JP2013209446A - Carbon fiber-reinforced thermoplastic plastic and production method thereof - Google Patents
Carbon fiber-reinforced thermoplastic plastic and production method thereof Download PDFInfo
- Publication number
- JP2013209446A JP2013209446A JP2012078865A JP2012078865A JP2013209446A JP 2013209446 A JP2013209446 A JP 2013209446A JP 2012078865 A JP2012078865 A JP 2012078865A JP 2012078865 A JP2012078865 A JP 2012078865A JP 2013209446 A JP2013209446 A JP 2013209446A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- fiber bundle
- bundle
- reinforced thermoplastic
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
【課題】 本発明は、製造時のプレス圧力が低くかつ流動性が良好な炭素繊維強化熱可塑性プラスチックを得ることを目的とする。
【解決手段】 炭素繊維ウェブに熱可塑性樹脂を含浸させてなる炭素繊維強化熱可塑性プラスチックにおいて、
前記炭素繊維ウェブは、少なくとも炭素繊維束(a)と炭素繊維束(b)とからなり、前記炭素繊維束(a)は繊維長5〜15mm、前記炭素繊維束(b)は繊維長5mm未満であり、前記炭素繊維束(a)を30〜90質量%、前記炭素繊維束(b)を10〜70質量%を含んでおり、前記炭素繊維束(a)と炭素繊維束(b)の炭素繊維の単繊維繊度が1.0〜2.4dtex、真円度が0.7以上0.90以下である炭素繊維束からなる炭素繊維強化熱可塑性プラスチックにより解決される。
【選択図】なしPROBLEM TO BE SOLVED: To obtain a carbon fiber reinforced thermoplastic having a low pressing pressure during production and good fluidity.
In a carbon fiber reinforced thermoplastic plastic obtained by impregnating a carbon fiber web with a thermoplastic resin,
The carbon fiber web comprises at least a carbon fiber bundle (a) and a carbon fiber bundle (b), the carbon fiber bundle (a) has a fiber length of 5 to 15 mm, and the carbon fiber bundle (b) has a fiber length of less than 5 mm. The carbon fiber bundle (a) is 30 to 90% by mass, the carbon fiber bundle (b) is 10 to 70% by mass, and the carbon fiber bundle (a) and the carbon fiber bundle (b) This is solved by a carbon fiber reinforced thermoplastic made of a carbon fiber bundle having a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.7 to 0.90.
[Selection figure] None
Description
本発明は、炭素繊維強化熱可塑性プラスチックおよびその製造方法に関する。 The present invention relates to a carbon fiber reinforced thermoplastic and a method for producing the same.
炭素繊維と熱可塑性樹脂からなる炭素繊維強化熱可塑性プラスチックは、比強度、比剛性に優れているため、電気・電子用途、土木・建築用途、自動車用途、航空機用途等に広く用いられている。不連続炭素繊維強化熱可塑性プラスチックは、連続炭素繊維強化熱可塑性プラスチックに比べ流動性が良く複雑形状の成形ができる材料である。なかでもプレス成形用の炭素繊維強化熱可塑性プラスチックは射出成形材料に比べ繊維長が長いため、機械的強度に優れているため、近年注目が集まっている。このプレス成形用基材の製造方法として、強化炭素繊維ウェブと熱可塑性樹脂シートを積層し加熱、加圧することで、強化炭素繊維ウェブに熱可塑性樹脂を含浸する方法がある。しかしながら、プレス成形品は射出成形品にくらべ流動性が低いため更なる改良が求められている。 Carbon fiber reinforced thermoplastics made of carbon fiber and thermoplastic resin are widely used in electrical / electronic applications, civil engineering / architecture applications, automotive applications, aircraft applications and the like because of their excellent specific strength and specific rigidity. Discontinuous carbon fiber reinforced thermoplastics are materials that have better fluidity and can be molded into complex shapes than continuous carbon fiber reinforced thermoplastics. Among them, carbon fiber reinforced thermoplastics for press molding have attracted attention in recent years because they have a longer fiber length than injection molding materials and are excellent in mechanical strength. As a method for producing this press-molding substrate, there is a method of impregnating a reinforced carbon fiber web with a thermoplastic resin by laminating a reinforced carbon fiber web and a thermoplastic resin sheet, and heating and pressing. However, since the press-molded product has lower fluidity than the injection-molded product, further improvement is required.
ところで、特許文献1に記載の炭素繊維強化熱可塑性プラスチックは、強度や摘み皺による品質悪化を改良しているが未だ十分な流動性が得られていない。また、特許文献1の炭素繊維強化熱可塑性プラスチックは熱可塑性樹脂を含浸させるための高圧力の熱プレス成形が必要であり樹脂の含浸も十分とは言えない。そこで、本発明は、製造時のプレス圧力が低くかつ流動性が良好な炭素繊維強化熱可塑性プラスチックを得ることを目的とする。 By the way, the carbon fiber reinforced thermoplastic described in Patent Document 1 has improved strength and quality deterioration due to the pickle, but has not yet obtained sufficient fluidity. Further, the carbon fiber reinforced thermoplastic of Patent Document 1 requires high-pressure hot press molding for impregnating the thermoplastic resin, and the impregnation of the resin is not sufficient. Therefore, an object of the present invention is to obtain a carbon fiber reinforced thermoplastic having a low pressing pressure during production and good fluidity.
本発明は、単繊維繊度が1.0〜2.4dtex、真円度が0.7以上0.90以下である炭素繊維で繊維長の異なる炭素繊維束をウェブにすることにより熱可塑性樹脂の含浸性および流動性に優れた炭素繊維強化熱可塑性プラスチックを提供する。 The present invention provides a thermoplastic resin by forming a carbon fiber bundle having a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.7 to 0.90 and a carbon fiber bundle having different fiber lengths into a web. Disclosed is a carbon fiber reinforced thermoplastic having excellent impregnation and fluidity.
本発明によって製造される炭素繊維強化熱可塑性プラスチックとは、少なくとも、炭素繊維と、マトリックス樹脂となる熱可塑性樹脂の2種類を含有した成形体を言う。本発明において使用される炭素繊維とは、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化ケイ素繊維、ボロン繊維等の高強度、高弾性律繊維等を併用して使用でき、2種以上を混合してもよい。 The carbon fiber reinforced thermoplastic produced by the present invention refers to a molded body containing at least two types of carbon fiber and a thermoplastic resin serving as a matrix resin. The carbon fiber used in the present invention is a glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and the like, which are used in combination with high strength, high elasticity fiber. Two or more kinds may be mixed.
本発明によれば、力学特性に優れ、樹脂含浸性および成形時の流動性が良好な炭素繊維強化熱可塑性プラスチック及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a carbon fiber reinforced thermoplastic plastic having excellent mechanical properties, good resin impregnation properties and good fluidity during molding, and a method for producing the same.
本発明の炭素繊維強化熱可塑性樹脂プラスチックは、少なくとも炭素繊維束(a)と炭素繊維束(b)とを含む炭素繊維ウェブを用いた炭素繊維強化熱可塑性プラスチックおよびその製造方法である。 The carbon fiber reinforced thermoplastic resin plastic of the present invention is a carbon fiber reinforced thermoplastic using a carbon fiber web containing at least a carbon fiber bundle (a) and a carbon fiber bundle (b), and a method for producing the same.
炭素繊維とは、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維、これらの黒鉛化繊維などが例示される。PAN系炭素繊維は、ポリアクリロニトリル繊維を原料とする炭素繊維である。ピッチ系炭素繊維は石油タールや石油ピッチを原料とする炭素繊維である。セルロース系炭素繊維はビスコースレーヨンや酢酸セルロースなどを原料とする炭素繊維である。気相成長系炭素繊維は炭化水素などを原料とする炭素繊維である。このうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましい。 Examples of the carbon fiber include PAN-based carbon fiber, pitch-based carbon fiber, cellulose-based carbon fiber, vapor-grown carbon fiber, and graphitized fibers thereof. PAN-based carbon fibers are carbon fibers made from polyacrylonitrile fibers. Pitch-based carbon fiber is carbon fiber made from petroleum tar or petroleum pitch. Cellulosic carbon fibers are carbon fibers made from viscose rayon, cellulose acetate, or the like. Vapor-grown carbon fibers are carbon fibers made from hydrocarbons or the like. Of these, PAN-based carbon fibers are preferable because they are excellent in balance between strength and elastic modulus.
本発明において使用される炭素繊維とは、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化ケイ素繊維、ボロン繊維等の高強度、高弾性律繊維等を併用して使用でき、2種以上を混合してもよい。 The carbon fiber used in the present invention is a glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and the like, which are used in combination with high strength, high elasticity fiber. Two or more kinds may be mixed.
炭素繊維束は、不連続な繊維束が好ましく、チョップド繊維がより好ましい。また、炭素繊維束を構成する単繊維の本数には、特に制限はないが、生産性の観点からは12,000本以上が好ましく、48,000本以上がさらに好ましい。単繊維の本数の上限については特に制限はないが、分散性や取り扱い性とのバランスも考慮して、640,000本程度もあれば生産性と分散性、取り扱い性を良好に保つことができる。 The carbon fiber bundle is preferably a discontinuous fiber bundle, and more preferably a chopped fiber. The number of single fibers constituting the carbon fiber bundle is not particularly limited, but is preferably 12,000 or more, more preferably 48,000 or more from the viewpoint of productivity. The upper limit of the number of single fibers is not particularly limited, but considering the balance between dispersibility and handleability, it is possible to maintain good productivity, dispersibility, and handleability with about 640,000. .
本発明において単繊維繊度は1.0〜2.4dtex、真円度が0.70以上0.90以下である炭繊束のみを用いる。単繊維繊度が1.0dtex未満の場合には繊維の重なり合いによる隙間が狭くなりウェブの分散性が悪く、良好な流動性、樹脂含浸性が得られない。また、単繊維繊度が2.4dtexより大きい場合には、炭素繊維が密に重なり合わないためウェブの取扱いが悪くまた、良好な強度が得られない。 In the present invention, only a carbon fiber bundle having a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.70 to 0.90 is used. When the single fiber fineness is less than 1.0 dtex, the gap due to the overlap of the fibers becomes narrow and the dispersibility of the web is poor, and good fluidity and resin impregnation are not obtained. On the other hand, when the single fiber fineness is larger than 2.4 dtex, the carbon fibers do not overlap closely, so the handling of the web is bad and good strength cannot be obtained.
炭素繊維の真円度は、やや偏平であるものが良い。真円度0.90より大きい場合には繊維の接触面が小さくなり強度が発現し辛くなる。真円度が0.70未満では、流動性が悪くなり大型樹脂成形部品が作成できなくなる。 The roundness of the carbon fiber is preferably slightly flat. When the roundness is larger than 0.90, the contact surface of the fiber becomes small and the strength is hardly developed. If the roundness is less than 0.70, the fluidity is deteriorated and a large resin molded part cannot be produced.
炭素繊維束(a)と炭素繊維束(b)は、繊維長の異なる繊維束を用いる。同一の繊維長をもつ強化繊維束のみを用いた場合には、本発明の目的を達成することができない。 As the carbon fiber bundle (a) and the carbon fiber bundle (b), fiber bundles having different fiber lengths are used. When only reinforcing fiber bundles having the same fiber length are used, the object of the present invention cannot be achieved.
繊維束の長さとは、繊維束を構成する繊維の長さを意味し、繊維束を調製するときに繊維を所定の長さにカットすることにより調整可能である。 The length of the fiber bundle means the length of the fiber constituting the fiber bundle, and can be adjusted by cutting the fiber to a predetermined length when preparing the fiber bundle.
炭素繊維束(a)の繊維長は5〜15mmであり、さらには6〜15mmであることが好ましい。炭素繊維束(b)の繊維長は5mm未満であり、4mm以下であることが好ましい。炭素繊維束の長さの下限は、通常は0.1mm以上である。炭素繊維束(a)もしくは炭素繊維束(b)を単独で用いた場合、炭素繊維長が5mm未満になると繊維の補強効果が低いことや、抄紙工程中で基材が裂けるといった取り扱い性で問題があり、一方で50mmを超えると単繊維が分散しにくくなり、炭素繊維ウェブを作製した場合に摘み皺ができやすくなる。これらのような炭素繊維により作製した炭素繊維ウェブから得られる炭素繊維強化熱可塑性プラスチックの力学特性や品質が低下する。炭素繊維束(a)と炭素繊維束(b)を混合し、炭素繊維ウェブを用いると炭素繊維束(a)によって強化繊維がもつ補強効果を発現できるとともに、炭素繊維束(b)によって強化繊維を抄紙する際の繊維束の分散性向上効果が発現し、これらを混合した結果として品質が良好で力学特性に優れた炭素繊維強化熱可塑性プラスチックが実現できるのである。 The fiber length of the carbon fiber bundle (a) is 5 to 15 mm, and more preferably 6 to 15 mm. The fiber length of the carbon fiber bundle (b) is less than 5 mm, and preferably 4 mm or less. The lower limit of the length of the carbon fiber bundle is usually 0.1 mm or more. When the carbon fiber bundle (a) or the carbon fiber bundle (b) is used alone, if the carbon fiber length is less than 5 mm, the reinforcing effect of the fiber is low, and there is a problem in the handling property that the base material is torn during the paper making process. On the other hand, when it exceeds 50 mm, it becomes difficult to disperse the single fiber, and when a carbon fiber web is produced, it becomes easy to make a pickle. The mechanical properties and quality of carbon fiber reinforced thermoplastics obtained from carbon fiber webs made from such carbon fibers are reduced. When the carbon fiber bundle (a) and the carbon fiber bundle (b) are mixed and the carbon fiber web is used, the reinforcing effect of the reinforcing fiber can be expressed by the carbon fiber bundle (a), and the reinforcing fiber can be obtained by the carbon fiber bundle (b). The effect of improving the dispersibility of the fiber bundle during papermaking is exhibited, and as a result of mixing these, a carbon fiber reinforced thermoplastic having good quality and excellent mechanical properties can be realized.
炭素繊維束(a)と炭素繊維束(b)の配合比は、質量比で炭素繊維束(a):炭素繊維束(b)=30:70〜90:10であることが重要である。50:50〜70:30であることがより好ましい。強化繊維束(a)が30質量%未満では強化繊維の補強効果が小さくなり、強化繊維束(a)が90質量%以上では強化繊維の分散性が悪化する。上記範囲内とすることにより、分散状態の優れた強化繊維ウェブを得ることができ、品質が良好で力学特性に優れた繊維強化熱可塑性プラスチックが実現できるのである。 It is important that the mixing ratio of the carbon fiber bundle (a) and the carbon fiber bundle (b) is carbon fiber bundle (a): carbon fiber bundle (b) = 30: 70 to 90:10 in mass ratio. More preferably, it is 50: 50-70: 30. When the reinforcing fiber bundle (a) is less than 30% by mass, the reinforcing effect of the reinforcing fiber is reduced, and when the reinforcing fiber bundle (a) is 90% by mass or more, the dispersibility of the reinforcing fiber is deteriorated. By setting it within the above range, it is possible to obtain a reinforced fiber web excellent in dispersion state, and to realize a fiber reinforced thermoplastic having good quality and excellent mechanical properties.
炭素繊維ウェブは5〜15mmの炭素繊維の単繊維本数が20〜70%、かつ5mm未満の炭素繊維本数が30〜80%であることが好ましい。5〜15mmの繊維数が20%未満では強化繊維の補強効果が小さくなり70%以上では強化繊維の分散性が悪化する。
このような比率で炭素繊維束(a)と炭素繊維束(b)を配合することにより、炭素繊維束(a)の有する補強効果と、炭素繊維束(b)の均一分散性が両立して発現できるものである。
The carbon fiber web preferably has 5 to 15 mm of carbon fibers having a single fiber content of 20 to 70% and less than 5 mm of carbon fibers of 30 to 80%. When the number of fibers of 5 to 15 mm is less than 20%, the reinforcing effect of the reinforcing fiber is reduced, and when it is 70% or more, the dispersibility of the reinforcing fiber is deteriorated.
By blending the carbon fiber bundle (a) and the carbon fiber bundle (b) at such a ratio, the reinforcing effect of the carbon fiber bundle (a) and the uniform dispersibility of the carbon fiber bundle (b) are compatible. It can be expressed.
熱可塑性樹脂の種類としては、特に制限はない。例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、ポリアミド(ナイロン)、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂やこれらの共重合体、変性体、および2種類以上ブレンドした樹脂等が挙げられる。また、樹脂中には難燃性や導電性を付与するため添加剤が含まれていても良い。 There is no restriction | limiting in particular as a kind of thermoplastic resin. For example, polypropylene, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamideimide, poly Examples include butylene terephthalate, polyethylene terephthalate, polyethylene, polyamide (nylon), acrylonitrile-butadiene-styrene (ABS) resin, copolymers thereof, modified products, and resins obtained by blending two or more types. Moreover, in order to provide a flame retardance and electroconductivity, resin may contain the additive.
炭素繊維ウェブの目付は、10〜500g/m2であることが好ましく、50〜300g/m2であることがより好ましい。10g/m2未満であると基材の破れなどの取り扱い性に不具合を生じるおそれがあり、500g/m2を超えると、湿式法では基材の乾燥に長時間かかることや、乾式法ではウェブが厚くなる場合があり、その後のプロセスで取り扱い性が難しくなる場合がある。 Basis weight of the carbon fiber web is preferably 10 to 500 g / m 2, and more preferably 50 to 300 g / m 2. If it is less than 10 g / m 2 , there is a risk of problems in handling such as tearing of the substrate. If it exceeds 500 g / m 2 , it takes a long time to dry the substrate in the wet method, or the web in the dry method. May become thick, and handling may become difficult in subsequent processes.
次に、本発明に係る炭素繊維強化熱可塑性プラスチックの製造方法について、説明する。
本発明の製造方法においては、上記炭素繊維束(a)と炭素繊維束(b)とを用いて炭素繊維ウェブを得、この炭素繊維ウェブに熱可塑性樹脂を含浸させて炭素繊維強化熱可塑性プラスチックを得るものである。
Next, a method for producing a carbon fiber reinforced thermoplastic according to the present invention will be described.
In the production method of the present invention, a carbon fiber web is obtained by using the carbon fiber bundle (a) and the carbon fiber bundle (b), and the carbon fiber web is impregnated with a thermoplastic resin to obtain a carbon fiber reinforced thermoplastic plastic. Is what you get.
抄造は、湿式法、或いは乾式法のいずれかによることができる。湿式法とは炭素繊維束を水中で分散させ抄造する方法であり、乾式法とは炭素繊維束を空気中で分散させ抄造する方法である。湿式法による場合、炭素繊維束(a)と炭素繊維束(b)の分散を水中で行い得られるスラリーを抄造して炭素繊維ウェブを得ることができる。 Papermaking can be performed by either a wet method or a dry method. The wet method is a method of making paper by dispersing carbon fiber bundles in water, and the dry method is a method of making paper by dispersing carbon fiber bundles in air. In the case of the wet method, a carbon fiber web can be obtained by making a slurry obtained by dispersing the carbon fiber bundle (a) and the carbon fiber bundle (b) in water.
炭素繊維ウェブに熱可塑性樹脂を含浸させる方法としては、樹脂を加熱溶融して、繊維強化材に含浸させる方法(溶融含浸法)、粉末状の樹脂を流動床法や懸濁法によって繊維強化材に塗布・融着させる方法(パウダー法)、樹脂を溶液化し、繊維強化材に含浸後溶媒を除去する方法(溶液含浸法)等いずれの方法を用いても良いが、溶融含浸法を用いることが好ましい。また、炭素繊維ウェブに熱可塑性樹脂を含浸させる際、炭素繊維ウェブは積層させてもよい。 The carbon fiber web is impregnated with a thermoplastic resin by heating and melting the resin to impregnate the fiber reinforcement (melt impregnation method), or by adding a powdered resin to the fiber reinforcement by a fluidized bed method or a suspension method. Any method can be used, such as a method of applying and fusing to a fiber (powder method), a method of dissolving a resin and removing the solvent after impregnating the fiber reinforcement (solution impregnation method), but using a melt impregnation method Is preferred. Moreover, when impregnating a carbon fiber web with a thermoplastic resin, you may laminate | stack a carbon fiber web.
炭素繊維強化熱可塑性プラスチックの目付は、100〜5000g/m2であることが好ましく、200〜5000g/m2であることがより好ましい。100g/m2未満であると工程中で基材が裂けるなどの取り扱い性に不具合を生じるおそれがあり、5000g/m2を超えると、炭素繊維強化熱可塑性プラスチックの厚みが大きくなり巻き取りやカットが困難になり製造が困難である。
炭素繊維ウェブは5〜90質量%であり、熱可塑性樹脂が10〜95質量%あることが好ましく、炭素繊維ウェブは20〜80質量%であり、熱可塑性樹脂が20〜80質量%であることがより好ましい。炭素強化繊維ウェブが5質量%未満であると強化繊維の効果が得られず、80質量%を超えると、熱可塑性樹脂の含浸が困難になる場合がある。
Basis weight of the carbon fiber reinforced thermoplastic plastic is preferably 100~5000g / m 2, and more preferably 200~5000g / m 2. If it is less than 100 g / m 2 , there is a risk of problems in handling such as tearing of the substrate in the process, and if it exceeds 5000 g / m 2 , the thickness of the carbon fiber reinforced thermoplastic becomes large, and winding or cutting Is difficult to manufacture.
The carbon fiber web is 5 to 90% by mass, the thermoplastic resin is preferably 10 to 95% by mass, the carbon fiber web is 20 to 80% by mass, and the thermoplastic resin is 20 to 80% by mass. Is more preferable. If the carbon reinforcing fiber web is less than 5% by mass, the effect of reinforcing fibers cannot be obtained, and if it exceeds 80% by mass, impregnation with the thermoplastic resin may be difficult.
以下実施例によって、本発明の繊維強化成形用基材について具体的に説明するが、下記の実施例は本発明を制限するものではない。 Examples The fiber-reinforced molding substrate of the present invention will be specifically described below with reference to examples, but the following examples do not limit the present invention.
[ボイド率]
ボイド率をシート状の強化繊維材料への樹脂の含浸性の良否を表す指標とした。硫酸分解法により測定した。
[Void rate]
The void ratio was used as an index representing the quality of the resin impregnation into the sheet-like reinforcing fiber material. Measured by sulfuric acid decomposition method.
[プレス流動性]
炭素繊維ウェブとポリプロピレン樹脂フィルムを150mm×150mmに切り出して積層し、この積層物を温度200℃、圧力20MPaで5分間プレス成形し、炭素繊維強化成型用基材を得た。炭素繊維強化成型用基材を70×70×4mm厚みに切り出し流動性評価サンプルを得た。100×100×2mmの平板金型に、流動性評価サンプルをセットし、温度200℃、20MPaと10MPaの加圧力で5分間プレス成形を行い、充填状況により、以下の3段階で評価を行った。
○:20MPa、10MPa何れの条件でも充填可能。
△:20MPaで充填可能、10MPaでは未充填部分が確認できる。
×:20MPa、10MPa何れの条件でも未充填部分を確認できる。
[Press fluidity]
A carbon fiber web and a polypropylene resin film were cut out and laminated to 150 mm × 150 mm, and this laminate was press-molded at a temperature of 200 ° C. and a pressure of 20 MPa for 5 minutes to obtain a carbon fiber reinforced molding substrate. A carbon fiber reinforced molding substrate was cut into a thickness of 70 × 70 × 4 mm to obtain a fluidity evaluation sample. A fluidity evaluation sample was set in a flat plate mold of 100 × 100 × 2 mm, press-molded for 5 minutes at a temperature of 200 ° C., 20 MPa, and 10 MPa, and evaluated according to the following three stages depending on the filling condition. .
○: Filling is possible under any conditions of 20 MPa and 10 MPa.
Δ: Fillable at 20 MPa, unfilled portion can be confirmed at 10 MPa.
X: An unfilled part can be confirmed under any conditions of 20 MPa and 10 MPa.
[CF1〜CF5炭素繊維]
・CF1:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex、単繊維直径 10μm、単繊維真円度 0.87、繊維長 6.4mm
・CF2:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex、単繊維直径 10μm、単繊維真円度 0.87、繊維長 3.2mm
・CF3:2.4dtex PAN系炭素繊維、単繊維繊度 2.4dtex、単繊維直径 13μm、単繊維真円度 0.87、繊維長 6.4mm
・CF4:2.4dtex PAN系炭素繊維、単繊維繊度 2.4dtex、単繊維直径 13μm、単繊維真円度 0.87、繊維長 3.2mm
・CF5:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex、単繊維直径 10μm、単繊維真円度 0.75、繊維長 6.4mm
・CF6:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex、単繊維直径 10μm、単繊維真円度 0.75、繊維長 3.2mm
・CF7:0.7dtex PAN系炭素繊維、単繊維繊度 0.7dtex、単繊維直径 7μm、単繊維真円度 0.90、繊維長 6.4mm
・CF8:0.7dtex PAN系炭素繊維、単繊維繊度 0.7dtex、単繊維直径 7μm、単繊維真円度 0.90、繊維長 3.2mm
[CF1-CF5 carbon fiber]
CF1: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.87, fiber length 6.4 mm
CF2: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.87, fiber length 3.2 mm
CF3: 2.4 dtex PAN-based carbon fiber, single fiber fineness 2.4 dtex, single fiber diameter 13 μm, single fiber roundness 0.87, fiber length 6.4 mm
CF4: 2.4 dtex PAN-based carbon fiber, single fiber fineness 2.4 dtex, single fiber diameter 13 μm, single fiber roundness 0.87, fiber length 3.2 mm
CF5: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.75, fiber length 6.4 mm
CF6: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.75, fiber length 3.2 mm
CF7: 0.7 dtex PAN-based carbon fiber, single fiber fineness 0.7 dtex, single fiber diameter 7 μm, single fiber roundness 0.90, fiber length 6.4 mm
CF8: 0.7 dtex PAN-based carbon fiber, single fiber fineness 0.7 dtex, single fiber diameter 7 μm, single fiber roundness 0.90, fiber length 3.2 mm
[熱可塑性樹脂]
・ポリプロピレン樹脂(日本ポリプロ(株)製、商品名「ノバテックPP」(登録商標)SA06A)
[Thermoplastic resin]
・ Polypropylene resin (Nippon Polypro Co., Ltd., trade name “NOVATEC PP” (registered trademark) SA06A)
[分散媒体(B1)]
水と水溶性高分子(住友精化(株)製、商品名:PEO−8Z)を混合し、濃度0.25質量%の分散媒体を得た。分散媒体のB型粘度計で測定される粘度は10mPa・sであった。
[Dispersion medium (B1)]
Water and a water-soluble polymer (manufactured by Sumitomo Seika Co., Ltd., trade name: PEO-8Z) were mixed to obtain a dispersion medium having a concentration of 0.25% by mass. The viscosity of the dispersion medium measured with a B-type viscometer was 10 mPa · s.
[メッシュ(C1)]
抄紙基材の製造に使用するメッシュ10として、プラスチックワイヤーメッシュ(日本フィルコン(株)製、SS−400(商品名))を使用した。
タイプ:2重織
メッシュの目開面積:0.01mm2
メッシュの通気度:150cm3/cm2/s
[Mesh (C1)]
A plastic wire mesh (manufactured by Nippon Filcon Co., Ltd., SS-400 (trade name)) was used as the mesh 10 used for manufacturing the papermaking substrate.
Type: Double woven mesh opening area: 0.01 mm 2
Air permeability of mesh: 150 cm 3 / cm 2 / s
[実施例1]
炭素繊維束(a)をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維CF1を得た。また、炭素繊維束(b)として炭素繊維束を3.2mmにカットし、炭素繊維束CF2を得た。
製造には分散槽を用いた。600mm×600mm×600mmの分散槽の底面には、炭素繊維を分散した後、炭素繊維を捕集するためメッシュを配置した。さらに、メッシュのたるみを防止するため、メッシュの下部に、厚さ20mmの多孔板の上にメッシュの金網が取り付けてあるメッシュ補強を配置した。分散槽の側面のうち対向する側面に150mmピッチで片側3個ずつ、計6個の流体導入口を、流体導入口から導入された流体が分散槽内で衝突するように、相対する流体導入口それぞれの軸方向中心線がほぼ一直線となるような位置に配置した。
[Example 1]
The carbon fiber bundle (a) was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber CF1. Moreover, the carbon fiber bundle was cut into 3.2 mm as the carbon fiber bundle (b) to obtain a carbon fiber bundle CF2.
A dispersion tank was used for the production. On the bottom surface of the 600 mm × 600 mm × 600 mm dispersion tank, a carbon fiber was dispersed and then a mesh was disposed to collect the carbon fiber. Further, in order to prevent the slack of the mesh, a mesh reinforcement having a mesh wire mesh attached on a perforated plate having a thickness of 20 mm is disposed below the mesh. A total of six fluid inlets, one on each side at 150 mm pitch on the opposite side of the side of the dispersion tank, and the fluid inlets facing each other so that the fluid introduced from the fluid inlet collides in the dispersion tank. Each axial center line was arranged at a position where it was almost a straight line.
ここで流体導入口のノズル径は直径0.9mmとした。分散槽内に分散媒体を160リットル投入し、分散槽内に繊維束を20g投入し、続いて流体導入口からエアーを流量6リットル/分で1分間導入し、分散媒体中で強化繊維束を攪拌した後、流体導入口からのエアー導入を止め、強化繊維束が強化繊維の単位で分散したスラリーを調整した。流体導入口からのエアー導入を止めた直後に、分散媒体除去バルブを開き、スラリーから分散媒体を真空吸引により除去し、目付が60g/m2の炭素繊維からなる抄紙基材を得た。 Here, the nozzle diameter of the fluid inlet is 0.9 mm. 160 liters of dispersion medium is charged into the dispersion tank, 20 g of fiber bundle is charged into the dispersion tank, and then air is introduced from the fluid inlet at a flow rate of 6 liters / minute for 1 minute. After stirring, air introduction from the fluid inlet was stopped, and a slurry in which reinforcing fiber bundles were dispersed in units of reinforcing fibers was prepared. Immediately after stopping the introduction of air from the fluid inlet, the dispersion medium removal valve was opened, and the dispersion medium was removed from the slurry by vacuum suction to obtain a papermaking substrate made of carbon fibers having a basis weight of 60 g / m 2 .
得られた抄紙基材を100℃の温度で1時間乾燥した。150×150の抄紙基材とPPフィルムを積層し、200℃のプレス熱盤内に投入し、20MPaで10分間プレス成形し、炭素繊維強化熱可塑性樹脂プラスチックを得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。 The obtained papermaking substrate was dried at a temperature of 100 ° C. for 1 hour. A 150 × 150 papermaking substrate and a PP film were laminated, put into a 200 ° C. press hot platen, and press molded at 20 MPa for 10 minutes to obtain a carbon fiber reinforced thermoplastic resin plastic. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
[実施例2]
炭素繊維束(a)の質量比を30%、炭素繊維束(b)の質量比を70%として分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Example 2]
A base material was obtained in the same manner as in Example 1 except that the mass ratio of the carbon fiber bundle (a) was 30% and the mass ratio of the carbon fiber bundle (b) was 70% and the mixture was charged into the dispersion tank. The execution conditions and the evaluation results of the obtained fiber-reinforced thermoplastic are shown in Table 1.
[実施例3]
炭素繊維束(a)の質量比を80%、炭素繊維束(b)の質量比を20%をとして分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Example 3]
A base material was obtained in the same manner as in Example 1 except that the mass ratio of the carbon fiber bundle (a) was 80% and the mass ratio of the carbon fiber bundle (b) was 20% and the mixture was charged into the dispersion tank. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
[実施例4]
CF3炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF4炭素繊維を使用し炭素繊維束(b)の質量比を50%をとして分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Example 4]
Example 1 except that CF3 carbon fiber was used and the mass ratio of the carbon fiber bundle (a) was 50%, and CF4 carbon fiber was used and the mass ratio of the carbon fiber bundle (b) was 50%. A substrate was obtained in the same manner. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
[実施例5]
CF5炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF6炭素繊維を使用し炭素繊維束(b)の質量比を50%をとして分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Example 5]
Example 1 except that CF5 carbon fiber was used and the mass ratio of the carbon fiber bundle (a) was 50%, and CF6 carbon fiber was used and the mass ratio of the carbon fiber bundle (b) was 50%. A substrate was obtained in the same manner. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
[比較例1]
長さ6.4mmのCF1炭素繊維束(a)のみで強化繊維ウェブを作製した。それ以外は実施例1と同様の方法で基材を得た。実施条件および得られた繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Comparative Example 1]
Reinforcing fiber webs were made with only CF1 carbon fiber bundles (a) having a length of 6.4 mm. Otherwise, a substrate was obtained in the same manner as in Example 1. The execution conditions and the evaluation results of the obtained fiber-reinforced thermoplastic are shown in Table 1.
[比較例2]
CF7炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF8炭素繊維を使用し炭素繊維束(b)の質量比を50%をとして分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Comparative Example 2]
Example 1 except that CF7 carbon fiber was used and the mass ratio of the carbon fiber bundle (a) was 50%, and CF8 carbon fiber was used and the mass ratio of the carbon fiber bundle (b) was 50%. A substrate was obtained in the same manner. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
[比較例3]
CF7炭素繊維を使用し炭素繊維束(a)の質量比を70%、CF8炭素繊維を使用し炭素繊維束(b)の質量比を30%をとして分散槽に投入した以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性プラスチックの評価結果を、表1に示した。
[Comparative Example 3]
Example 1 except that CF7 carbon fibers were used and the mass ratio of carbon fiber bundles (a) was 70%, and CF8 carbon fibers were used and the mass ratio of carbon fiber bundles (b) was 30%. A substrate was obtained in the same manner. Table 1 shows the operating conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic.
表1から明らかなように、単繊維繊度が1.0〜2.4dtex、真円度が0.70以上0.90以下である炭素繊維を用い繊維長の異なる炭素繊維束(a)と炭素繊維束(b)を混合して抄造し、炭素繊維ウェブを用いることにより、品質、成形性に優れた炭素繊維強化熱可塑性プラスチックを得ることができた。 As is clear from Table 1, carbon fiber bundles (a) and carbon having different fiber lengths using carbon fibers having a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.70 to 0.90. The fiber bundle (b) was mixed and made, and a carbon fiber reinforced thermoplastic having excellent quality and moldability was obtained by using a carbon fiber web.
Claims (15)
前記炭素繊維ウェブは、少なくとも炭素繊維束(a)と炭素繊維束(b)とからなり、前記炭素繊維束(a)は繊維長5〜15mm、前記炭素繊維束(b)は繊維長5mm未満であり、前記炭素繊維束(a)を30〜90質量%、前記炭素繊維束(b)を10〜70質量%を含んでおり、前記炭素繊維束(a)と炭素繊維束(b)の炭素繊維の単繊維繊度が1.0〜2.4dtex、真円度が0.7以上0.90以下である炭素繊維束からなる炭素繊維強化熱可塑性プラスチック。 In a carbon fiber reinforced thermoplastic obtained by impregnating a carbon fiber web with a thermoplastic resin,
The carbon fiber web comprises at least a carbon fiber bundle (a) and a carbon fiber bundle (b), the carbon fiber bundle (a) has a fiber length of 5 to 15 mm, and the carbon fiber bundle (b) has a fiber length of less than 5 mm. The carbon fiber bundle (a) is 30 to 90% by mass, the carbon fiber bundle (b) is 10 to 70% by mass, and the carbon fiber bundle (a) and the carbon fiber bundle (b) A carbon fiber reinforced thermoplastic comprising a carbon fiber bundle having a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.7 to 0.90.
前記炭素繊維ウェブは、少なくとも炭素繊維束(a)と炭素繊維束(b)とからなり、前記炭素繊維束(a)は繊維長5〜15mm、前記炭素繊維束(b)は繊維長5mm未満であり、前記炭素繊維束(a)と炭素繊維束(b)の炭素繊維の単繊維繊度が1.0〜2.4dtex、真円度が0.7以上0.90以下である炭素繊維束でありとともに、前記炭素繊維束(a)を30〜90質量%、前記炭素繊維束(b)を10〜70質量%を含んでなる炭素繊維強化熱可塑性プラスチックの製造方法。 (I) Carbon fiber bundle mixing process, (II) Carbon fiber web making process, (III) Carbon fiber reinforced heat for producing carbon fiber reinforced thermoplastic by impregnating carbon fiber web with thermoplastic resin In the method for producing plastic plastics,
The carbon fiber web comprises at least a carbon fiber bundle (a) and a carbon fiber bundle (b), the carbon fiber bundle (a) has a fiber length of 5 to 15 mm, and the carbon fiber bundle (b) has a fiber length of less than 5 mm. A carbon fiber bundle in which the carbon fiber bundle (a) and the carbon fiber bundle (b) have a single fiber fineness of 1.0 to 2.4 dtex and a roundness of 0.7 to 0.90. And a method for producing a carbon fiber reinforced thermoplastic comprising 30 to 90% by mass of the carbon fiber bundle (a) and 10 to 70% by mass of the carbon fiber bundle (b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012078865A JP2013209446A (en) | 2012-03-30 | 2012-03-30 | Carbon fiber-reinforced thermoplastic plastic and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012078865A JP2013209446A (en) | 2012-03-30 | 2012-03-30 | Carbon fiber-reinforced thermoplastic plastic and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013209446A true JP2013209446A (en) | 2013-10-10 |
Family
ID=49527602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012078865A Pending JP2013209446A (en) | 2012-03-30 | 2012-03-30 | Carbon fiber-reinforced thermoplastic plastic and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013209446A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015122366A1 (en) * | 2014-02-14 | 2015-08-20 | 帝人株式会社 | Carbon fiber reinforced molding material and molded body |
JP2016107548A (en) * | 2014-12-09 | 2016-06-20 | 東レ株式会社 | Stampable base material, manufacturing method thereof, and stamping molded article |
-
2012
- 2012-03-30 JP JP2012078865A patent/JP2013209446A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015122366A1 (en) * | 2014-02-14 | 2015-08-20 | 帝人株式会社 | Carbon fiber reinforced molding material and molded body |
CN105579211A (en) * | 2014-02-14 | 2016-05-11 | 帝人株式会社 | Carbon fiber reinforced molding material and molded body |
JPWO2015122366A1 (en) * | 2014-02-14 | 2017-03-30 | 帝人株式会社 | Carbon fiber reinforced molding material and molded body |
US10428192B2 (en) | 2014-02-14 | 2019-10-01 | Teijin Limited | Carbon fiber reinforced molding material and shaped product |
JP2016107548A (en) * | 2014-12-09 | 2016-06-20 | 東レ株式会社 | Stampable base material, manufacturing method thereof, and stamping molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9909253B2 (en) | Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat | |
KR101931826B1 (en) | Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic | |
CN108472879B (en) | Hybrid veil as an interlayer in a composite material | |
JP5499548B2 (en) | Carbon fiber nonwoven fabric, carbon fiber reinforced resin sheet, and carbon fiber reinforced resin molded body | |
KR102320480B1 (en) | Carbon fiber reinforced molding material and molded body | |
KR20190100184A (en) | Composite Structure and Manufacturing Method Thereof | |
JP2011224873A (en) | Fiber reinforced resin-made sandwich structure | |
US9506193B2 (en) | Methods of molding non-woven carbon fiber mats and related molded products | |
JP2011144473A (en) | Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material | |
JP2011190549A (en) | Fiber-mixed mat-shaped molded product and fiber-reinforced molded product | |
TW201843218A (en) | Layered body including fiber-reinforced resin, fiber-reinforced composite resin material, and method for manufacturing same | |
WO2016136790A1 (en) | Resin supply material, preform, and method for producing fiber-reinforced resin | |
JP2015502465A (en) | Structural core | |
JP2019508292A (en) | Thermoplastic bonded preform and thermosetting matrix formed using the same | |
JP2017128705A (en) | Carbon fiber sheet material, prepreg, laminate, molded body, and production method thereof | |
KR20200042897A (en) | Fuel cell separator precursor and fuel cell separator | |
JP2011157524A (en) | Fiber-reinforced thermoplastic plastic, and method for manufacturing the same | |
US9551109B2 (en) | Doctor blade including combination carbon/glass yarns | |
JP2013209446A (en) | Carbon fiber-reinforced thermoplastic plastic and production method thereof | |
JPS6081399A (en) | Inorganic paper | |
WO2022050213A1 (en) | Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor | |
CN114761212B (en) | Fiber reinforced composite materials and sandwich structures | |
CN107408707A (en) | Porous electrode substrate and manufacturing method thereof | |
WO2013191073A1 (en) | Carbon fiber mat and carbon fiber composite material including same | |
JP2019059871A (en) | COMPOSITE MATERIAL COMPRISING CARBON FIBER AND RESIN, INTERMEDIATE SUBSTRATE AND MOLDED BODY COMPRISING COMPOSITE MATERIAL |