in the cells.

2時間後、図3に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材11を上昇させて排水Wから取り出すとともに、微生物保持部材12を排水Wに浸漬させる。   After 2 hours, as shown in FIG. 3, the control device 30 drives the microorganism holding member driving device 20 to raise the microorganism holding member 11 and remove it from the waste water W, and immerse the microorganism holding member 12 in the waste water W. .

微生物保持部材11は大気中に晒され、微生物保持部材11は好気条件におかれるので、PHA細菌による好気処理が行われる。好気処理では、PHA細菌は、酸素及び蓄積したPHAを利用して呼吸し、PHA細菌が増殖する。   Since the microorganism holding member 11 is exposed to the atmosphere and the microorganism holding member 11 is in an aerobic condition, an aerobic treatment with PHA bacteria is performed. In the aerobic treatment, PHA bacteria respire using oxygen and accumulated PHA, and PHA bacteria grow.

一方、排水Wに浸漬された微生物保持部材12は、嫌気条件におかれ、上記と同様に嫌気処理が行われることとなる。   On the other hand, the microorganism holding member 12 immersed in the waste water W is subjected to anaerobic conditions and is subjected to anaerobic treatment as described above.

4時間経過後、図4に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材12を上昇させて排水Wから取り出すとともに、微生物保持部材13を排水Wに浸漬させる。上記同様に、微生物保持部材12は好気条件におかれ、PHA細菌による好気処理が行われる。また、上記と同様に、微生物保持部材13は嫌気条件におかれ、上記同様に嫌気処理が行われる。   After 4 hours, as shown in FIG. 4, the control device 30 drives the microorganism holding member driving device 20 to raise the microorganism holding member 12 and take it out from the waste water W, and immerse the microorganism holding member 13 in the waste water W. Let Similar to the above, the microorganism holding member 12 is subjected to an aerobic condition and is subjected to an aerobic treatment with PHA bacteria. Similarly to the above, the microorganism holding member 13 is subjected to anaerobic conditions, and anaerobic treatment is performed in the same manner as described above.

6時間経過後、図5に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材13を上昇させて排水Wから取り出すとともに、微生物保持部材14を排水Wに浸漬させる。上記と同様に、微生物保持部材13は好気条件におかれ、PHA細菌による好気処理が行われる。また、上記と同様に、微生物保持部材14は嫌気条件におかれ、上記と同様に嫌気処理が行われる。   After the elapse of 6 hours, as shown in FIG. 5, the control device 30 drives the microorganism holding member driving device 20 to raise the microorganism holding member 13 and remove it from the waste water W, and immerse the microorganism holding member 14 in the waste water W. Let Similarly to the above, the microorganism holding member 13 is subjected to an aerobic condition, and an aerobic treatment with PHA bacteria is performed. Similarly to the above, the microorganism holding member 14 is subjected to anaerobic conditions, and anaerobic treatment is performed in the same manner as described above.

8時間経過後、図6に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材14を上昇させて排水Wから取り出すとともに、再度、微生物保持部材11を排水Wに浸漬させる。上記と同様に、微生物保持部材13は好気条件におかれ、PHA細菌による好気処理が行われる。また、上記と同様に、再度、微生物保持部材11は嫌気条件におかれ、上記と同様に嫌気処理が行われる。   After the elapse of 8 hours, as shown in FIG. 6, the control device 30 drives the microorganism holding member driving device 20 to raise the microorganism holding member 14 and take it out from the waste water W, and again remove the microorganism holding member 11 from the waste water W. Soak in. Similarly to the above, the microorganism holding member 13 is subjected to an aerobic condition, and an aerobic treatment with PHA bacteria is performed. Further, similarly to the above, the microorganism holding member 11 is again subjected to the anaerobic condition, and the anaerobic treatment is performed in the same manner as described above.

そして、上記の工程を順に複数サイクル行う。このように嫌気処理及び好気処理が繰り返し行われることで、微生物保持部材に担持されるPHA蓄積細菌が増殖する。上記のサイクルによって、他の細菌(嫌気条件でのみ生存できる微生物、好気条件でのみ生存できる微生物)が排除されるので、形成される活性汚泥中のPHA蓄積細菌の割合が高まり、PHA蓄積細菌が優占化した活性汚泥が得られる。   Then, the above steps are sequentially performed for a plurality of cycles. By repeating the anaerobic treatment and the aerobic treatment in this manner, the PHA-accumulating bacteria carried on the microorganism holding member grows. By the above cycle, other bacteria (microorganisms that can survive only under anaerobic conditions, microorganisms that can survive only under aerobic conditions) are eliminated, so the proportion of PHA accumulating bacteria in the activated sludge formed increases, and PHA accumulating bacteria Activated sludge is obtained.

上記のサイクルを行って、活性汚泥中のPHA蓄積細菌を優占化させた後、活性汚泥を回収する。そして、活性汚泥を回収する前の嫌気処理の時間(例えば、4時間)をそれまでの嫌気処理の時間(例えば、2時間)より長くするよう、制御装置30は微生物保持部材駆動装置20の駆動を制御する。   After the above cycle is performed to dominate the PHA-accumulating bacteria in the activated sludge, the activated sludge is recovered. Then, the control device 30 drives the microorganism holding member driving device 20 so that the anaerobic treatment time (for example, 4 hours) before collecting the activated sludge is longer than the previous anaerobic treatment time (for example, 2 hours). To control.

一例として、以下に記すように制御装置30は微生物保持部材駆動装置20を制御する。上述した嫌気処理及び好気処理を複数回繰り返したX時間後の状態を図7に示す。制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材11が排水Wに浸漬される。   As an example, the control device 30 controls the microorganism holding member driving device 20 as described below. FIG. 7 shows a state after X hours in which the above-described anaerobic processing and aerobic processing are repeated a plurality of times. The control device 30 drives the microorganism holding member driving device 20 so that the microorganism holding member 11 is immersed in the waste water W.

X+2時間経過後、図8に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材12が排水Wに浸漬される。この際、制御装置30は、微生物保持部材11が排水Wから取り出されないよう微生物保持部材駆動装置20を制御する。   After the elapse of X + 2 hours, as shown in FIG. 8, the control device 30 drives the microorganism holding member driving device 20 so that the microorganism holding member 12 is immersed in the waste water W. At this time, the control device 30 controls the microorganism holding member driving device 20 so that the microorganism holding member 11 is not taken out from the waste water W.

X+4時間経過後、図9に示すように、制御装置30は、微生物保持部材駆動装置20を駆動させ、微生物保持部材11を上昇させて排水Wから取り出すとともに、微生物保持部材13を排水Wに浸漬させる。この結果、微生物保持部材11では、4時間嫌気処理が行われたこととなる。このようにして排水Wから取り出された微生物保持部材11の表面に形成された活性汚泥を回収し、活性汚泥中のPHAを抽出する。   After the elapse of X + 4 hours, as shown in FIG. 9, the control device 30 drives the microorganism holding member driving device 20 to raise the microorganism holding member 11 and remove it from the waste water W, and immerse the microorganism holding member 13 in the waste water W. Let As a result, the microorganism holding member 11 has been subjected to the anaerobic treatment for 4 hours. Thus, the activated sludge formed on the surface of the microorganism holding member 11 taken out from the waste water W is recovered, and PHA in the activated sludge is extracted.

X+6時間経過後、X+8時間経過後、X+10時間経過後では、図10、図11、図12にそれぞれ示すように、4時間嫌気処理が行われた微生物保持部材12、13、14が順次それぞれ排水Wから取り出される。そして、取り出された微生物保持部材12、13、14の表面に形成された活性汚泥をそれぞれ回収し、活性汚泥中のPHAを抽出する。   After the passage of X + 6 hours, the passage of X + 8 hours, and the passage of X + 10 hours, the microorganism holding members 12, 13, and 14 that have been subjected to the anaerobic treatment for 4 hours are sequentially drained, as shown in FIGS. 10, 11, and 12, respectively. W is taken out. And the activated sludge formed in the surface of the taken-out microorganisms holding member 12, 13, 14 is each collect | recovered, and PHA in activated sludge is extracted.

以上のようにして、回収前の嫌気処理をそれまでの嫌気処理よりも長い時間行うことで、増殖したPHA蓄積細菌が多くの有機物を摂取してPHAを変換し、細胞内にPHAを蓄積する。このようにして、回収する活性汚泥中のPHAの含有量を高めることができる。   As described above, by performing the anaerobic treatment before collection for a longer time than the previous anaerobic treatment, the proliferated PHA-accumulating bacteria ingest many organic substances to convert PHA, and accumulate PHA in the cells. . In this way, the content of PHA in the activated sludge to be recovered can be increased.

なお、活性汚泥の回収は、微生物保持部材11〜14の表面に形成された活性汚泥の剥離等、公知の手法により行い得る。また、活性汚泥中のPHAの回収は公知の手法により行い得る(Nicolas Jcquel et al., Isolation and purification of bacterial poly(3-hydroxyalkanoates), Biochemical Engineering Journnal, Vol.39 (2008) p15-27)参照)。   In addition, collection | recovery of activated sludge can be performed by well-known methods, such as peeling of the activated sludge formed in the surface of the microorganisms holding members 11-14. In addition, the recovery of PHA in activated sludge can be performed by known methods (see Nicolas Jcquel et al., Isolation and purification of bacterial poly (3-hydroxyalkanoates), Biochemical Engineering Journnal, Vol.39 (2008) p15-27). ).

活性汚泥が回収された微生物保持部材11〜14は、再度上記と同様に嫌気処理、好気処理のサイクルが繰り返される。   The microorganism holding members 11 to 14 from which the activated sludge has been collected are repeatedly subjected to anaerobic treatment and aerobic treatment cycles in the same manner as described above.

本実施の形態によれば、排水中の有機物濃度を制御することなく、流れている排水中の有機物からバイオプラスチックの原料となるPHAを生産することができるとともに、形成される活性汚泥中のPHAの含有量を高めることができる。   According to the present embodiment, it is possible to produce PHA as a raw material of bioplastic from organic matter in flowing wastewater without controlling the concentration of organic matter in wastewater, and PHA in the formed activated sludge The content of can be increased.

また、本実施の形態によれば、好気処理において、エアレーションが不要である。通常の排水処理における活性汚泥法ではエアレーションを行っており、エアレーションに要するコストが多大である。本実施の形態によれば、エアレーションを行うことなく好気処理が行えるため、PHAの生産コストの低減にもつながるとともに排水処理コストの低減にもつながる。したがって、実排水処理にも適用できるPHA生産装置及び生産方法として利用可能である。   Moreover, according to this Embodiment, aeration is unnecessary in an aerobic process. In the activated sludge method in normal wastewater treatment, aeration is performed, and the cost required for aeration is great. According to this embodiment, since aerobic treatment can be performed without performing aeration, the production cost of PHA is reduced and the wastewater treatment cost is also reduced. Therefore, it can be used as a PHA production apparatus and production method that can be applied to actual wastewater treatment.

また、活性汚泥から有用なPHAを生産できるので、活性汚泥の再利用ができるとともに、活性汚泥の処理コストの低減にもつながる。   Moreover, since useful PHA can be produced from activated sludge, the activated sludge can be reused and the treatment cost of activated sludge can be reduced.

なお、上記では、一例として嫌気処理時間を2時間、好気処理時間を6時間、活性汚泥回収前の嫌気処理時間を4時間とした形態について説明したが、各処理時間は上記に限定されない。PHA蓄積細菌の優占化における各処理時間の例として、嫌気処理時間が1〜6時間、好気処理時間が4〜12時間が挙げられる。また、活性汚泥回収前の嫌気処理時間の例として2〜12時間が挙げられる。上記の各処理時間となるよう、制御装置30が微生物保持部材駆動装置20を制御するよう構成すればよい。   In the above description, an example has been described in which the anaerobic treatment time is 2 hours, the aerobic treatment time is 6 hours, and the anaerobic treatment time before the activated sludge recovery is 4 hours. However, each treatment time is not limited to the above. As an example of each processing time in the predominance of PHA accumulation bacteria, anaerobic processing time is 1 to 6 hours, and aerobic processing time is 4 to 12 hours. Moreover, 2-12 hours are mentioned as an example of the anaerobic treatment time before activated sludge collection | recovery. What is necessary is just to comprise so that the control apparatus 30 may control the microorganisms holding member drive device 20 so that it may become said each processing time.

また、微生物保持部材11〜14を上記では四つ用いた例について説明したが、微生物保持部材の数は限定されることはなく、四つ未満でも四つ以上でもよい。   Moreover, although the example using four microorganism holding members 11-14 was demonstrated above, the number of microorganism holding members is not limited and may be less than four or four or more.

なお、微生物保持部材は少なくとも2つ以上用い、いずれかの微生物保持部材にて好気処理を行う際に、他の微生物保持部材の少なくとも一つを排水に浸漬させて嫌気処理を行うとよい。いずれかの微生物保持部材に担持されるPHA蓄積細菌が、排水中の有機物を絶えず摂取することになるので、排水処理が滞ることもない。   Note that at least two microorganism holding members are used, and when the aerobic treatment is performed with any one of the microorganism holding members, it is preferable to perform the anaerobic treatment by immersing at least one of the other microorganism holding members in the waste water. Since the PHA-accumulating bacteria carried on any one of the microorganism holding members constantly ingests organic matter in the wastewater, the wastewater treatment is not delayed.

また、上記では、PHA生産装置1を用いてPHAを生産する方法について説明したが、微生物保持部材駆動装置20、制御装置30を用いず、手動で行う形態であってもよい。   In the above description, the method for producing PHA using the PHA production apparatus 1 has been described. However, the method may be performed manually without using the microorganism holding member driving apparatus 20 and the control apparatus 30.

以下の実験により、活性汚泥中のPHA含有量を高めることを試みた。図13に示すように、800mL容量のリアクター容器40を用意し、ポンプ41、42にて人工下水の流入及び排出可能な装置を構築した。リアクター容器40内に微生物保持部材を設置した。微生物保持部材として、フレーム43にポリエステル製の布(以下、布担体44と記す)を取り付けたものを用いた。一つのフレーム43に布担体44を2つ取り付けたものを3つ用意し、リアクター容器40内に設置した。即ち、布担体44を6つ用いた。なお、布担体44はそれぞれ2.5cm×6.7cm×0.5cm(6枚全部で50mL)である。   The following experiment tried to increase the PHA content in the activated sludge. As shown in FIG. 13, a reactor vessel 40 having a capacity of 800 mL was prepared, and a device capable of inflowing and discharging artificial sewage with pumps 41 and 42 was constructed. A microorganism holding member was installed in the reactor vessel 40. As the microorganism holding member, a frame 43 attached with a polyester cloth (hereinafter referred to as a cloth carrier 44) was used. Three sets of two frame carriers 44 attached to one frame 43 were prepared and installed in the reactor vessel 40. That is, six cloth carriers 44 were used. The cloth carriers 44 are 2.5 cm × 6.7 cm × 0.5 cm (50 mL in total for all 6 sheets).

嫌気処理では、リアクター容器40内に5mL/minの流量で人工下水を流し、図13に示すように、リアクター容器40内に人工下水を満たし、布担体44を人工下水に浸漬させた。嫌気処理時間は4時間とした。なお、リアクター容器40内における人工下水の滞留時間は2時間である。流した人工下水の成分を表1に示す。   In the anaerobic treatment, artificial sewage was flowed into the reactor vessel 40 at a flow rate of 5 mL / min, and as shown in FIG. 13, the reactor vessel 40 was filled with artificial sewage, and the cloth carrier 44 was immersed in the artificial sewage. Anaerobic treatment time was 4 hours. The residence time of artificial sewage in the reactor vessel 40 is 2 hours. The components of the artificial sewage that flowed are shown in Table 1.

好気処理は、図14に示すように、リアクター容器40内の人工下水を全て排出することで布担体44を大気中に晒し、好気条件にして行った。好気処理の時間は8時間とした。   As shown in FIG. 14, the aerobic treatment was performed under aerobic conditions by exposing the cloth carrier 44 to the atmosphere by discharging all the artificial sewage in the reactor vessel 40. The aerobic treatment time was 8 hours.

なお、好気処理を行う際、リアクター容器40内の人工下水を全て保留タンクに移しておき、嫌気処理を行う際に保留タンクに保持しておいた人工下水を再びリアクター容器40内に全て移してから行った。   When the aerobic treatment is performed, all the artificial sewage in the reactor vessel 40 is transferred to the storage tank, and when the anaerobic treatment is performed, all the artificial sewage retained in the storage tank is transferred again to the reactor vessel 40. I went there.

上記の嫌気処理及び好気処理を繰り返し行い、布担体44に活性汚泥(以下、バイオマスと記す)を形成させた。運転を開始してから126日目より、およそ4日おきに、6つの布担体44のうち2つずつからバイオマスを採取した。すなわち、同じ布担体44からは12日おきにバイオマスを採取した。   The above-described anaerobic treatment and aerobic treatment were repeated to form activated sludge (hereinafter referred to as biomass) on the cloth carrier 44. From 126 days after the start of operation, biomass was collected from two of the six cloth carriers 44 approximately every four days. That is, biomass was collected from the same cloth carrier 44 every 12 days.

採取したバイオマスの布担体あたりの量、及び、バイオマス中のPHAの含有量を測定した。バイオマスは、20mLの純水に布担体を漬けて10回揉んだ後の上澄みをサンプルとして用い、サンプル中のPHA含有量を測定した。また、布担体はその後再びリアクター容器に設置し、嫌気処理及び好気処理を行った。   The amount of the collected biomass per cloth carrier and the PHA content in the biomass were measured. Biomass was obtained by measuring the PHA content in a sample using the supernatant after dipping the cloth carrier in 20 mL of pure water and kneading 10 times. The cloth carrier was then placed in the reactor vessel again and subjected to anaerobic treatment and aerobic treatment.

また、嫌気処理においては、流入させる人工下水及び排出される処理水のCOD(Chemical Oxygen Demand)をそれぞれ経時的に測定した。   In the anaerobic treatment, COD (Chemical Oxygen Demand) of artificial sewage to be introduced and discharged treated water was measured over time.

図15に人工下水及び処理水のCODの測定結果を示す。流入される人工下水のCODはおよそ300mgCOD/Lであるが、排出される処理水のCODは100mgCOD/Lであり、人工下水の有機物が分解されており、排水処理が可能であることを確認した。   FIG. 15 shows the measurement results of COD of artificial sewage and treated water. The COD of the artificial sewage that flows in is approximately 300 mgCOD / L, but the COD of the discharged treated water is 100 mgCOD / L, and it has been confirmed that the organic matter of the artificial sewage has been decomposed and the wastewater treatment is possible. .

続いて、図16に、採取した布担体あたりのバイオマス濃度を示す。それぞれの布担体44から最初に採取したバイオマスの濃度(126日目、132日目、136日目に採取したバイオマス濃度)は、それまでの蓄積により、高い値を示した。その後についても、ばらつきはあるものの継続してバイオマスが形成されていることがわかる。   Subsequently, FIG. 16 shows the biomass concentration per collected cloth carrier. The concentration of biomass initially collected from each of the fabric carriers 44 (the biomass concentration collected on the 126th day, the 132nd day, and the 136th day) showed a high value due to the accumulation so far. Even after that, it can be seen that although there is variation, biomass is continuously formed.

続いて、採取したバイオマスを乾燥させて、バイオマスの組成を検証した。バイオマス内のPHA及びグリコーゲン組成は公知の手法にて抽出し、PHAはFIDガスクロマトグラム、グリコーゲンは代謝アッセイキット(BioVision社)を用いて測定した(Carlos D. M. Filipe et al., Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus accumulating organisms at different pHs, Biotechnology and Bioengineering, Vol. 76 (2001), p. 32-43参照)。   Subsequently, the collected biomass was dried to verify the composition of the biomass. The PHA and glycogen composition in the biomass was extracted by a known method, PHA was measured using an FID gas chromatogram, and glycogen was measured using a metabolic assay kit (BioVision) (Carlos DM Filipe et al., Stoichiometry and kinetics of acetate uptake). under anaerobic conditions by an enriched culture of phosphorus accumulating organisms at different pHs, Biotechnology and Bioengineering, Vol. 76 (2001), p. 32-43).

その結果を図17に示す。PHAの含有量は0.15〜0.20g・gSS−1で推移しており、バイオマス中のPHA含有量が高められたことがわかる。 The result is shown in FIG. The content of PHA is changing at 0.15 to 0.20 g · gSS −1 , indicating that the PHA content in the biomass has been increased.

続いて、実施例1にて嫌気処理及び好気処理を繰り返し行った布担体について、バイオマス回収前の嫌気処理の時間を変えて行い、回収したバイオマス中のPHA含有量の変化について検証した。実験には、実施例1にて12日間(24サイクル)嫌気好気サイクルを行った布担体を用いた。   Then, about the cloth carrier which performed the anaerobic process and the aerobic process repeatedly in Example 1, it performed by changing the time of the anaerobic process before biomass collection | recovery, and verified about the change of PHA content in the collect | recovered biomass. In the experiment, a fabric carrier that was subjected to an anaerobic and aerobic cycle for 12 days (24 cycles) in Example 1 was used.

1Lのビンに実施例1と同じ人工下水を入れ、これに実施例1にて嫌気処理及び好気処理を繰り返し行った布担体を浸漬し、嫌気処理を行った。このバイオマス回収前の嫌気処理の時間は、0時間(回収前の嫌気処理無し)、4時間、8時間、12時間、16時間、20時間とした。それぞれについて嫌気処理終了後、実施例1と同様にバイオマスの組成を検証した。   The same artificial sewage as Example 1 was put into a 1 L bottle, and the cloth carrier which repeated the anaerobic process and the aerobic process in Example 1 was immersed in this, and the anaerobic process was performed. The anaerobic treatment time before biomass recovery was 0 hour (no anaerobic treatment before recovery), 4 hours, 8 hours, 12 hours, 16 hours, and 20 hours. After completion of the anaerobic treatment, the biomass composition was verified in the same manner as in Example 1.

その結果を図18に示す。嫌気処理時間が8時間までは嫌気処理時間が長くなるにつれ、PHA含有量が増加していることがわかる。また、PHA含有量は嫌気処理時間が8時間以上では0.20g・gSS−1を超えて推移している。これらのことから、バイオマス回収前に嫌気処理時間をそれまでの嫌気処理時間より長い時間行うことで、PHA含有量を高め得ることがわかる。 The result is shown in FIG. It can be seen that the PHA content increases as the anaerobic treatment time is increased up to 8 hours. In addition, the PHA content has exceeded 0.20 g · gSS −1 when the anaerobic treatment time is 8 hours or more. From these, it can be seen that the PHA content can be increased by performing the anaerobic treatment time before the biomass recovery for a longer time than the previous anaerobic treatment time.

排水中の有機物濃度を制御することなく、排水中の有機物をバイオプラスチックの原料となるPHAを生産させることができるとともに、形成される活性汚泥中のPHAの含有量を高めることができる。また、好気処理において、エアレーションが不要であるため、PHAの生産コストの低減にもつながる。したがって、実排水処理への利用が可能である。   Without controlling the concentration of organic matter in the wastewater, it is possible to produce PHA as a raw material for bioplastics using the organic matter in the wastewater, and to increase the content of PHA in the formed activated sludge. In addition, since aeration is not necessary in the aerobic process, the production cost of PHA is also reduced. Therefore, it can be used for actual wastewater treatment.

1 PHA生産装置
11〜14 微生物保持部材
20 微生物保持部材駆動装置
30 制御装置
40 リアクター容器
41、42 ポンプ
43 フレーム
44 布担体
W 排水
DESCRIPTION OF SYMBOLS 1 PHA production apparatus 11-14 Microorganism holding member 20 Microorganism holding member drive apparatus 30 Control apparatus 40 Reactor container 41, 42 Pump 43 Frame 44 Cloth carrier W Drainage

Claims (6)

PHA蓄積細菌が担持される微生物保持部材と、
前記微生物保持部材を排水中への浸漬及び排水中からの取り出しを行う微生物保持部材駆動装置と、
前記微生物保持部材駆動装置の駆動を制御する制御装置と、を備え、
前記制御装置が前記微生物保持部材駆動装置を駆動させて前記微生物保持部材を所定時間排水中に浸漬させ、排水中の有機物を前記PHA蓄積細菌に摂取させて、前記PHA蓄積細菌が有機物をポリヒドロキシアルカノエートに変換して蓄積する嫌気処理を行い、
前記制御装置が前記微生物保持部材駆動装置を駆動させて前記微生物保持部材を排水中から取り出して所定時間空気中に晒し、前記PHA蓄積細菌がポリヒドロキシアルカノエートを消費して増殖する好気処理を行い、
前記制御装置が前記微生物保持部材駆動装置を制御して前記嫌気処理及び前記好気処理を複数回繰り返し行って、前記微生物保持部材に形成される活性汚泥中の前記PHA蓄積細菌の割合を高め、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とするポリヒドロキシアルカノエートの生産装置。
A microorganism holding member on which PHA accumulating bacteria are supported;
A microorganism holding member driving device for immersing the microorganism holding member in drainage and taking out the wastewater from drainage;
A control device for controlling the driving of the microorganism holding member driving device,
The control device drives the microorganism holding member driving device to immerse the microorganism holding member in the wastewater for a predetermined time, ingest the organic matter in the wastewater into the PHA-accumulating bacteria, and the PHA-accumulating bacteria convert the organic matter to polyhydroxy Anaerobic treatment that converts to alkanoate and accumulates it,
An aerobic treatment in which the control device drives the microorganism holding member driving device to take out the microorganism holding member from the waste water and expose it to the air for a predetermined time so that the PHA-accumulating bacteria consume polyhydroxyalkanoate and proliferate; Done
The control device controls the microorganism holding member driving device and repeats the anaerobic treatment and the aerobic treatment a plurality of times to increase the proportion of the PHA-accumulating bacteria in the activated sludge formed on the microorganism holding member, Increase the content of polyhydroxyalkanoate in activated sludge,
An apparatus for producing polyhydroxyalkanoate, characterized in that
前記制御装置は、活性汚泥を回収する前の前記嫌気処理の時間をそれまでの前記嫌気処理よりも長い時間行うよう前記微生物保持部材を制御して、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とする請求項1に記載のポリヒドロキシアルカノエートの生産装置。
The control device controls the microorganism holding member so that the time of the anaerobic treatment before collecting the activated sludge is longer than that of the previous anaerobic treatment, and the content of polyhydroxyalkanoate in the activated sludge Enhance,
The polyhydroxyalkanoate production apparatus according to claim 1.
前記微生物保持部材を複数備え、
前記制御装置は、いずれかの前記微生物保持部材を空気中に晒している際、他の前記微生物保持部材の少なくとも一つを排水中に浸漬するよう前記微生物保持部材駆動装置を制御する、
ことを特徴とする請求項1又は2に記載のポリヒドロキシアルカノエートの生産装置。
A plurality of the microorganism holding members,
The control device controls the microorganism holding member driving device to immerse at least one of the other microorganism holding members in waste water when any one of the microorganism holding members is exposed to the air.
An apparatus for producing a polyhydroxyalkanoate according to claim 1 or 2.
PHA蓄積細菌が担持される微生物保持部材を所定時間排水中に浸漬させて排水中の有機物を前記PHA蓄積細菌に摂取させ、前記PHA蓄積細菌が有機物をポリヒドロキシアルカノエートに変換して蓄積する嫌気処理工程と、
前記微生物保持部材を排水中から取り出して所定時間空気中に晒し、前記PHA蓄積細菌がポリヒドロキシアルカノエートを消費して増殖する好気処理工程と、を備え、
前記嫌気処理工程及び前記好気処理工程を複数回繰り返し行って、前記微生物保持部材に形成される活性汚泥中の前記PHA蓄積細菌の割合を高め、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とするポリヒドロキシアルカノエートの生産方法。
An anaerobic structure in which a microorganism holding member carrying PHA accumulating bacteria is immersed in waste water for a predetermined time to ingest organic matter in the waste water into the PHA accumulating bacteria, and the PHA accumulating bacteria convert the organic matter to polyhydroxyalkanoate and accumulate it. Processing steps;
An aerobic treatment step in which the microorganism holding member is taken out from the waste water and exposed to the air for a predetermined time, and the PHA-accumulating bacteria consume polyhydroxyalkanoate and grow,
Repeating the anaerobic treatment step and the aerobic treatment step a plurality of times to increase the proportion of the PHA-accumulating bacteria in the activated sludge formed on the microorganism holding member, and to increase the content of polyhydroxyalkanoate in the activated sludge Increase,
A method for producing a polyhydroxyalkanoate characterized by the above.
活性汚泥を回収する前の前記嫌気処理工程をそれまでの前記嫌気処理工程よりも長い時間行い、活性汚泥中のポリヒドロキシアルカノエートの含有量を高める、
ことを特徴とする請求項4に記載のポリヒドロキシアルカノエートの生産方法。
Performing the anaerobic treatment step before recovering the activated sludge for a longer time than the previous anaerobic treatment step, and increasing the content of polyhydroxyalkanoate in the activated sludge,
The method for producing a polyhydroxyalkanoate according to claim 4.
前記微生物保持部材を複数用い、
いずれかの前記微生物保持部材を空気中に晒している際、他の前記微生物保持部材の少なくとも一つを排水中に浸漬させる、
ことを特徴とする請求項4又は5に記載のポリヒドロキシアルカノエートの生産方法。
Using a plurality of the microorganism holding members,
When any one of the microorganism holding members is exposed to the air, at least one of the other microorganism holding members is immersed in the waste water.
A method for producing a polyhydroxyalkanoate according to claim 4 or 5.
JP2012100299A 2012-04-25 2012-04-25 Polyhydroxyalkanoate production apparatus and production method Expired - Fee Related JP6016062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100299A JP6016062B2 (en) 2012-04-25 2012-04-25 Polyhydroxyalkanoate production apparatus and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100299A JP6016062B2 (en) 2012-04-25 2012-04-25 Polyhydroxyalkanoate production apparatus and production method

Publications (2)

Publication Number Publication Date
JP2013226071A true JP2013226071A (en) 2013-11-07
JP6016062B2 JP6016062B2 (en) 2016-10-26

Family

ID=49674458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100299A Expired - Fee Related JP6016062B2 (en) 2012-04-25 2012-04-25 Polyhydroxyalkanoate production apparatus and production method

Country Status (1)

Country Link
JP (1) JP6016062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221755A1 (en) * 2016-06-23 2017-12-28 株式会社カネカ Method for producing polyhydroxyalkanoic acid
CN111807637A (en) * 2020-07-30 2020-10-23 北京工业大学 A kind of reaction device and method for main stream recovery of organic matter in brewery wastewater to produce PHA

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662875A (en) * 1992-08-18 1994-03-08 Taisei Corp Biopolyester production method
WO2010092472A2 (en) * 2009-02-12 2010-08-19 Otv Sa Process for maximizing pha production in glycogen accumulating organisms
JP2010194499A (en) * 2009-02-26 2010-09-09 Hiroshima Univ Method and apparatus for recovering phosphorus
JP2011177618A (en) * 2010-02-26 2011-09-15 Central Res Inst Of Electric Power Ind Methane fermentation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662875A (en) * 1992-08-18 1994-03-08 Taisei Corp Biopolyester production method
WO2010092472A2 (en) * 2009-02-12 2010-08-19 Otv Sa Process for maximizing pha production in glycogen accumulating organisms
JP2010194499A (en) * 2009-02-26 2010-09-09 Hiroshima Univ Method and apparatus for recovering phosphorus
JP2011177618A (en) * 2010-02-26 2011-09-15 Central Res Inst Of Electric Power Ind Methane fermentation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221755A1 (en) * 2016-06-23 2017-12-28 株式会社カネカ Method for producing polyhydroxyalkanoic acid
CN111807637A (en) * 2020-07-30 2020-10-23 北京工业大学 A kind of reaction device and method for main stream recovery of organic matter in brewery wastewater to produce PHA
CN111807637B (en) * 2020-07-30 2022-05-03 北京工业大学 A kind of reaction device and method for main stream recovery of organic matter in brewery wastewater to produce PHA

Also Published As

Publication number Publication date
JP6016062B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
Qin et al. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment
JP6719092B2 (en) Method for enrichment culture of manganese-oxidizing bacteria, method for producing biomanganese oxide, and method for recovering metal
US11618701B2 (en) Method of facilitating growth of specific microorganisms
CA2697983C (en) Apparatus and process for biological wastewater treatment
US20120028321A1 (en) High Solids Fermentation for Synthesis of Polyhydroxyalkanoates From Gas Substrates
JP6621342B2 (en) Method for producing biological activated carbon to which nitrifying bacteria are attached and advanced water purification method
JP2014213320A (en) Method and device for treating 1,4-dioxane-containing waste water
JP2019025438A (en) Organic waste water treatment apparatus and organic wastewater treatment method
CN105734042B (en) Preparation method of photocatalytic immobilized nitrogen and phosphorus removal particles
CN114849462A (en) Biological desulfurization treatment method and biological desulfurization treatment system
JP6016062B2 (en) Polyhydroxyalkanoate production apparatus and production method
JP5899100B2 (en) Microalgae culture apparatus and microalgae culture method
JP2014060967A (en) Fine algae culture method and fine algae culture facility
AU2022247353B2 (en) Methods and systems for growing microbial mass
CN103232958B (en) Iron matrix autotrophic denitrification microbacterium strain and application thereof
JP6196767B2 (en) Anaerobic wastewater treatment method using carrier
KR102240142B1 (en) Apparatus for Biohydrogen Production using Dynamic Biofilm and Manufacturing method thereof
JP5778949B2 (en) Hydrogen methane fermentation equipment
CN105174434A (en) Hydrodynamic biological rotating disc sewage treatment equipment
CN113082998A (en) Composite filter material for biological soil deodorization and application thereof
Gupta et al. Biotechnological advances for utilization of algae, microalgae, and cyanobacteria for wastewater treatment and resource recovery
JP4487052B2 (en) Aeration-type deodorization device with Alkagenes bacteria combined with contact tank
Kızılet The use of membrane processes to promote sustainable environmental protection practices
JP2004051920A (en) Biodegradable plastic, its manufacturing method and its manufacturing apparatus
CN103865915A (en) Thiobacillus ferrooxidans immobilized carrier as well as immobilization method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160915

R150 Certificate of patent or registration of utility model

Ref document number: 6016062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees