[go: up one dir, main page]

JP2013204934A - Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body - Google Patents

Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body Download PDF

Info

Publication number
JP2013204934A
JP2013204934A JP2012075054A JP2012075054A JP2013204934A JP 2013204934 A JP2013204934 A JP 2013204934A JP 2012075054 A JP2012075054 A JP 2012075054A JP 2012075054 A JP2012075054 A JP 2012075054A JP 2013204934 A JP2013204934 A JP 2013204934A
Authority
JP
Japan
Prior art keywords
box
heat insulation
cooling
insulation box
cabinet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075054A
Other languages
Japanese (ja)
Inventor
Yasutetsu Nakanishi
康哲 中西
Hitoshi Inui
仁史 乾
Takashi Nagata
剛史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012075054A priority Critical patent/JP2013204934A/en
Publication of JP2013204934A publication Critical patent/JP2013204934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a heat insulation box body configured to alleviate the influence of a foaming pressure on a box body structure, while preventing deformation of an external shape, with excellent dimensional accuracy.SOLUTION: In a heat insulation box body manufacturing method, a cabinet 5 of a heat insulation box body is manufactured by preventing deformation of the box body due to foaming pressure after injecting a foam heat insulating material into space formed between an outer box and an inner box by using a foaming jig. The method includes a cooling step of cooling the cabinet 5 of the heat insulation box body by bringing the whole surface of the cabinet 5 of the heat insulation box body into contact with a surface of a cooling member 6 whose temperature is lower than a surface temperature of the cabinet 5 of the heat insulation box body extracted from the foaming jig.

Description

本発明は、例えば冷蔵庫などに用いられ、外箱と内箱との間に形成される空間内に発泡断熱材を注入して断熱箱体を製造する断熱箱体の製造方法および、これに用いられる断熱箱体冷却装置、断熱箱体の製造方法によって製造された断熱箱体に関する。   INDUSTRIAL APPLICABILITY The present invention is used in, for example, a refrigerator, and a heat insulating box manufacturing method for manufacturing a heat insulating box by injecting a foam heat insulating material into a space formed between an outer box and an inner box, and a method for using the same. It is related with the heat insulation box body manufactured by the manufacturing method of the heat insulation box body cooling device and heat insulation box which are manufactured.

従来、冷蔵庫に代表される断熱箱体において、構造のわずかな歪みや変形による寸法誤差は、扉の組み付けが悪くなったり、調整作業が煩雑になったり、さらには意匠性を損なったりと、製品品質の低下につながっていた。これら寸法不良や形状不良の問題を引き起こす原因として、例えば冷蔵庫などの外箱と内箱間に断熱材を形成する断熱材発泡工程を経て断熱箱体を製造する工程が大きく影響している。 Conventionally, in a heat insulation box represented by a refrigerator, dimensional errors due to slight distortion or deformation of the structure can cause problems such as poor door assembly, complicated adjustment work, and impaired design. It led to a decline in quality. As a cause of causing problems of these dimensional defects and shape defects, for example, a process of manufacturing a heat insulating box body through a heat insulating material foaming process for forming a heat insulating material between an outer box and an inner box of a refrigerator or the like has a great influence.

従来の冷蔵庫における断熱箱体の製造方法について図7および図8(a)〜図8(c)を参照して詳細に説明する。   The manufacturing method of the heat insulation box in the conventional refrigerator is demonstrated in detail with reference to FIG.7 and FIG.8 (a)-FIG.8 (c).

図7は、従来の冷蔵庫における断熱箱体の配置構成を模式的に示す斜視図である。図8(a)〜図8(c)は、従来の冷蔵庫の断熱箱体の製造方法における断熱材発泡工程を説明するための縦断面図であって、図8(a)は断熱材注入前の発泡治具に収まった箱体の縦断面図、図8(b)は断熱材注入後の発泡治具に収まった断熱箱体の断面図、図8(c)が断熱箱体を発泡治具から取り出す様子を示す縦断面図である。   FIG. 7 is a perspective view schematically showing an arrangement configuration of heat insulating boxes in a conventional refrigerator. FIGS. 8A to 8C are longitudinal sectional views for explaining a heat insulating material foaming step in the conventional method for manufacturing a heat insulating box of a refrigerator, and FIG. FIG. 8B is a cross-sectional view of the heat insulation box housed in the foam jig after the heat insulating material is injected, and FIG. 8C is a foam treatment of the heat insulation box body. It is a longitudinal cross-sectional view which shows a mode that it takes out from a tool.

図7に示すように、一枚の鋼板を折り曲げてコの字型に成形された天板12と、その左右側板13a、13bと、裏板14および底板15との各面の鋼板から外箱16が構成されている。この金属製の外箱16内に樹脂製の内箱17を嵌合させて断熱材充填前の箱体11を組み立てる。裏板14の下方位置には圧縮機取り付けスペース18が設けられている。また、裏板14には発泡断熱材原液を注入する注入口19が設けられている。   As shown in FIG. 7, an outer box is formed from steel plates on each surface of a top plate 12 formed by bending a single steel plate into a U shape, left and right side plates 13 a and 13 b, a back plate 14 and a bottom plate 15. 16 is configured. A resin inner box 17 is fitted into the metal outer box 16 to assemble the box 11 before filling with the heat insulating material. A compressor mounting space 18 is provided below the back plate 14. In addition, the back plate 14 is provided with an injection port 19 for injecting a foam heat insulating material stock solution.

このとき、これらの外箱16と内箱17との間に断熱材を注入充填するための空間が形成されている。また、この空間には冷凍サイクル部品、電装部品、その他の機構部品などが予め取り付けられている。このときの断熱材充填前の箱体11は外箱16と内箱17の周辺部の嵌め込みだけで組み立てられているため、外箱16と内箱17のそれぞれの壁面部分は非常にたわみやすい状態にある。   At this time, a space for injecting and filling the heat insulating material is formed between the outer box 16 and the inner box 17. Further, in this space, refrigeration cycle parts, electrical parts, other mechanical parts, and the like are attached in advance. Since the box body 11 before filling the heat insulating material at this time is assembled only by fitting the peripheral portions of the outer box 16 and the inner box 17, the respective wall portions of the outer box 16 and the inner box 17 are very flexible. It is in.

その後、図8(a)に示すように、箱体11の裏板14を上側にして発泡冶具21内に箱体11を閉じ込めて固定する。この状態で、箱体11の空間内に発泡断熱材原液を注入ヘッド25から空間内に注入する。注入ヘッド25は注入ヘッド差込口24に差し込まれて使用される。   Thereafter, as shown in FIG. 8A, the box 11 is confined and fixed in the foaming jig 21 with the back plate 14 of the box 11 facing upward. In this state, the foamed insulating material stock solution is injected into the space of the box 11 from the injection head 25. The injection head 25 is used by being inserted into the injection head insertion port 24.

続いて、図8(b)に示すような状態で発泡断熱材原液を発泡硬化させることにより、箱体11の空間内の隅々まで断熱材が充填されて強度をもった断熱箱体10が形成される。図8(b)のときに、発泡による高い発泡圧力が外箱16と内箱17にかかる。   Subsequently, the foamed heat insulating material stock solution is foamed and cured in a state as shown in FIG. 8B, whereby the heat insulating material 10 is filled with the heat insulating material to every corner in the space of the box 11 and has strength. It is formed. In the case of FIG. 8B, a high foaming pressure due to foaming is applied to the outer box 16 and the inner box 17.

このため、外箱16の周囲を取り囲む外治具23と内箱17の内側を支える内治具22により外箱16と内箱17が発泡圧力で変形しないように固定する必要がある。一定時間、ここでは例えば10分程度経過すると、発泡反応と樹脂硬化反応による体積膨張が安定化し、発泡圧力が順次弱まっていく。   For this reason, it is necessary to fix the outer box 16 and the inner box 17 so as not to be deformed by the foaming pressure by the outer jig 23 surrounding the outer box 16 and the inner jig 22 supporting the inner side of the inner box 17. After a certain time, for example, about 10 minutes, the volume expansion due to the foaming reaction and the resin curing reaction is stabilized, and the foaming pressure gradually decreases.

さらに、十分に発泡圧力が低下した時点で、図8(c)に示すように、断熱箱体10に巻き付けてあった発泡冶具21を開放して、発泡冶具21内から、外箱16と内箱17間に断熱材が充填されて完成した断熱箱体10を取り出す。   Further, when the foaming pressure is sufficiently lowered, the foaming jig 21 wound around the heat insulating box 10 is opened as shown in FIG. The heat insulation box 10 completed by filling the heat insulation material between the boxes 17 is taken out.

この時点の断熱箱体10は、急激に形状変形を起こすことはないが、内部にはまだ反応熱が蓄積された状態であり、断熱箱体10は更に形状変化を引き起こす可能性のある発泡圧力が内在していると言える。このため、完全に寸法変動を抑制するためには、断熱材内部の反応熱を十分に逃がすことが必要となる。   The heat insulation box 10 at this time does not cause a sudden shape deformation, but reaction heat is still accumulated inside, and the heat insulation box 10 has a foaming pressure that may cause a further shape change. Can be said to be inherent. For this reason, in order to completely suppress the dimensional variation, it is necessary to sufficiently release the reaction heat inside the heat insulating material.

特許文献1では、断熱扉体の製造方法において、上型と下型の発泡冶具で挟み込んだ状態で内部が空の断熱扉体の空間部内に発泡断熱材の原液を外部から注入し、この発泡断熱材の原液を発泡硬化させたのち、下型の発泡治具を取り外したときに、断熱扉体の下部に設けた冷却装置にて強制冷却する断熱扉体冷却方法が提案されている。   In Patent Document 1, in a method for manufacturing a heat insulating door body, a stock solution of a foam heat insulating material is injected from the outside into a space portion of an empty heat insulating door body sandwiched between upper and lower mold foaming jigs. There has been proposed a heat insulating door body cooling method in which after a stock solution of heat insulating material is foamed and cured, when a lower mold foaming jig is removed, forced cooling is performed by a cooling device provided at a lower portion of the heat insulating door body.

この場合、冷却装置による強制冷却は、具体的には送風機によって空気を内側だけに吹き付けている。   In this case, the forced cooling by the cooling device specifically blows air only inside by a blower.

特開昭62−018226公報JP 62-018226 A

しかしながら、特許文献1に開示されている上記従来の断熱扉体の冷却方法では、断熱扉体の下側片面からしか冷却が行われていない。これだと、反応熱は断熱扉体の上下から均等に冷却できない。したがって、これは上型まで取り外してしまうと、断熱扉体の下側と上側とで温度に差が生じて、冷却による発泡気泡収縮が上側と下側で異なって、断熱扉体の外形状が変形してしまう。   However, in the conventional cooling method for a heat insulating door disclosed in Patent Document 1, cooling is performed only from the lower surface of the heat insulating door. If this is the case, the reaction heat cannot be evenly cooled from above and below the heat insulating door. Therefore, if the upper mold is removed, there will be a difference in temperature between the lower side and the upper side of the heat insulating door body, the foam bubble shrinkage due to cooling will be different between the upper side and the lower side, and the outer shape of the heat insulating door body will be It will be deformed.

また、上記従来の断熱扉体の冷却は、具体的には、送風機によって風による冷却を行っているだけであり、これでは冷却効率が低く時間がかかり、断熱扉体であればよいが、もう少し複雑な形状であれば、奥まった箇所では、影などによって冷却エリアの温度に差が生じ、これによる変形も生じてしまう。   In addition, the cooling of the conventional heat insulation door body is merely cooling by wind with a blower, and this requires low cooling efficiency and takes a long time, and may be a heat insulation door body. If it is a complicated shape, a difference in the temperature of the cooling area will occur due to shadows or the like at the back part, and deformation due to this will also occur.

一方、比較的平面構造の単純な扉体の場合には、下側片面からだけの冷却であっても、その冷却効果がある程度は得られるとしても、冷蔵庫筐体などの大型の立体的な奥まった構造の場合には、特許文献1に開示されている上記従来の断熱扉体の冷却方法のままでは、逆に、外箱16側と内箱17側の奥まった場所など場所によっては冷却速度に偏りが生じてしまい、外形形状の変形を助長する虞がある。また、場所によって冷却効果自体も十分ではない。   On the other hand, in the case of a door with a relatively flat structure, even if cooling is performed only from one side of the lower side, a large three-dimensional concavity such as a refrigerator housing can be obtained even if the cooling effect is obtained to some extent. In the case of the above-described structure, the cooling method of the conventional heat insulating door disclosed in Patent Document 1 is conversely, depending on the place such as the back of the outer box 16 side and the inner box 17 side, the cooling rate There is a risk that bias will occur and the deformation of the outer shape will be promoted. Also, the cooling effect itself is not sufficient depending on the location.

本発明は、上記従来の問題を解決するもので、発泡圧力の箱体構造に及ぼす影響を緩和して、外形形状の変形もなく寸法精度に優れた断熱箱体を製造することができる断熱箱体の製造方法および、これに用いられる断熱箱体冷却装置、この断熱箱体の製造方法によって製造された断熱箱体を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and can reduce the influence of the foaming pressure on the box structure, and can produce a heat-insulated box body having excellent dimensional accuracy without deformation of the outer shape. An object of the present invention is to provide a method for manufacturing a body, a heat insulating box cooling device used therefor, and a heat insulating box manufactured by the method for manufacturing the heat insulating box.

本発明の断熱箱体の製造方法は、発泡治具を用いて、外箱と内箱との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止して断熱箱体を形成する工程と、該発泡治具から取り出した該断熱箱体の表面温度よりも低温の冷却部材が該断熱箱体の表面全面に接して該断熱箱体を冷却する冷却工程とを有するものであり、そのことにより上記目的が達成される。   The method for manufacturing a heat insulation box of the present invention prevents the deformation of the box due to the foaming pressure after injecting the foam insulation into the space formed between the outer box and the inner box using a foaming jig. Forming a heat insulation box and a cooling step in which a cooling member having a temperature lower than the surface temperature of the heat insulation box taken out from the foaming jig is in contact with the entire surface of the heat insulation box to cool the heat insulation box With this, the above-mentioned object is achieved.

また、好ましくは、本発明の断熱箱体の製造方法における冷却工程は、前記冷却部材により、前記断熱箱体の外表面の一部または全部と、該断熱箱体の外表面の残る一部および内表面のうちの少なくとも内表面とを挟み込んで該断熱箱体を冷却する。   Preferably, the cooling step in the method for manufacturing a heat insulation box according to the present invention includes a part or all of the outer surface of the heat insulation box and a remaining part of the outer surface of the heat insulation box and the cooling member. The heat insulation box is cooled by sandwiching at least the inner surface of the inner surfaces.

さらに、好ましくは、本発明の断熱箱体の製造方法における冷却部材の形状が、発泡断熱材の注入充填を行うときの発泡冶具の内側形状に沿って同一である。   Furthermore, preferably, the shape of the cooling member in the method for manufacturing a heat insulating box according to the present invention is the same as the inner shape of the foaming jig when filling and filling the foam heat insulating material.

さらに、好ましくは、本発明の断熱箱体の製造方法における冷却部材の形状に、断熱箱体の内箱の開放部側から外箱平面と内箱平面を挟み込むような形状を含む。   Further preferably, the shape of the cooling member in the method for manufacturing a heat insulating box of the present invention includes a shape that sandwiches the outer box plane and the inner box plane from the open side of the inner box of the heat insulating box.

さらに、好ましくは、本発明の断熱箱体の製造方法における冷却部材の構造は、内部に冷却媒体が流れるような流路があり、冷却媒体を循環して温度制御が可能な冷却装置を有する。   Further preferably, the structure of the cooling member in the method for manufacturing a heat insulating box of the present invention has a flow path through which the cooling medium flows, and has a cooling device capable of controlling the temperature by circulating the cooling medium.

さらに、好ましくは、本発明の断熱箱体の製造方法における冷却装置は、場所ごとに分割して異なる冷却温度に調整することが可能な複数の冷却系統を有する。   Furthermore, preferably, the cooling device in the manufacturing method of the heat insulation box of this invention has several cooling systems which can be divided | segmented for every place and can be adjusted to a different cooling temperature.

さらに、好ましくは、本発明の断熱箱体の製造方法における断熱箱体の表面温度が、摂氏20〜30度の温度範囲まで冷却する。   Furthermore, Preferably, the surface temperature of the heat insulation box in the manufacturing method of the heat insulation box of this invention cools to the temperature range of 20-30 degree centigrade.

さらに、好ましくは、本発明の断熱箱体の製造方法における断熱箱体の表面温度が、摂氏0〜20度の温度範囲まで冷却する。   Furthermore, Preferably, the surface temperature of the heat insulation box in the manufacturing method of the heat insulation box of this invention cools to the temperature range of 0 to 20 degree Celsius.

本発明の断熱箱体冷却装置は、本発明の上記断熱箱体の製造方法に用いる前記冷却部材の内部に冷却媒体が流れる流路が設けられ、該流路に該冷却媒体を循環させて前記断熱箱体を該冷却部材により冷却温度制御可能とした冷却装置が設けられているものであり、そのことにより上記目的が達成される。   The heat insulating box cooling device of the present invention is provided with a flow path through which a cooling medium flows in the cooling member used in the method for manufacturing the heat insulating box of the present invention, and circulating the cooling medium through the flow path to A cooling device is provided that enables the cooling temperature of the heat insulating box to be controlled by the cooling member, thereby achieving the above object.

また、好ましくは、本発明の断熱箱体冷却装置において、前記断熱箱体の表面温度が均一に調整可能なように、前記断熱箱体の表面を分割した複数エリアにそれぞれ対応して、前記冷却部材の流路が異なる流路系統および異なる流路密度のうちの少なくともいずれかに構成されている。   Preferably, in the heat insulating box cooling device of the present invention, the cooling is performed in correspondence with each of a plurality of areas obtained by dividing the surface of the heat insulating box so that the surface temperature of the heat insulating box can be adjusted uniformly. The channel of the member is configured in at least one of different channel systems and different channel densities.

本発明の断熱箱体は、本発明の上記断熱箱体の製造方法により製造されるかまたは、本発明の上記断熱箱体冷却装置を用いて製造されたものであり、そのことにより上記目的が達成される。   The heat insulation box of the present invention is manufactured by the method for manufacturing the heat insulation box of the present invention, or is manufactured using the heat insulation box cooling device of the present invention. Achieved.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、発泡治具を用いて、外箱と内箱との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止して断熱箱体を製造する断熱箱体の製造方法において、発泡治具から取り出した断熱箱体の表面温度よりも低温の冷却部材で断熱箱体の表面全面に接して断熱箱体を冷却する冷却工程を有している。   In the present invention, a foaming jig is used to prevent the deformation of the box due to foaming pressure after injecting the foam insulation into the space formed between the outer box and the inner box to produce a heat insulation box The method for manufacturing a heat insulation box has a cooling step of cooling the heat insulation box in contact with the entire surface of the heat insulation box with a cooling member having a temperature lower than the surface temperature of the heat insulation box taken out from the foaming jig. .

これによって、発泡治具から取り出した断熱箱体の表面温度よりも低温の冷却部材で断熱箱体の表面全面に接して断熱箱体を冷却するので、断熱箱体は均等に冷却されることから、発泡圧力の箱体構造に及ぼす影響を緩和して、より、断熱箱体の外形形状の変形もなく寸法精度に優れた断熱箱体を製造することが可能となる。   As a result, the heat insulating box is cooled by contacting the entire surface of the heat insulating box with the cooling member having a temperature lower than the surface temperature of the heat insulating box taken out from the foaming jig, so that the heat insulating box is cooled evenly. It is possible to alleviate the influence of the foaming pressure on the box structure, and to manufacture a heat insulating box body with excellent dimensional accuracy without deformation of the outer shape of the heat insulating box body.

以上により、本発明によれば、発泡治具から取り出した断熱箱体の表面温度よりも低温の冷却部材で断熱箱体の表面全面に接して断熱箱体を冷却するため、発泡圧力の箱体構造に及ぼす影響を緩和して、外形形状の変形もなく寸法精度に優れた断熱箱体を製造することができる。   As described above, according to the present invention, since the heat insulating box is cooled by contacting the entire surface of the heat insulating box with the cooling member having a temperature lower than the surface temperature of the heat insulating box taken out from the foaming jig, By reducing the influence on the structure, it is possible to manufacture a heat-insulating box having excellent dimensional accuracy without deformation of the outer shape.

本発明の実施形態1における冷蔵庫における断熱箱体の製造方法における各工程を説明するための工程ブロック図である。It is a process block diagram for demonstrating each process in the manufacturing method of the heat insulation box in the refrigerator in Embodiment 1 of this invention. 図1の冷蔵庫における断熱箱体の配置構成を模式的に示す斜視図である。It is a perspective view which shows typically the arrangement configuration of the heat insulation box in the refrigerator of FIG. (a)〜(c)は、図1の冷蔵庫の断熱箱体の製造方法におけるキャビネットの発泡治具への搬入からキャビネット3の発泡治具からの搬出ついて説明するための要部構成例を模式的に示す縦断面図であって、(a)は断熱材注入前の発泡治具に収まった断熱箱体の縦断面図、(b)は断熱材注入後の発泡治具に収まった断熱箱体の縦断面図、(c)が断熱箱体を発泡治具から取り出す様子を示す縦断面図である。(A)-(c) is a typical example of a principal part structure for demonstrating from carrying in from the foaming jig of the cabinet 3 to carrying in from the foaming jig of the cabinet 3 in the manufacturing method of the heat insulation box of the refrigerator of FIG. FIG. 2A is a longitudinal sectional view, (a) is a longitudinal sectional view of a heat insulation box housed in a foaming jig before injection of the heat insulating material, and (b) is a heat insulation box housed in the foaming jig after the heat insulation material is injected. It is a longitudinal cross-sectional view of a body, (c) is a longitudinal cross-sectional view which shows a mode that a heat insulation box is taken out from a foaming jig. 本実施形態1の断熱箱体冷却装置における要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the principal part structural example in the heat insulation box cooling device of this Embodiment 1. FIG. 本実施形態1の断熱箱体冷却装置における他の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of another principal part structure in the heat insulation box cooling device of this Embodiment 1. 本実施形態1の断熱箱体冷却装置における更に他の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of another principal part structure in the heat insulation box cooling device of this Embodiment 1. FIG. 従来の冷蔵庫における断熱箱体の配置構成を模式的に示す斜視図である。It is a perspective view which shows typically the arrangement structure of the heat insulation box in the conventional refrigerator. (a)〜(c)は、従来の冷蔵庫の断熱箱体の製造方法における断熱材発泡工程を説明するための縦断面図であって、(a)は断熱材注入前の発泡治具に収まった箱体の縦断面図、(b)は断熱材注入後の発泡治具に収まった断熱箱体の断面図、(c)が断熱箱体を発泡治具から取り出す様子を示す縦断面図である。(A)-(c) is a longitudinal cross-sectional view for demonstrating the heat insulating material foaming process in the manufacturing method of the heat insulation box of the conventional refrigerator, Comprising: (a) is settled in the foaming jig before heat insulating material injection | pouring. (B) is a cross-sectional view of the heat insulation box housed in the foaming jig after the heat insulating material is injected, and (c) is a vertical cross-sectional view showing a state in which the heat insulation box body is taken out from the foaming jig. is there.

以下に、本発明の断熱箱体の製造方法および、これによって製造された断熱箱体の実施形態1について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。また、以下で示す実施形態1は一例であり、請求項に示した技術的範囲で異なる実施形態についても本発明の技術的範囲に含まれるものとする。   EMBODIMENT OF THE INVENTION Below, the manufacturing method of the heat insulation box of this invention and Embodiment 1 of the heat insulation box manufactured by this are demonstrated in detail, referring drawings. In addition, each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation. In addition, Embodiment 1 shown below is an example, and embodiments different from the technical scope shown in the claims are also included in the technical scope of the present invention.

(実施形態1)
図1は、本発明の実施形態1における断熱箱体の製造方法における各工程を説明するための工程ブロック図である。
(Embodiment 1)
FIG. 1: is a process block diagram for demonstrating each process in the manufacturing method of the heat insulation box in Embodiment 1 of this invention.

図1において、本実施形態1の断熱箱体の製造方法は、金属製の外箱に加工する外枠折り曲げ加工工程S1と、外箱に所定の部品を取り付ける部品取付工程S2と、樹脂製の内箱を真空成型する内箱真空成型工程S3と、内箱に所定の部品を取り付ける部品取付工程S4と、金属製の外箱内に樹脂製の内箱をはめ込んでキャビネットを組み立てるキャビネット組立工程S5と、キャビネットに所定の部品を取り付ける部品取付工程S6と、キャビネットを発泡治具に搬入するキャビネット発泡治具搬入工程S7と、ポリウレタン・発泡剤注入・発泡工程S8と、キャビネットを発泡治具から搬出するキャビネット発泡治具搬出工程S9と、キャビネットの全表面(外表面と内表面)を冷却するキャビネット冷却工程S10とを有して、冷蔵庫の断熱箱体を製造し、その後の組立後工程S11に移行して冷蔵庫を完成する。   In FIG. 1, the manufacturing method of the heat insulation box body of this Embodiment 1 is the outer frame bending process S1 processed into a metal outer box, the component attachment process S2 which attaches a predetermined part to an outer box, and resin-made Inner box vacuum forming step S3 for vacuum forming the inner box, component mounting step S4 for attaching a predetermined part to the inner box, and cabinet assembly step S5 for assembling the cabinet by fitting the resin inner box into the metal outer box Component mounting step S6 for attaching predetermined components to the cabinet, cabinet foaming jig loading step S7 for loading the cabinet into the foaming jig, polyurethane / foaming agent injection / foaming step S8, and unloading the cabinet from the foaming jig A cabinet foaming jig unloading step S9 and a cabinet cooling step S10 for cooling the entire surface (outer surface and inner surface) of the cabinet. To produce a heat insulating box body, to complete the refrigerator goes to subsequent assembly after the step S11.

本実施形態1の断熱箱体の製造方法では、後述する発泡治具4を用いて、後述の外箱1と内箱2との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止しつつ断熱箱体を製造する。その後、冷却部材6、8または9(例えば冷却金型など)が断熱箱体のキャビネット5の略表面全面(外表面と内表面)に押圧されて接して断熱箱体のキャビネット5を冷却する。   In the manufacturing method of the heat insulation box body of the first embodiment, foaming after injecting foam heat insulating material into a space formed between the outer box 1 and the inner box 2 described later using the foaming jig 4 described later. A heat insulating box is manufactured while preventing deformation of the box due to pressure. Thereafter, the cooling member 6, 8 or 9 (for example, a cooling mold or the like) is pressed and brought into contact with substantially the entire surface (outer surface and inner surface) of the cabinet 5 of the heat insulation box to cool the cabinet 5 of the heat insulation box.

外枠折り曲げ加工工程S1において、図2に示すように、塗装鋼板を折り曲げ加工によって天板1aとこれに連なる側板1b、1cからなるコの字型のプレス成形品と、別途、手前の裏板1dおよび、コ字状の開放側の底板1eの5面の塗装鋼板から外箱1(アウタシェル)が形成される。外箱1は、裏板1dに対向する背面側が開放されている。外箱1は、5面の各表面が塗装された厚さ0.5〜1mmの鋼板からなっている。裏板1dの内側下方位置には圧縮機取り付け用スペース1gが設けられている。   In the outer frame bending step S1, as shown in FIG. 2, a U-shaped press-formed product comprising a top plate 1a and side plates 1b, 1c connected to the top plate 1a by bending a coated steel plate, and a separate back plate in front An outer box 1 (outer shell) is formed from 1d and five coated steel plates of a U-shaped open-side bottom plate 1e. The outer box 1 is open on the back side facing the back plate 1d. The outer box 1 is made of a steel plate having a thickness of 0.5 to 1 mm, on which five surfaces are painted. A compressor mounting space 1g is provided at a lower position inside the back plate 1d.

部品取付工程S2は、外箱内に所定の部品を取り付ける。   In the component mounting step S2, a predetermined component is mounted in the outer box.

内箱真空成型工程S3において、樹脂板材を真空成形によって所定形状の内箱2(食品を入れるフードライナ)を加工する。樹脂の中でも、強度、耐久性、光沢性などを勘案するとABS樹脂が好ましい。   In the inner box vacuum forming step S3, the inner box 2 (food liner into which food is put) having a predetermined shape is processed by vacuum forming a resin plate material. Among the resins, ABS resin is preferable in consideration of strength, durability, glossiness, and the like.

部品取付工程S4は、内箱に所定の部品を取り付ける。   Part attachment process S4 attaches a predetermined part to the inner box.

キャビネット組立工程S5において、金属製の外箱1内に樹脂製の内箱2を嵌合させて断熱材充填前の箱体のキャビネット3を組み立てる。このとき、これらの外箱1と内箱2との間に断熱材を注入充填するための空間が形成される。   In the cabinet assembling step S5, the resin-made inner box 2 is fitted into the metal outer box 1 to assemble the box cabinet 3 before filling with the heat insulating material. At this time, a space for injecting and filling a heat insulating material is formed between the outer box 1 and the inner box 2.

部品取付工程S6は、外箱1内に内箱2をはめ込んだ後の空間には冷凍サイクル部品、電装部品、その他の機構部品などが予め取り付けられている。このときの断熱材充填前の箱体のキャビネット3は外箱1と内箱2の周辺部の嵌め込みだけで組み立てられているため、外箱1と内箱2の壁面部分は非常にたわみやすい状態にある。   In the component mounting step S6, a refrigeration cycle component, an electrical component, other mechanical components, and the like are mounted in advance in the space after the inner box 2 is fitted in the outer box 1. Since the box cabinet 3 before filling the heat insulating material at this time is assembled only by fitting the peripheral portions of the outer box 1 and the inner box 2, the wall surfaces of the outer box 1 and the inner box 2 are very flexible. It is in.

次に、キャビネット発泡治具搬入工程S7〜キャビネット発泡治具搬出工程S9について図3(a)〜図3(c)を用いて詳細に説明する。   Next, the cabinet foaming jig carrying-in process S7 to the cabinet foaming jig carrying-out process S9 will be described in detail with reference to FIGS. 3 (a) to 3 (c).

図3(a)〜図3(c)は、図1の冷蔵庫の断熱箱体の製造方法におけるキャビネット3の発泡治具への搬入からキャビネット4の発泡治具からの搬出について説明するための要部構成例を模式的に示す縦断面図であって、図3(a)は断熱材注入前の発泡治具に収まった箱体の縦断面図、図3(b)は断熱材注入後の発泡治具に収まった断熱箱体の縦断面図、図3(c)が断熱箱体を発泡治具から取り出す様子を示す縦断面図である。   3 (a) to 3 (c) are important points for explaining the carrying-in from the foaming jig of the cabinet 4 to the carrying-out from the foaming jig of the cabinet 4 in the method for manufacturing the heat insulating box of the refrigerator of FIG. FIG. 3A is a vertical cross-sectional view schematically showing an example of a part configuration, and FIG. 3A is a vertical cross-sectional view of a box housed in a foaming jig before injection of a heat insulating material, and FIG. FIG. 3C is a longitudinal cross-sectional view of the heat insulation box housed in the foaming jig, and FIG.

図3(a)に示すように、キャビネット発泡治具搬入工程S7において、箱体のキャビネット3は裏板1dを上側にし開放側を下側にして発泡冶具4内に収める。発泡外冶具4の上蓋を閉じて、箱体のキャビネット3の周囲を外治具4aで取り囲んだ状態にして、図3(a)のように上蓋の注入ヘッド差込口4dを介して裏板1dに開けられた注入口1fに断熱材注入ヘッド4cを挿入する。   As shown in FIG. 3A, in the cabinet foaming jig carrying-in step S7, the box cabinet 3 is housed in the foaming jig 4 with the back plate 1d facing upward and the open side facing downward. The upper cover of the foam outer jig 4 is closed, and the outer periphery of the box cabinet 3 is surrounded by the outer jig 4a, and the back plate is inserted through the injection head insertion port 4d of the upper cover as shown in FIG. The heat insulating material injection head 4c is inserted into the injection port 1f opened at 1d.

即ち、箱体のキャビネット3の裏板1dを上側にし、その反対側のキャビネット3の開放側の凹部内に発泡冶具4の凸状の内治具4bを挿入してキャビネット3の開放側の凹部内を固定し、外治具4aによってキャビネット3の両側面および裏板1d側を外から挟み込んでキャビネット3を外治具4aおよび内治具4bの内部に閉じ込めて固定する。   That is, the back plate 1d of the box cabinet 3 is turned upward, and the convex inner jig 4b of the foaming jig 4 is inserted into the concave portion on the open side of the cabinet 3 on the opposite side, so that the concave portion on the open side of the cabinet 3 is inserted. The inside is fixed, both sides of the cabinet 3 and the back plate 1d side are sandwiched from outside by the external jig 4a, and the cabinet 3 is confined and fixed inside the external jig 4a and the internal jig 4b.

この状態で、キャビネット3の天面の裏板1d側にある注入ヘッド差込口4dに注入ヘッド4cを差し込んで、ここから、ポリウレタンおよび発泡剤を内部空間に注入することができる。   In this state, the injection head 4c is inserted into the injection head insertion port 4d on the back plate 1d side of the top surface of the cabinet 3, and from here, the polyurethane and the foaming agent can be injected into the internal space.

続いて、ポリウレタン・発泡剤注入・発泡工程S8において、図3(a)に示すように、注入ヘッド4cから箱体のキャビネット3の内部空間内に発泡断熱材原液(ポリウレタン・発泡剤)を注入する。発泡断熱材原液をその内部空間内に注入後、すぐに発泡膨張反応と樹脂硬化反応が並行して起こり、治具底面部に近い空間から徐々に上の方へ発泡流動していき、最終的には図3(b)のように断熱材が空間を隙間なく充填した断熱箱体のキャビネット5とすることができる。このとき、発泡治具4には大きな荷重の発泡圧力が外方にかかっている。   Subsequently, in the polyurethane / foaming agent injection / foaming step S8, as shown in FIG. 3 (a), the foam insulation material solution (polyurethane / foaming agent) is injected into the internal space of the box cabinet 3 from the injection head 4c. To do. Immediately after injecting the foam insulation solution into the internal space, the foam expansion reaction and the resin curing reaction occur in parallel, and the foam flows gradually upward from the space near the bottom of the jig. As shown in FIG. 3 (b), a heat insulating box cabinet 5 in which a space is filled with a heat insulating material without a gap can be formed. At this time, a foaming pressure with a large load is applied to the foaming jig 4 outward.

このようにして、図3(b)に示すように発泡断熱材原液(ポリウレタン・発泡剤)を発泡させて硬化させる。このとき、箱体のキャビネット3の空間内の隅々まで断熱材が充填されて強度をもった断熱箱体のキャビネット5が形成される。このときに、発泡による高い発泡圧力が外箱1と内箱2にかかる。   In this way, as shown in FIG. 3B, the foamed heat insulating material stock solution (polyurethane / foaming agent) is foamed and cured. At this time, the heat insulating material is filled to every corner in the space of the box cabinet 3 to form the heat insulating box cabinet 5 having strength. At this time, a high foaming pressure due to foaming is applied to the outer box 1 and the inner box 2.

このため、外箱1の周囲を取り囲む外治具4aと、内箱2の内側を支える内治具4bとにより外箱1と内箱2が発泡圧力で変形しないように内部奥側まで固定している。一定時間、ここでは例えば5分程度であるが、時間が経つにつれて次第に、発泡膨張反応と樹脂硬化反応による体積膨張が安定化し、発泡圧力が順次弱まっていく。 注入ヘッド差込口4dから注入ヘッド4cを取り去る。   For this reason, the outer jig 4a surrounding the outer box 1 and the inner jig 4b supporting the inner side of the inner box 2 are fixed to the inner inner side so that the outer box 1 and the inner box 2 are not deformed by foaming pressure. ing. Although the fixed time is about 5 minutes here, for example, the volume expansion due to the foam expansion reaction and the resin curing reaction is gradually stabilized with time, and the foam pressure gradually decreases. The injection head 4c is removed from the injection head insertion port 4d.

キャビネット発泡治具搬出工程S9において、体積膨張が安定化し寸法が安定化した頃合いを見計らって断熱箱体のキャビネット5は発泡治具4から取り出される。   In the cabinet foaming jig unloading step S9, the cabinet 5 of the heat insulating box is taken out from the foaming jig 4 in a time when the volume expansion is stabilized and the dimensions are stabilized.

発泡治具4から取り出したときの断熱箱体のキャビネット5は、発泡反応熱によって温まっており、表面温度は摂氏40〜50度程度の状態にある。しかも、断熱箱体のキャビネット5の断熱材内部では更に高温状態であり、場合によっては摂氏100度以上の反応熱が蓄積されたままの場合もあり得る。これは、更なる体積膨張によって外箱1や内箱2が変形する内在的なエネルギーとなり、完全に寸法変動を抑制するには、この反応熱を除去する必要がある。   The cabinet 5 of the heat insulating box when taken out from the foaming jig 4 is warmed by the foaming reaction heat, and the surface temperature is in a state of about 40 to 50 degrees Celsius. Moreover, the temperature inside the heat insulating material of the cabinet 5 of the heat insulating box is higher, and in some cases, reaction heat of 100 degrees Celsius or more may remain accumulated. This becomes an intrinsic energy for deforming the outer box 1 and the inner box 2 by further volume expansion, and it is necessary to remove this reaction heat in order to completely suppress the dimensional variation.

発泡膨張反応開始からの経過時間に対する発泡治具4の各位置での温度変化と発泡圧力の変化を計測すると、発泡膨張反応開始からキャビネット5の外表面および内表面の温度は2,3度上昇しており、この温度は内部からの温度供給によってなかなか下がらず、5分〜10分程度では発泡膨張反応が完全に終了しない。このとき、ポリウレタンの発泡反応による内部発熱が続いている状態で、ポリウレタン内部中心付近では依然として摂氏100度前後の温度である。   When the change in temperature and the change in foaming pressure at each position of the foaming jig 4 with respect to the elapsed time from the start of the foam expansion reaction is measured, the temperature of the outer surface and the inner surface of the cabinet 5 increases by a few degrees from the start of the foam expansion reaction This temperature is not easily lowered by the temperature supply from the inside, and the foaming expansion reaction is not completely completed in about 5 to 10 minutes. At this time, in the state where internal heat generation due to the foaming reaction of polyurethane continues, the temperature is still around 100 degrees Celsius near the polyurethane inner center.

通常、5分〜10分程度経過すると、断熱箱体のキャビネット5は発泡治具4から取り出されるものの、そのときでもポリウレタン・発泡剤の内部温度は摂氏100度もあって発泡膨張反応は収まっておらず、発泡圧力によって箱体構造に影響を及ぼす。   Usually, after about 5 to 10 minutes, the cabinet 5 of the heat insulation box is taken out from the foaming jig 4, but even at that time, the internal temperature of the polyurethane / foaming agent is 100 degrees Celsius and the foam expansion reaction is stopped. The box structure is affected by the foaming pressure.

一方、発泡断熱材原液のポリウレタン・発泡剤のうちの発泡剤のシクロペンタンの沸点は摂氏49度であり、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)が摂氏40度以上であれば発泡治具4の内部では発泡膨張反応が十分に進行する。   On the other hand, the boiling point of the foaming agent cyclopentane in the polyurethane / foaming agent stock solution of foaming heat insulation is 49 degrees Celsius, and the outer surface temperature (2) or the inner surface temperature (5) of the cabinet 5 of the heat insulation box. Is 40 degrees Celsius or more, the foam expansion reaction proceeds sufficiently inside the foaming jig 4.

また、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)が摂氏30〜40度であれば発泡治具4の内部では発泡膨張反応はかなり鈍化する。さらに、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)が摂氏30度を下回ると、発泡し難い状況になる。   Further, if the outer surface temperature (2) or the inner surface temperature (5) of the cabinet 5 of the heat insulating box is 30 to 40 degrees Celsius, the foam expansion reaction is considerably slowed inside the foaming jig 4. Furthermore, when the outer surface temperature (2) or the inner surface temperature (5) of the cabinet 5 of the heat insulation box is less than 30 degrees Celsius, it becomes difficult to foam.

したがって、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)が摂氏20〜30度であれば断熱箱体のキャビネット5の内部での発泡膨張反応は起こり難く、キャビネット5内部で発泡膨張反応がより安定的に進行しないためには、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)は好ましくは摂氏0〜20度の範囲内であればよいことになる。なお、断熱箱体のキャビネット5の外側の表面温度(2)または内側の表面温度(5)が摂氏0以下では結露するので好ましくない。   Therefore, if the outer surface temperature (2) or the inner surface temperature (5) of the heat insulation box cabinet 5 is 20 to 30 degrees Celsius, the foam expansion reaction inside the heat insulation box cabinet 5 hardly occurs. In order to prevent the foam expansion reaction from proceeding more stably inside the cabinet 5, the outer surface temperature (2) or the inner surface temperature (5) of the cabinet 5 of the heat insulation box is preferably in the range of 0 to 20 degrees Celsius. If it is within, it will be good. In addition, it is not preferable because dew condensation occurs when the outer surface temperature (2) or the inner surface temperature (5) of the cabinet 5 of the heat insulation box is 0 degrees Celsius or less.

そこで、断熱箱体のキャビネット5を発泡治具4から取り出す工程に引き続き、断熱箱体のキャビネット5の外側表面および凹状に奥まった内側表面の各面を放熱効果のある冷却部材で挟み込んで放熱させるように冷却体を押し当ててキャビネット5の冷却を促すようにする。   Therefore, following the step of taking out the cabinet 5 of the heat insulation box from the foaming jig 4, each surface of the outer surface of the cabinet 5 of the heat insulation box and the inner surface recessed in a concave shape is sandwiched by a cooling member having a heat radiation effect to dissipate heat. In this manner, the cooling body is pressed to promote cooling of the cabinet 5.

キャビネット冷却工程S10では、前述したように、発泡治具4を用いて、外箱1と内箱2との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止しつつ断熱箱体を製造する本実施形態1の断熱箱体の製造方法において、発泡治具4から取り出した断熱箱体のキャビネット5の表面温度よりも低温の後述の冷却部材6、8または9(例えば冷却金型など)が断熱箱体のキャビネット5の略表面全面(外表面と内表面)に押圧されて接して断熱箱体のキャビネット5を冷却する。   In the cabinet cooling step S10, as described above, the box body is deformed by the foaming pressure after the foam insulation material is injected into the space formed between the outer box 1 and the inner box 2 using the foaming jig 4. In the heat insulating box manufacturing method according to the first embodiment for manufacturing the heat insulating box while preventing the above, the cooling members 6 and 8 described later having a temperature lower than the surface temperature of the cabinet 5 of the heat insulating box taken out from the foaming jig 4. Alternatively, 9 (for example, a cooling mold or the like) is pressed and brought into contact with substantially the entire surface (outer surface and inner surface) of the cabinet 5 of the heat insulation box to cool the cabinet 5 of the heat insulation box.

この場合、キャビネット冷却工程S10は、後述の冷却部材6、8または9により、断熱箱体のキャビネット5の外表面側からと、断熱箱体のキャビネット5の内表面側からとを上下に挟み込んで断熱箱体のキャビネット5の外表面および内表面を押圧して冷却するようになっている。このキャビネット冷却工程S10について図4〜図6を参照して説明する。   In this case, the cabinet cooling step S10 sandwiches the outside from the outer surface side of the cabinet 5 of the heat insulation box body and the inner surface side of the cabinet 5 of the heat insulation box body by the cooling members 6, 8 or 9 described later. The outer surface and inner surface of the cabinet 5 of the heat insulation box are pressed and cooled. The cabinet cooling step S10 will be described with reference to FIGS.

図4は、本実施形態1の断熱箱体冷却装置における要部構成例を模式的に示す縦断面図である。   FIG. 4 is a longitudinal cross-sectional view schematically showing an example of the configuration of the main part in the heat insulating box cooling device of the first embodiment.

図4において、冷却部材6は、断熱箱体のキャビネット5全体を取り囲むような形状のもので構成されている。   In FIG. 4, the cooling member 6 has a shape that surrounds the entire cabinet 5 of the heat insulating box.

図4に示すように、冷却部材6の形状は、断熱箱体のキャビネット5の内箱2の開放側から外箱1の側面と内箱2の側面を挟み込むような形状でも構わない。要するに、冷却部材6は、断熱箱体のキャビネット5における外箱1の裏板1dの外側表面に接する冷却上側部材6aと、外箱1の両側板1b、1c、天板1aおよび底板1eの各外側表面(外表面)にそれぞれ接すると共に、内箱2の裏板、両側板、天板および底板の各内側表面(内表面)にそれぞれ接する冷却下側部材6bとを、上下にキャビネット5をその表面形状に沿って挟み込んで放熱させるようになっている。   As shown in FIG. 4, the shape of the cooling member 6 may be such that the side surface of the outer box 1 and the side surface of the inner box 2 are sandwiched from the open side of the inner box 2 of the cabinet 5 of the heat insulating box body. In short, the cooling member 6 includes the cooling upper member 6a that is in contact with the outer surface of the back plate 1d of the outer box 1 in the cabinet 5 of the heat insulating box, and the side plates 1b and 1c, the top plate 1a, and the bottom plate 1e of the outer box 1. The cooling lower member 6b that is in contact with the outer surface (outer surface) and in contact with the inner surface (inner surface) of the back plate, the side plates, the top plate, and the bottom plate of the inner box 2, and the cabinet 5 up and down It is inserted along the surface shape to dissipate heat.

この場合、断熱箱体のキャビネット5の表面温度が均一に調整可能なように、内箱2の裏板、両側板、天板および底板の各内側表面(内表面)にそれぞれ接する冷却下側部材6bの一部所定エリア(凹部表面領域のみ)の流路系統または流路密度をそれ以外の冷却下側部材6a,6bの流路系統および流路密度に比べて、冷却装置7から供給される流路系統の冷却水の温度を低くするかまたは/および流路密度を高密度に構成する。   In this case, the lower cooling member in contact with each inner surface (inner surface) of the back plate, both side plates, top plate and bottom plate of the inner box 2 so that the surface temperature of the cabinet 5 of the heat insulation box can be adjusted uniformly. The flow path system or the flow path density of a part of the predetermined area 6b (only the recess surface area) is supplied from the cooling device 7 as compared with the flow path system and the flow path density of the other cooling lower members 6a and 6b. The temperature of the cooling water in the flow path system is lowered or / and the flow path density is increased.

図5は、本実施形態1の断熱箱体冷却装置における他の要部構成例を模式的に示す縦断面図である。   FIG. 5 is a longitudinal cross-sectional view schematically showing another configuration example of the main part of the heat insulating box cooling device of the first embodiment.

図5に示すように、冷却部材8の形状は、発泡注入の際に使用する発泡治具4の内側形状に沿った同一の形状であれば寸法をそのまま維持できるので好ましい。冷却部材8は、キャビネット5の箱体における6面のうちの1面が開放状態であり、開放状態以外の箱体の5面の外側を覆うと共に、開放状態の1面から内部の5面を覆うように構成されている。冷却部材8は、冷却の際の寸法変動を抑制しながら断熱箱体のキャビネット5の各表面と接して各表面から冷却を行う。要するに、冷却部材8は、断熱箱体のキャビネット5における外箱1の裏板1d、両側板1b、1c、天板1aおよび底板1eの各外側表面にそれぞれ接する冷却上側部材8aと、内箱2の裏板、両側板、天板および底板の各内側表面にそれぞれ接する冷却下側部材8bとを、上下にキャビネット5をその表面形状に沿って挟み込んでキャビネット5からの熱を冷却部材8の冷却上側部材8aと冷却下側部材8b側にそれぞれ放熱させるようになっている。   As shown in FIG. 5, the shape of the cooling member 8 is preferably the same shape along the inner shape of the foaming jig 4 used in foaming injection because the dimensions can be maintained as they are. The cooling member 8 has one of the six surfaces in the box of the cabinet 5 in an open state, covers the outside of the five surfaces of the box other than the open state, and covers the five surfaces inside from the open surface. It is configured to cover. The cooling member 8 cools from each surface in contact with each surface of the cabinet 5 of the heat insulating box while suppressing dimensional fluctuation during cooling. In short, the cooling member 8 includes the cooling upper member 8a in contact with the outer surfaces of the back plate 1d, the side plates 1b and 1c, the top plate 1a and the bottom plate 1e of the outer box 1 in the cabinet 5 of the heat insulating box, and the inner box 2 The cooling lower member 8b in contact with the inner surfaces of the back plate, both side plates, the top plate and the bottom plate is sandwiched up and down along the surface shape to cool the cooling member 8 with heat from the cabinet 5. Heat is radiated to the upper member 8a and the cooling lower member 8b.

この場合、断熱箱体のキャビネット5の表面温度が均一に調整可能なように、冷却下側部材8bの所定エリア(凹部表面領域)の流路系統または流路密度をそれ以外の冷却下側部材8aの流路系統および流路密度に比べて、冷却装置7から供給される流路系統の冷却水の温度を低くするかまたは/および流路密度を高密度に構成する。   In this case, the flow path system or flow path density of the predetermined area (recess surface area) of the cooling lower member 8b is set to other cooling lower members so that the surface temperature of the cabinet 5 of the heat insulation box can be adjusted uniformly. Compared with the flow path system and the flow path density of 8a, the temperature of the cooling water of the flow path system supplied from the cooling device 7 is lowered or / and the flow path density is made higher.

図6は、本実施形態1の断熱箱体冷却装置における更に他の要部構成例を模式的に示す縦断面図である。   FIG. 6 is a longitudinal sectional view schematically showing still another main configuration example in the heat insulating box cooling apparatus of the first embodiment.

図6に示すように、冷却部材9の形状は、断熱箱体のキャビネット5の内箱2の開放側の内側全表面から外箱1の側面1b、1c、天板1aおよび底板1eの全半分の外側表面と、外箱1の側面1b、1c、天板1aおよび底板1eの残る全半分から裏面1dの外側表面とを上下にキャビネット5をその表面形状に沿って挟み込んでキャビネット5からの熱を冷却部材9の冷却上側部材9aと冷却下側部材9b側にそれぞれ放熱させるようになっている。   As shown in FIG. 6, the shape of the cooling member 9 is from the entire inner surface on the open side of the inner box 2 of the cabinet 5 of the heat insulating box body to the entire half of the side surfaces 1 b and 1 c, the top plate 1 a and the bottom plate 1 e of the outer box 1. The outer surface of the outer casing 1 and the outer surface of the rear surface 1d from the remaining half of the side surfaces 1b, 1c, the top plate 1a and the bottom plate 1e of the outer box 1 are sandwiched up and down along the surface shape to heat from the cabinet 5 Is radiated to the cooling upper member 9a and the cooling lower member 9b of the cooling member 9, respectively.

この場合、断熱箱体のキャビネット5の表面温度が均一に調整可能なように、内箱2の裏板、両側板、天板および底板の各内側表面(内表面)にそれぞれ接する冷却下側部材9bの一部所定エリア(凹部表面領域のみ)の流路系統または流路密度をそれ以外の冷却下側部材9bの流路系統および流路密度に比べて、冷却装置7から供給される流路系統の冷却水の温度を低くするかまたは/および流路密度を高密度に構成する。   In this case, the lower cooling member in contact with each inner surface (inner surface) of the back plate, both side plates, top plate and bottom plate of the inner box 2 so that the surface temperature of the cabinet 5 of the heat insulation box can be adjusted uniformly. The flow path supplied from the cooling device 7 is compared with the flow path system or flow path density of a part of the predetermined area 9b (only the recess surface area) compared to the flow path system and flow path density of the other cooling lower member 9b. The cooling water temperature of the system is lowered or / and the flow path density is set high.

したがって、図4〜図6に示すように、冷却部材6、8および9により、断熱箱体のキャビネット5の外表面(外側表面)の一部または全部と、断熱箱体のキャビネット5の外表面の残る一部および内表面(内側表面)のうちの少なくとも内表面とを挟み込んで断熱箱体のキャビネット5を冷却するようになっている。   Therefore, as shown in FIGS. 4 to 6, the cooling members 6, 8, and 9 allow part or all of the outer surface (outer surface) of the cabinet 5 of the heat insulation box and the outer surface of the cabinet 5 of the heat insulation box to be used. The cabinet 5 of the heat insulation box is cooled by sandwiching at least the inner surface of the remaining part and the inner surface (inner surface).

冷却部材6、8および9の冷却方法としては、冷水などの冷却媒体が流れるような管を冷却部材6、8および9の各内部に引き回した構造になっている。冷水などの冷却媒体をその冷却部材6、8および9の内部の管に流す冷却装置7が設けられている。   As a cooling method of the cooling members 6, 8, and 9, a structure in which a cooling medium such as cold water flows is drawn inside each of the cooling members 6, 8, and 9. A cooling device 7 is provided for flowing a cooling medium such as cold water through the pipes inside the cooling members 6, 8 and 9.

この冷却装置7により、冷水などの冷却媒体を管内に沿って循環させて、冷却部材6、8および9のそれぞれを冷却して温度制御できるようになっている。キャビネット5の奥まった場所など場所毎に冷却度合を調整できるように、複数の冷却系統や配管密度を異ならししたものを用いてもよい。   The cooling device 7 circulates a cooling medium such as cold water along the inside of the pipe to cool each of the cooling members 6, 8, and 9 and control the temperature. A plurality of cooling systems and pipes having different densities may be used so that the degree of cooling can be adjusted for each place such as a deep place in the cabinet 5.

即ち、断熱箱体のキャビネット5の全表面温度が均一に調整可能なように、断熱箱体のキャビネット5の全表面を複数に分割した複数エリア(例えば外表面と内表面または、内表面でも外側と奥まったエリア)にそれぞれ対応して、冷却部材6、8および9の流路が異なる流路系統および異なる流路密度のうちの少なくともいずれかに、図4〜図6の断熱箱体冷却装置が構成されている。   That is, the entire surface of the heat insulation box cabinet 5 is divided into a plurality of areas (for example, the outer surface and the inner surface, or the inner surface is also the outer surface so that the entire surface temperature of the heat insulation box cabinet 5 can be adjusted uniformly. 4 and FIG. 6, the heat insulating box cooling device shown in FIGS. 4 to 6 is provided in at least one of a flow path system and a different flow path density of the cooling members 6, 8, and 9. Is configured.

この場合に、異なる流路系統は循環させる冷却水の温度を調整している。異なる流路密度は、断熱箱体のキャビネット5の表面からの温度の吸収効率を異ならしている。いずれにせよ、断熱箱体のキャビネット5の全表面温度が均一になるように調整することができるようになっている。さらに、異なる流路系統と異なる流路密度とを組み合わせて用いることもできる。   In this case, different flow path systems adjust the temperature of the cooling water to be circulated. The different flow path densities differ in the absorption efficiency of the temperature from the surface of the cabinet 5 of the heat insulation box. In any case, the overall surface temperature of the cabinet 5 of the heat insulating box can be adjusted to be uniform. Furthermore, different flow path systems and different flow path densities can be used in combination.

さらに、冷却装置7は循環して戻ってきた水を再び冷却して冷却部材6、8および9の各内部の配管に戻すようになっている。これによって、キャビネット5の更に寸法精度のよい冷却が可能となる。   Further, the cooling device 7 cools the water that has returned through circulation and returns it to the piping inside each of the cooling members 6, 8, and 9. As a result, the cabinet 5 can be cooled with higher dimensional accuracy.

冷却部材6、8および9による冷却の度合いは、断熱箱体のキャビネット5の容量や断熱材の厚みなどによって変化するため、単純には定められない。本実施形態1としては、冷却部材6、8および9では、前述したように、摂氏0〜20度の表面温度範囲で制御されるもので、少なくとも表面温度が摂氏20〜30度になるまで冷却することにより、内部に蓄積された反応熱を放熱でき、その後の寸法変動を大幅に抑制することができる。   The degree of cooling by the cooling members 6, 8, and 9 varies depending on the capacity of the cabinet 5 of the heat insulating box body, the thickness of the heat insulating material, and the like, and thus cannot be simply determined. As the first embodiment, the cooling members 6, 8 and 9 are controlled in the surface temperature range of 0 to 20 degrees Celsius as described above, and are cooled at least until the surface temperature becomes 20 to 30 degrees Celsius. By doing so, the reaction heat accumulated inside can be dissipated, and subsequent dimensional variations can be greatly suppressed.

即ち、本実施形態1の断熱箱体冷却装置は、図4〜図6に示すように、断熱箱体の製造方法に用いる断熱箱体冷却装置の冷却部材6、8および9の内部に冷水などの冷却媒体が流れる流路(配管路)が設けられ、流路(配管路)に冷水などの冷却媒体を循環させて断熱箱体のキャビネット5を冷却部材6、8および9により冷却温度制御可能に構成された冷却装置7が設けられている。   That is, as shown in FIGS. 4 to 6, the heat insulation box cooling device of the first embodiment has cold water or the like inside the cooling members 6, 8, and 9 of the heat insulation box cooling device used in the method for manufacturing the heat insulation box. Is provided with a flow path (pipe line) through which the cooling medium flows, and the cooling medium such as cold water is circulated through the flow path (pipe line) so that the cooling temperature of the cabinet 5 of the heat insulation box can be controlled by the cooling members 6, 8 and 9. A cooling device 7 is provided.

この場合、断熱箱体のキャビネット5の表面温度が均一に調整可能なように、断熱箱体のキャビネット5の表面を複数エリアに分割して複数エリアにそれぞれ対応する冷却部材6、8および9の流路が異なる流路系統および異なる流路密度の少なくともいずれかに構成されている。本実施形態1の断熱箱体のキャビネット5は、前述したように、本実施形態1の断熱箱体のキャビネット5の製造方法により製造されるかまたは、本実施形態1の断熱箱体冷却装置を用いて製造される。   In this case, the surface of the cabinet 5 of the heat insulation box is divided into a plurality of areas so that the surface temperature of the cabinet 5 of the heat insulation box can be adjusted uniformly. The flow paths are configured in at least one of different flow path systems and different flow path densities. As described above, the heat insulation box cabinet 5 according to the first embodiment is manufactured by the method for manufacturing the heat insulation box cabinet 5 according to the first embodiment, or the heat insulation box cooling device according to the first embodiment. Manufactured using.

以上により、本実施形態1によれば、断熱箱体のキャビネット5を発泡冶具4から取り出し後のキャビネット5の寸法変動をなくすには、断熱材内部の反応熱を十分に逃がすことが必要となるが、自然放冷により完全に断熱箱体のキャビネット5を冷却するには、発泡治具4で固めた状態で長時間を置いておかなければならない。また、発泡治具4から取り出して強制冷却させた場合には、冷却による発泡気泡収縮が起こり、場所ごとに冷却度合いが偏ってしまうと箱体変形の原因となる。   As described above, according to the first embodiment, in order to eliminate the dimensional fluctuation of the cabinet 5 after the cabinet 5 of the heat insulating box is taken out from the foaming jig 4, it is necessary to sufficiently release the reaction heat inside the heat insulating material. However, in order to completely cool the cabinet 5 of the heat insulation box by natural cooling, it is necessary to leave it for a long time in a state of being hardened by the foaming jig 4. Moreover, when it takes out from the foaming jig 4 and forcedly cools, foaming bubble shrinkage | contraction by cooling will occur, and if the degree of cooling is uneven for every place, it will cause a box-shaped deformation.

これに対して、本実施形態1の断熱箱体の製造方法においては、発泡治具4を用いて、外箱1と内箱2との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止して断熱箱体のキャビネット5を製造する断熱箱体の製造方法において、発泡治具4から取り出した断熱箱体のキャビネット5の表面温度よりも低温の冷却部材6,8または9の表面で断熱箱体のキャビネット5の表面全面に接して断熱箱体のキャビネット5を冷却する冷却工程を有している。この冷却工程は、冷却部材6,8または9により、断熱箱体のキャビネット5の外表面の一部または全部と、断熱箱体のキャビネット5の外表面の残る一部および内表面のうちの少なくとも内表面とを上下に挟み込んで断熱箱体のキャビネット5を冷却する。   On the other hand, in the manufacturing method of the heat insulation box of this Embodiment 1, after injecting a foam heat insulating material into the space formed between the outer box 1 and the inner box 2 using the foaming jig 4 In the heat insulating box manufacturing method for manufacturing the heat insulating box cabinet 5 by preventing the deformation of the box due to the foaming pressure, the cooling is lower than the surface temperature of the heat insulating box cabinet 5 taken out from the foaming jig 4. There is a cooling step of cooling the heat insulation box cabinet 5 in contact with the entire surface of the heat insulation box cabinet 5 on the surface of the member 6, 8 or 9. This cooling step is performed by the cooling members 6, 8, or 9, and a part or all of the outer surface of the cabinet 5 of the heat insulation box body and at least one of the remaining part and the inner surface of the outer surface of the cabinet 5 of the heat insulation box body. The cabinet 5 of the heat insulation box is cooled by sandwiching the inner surface with the upper and lower sides.

即ち、外箱1と内箱2との間に形成される空間に発泡断熱材を注入することにより形成する断熱箱体のキャビネット5の製造方法において、断熱箱体のキャビネット5を発泡治具4から取り出した後、断熱箱体のキャビネット5の表面温度よりも低温の部材で断熱箱体のキャビネット5の発泡断熱材の充填された空間を間に挟み込んで周囲均等に冷却を行うことと、元の寸法通りの形状に固定した状態のままで冷却することにより、発泡気泡の収縮によるキャビネット5の形状変形を起こさずに断熱材内部に残っている反応熱を奪うことができる。これは寸法変動のない断熱箱体のキャビネット5を従来よりも短時間で得ることが可能となる。   That is, in the manufacturing method of the cabinet 5 of the heat insulation box formed by injecting the foam heat insulating material into the space formed between the outer box 1 and the inner box 2, the cabinet 5 of the heat insulation box is attached to the foaming jig 4. After being taken out from the space, the space filled with the foam insulation material of the cabinet 5 of the heat insulation box 5 is sandwiched between members with a temperature lower than the surface temperature of the cabinet 5 of the heat insulation box 5 By cooling in a state in which the shape is fixed in accordance with the dimensions, the reaction heat remaining inside the heat insulating material can be taken without causing the shape deformation of the cabinet 5 due to the shrinkage of the foam bubbles. This makes it possible to obtain a heat-insulated cabinet 5 having no dimensional variation in a shorter time than before.

このように、発泡治具4から取り出した断熱箱体のキャビネット5の表面温度よりも低温の冷却部材で断熱箱体のキャビネット5の表面全面に接して断熱箱体のキャビネット5を冷却するため、発泡圧力の箱体構造に及ぼす影響を緩和して、外形形状の変形もなく寸法精度に優れた断熱箱体のキャビネット5を製造することができる。   Thus, in order to cool the cabinet 5 of the heat insulation box body in contact with the entire surface of the cabinet 5 of the heat insulation box body with a cooling member lower than the surface temperature of the cabinet 5 of the heat insulation box body taken out from the foaming jig 4, By reducing the influence of the foaming pressure on the box structure, it is possible to manufacture a cabinet 5 of a heat insulating box having excellent dimensional accuracy without deformation of the outer shape.

なお、本実施形態1では、断熱箱体の製造方法に用いる断熱箱体冷却装置の冷却部材6,8または9の内部に冷水などの冷却媒体が流れる流路(配管)が設けられ、この流路に冷水などの冷却媒体を循環させて断熱箱体のキャビネット5を冷却部材により冷却温度制御可能に構成した冷却装置7を設ける場合について説明したが、これに限らず、冷却部材の外表面および内表面に放熱シートを貼ったり放熱塗料を塗って放熱を促進させるようにしてもよい。   In the first embodiment, a flow path (pipe) through which a cooling medium such as cold water flows is provided inside the cooling member 6, 8 or 9 of the heat insulating box cooling device used in the method for manufacturing a heat insulating box. Although the case where the cooling device 7 in which the cooling medium such as cold water is circulated in the passage and the cooling temperature control of the cabinet 5 of the heat insulating box body by the cooling member is provided has been described, the present invention is not limited thereto, and the outer surface of the cooling member and Heat dissipation may be promoted by applying a heat dissipation sheet or applying a heat dissipation paint on the inner surface.

このように、キャビネットに放熱加工するのではなく、冷却部材側に放熱加工をすることにより、キャビネット表面から冷却部材側の放熱シートなどを介して、冷却部材側に熱を効率よく伝達させる。   Thus, heat is not heat-treated on the cabinet, but heat is heat-treated on the cooling member side, so that heat is efficiently transmitted from the cabinet surface to the cooling member side via the heat-dissipating sheet on the cooling member side.

または、本断熱箱体の製造方法に用いる断熱箱体冷却装置の冷却部材6,8または9の内部に冷水などの冷却媒体が流れる流路(配管)が設けられ、この流路に冷水などの冷却媒体を循環させて断熱箱体のキャビネット5を冷却部材により冷却温度制御可能に構成した冷却装置7を設ける本実施形態1の場合に、冷却部材の外表面および内表面に放熱シートを貼ったり放熱塗料を塗って放熱を促進させる場合を併用させるようにしてもよい。   Alternatively, a flow path (pipe) through which a cooling medium such as cold water flows is provided inside the cooling member 6, 8 or 9 of the heat insulating box cooling device used in the method for manufacturing the heat insulating box body. In the case of the first embodiment in which the cooling device 7 is provided in which the cooling medium 7 is configured such that the cooling temperature can be controlled by the cooling member by circulating the cooling medium, the heat-dissipating sheet is pasted on the outer surface and the inner surface of the cooling member. A case of promoting heat dissipation by applying a heat dissipating paint may be used in combination.

放熱シートや放熱塗料の材質としては、シリコン材料やグラファイト材料などである。また、冷却部材として保冷材を用いることもできる。   Examples of the material for the heat radiation sheet and the heat radiation paint include silicon material and graphite material. Moreover, a cold insulating material can also be used as a cooling member.

即ち、冷却部材の外表面および内表面に放熱シートを貼ったり放熱塗料を塗って放熱を促進させるようにした状態で、断熱箱体冷却装置の冷却部材6,8または9を用いて断熱箱体のキャビネット5の全表面から温度を効率的に放熱させて素早く冷却する。   That is, a heat insulating box body using the cooling member 6, 8 or 9 of the heat insulating box cooling device in a state where heat radiation sheets are applied to the outer surface and inner surface of the cooling member or heat radiation paint is applied to promote heat radiation. The temperature is efficiently radiated from the entire surface of the cabinet 5 to cool it quickly.

このようにして、本実施形態1の断熱箱体の製造方法により製造された断熱箱体のキャビネット5や、図4〜図6の断熱箱体冷却装置を用いて冷却されて製造された断熱箱体のキャビネット5は、変形も少なく寸法精度が高く製造されて後組立工程での調整も少なくて済む。   Thus, the heat insulation box manufactured by cooling with the cabinet 5 of the heat insulation box manufactured by the manufacturing method of the heat insulation box of this Embodiment 1, and the heat insulation box cooling device of FIGS. 4-6. The body cabinet 5 is manufactured with little deformation and high dimensional accuracy, and less adjustment in the post-assembly process.

以上のように、本発明の好ましい実施形態1を用いて本発明を例示してきたが、本発明は、この実施形態1に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention has been illustrated using preferable Embodiment 1 of this invention, this invention should not be limited and limited to this Embodiment 1. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of the specific preferred embodiment 1 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、例えば冷蔵庫などに用いられ、外箱と内箱との間に形成される空間内に発泡断熱材を注入して断熱箱体を形成する断熱箱体の製造方法および、これに用いられる断熱箱体冷却装置、断熱箱体の製造方法によって製造された断熱箱体の分野において、発泡治具から取り出した断熱箱体の表面温度よりも低温の冷却部材で断熱箱体の表面全面に接して断熱箱体を冷却するため、発泡圧力の箱体構造に及ぼす影響を緩和して、外形形状の変形もなく寸法精度に優れた断熱箱体を製造することができる。   INDUSTRIAL APPLICABILITY The present invention is used in, for example, a refrigerator and the like, and a method for manufacturing a heat insulating box body in which a foam heat insulating material is injected into a space formed between an outer box and an inner box to form a heat insulating box body, and is used for this. In the field of the heat insulation box body manufactured by the heat insulation box body cooling device and the method for producing the heat insulation box body, the entire surface of the heat insulation box body is cooled with a cooling member lower than the surface temperature of the heat insulation box body taken out from the foaming jig. Since the heat insulating box is contacted and cooled, the influence of the foaming pressure on the box structure can be mitigated, and a heat insulating box having excellent dimensional accuracy can be manufactured without deformation of the outer shape.

1 外箱
1a 天板
1b、1c 側板
1d 裏板
1e 底板
1f 裏板1dに開けられた注入口
1g 圧縮機取り付け用スペース
2 内箱
3 箱体のキャビネット
4 発泡冶具
4a 外治具
4b 内治具
4c 注入ヘッド
4d 注入ヘッド差込口
5 断熱箱体のキャビネット
6、8、9 冷却部材
6a、8a、9a 冷却上側部材
6b、8b、9b 冷却下側部材
7 冷却装置
DESCRIPTION OF SYMBOLS 1 Outer box 1a Top plate 1b, 1c Side plate 1d Back plate 1e Bottom plate 1f Injection port opened in back plate 1d 1g Compressor installation space 2 Inner box 3 Box cabinet 4 Foaming jig 4a Outer jig 4b Inner jig 4c Injection head 4d Injection head insertion port 5 Cabinet of heat insulation box 6, 8, 9 Cooling member 6a, 8a, 9a Cooling upper member 6b, 8b, 9b Cooling lower member 7 Cooling device

Claims (5)

発泡治具を用いて、外箱と内箱との間に形成される空間に発泡断熱材を注入した後の発泡圧力による箱体の変形を防止して断熱箱体を形成する工程と、
該発泡治具から取り出した該断熱箱体の表面温度よりも低温の冷却部材が該断熱箱体の表面全面に接して該断熱箱体を冷却する冷却工程とを有する断熱箱体の製造方法。
Using a foaming jig to prevent deformation of the box due to foaming pressure after injecting foam insulation into the space formed between the outer box and the inner box, and forming a heat insulation box;
And a cooling step in which a cooling member having a temperature lower than the surface temperature of the heat insulation box taken out from the foaming jig is in contact with the entire surface of the heat insulation box to cool the heat insulation box.
前記冷却工程は、前記冷却部材により、前記断熱箱体の外表面の一部または全部と、該断熱箱体の外表面の残る一部および内表面のうちの少なくとも内表面とを挟み込んで該断熱箱体を冷却する請求項1に記載の断熱箱体の製造方法。   In the cooling process, the cooling member sandwiches a part or all of the outer surface of the heat insulating box and the remaining part of the outer surface of the heat insulating box and at least the inner surface of the inner surface. The manufacturing method of the heat insulation box of Claim 1 which cools a box. 請求項1または2に記載の断熱箱体の製造方法に用いる前記冷却部材の内部に冷却媒体が流れる流路が設けられ、該流路に該冷却媒体を循環させて前記断熱箱体を該冷却部材により冷却温度制御可能とした冷却装置が設けられている断熱箱体冷却装置。   A flow path through which a cooling medium flows is provided inside the cooling member used in the method for manufacturing a heat insulating box according to claim 1 or 2, and the cooling medium is circulated through the flow path to cool the heat insulating box. A heat insulating box cooling device provided with a cooling device capable of controlling the cooling temperature by a member. 前記断熱箱体の表面温度が均一に調整可能なように、前記断熱箱体の表面を分割した複数エリアにそれぞれ対応して、前記冷却部材の流路が異なる流路系統および異なる流路密度のうちの少なくともいずれかに構成されている請求項3に記載の断熱箱体冷却装置。   Corresponding to each of a plurality of areas obtained by dividing the surface of the heat insulation box so that the surface temperature of the heat insulation box can be adjusted uniformly, the flow paths of the cooling member have different flow path systems and different flow path densities. The heat insulation box body cooling device according to claim 3 comprised in at least any of them. 請求項1または2に記載の断熱箱体の製造方法により製造されるかまたは、請求項3または4に記載の断熱箱体冷却装置を用いて製造された断熱箱体。   The heat insulation box manufactured by the manufacturing method of the heat insulation box of Claim 1 or 2, or manufactured using the heat insulation box cooling device of Claim 3 or 4.
JP2012075054A 2012-03-28 2012-03-28 Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body Pending JP2013204934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075054A JP2013204934A (en) 2012-03-28 2012-03-28 Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075054A JP2013204934A (en) 2012-03-28 2012-03-28 Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body

Publications (1)

Publication Number Publication Date
JP2013204934A true JP2013204934A (en) 2013-10-07

Family

ID=49524213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075054A Pending JP2013204934A (en) 2012-03-28 2012-03-28 Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body

Country Status (1)

Country Link
JP (1) JP2013204934A (en)

Similar Documents

Publication Publication Date Title
KR101461887B1 (en) Hot stamping mold
JP2010145001A (en) Heat insulating case body for refrigerator
KR20110042074A (en) baffler
JP2012021665A (en) Refrigerator
JP2007530900A (en) Mounting member and mounting method for mounting the element to the refrigerator and / or freezer lining, and method for manufacturing the mounting member
US8366219B2 (en) Foam inserts for refrigerator cabinet
JP2013204934A (en) Method for manufacturing heat insulation box body, heat insulation box body cooling apparatus and heat insulation box body
CN105466128B (en) refrigerator
WO2016163250A1 (en) Refrigerator, and refrigerator production method
JP2014119230A (en) Refrigerator
JP2014024290A (en) Processing device of foamed resin, foamed resin processed product, and refrigerator
CN211516898U (en) Temperature feedback control cavity structure for semiconductor refrigeration
JP6894680B2 (en) refrigerator
JP2005106354A (en) Refrigerator insulation box
JP6507361B2 (en) Refrigerator door
CN106568262B (en) refrigerator
CN102494489B (en) Refrigerator, door liner and method for manufacturing door liner
CN101769665A (en) Car refrigerator box
JP6188080B2 (en) refrigerator
JP6125904B2 (en) Cool storage
WO2014021018A1 (en) Manufacturing method for insulating boxes, insulating boxes, and refrigerators
CN210425728U (en) Anti-vibration refrigerator heat radiation structure
JP6891853B2 (en) Cavity mold for bead method foamable synthetic resin molding mold, bead method foamable synthetic resin molding mold, and method for manufacturing bead method foamable synthetic resin molded product
CN205641738U (en) Refrigerator
JP2005282629A (en) Vacuum heat insulating structure, manufacturing method of vacuum heat insulating structure, and vacuum heat insulating structure mounting apparatus