[go: up one dir, main page]

JP2013204076A - Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger - Google Patents

Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger Download PDF

Info

Publication number
JP2013204076A
JP2013204076A JP2012073162A JP2012073162A JP2013204076A JP 2013204076 A JP2013204076 A JP 2013204076A JP 2012073162 A JP2012073162 A JP 2012073162A JP 2012073162 A JP2012073162 A JP 2012073162A JP 2013204076 A JP2013204076 A JP 2013204076A
Authority
JP
Japan
Prior art keywords
brazing
heat exchanger
fin material
fin
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073162A
Other languages
Japanese (ja)
Inventor
Shohei Iwao
祥平 岩尾
Shu Kuroda
周 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2012073162A priority Critical patent/JP2013204076A/en
Publication of JP2013204076A publication Critical patent/JP2013204076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy-made fin material including corrosion resistance in addition to the strength and heat conductivity after brazing.SOLUTION: A core material 21 contains one or two kinds of 0.80-2.0% Fe and 0.2-1.5% Ni, and if necessary, 0.1-5.0% Zn and the balance Al with inevitable impurities, and a brazing material 31, which contains 5.0-12.5% Si, 0.1-5.0% Zn, 0.01-0.05% Sr and the balance Al with inevitable impurities, is cladded on one surface or both surfaces thereof. Furthermore, in order to improve the adhesion between an organic system corrosion-proof coating and a plate fin material, a dispersion state of a metal compound is suitably controlled so that intermetallic compounds, having 1.0-5.0 μm of the circular equivalent diameter, exist in 10-10pieces/mmof the number density on the surface 31a of the brazing material 31.

Description

本発明は、エアコンの熱交換器に用いられるフィン材に関する。   The present invention relates to a fin material used for a heat exchanger of an air conditioner.

家庭用および業務用エアコンの熱交換器には、板状に加工された複数のプレートフィンとこれらを貫通して設けられた伝熱管(チューブ)とを組み合わせて構成されるタイプが用いられている。上記プレートフィンには軽量で加工性や伝熱性に優れるアルミニウム合金が、また、伝熱管には主に熱伝導性、加工性、強度等が優れる銅管(丸管)が広く用いられている。熱交換器の組立工程としては、プレートフィンに設けられた固定用孔に伝熱管を挿入した後、伝熱管を内部から押し広げて拡管することで一体に接合される。なお、固定用孔は伝熱管の外径より径が大きく設定されている。この場合、拡管された伝熱管とプレートフィンの間に未接触部分が発生すると熱交換性能(放熱性)が大幅に低下してしまう。そこで近年、熱交換性能の向上を目的に従来の拡管接合タイプから、伝熱管とプレートフィンの間の熱伝達を確実にできるろう付け処理による接合が検討されている。   For heat exchangers for home and commercial air conditioners, a type composed of a combination of a plurality of plate fins processed into a plate shape and a heat transfer tube (tube) provided through these plate fins is used. . Aluminum alloys that are lightweight and excellent in workability and heat transfer are widely used for the plate fins, and copper tubes (round tubes) that are mainly excellent in thermal conductivity, workability, and strength are widely used for heat transfer tubes. As an assembly process of the heat exchanger, the heat transfer tubes are inserted into the fixing holes provided in the plate fins, and then the heat transfer tubes are expanded and expanded from the inside to be integrally joined. The fixing hole is set to have a diameter larger than the outer diameter of the heat transfer tube. In this case, if a non-contact portion is generated between the expanded heat transfer tube and the plate fin, the heat exchange performance (heat dissipation) is significantly reduced. Therefore, in recent years, for the purpose of improving heat exchange performance, joining by a brazing process capable of surely transferring heat between the heat transfer tube and the plate fin has been studied from the conventional tube expansion joining type.

特開2001−329326号公報JP 2001-329326 A

例えば、フィンと伝熱管をろう付けにより接合するには、置きろう付け法によるか、Al-Si合金ろう材が表面に貼りあわされたクラッドフィンを用い、約600℃のろう付け熱処理によりろう材のみを溶融させることで接合させる。しかし、これらのろう付けによると、約600℃と高温のろう付け熱処理によりプレートフィンは軟化するため、ろう付け後のフィン材の強度が大幅に低下して、熱交換器の取り扱い時に容易にフィンの変形が生じてしまう問題がある。   For example, to join fins and heat transfer tubes by brazing, brazing is performed by brazing method or by brazing heat treatment at about 600 ° C using clad fins with Al-Si alloy brazing material bonded to the surface. Join only by melting only. However, according to these brazings, the plate fins are softened by brazing heat treatment at a high temperature of about 600 ° C., so the strength of the fin material after brazing is greatly reduced, and the fins can be easily handled when handling heat exchangers. There is a problem that deformation occurs.

ろう付け後の強度向上のために、フィン材にMn、Cu等の固溶強化型の元素を添加すること、または、Fe、Ni等の分散強化型の元素を添加すること、がこれまでに提案されている(例えば、特許文献1)。
しかし、固溶強化型の元素を添加した場合、フィン材の熱伝導性が大幅に低下する。分散強化型の元素であるFe、Niはアルミニウムへの固溶限が小さく、主に金属間化合物としてマトリクス中に存在するため、フィンの熱伝導を低下させない利点がある。しかし、必要な強度を得るためにFe、Niを添加すると、フィン材の耐食性が低下する問題があった。
To improve the strength after brazing, adding solid solution strengthening elements such as Mn and Cu or adding dispersion strengthening elements such as Fe and Ni to the fin material It has been proposed (for example, Patent Document 1).
However, when a solid solution strengthening element is added, the thermal conductivity of the fin material is significantly reduced. Fe and Ni, which are dispersion strengthened elements, have a small solid solubility limit in aluminum and are mainly present in the matrix as an intermetallic compound, and therefore have the advantage of not reducing the heat conduction of the fin. However, when Fe or Ni is added to obtain the required strength, there is a problem that the corrosion resistance of the fin material is lowered.

本発明は、上記の技術的課題に基づいてなされたもので、ろう付け後の強度および熱伝導性に加えて耐食性を備えるアルミニウム合金製のフィン材を提供することを目的とする。   The present invention has been made based on the above technical problem, and an object of the present invention is to provide an aluminum alloy fin material having corrosion resistance in addition to strength and thermal conductivity after brazing.

本発明は、ろう付け後の強度と熱伝導性を確保するために、分散強化型の元素であるFe、Niを適正量添加させる。また、本発明は、耐食性を確保するために、有機系耐食皮膜をフィンの表面に施すことを前提とし、当該皮膜のフィンへの密着性を向上するべく、当該皮膜が接触する面における金属間化合物の分散状態を制御する。
本発明において、ろう付けの方法、つまり置きろう付け法による場合と、クラッド材を用いる場合とで、有機系耐食皮膜が接触する面が相違する。
前者の場合にはフィン材の上に有機系耐食皮膜が形成される。
一方、後者の場合は、ろう材の上に有機系耐食皮膜が形成される。ただし、ろう材が芯材の一方の面にしか形成されていない場合には、有機系耐食皮膜は、一方の面ではろう材と接触し、他方の面では芯材と接触する。なお、ここでいう芯材は、置きろう付け法による場合のフィン材に対応する。
そして、本発明は、有機系耐食皮膜と接触するフィン材又は芯材の表面、有機系耐食皮膜と接触するろう材の表面に、円相当径1.0〜5.0μmの範囲の金属間化合物が数密度102〜105個/mm2で存在することを特徴とする。なお、この数密度は、ろう付け処理後の値である。
本発明のフィン材は、質量%で(以下、同じ)、Fe:0.80〜2.0%、Ni:0.2〜1.5%の1種または2種を含有し、残部がAlおよび不可避不純物からなる組成を有する。
また、本発明のフィン材がクラッド材として提供される場合、芯材は、質量%で、Fe:0.80〜2.0%、Ni:0.2〜1.5%を含有し、残部がAlおよび不可避不純物からなり、ろう材は、Si:5.0〜12.5%を含有し、残部がAlおよび不可避不純物からなる。この芯材には、Zn:0.10〜5.0%を含有させることができる。また、このろう材には、Zn:0.10〜5.0%及びSr:0.01〜0.05%の、1種または2種を含有させることができる。
In the present invention, in order to ensure the strength and thermal conductivity after brazing, an appropriate amount of Fe and Ni which are dispersion strengthened elements is added. Further, the present invention is based on the premise that an organic corrosion-resistant film is applied to the surface of the fin in order to ensure corrosion resistance, and in order to improve the adhesion of the film to the fin, the inter-metal contact surface Control the dispersion state of the compound.
In the present invention, the surface on which the organic corrosion-resistant film contacts is different between the brazing method, i.e., the brazing method and the clad material.
In the former case, an organic corrosion-resistant film is formed on the fin material.
On the other hand, in the latter case, an organic corrosion-resistant film is formed on the brazing material. However, when the brazing material is formed only on one surface of the core material, the organic corrosion-resistant film contacts the brazing material on one surface and contacts the core material on the other surface. The core material here corresponds to the fin material in the case of the placement brazing method.
In the present invention, the number of density of intermetallic compounds having a circle-equivalent diameter in the range of 1.0 to 5.0 μm is on the surface of the fin material or the core material in contact with the organic corrosion-resistant film and the surface of the brazing material in contact with the organic corrosion-resistant film It exists at 10 2 to 10 5 pieces / mm 2 . The number density is a value after the brazing process.
The fin material of the present invention has a composition in mass% (hereinafter the same), containing one or two of Fe: 0.80 to 2.0% and Ni: 0.2 to 1.5%, with the balance being Al and inevitable impurities. .
Further, when the fin material of the present invention is provided as a clad material, the core material contains, by mass%, Fe: 0.80 to 2.0%, Ni: 0.2 to 1.5%, the balance consisting of Al and inevitable impurities, The brazing material contains Si: 5.0 to 12.5%, and the balance is made of Al and inevitable impurities. This core material can contain Zn: 0.10 to 5.0%. Moreover, this brazing material can contain 1 type or 2 types of Zn: 0.10-5.0% and Sr: 0.01-0.05%.

本発明によれば、高強度と熱伝導性に加え、耐食性を備えるエアコン用熱交換器のフィン材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the fin material of the heat exchanger for air conditioners provided with corrosion resistance in addition to high intensity | strength and heat conductivity is provided.

置きろう付け法により接合されたフィンと伝熱管の接合部近傍を模式的に示す断面図である。It is sectional drawing which shows typically the junction part vicinity of the fin joined by the brazing method and the heat exchanger tube. クラッド材(両面ろう材)を用いて接合されたフィンと伝熱管の接合部近傍を模式的に示す断面図である。It is sectional drawing which shows typically the junction part vicinity of the fin joined using the clad material (double-sided brazing material) and the heat exchanger tube. クラッド材(片面ろう材)を用いて接合されたフィンと伝熱管の接合部近傍を模式的に示す断面図である。It is sectional drawing which shows typically the junction part vicinity of the fin and the heat exchanger tube joined using the clad material (single-sided brazing material).

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
本発明は、前述したように、置きろう付け法と、クラッド材を用いる2つのろう付け法に対応する。
置きろう付け法を適用した場合、図1に示すように、伝熱管10とフィン材20の境界部のろう材30により伝熱管10とフィン材20が接合される。この接合境界部近傍を除くと、ろう材30は存在しておらず、ろう付け後に形成された有機系耐食皮膜40は、フィン材20の表面20sの上に接触する。したがって、この場合、本発明で要求される金属間化合物の数密度は、フィン材表面20sが備えている必要がある。なお、数密度については後述する。なお、図1は、理解を容易にするために、各部材の寸法割合を変えて描いている。
クラッド材を用いる場合は、芯材21の表裏両面にろう材31が設けられる場合(図2)と、芯材21の片面にのみろう材31が設けられる場合(図3)と、で相違する。つまり、図2に示すように、表裏両面にろう材31が設けられると、有機系耐食皮膜40は、ろう材31の表面31sの上に接触する。したがって、この場合、本発明で要求される金属間化合物の数密度は、表面31sが備えている必要がある。一方、図3に示すように、片面にのみろう材31が設けられると、有機系耐食皮膜40は、一方の面側ではろう材31の表面31sの上に接触し、他方の面側では芯材表面21sと接触する。したがって、この場合、本発明で要求される金属間化合物の数密度は、一方の面側では表面31sが備え、他方の面側では芯材表面21sが備えている必要がある。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
As described above, the present invention corresponds to the brazing method and two brazing methods using a clad material.
When the brazing method is applied, the heat transfer tube 10 and the fin material 20 are joined by the brazing material 30 at the boundary between the heat transfer tube 10 and the fin material 20 as shown in FIG. Except for the vicinity of the joining boundary portion, the brazing material 30 does not exist, and the organic corrosion-resistant film 40 formed after brazing contacts the surface 20 s of the fin material 20. Therefore, in this case, the fin material surface 20s needs to have the number density of the intermetallic compound required in the present invention. The number density will be described later. Note that FIG. 1 is drawn by changing the dimensional ratio of each member for easy understanding.
When the clad material is used, there is a difference between the case where the brazing material 31 is provided on both front and back surfaces of the core material 21 (FIG. 2) and the case where the brazing material 31 is provided only on one surface of the core material 21 (FIG. 3). . That is, as shown in FIG. 2, when the brazing material 31 is provided on both the front and back surfaces, the organic corrosion resistant film 40 comes into contact with the surface 31 s of the brazing material 31. Therefore, in this case, the surface 31s needs to have the number density of intermetallic compounds required in the present invention. On the other hand, as shown in FIG. 3, when the brazing material 31 is provided only on one side, the organic corrosion-resistant film 40 contacts the surface 31s of the brazing material 31 on one side and the core on the other side. It contacts the material surface 21s. Therefore, in this case, the number density of the intermetallic compound required in the present invention needs to be provided on the surface 31s on one side and on the core surface 21s on the other side.

以下、本発明における成分、その他の限定理由を説明する。
(1)フィン材、芯材の成分
本発明のフィン芯材は、Fe及びNiの1種または2種を含有する。各々の含有量を規定する理由は以下の通りである。
[Fe:0.8〜2.0%]
Feは、芯材の強度を高める効果がある。しかし、Fe量が0.8%未満ではその効果が充分に発揮されず、2.0%を超えると鋳造性が劣り、また、鋳造時に巨大な金属間化合物を生成するためその後の圧延性が劣る。したがって、本発明の芯材のFe量は、0.8〜2.0%とする。なお、同様の理由から下限を0.8%、上限を1.5%とすることが望ましく、さらには下限を0.9%、上限を1.2%にすることがより望ましい。
なお、本発明をクラッド材に適用する場合の芯材は、クラッド材を用いない場合のフィン材に相当するが、以下では区別が必要な場合を除いて芯材と称する。
Hereinafter, the components in the present invention and other reasons for limitation will be described.
(1) Components of Fin Material and Core Material The fin core material of the present invention contains one or two of Fe and Ni. The reason for specifying each content is as follows.
[Fe: 0.8-2.0%]
Fe has the effect of increasing the strength of the core material. However, if the amount of Fe is less than 0.8%, the effect is not sufficiently exhibited, and if it exceeds 2.0%, the castability is inferior, and since a huge intermetallic compound is produced during casting, the subsequent rollability is inferior. Therefore, the Fe content of the core material of the present invention is set to 0.8 to 2.0%. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.5%, and it is more desirable to set the lower limit to 0.9% and the upper limit to 1.2%.
The core material when the present invention is applied to the clad material corresponds to the fin material when the clad material is not used, but is hereinafter referred to as a core material unless distinction is necessary.

[Ni:0.2〜1.5%]
Niは、芯材の強度を高める効果がある。しかし、Ni量が0.2%未満ではその効果が充分に発揮されず、1.5%を超えると鋳造性が劣り、また、鋳造時に巨大な金属間化合物を生成するためその後の圧延性が劣る。したがって、本発明の芯材のNi量は、0.2〜1.5%とする。なお、同様の理由から下限を0.2%、上限を1.0%とすることが望ましく、さらには下限を0.2%、上限を0.5%にすることがより望ましい。
[Ni: 0.2-1.5%]
Ni has the effect of increasing the strength of the core material. However, if the amount of Ni is less than 0.2%, the effect is not sufficiently exhibited, and if it exceeds 1.5%, the castability is inferior, and since a huge intermetallic compound is produced during casting, the subsequent rollability is inferior. Therefore, the Ni content of the core material of the present invention is set to 0.2 to 1.5%. For the same reason, it is desirable that the lower limit is 0.2% and the upper limit is 1.0%, and it is more desirable that the lower limit is 0.2% and the upper limit is 0.5%.

以下のZnは本発明の芯材に含有させることが好ましい元素である。
[Zn:0.10〜5.0%]
Znは犠牲陽極効果がある。芯材に添加した場合、ろう材との電位差が大きくなり、耐食性に有効な電位勾配ができることで、フィン芯材の耐食性を向上させ、腐食減量を低減する効果がある。しかし、Zn量が0.10%未満ではその効果が充分に発揮されず、5.0%を超えると腐食速度が速くなり腐食減量が増加する。したがって、本発明の芯材のZn量は、0.10〜5.0%とする。なお、同様の理由により、下限を1.0%、上限を4.0%とすることが望ましく、さらには下限を1.5%、上限を3.5%とすることがより望ましい。
なお、芯材における上記元素以外は、Alおよび不可避不純物である。
The following Zn is an element preferably contained in the core material of the present invention.
[Zn: 0.10 to 5.0%]
Zn has a sacrificial anode effect. When added to the core material, the potential difference from the brazing material is increased, and a potential gradient effective for corrosion resistance can be formed, thereby improving the corrosion resistance of the fin core material and reducing the corrosion weight loss. However, when the Zn content is less than 0.10%, the effect is not sufficiently exhibited. When the Zn content exceeds 5.0%, the corrosion rate increases and the corrosion weight loss increases. Therefore, the Zn content of the core material of the present invention is set to 0.10 to 5.0%. For the same reason, it is desirable that the lower limit is 1.0% and the upper limit is 4.0%, and it is more desirable that the lower limit is 1.5% and the upper limit is 3.5%.
Other than the above elements in the core material, Al and unavoidable impurities.

(2)ろう材の成分
[Si:5.0〜12.5%]
Siはろう付け性を向上させる作用がある。しかし、Si量が5.0%未満ではろう付け性を向上させる作用が不十分である一方、12.5%を超えるとろう付け時に溶融してしまい、ろう付け性が低下してしまう。したがって、本発明のろう材のSi量は、5.0〜12.5%とする。なお、同様の理由により、下限を6.0%、上限を9.0%とすることが望ましく、さらには下限を6.0%、上限を8.0%とすることがより望ましい。
(2) Brazing filler components [Si: 5.0 to 12.5%]
Si has the effect of improving brazing properties. However, when the amount of Si is less than 5.0%, the effect of improving the brazing property is insufficient. On the other hand, when it exceeds 12.5%, it melts during brazing and the brazing property is lowered. Therefore, the Si content of the brazing material of the present invention is set to 5.0 to 12.5%. For the same reason, it is desirable that the lower limit is 6.0% and the upper limit is 9.0%, and it is more desirable that the lower limit is 6.0% and the upper limit is 8.0%.

以下のZnおよびSrは本発明のろう材に含有させることが好ましい元素である。
[Zn:0.10〜5.0%]
Znは電位を卑にする作用があり、ろう材に添加した場合、芯材との電位差が大きくなり、耐食性に有効な電位勾配ができることで、フィン材の耐食性を向上させ、腐食減量を低減する効果がある。しかし、Zn量が0.10%未満ではその効果が充分に発揮されず、5.0%を超えると腐食速度が速くなり腐食減量が増加する。したがって、本発明のろう材のZn量は、0.10〜5.0%とする。なお、同様の理由により、下限を1.0%、上限を4.0%とすることが望ましく、さらには下限を1.5%、上限を3.5%とすることがより望ましい。
The following Zn and Sr are elements that are preferably contained in the brazing material of the present invention.
[Zn: 0.10 to 5.0%]
Zn has the effect of lowering the potential, and when added to brazing material, the potential difference with the core material becomes large, and a potential gradient effective for corrosion resistance is created, improving the corrosion resistance of the fin material and reducing the corrosion weight loss. effective. However, when the Zn content is less than 0.10%, the effect is not sufficiently exhibited. When the Zn content exceeds 5.0%, the corrosion rate increases and the corrosion weight loss increases. Therefore, the Zn content of the brazing material of the present invention is set to 0.10 to 5.0%. For the same reason, the lower limit is preferably 1.0% and the upper limit is 4.0%, more preferably the lower limit is 1.5% and the upper limit is 3.5%.

[Sr:0.01〜0.05%]
Srはろう付け性を向上させる作用がある。しかし、Sr量が0.01%未満ではろう付け性を向上させる作用が不十分である一方、0.05%を超えると、鋳造性や圧延性が低下し、製造性が悪化する。したがって、本発明のろう材のSr量は、0.01〜0.05%とする。なお、同様の理由により、下限を0.01%、上限を0.045%とすることが望ましく、さらには下限を0.01%、上限を0.04%とすることがより望ましい。
なお、ろう材における上記元素以外は、Alおよび不可避不純物である。
[Sr: 0.01-0.05%]
Sr has the effect of improving brazing. However, when the Sr content is less than 0.01%, the effect of improving the brazing property is insufficient. On the other hand, when it exceeds 0.05%, the castability and rollability are lowered, and the productivity is deteriorated. Therefore, the Sr content of the brazing material of the present invention is set to 0.01 to 0.05%. For the same reason, it is desirable that the lower limit is 0.01% and the upper limit is 0.045%, and it is more desirable that the lower limit is 0.01% and the upper limit is 0.04%.
In addition, Al and unavoidable impurities other than the above elements in the brazing material.

(3)金属間化合物の数密度
ろう付け処理後に有機系耐食皮膜が形成される表面に存在する金属間化合物の数密度を適正に制御することで、有機系耐食皮膜の密着性を向上させ、耐食性を大幅に向上させることが可能である。
具体的には、円相当径1.0〜5.0μmの金属間化合物の数密度を102〜105個/mm2に制御することで、アンカー効果が有効に働き、当該表面への有機系耐食皮膜の密着性が向上する。
しかし、各材料表面における金属間化合物の数密度が102個/mm2より小さいときおよび105個/mm2より大きいときは塗膜の損傷が多数見られ、アンカー効果は有効に働かない。したがって、本発明の各材料表面における金属間化合物の数密度の適正値は、102〜105個/mm2とする。なお、同様の理由から、下限を5.0×102個/mm2、上限を5.0×104個/mm2とすることが望ましく、さらには、下限を1.0×103個/mm2、上限を1.0×104個/mm2とすることがより望ましい。
なお、有機系耐食皮膜が形成される表面にいくつかの形態があることは前述の通りである。
(3) Number density of intermetallic compounds By appropriately controlling the number density of intermetallic compounds present on the surface on which the organic corrosion-resistant film is formed after brazing treatment, the adhesion of the organic corrosion-resistant film is improved, Corrosion resistance can be greatly improved.
Specifically, by controlling the number density of the intermetallic compound having an equivalent circle diameter of 1.0 to 5.0 μm to 10 2 to 10 5 pieces / mm 2 , the anchor effect works effectively, and the organic corrosion-resistant film on the surface Improved adhesion.
However, when the number density of intermetallic compounds on each material surface is less than 10 2 pieces / mm 2 and more than 10 5 pieces / mm 2, many damages of the coating film are seen, and the anchor effect does not work effectively. Therefore, the appropriate value of the number density of intermetallic compounds on the surface of each material of the present invention is 10 2 to 10 5 pieces / mm 2 . For the same reason, it is desirable that the lower limit is 5.0 × 10 2 pieces / mm 2 and the upper limit is 5.0 × 10 4 pieces / mm 2, and the lower limit is 1.0 × 10 3 pieces / mm 2 and the upper limit is 1.0 × 10 4 pieces / mm 2 is more desirable.
As described above, there are several forms on the surface on which the organic corrosion-resistant film is formed.

(4)中心線平均表面粗さ
ろう付け処理後に有機系耐食皮膜が形成される表面の中心線平均表面粗さ(Ra)を制御することで、有機系耐食皮膜の密着性を向上させ、耐食性を大幅に向上させることができる。
具体的には、Raを0.2〜2.0μmに制御することで、アンカー効果が有効に働き、当該表面への有機系耐食皮膜の密着性が向上する。
しかし、Raが0.2μmより小さいときおよび2.0μmより大きいときは、アンカー効果が有効に働かず、密着性が低下する。なお、同様の理由から0.5〜1.5μmが望ましく、さらには、0.8〜1.3μmとすることがより望ましい。
(4) Centerline average surface roughness By controlling the centerline average surface roughness (Ra) of the surface on which the organic corrosion-resistant film is formed after brazing, the adhesion of the organic corrosion-resistant film is improved and the corrosion resistance is increased. Can be greatly improved.
Specifically, by controlling Ra to 0.2 to 2.0 μm, the anchor effect works effectively and the adhesion of the organic corrosion-resistant film to the surface is improved.
However, when Ra is smaller than 0.2 μm and larger than 2.0 μm, the anchor effect does not work effectively and the adhesion is lowered. For the same reason, the thickness is preferably 0.5 to 1.5 μm, and more preferably 0.8 to 1.3 μm.

(5)フラックス残渣量
ろう付け処理の際、塗布されるフラックスの残渣量を制御することで、有機系耐食皮膜の密着性を向上させ、耐食性を向上させることができる。有機系耐食皮膜を塗膜した際、フラックスがろう材または芯材表面に残存していると、ろう材または芯材表面と有機系耐食皮膜間の密着性が失われる。フラックス残渣量は、6.5g/m2より多いと、密着性が低下するため、6.5g/m2以下とする。
(5) Flux residue amount By controlling the residue amount of the applied flux during the brazing treatment, the adhesion of the organic corrosion-resistant film can be improved and the corrosion resistance can be improved. If the flux remains on the surface of the brazing material or the core material when the organic corrosion resistance film is applied, the adhesion between the brazing material or the core material surface and the organic corrosion resistance film is lost. If the amount of the flux residue is larger than 6.5 g / m 2 , the adhesiveness is lowered, so that it is 6.5 g / m 2 or less.

[実施例]
以上説明した本発明の熱交換器の効果を確認するために行った具体例を説明する。
[材料の製造工程]
半連続鋳造によりフィン材及びろう材の各要素に用いるアルミニウム合金を鋳造した。なお、各合金の化学組成は表1に示した通りである。
得られた各種アルミニウム合金は、いずれも500℃で6hrの均質化処理を行った。この均質化処理の条件は一例である。
均質化処理の後に、フィン芯材用合金の片面にろう材用合金を組み合わせて熱間圧延し、クラッド材とした。このクラッド材を所定の厚さまで冷間圧延を行った後、中間焼鈍を400℃で3hr行い、最終の冷間圧延により厚さ0.10mmのH14調質のフィン材を作製した。
なお、クラッド材の板厚は、0.10mmに限られず、0.05〜0.15mmの範囲で変更可能である。また、中間焼鈍についても上記は一例であり、温度:200〜400℃、保持時間:1〜6hrの範囲から選択することができる。表1の比較例2は、芯材のFe量が多すぎたため、鋳造時に巨大晶が発生し、これが起点となって圧延時に破断が頻発し、健全なクラッド材を製造できなかった。また、比較例5は、ろう材のSi成分が少なすぎたため、クラッド材と伝熱管を健全に接合できなかった。また、一部はろう材をクラッドすることなく、以上と同様の工程で芯材を作製した。
[Example]
The specific example performed in order to confirm the effect of the heat exchanger of this invention demonstrated above is demonstrated.
[Material manufacturing process]
Aluminum alloy used for each element of fin material and brazing material was cast by semi-continuous casting. The chemical composition of each alloy is as shown in Table 1.
Each of the various aluminum alloys obtained was homogenized at 500 ° C. for 6 hours. The conditions for this homogenization treatment are an example.
After the homogenization treatment, a brazing alloy was combined with one side of the fin core alloy and hot rolled to obtain a clad material. The clad material was cold-rolled to a predetermined thickness, and then subjected to intermediate annealing at 400 ° C. for 3 hours, and a final cold-rolling produced a 0.10 mm thick H14 tempered fin material.
In addition, the plate | board thickness of a clad material is not restricted to 0.10 mm, It can change in the range of 0.05-0.15 mm. Moreover, the above is also an example for the intermediate annealing, and the temperature can be selected from the range of 200 to 400 ° C. and the holding time of 1 to 6 hours. In Comparative Example 2 in Table 1, since the amount of Fe in the core material was too large, giant crystals were generated at the time of casting, and this was the starting point, causing frequent breaks during rolling, and a sound clad material could not be produced. Moreover, since the comparative example 5 had too few Si components of the brazing material, the clad material and the heat transfer tube could not be joined soundly. In addition, a core material was produced in the same process as described above without partially cladding the brazing material.

[強度測定]
ろう付け相当熱処理を行った各試料からJIS H 4000に基づいて引張試験片を作製し、これら試験片を用いて引張試験を行うことによりろう付け後の強度(引張強さ)を得た。チューブの引張強さは、130MPa以上を「◎」、120〜129MPaを「○」、120MPa未満を「×」と判断し、表1に示した。以下の評価結果も同様に、表1に示す。
[Strength measurement]
Tensile test pieces were prepared from each sample subjected to brazing equivalent heat treatment based on JIS H 4000, and a tensile test was performed using these test pieces to obtain strength (tensile strength) after brazing. The tensile strength of the tube was determined as “1” for 130 MPa or more, “◯” for 120 to 129 MPa, and “x” for less than 120 MPa. The following evaluation results are also shown in Table 1.

[金属間化合物の密度評価]
各試料の断面のSEM(Scanning Electron Microscope)画像を、EPMA(Electron Probe Micro Analyzer)測定を行い、金属間化合物を二値化処理することで、円相当径1.0〜5.0μmの金属間化合物の個数を算出した。
[Density evaluation of intermetallic compounds]
The number of intermetallic compounds with an equivalent circle diameter of 1.0 to 5.0 μm is obtained by measuring SEM (Scanning Electron Microscope) images of cross sections of each sample and binarizing EPMA (Electron Probe Micro Analyzer). Was calculated.

[電気伝導率測定]
ろう付け相当熱処理後の各試料を用いて、ダブルブリッジ(四端子)にて電気抵抗を測定し、ろう付け後の各試料の電気伝導率(%IACS)を求めた。
[Electric conductivity measurement]
Using each sample after brazing equivalent heat treatment, the electrical resistance was measured with a double bridge (four terminals), and the electrical conductivity (% IACS) of each sample after brazing was determined.

[塗膜の密着性評価]
有機系耐食皮膜の材質としてはエポキシ樹脂を選択し、浸漬法を用いて塗膜した。塗膜処理後のフィン材に対し、キムタオル((株)クレシア製 商品名)を載置し、500gの加重をかけたまま50回擦り、目視観察により塗膜の密着性を評価した。塗膜に全く損傷が認められなかった場合には「◎」、ごく一部に損傷が認められた場合には「○」、多数の損傷が認められた場合には「×」と評価した。なお、有機耐食皮膜の材質および塗膜法について上記は一例であり、特に限定されるものではない。例えば、皮膜の材質としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、その他の樹脂から選択でき、また、塗膜法としては、塗布法、電解処理法等から選択できる。
[Coating adhesion evaluation]
An epoxy resin was selected as the material for the organic corrosion-resistant film, and the film was applied using an immersion method. Kim Towel (trade name, manufactured by Crecia Co., Ltd.) was placed on the fin material after the coating film treatment, and rubbed 50 times while applying a weight of 500 g, and the adhesion of the coating film was evaluated by visual observation. The evaluation was “認 め” when no damage was observed on the coating film, “◯” when damage was observed on a small portion, and “X” when many damages were observed. In addition, the above is an example about the material of an organic corrosion-resistant film | membrane, and the coating-film method, It does not specifically limit. For example, the material of the film can be selected from urethane resin, acrylic resin, polyester resin, fluororesin, and other resins, and the coating method can be selected from coating method, electrolytic treatment method and the like.

[ろう付け性評価]
作成したフィン材に所定の伝熱管を組み付け、フッ化物系のフラックスを塗布後、窒素ガス雰囲気中で、600℃で3min保持するろう付け処理を行った。次に、ろう付け後の試料の断面観察を行い、接合部のフィン総断面積に対するろう侵食の面積を画像解析装置にて測定し、侵食の面積率(侵食率)を算出した。侵食率が30%未満のものを非常に良好「◎」、30%以上で50%未満のものを良好「○」、50%以上のものを不良「×」とした。
なお、置きろう付け法に用いるろう材は、Al-7.5%Siの組成を有する合金を使用した。
[Brazing evaluation]
A predetermined heat transfer tube was assembled to the prepared fin material, and after applying a fluoride-based flux, brazing treatment was performed in a nitrogen gas atmosphere at 600 ° C. for 3 minutes. Next, cross-sectional observation of the sample after brazing was performed, and the area of brazing erosion with respect to the total fin cross-sectional area of the joint was measured with an image analyzer, and the erosion area rate (erosion rate) was calculated. Those with an erosion rate of less than 30% were evaluated as very good “◎”, those with 30% or more and less than 50% were evaluated as “good”, and those with 50% or more were evaluated as “poor”.
The brazing material used for the brazing method was an alloy having a composition of Al-7.5% Si.

[表面粗さ測定]
作製したフィン材の表面粗さをJIS B0601−2000により測定し、中心線平均粗さ(Ra)によって評価した。
[Surface roughness measurement]
The surface roughness of the produced fin material was measured according to JIS B0601-2000 and evaluated by the centerline average roughness (Ra).

[フラックス残渣量測定]
作製したフィン材に適正量のフッ化物系のフラックスを塗布後、窒素ガス雰囲気中で、600℃で3min保持し、ろう付け処理を行った。その後、一定面積におけるフラックス残渣量を測定した。
[Flux residue measurement]
An appropriate amount of fluoride-based flux was applied to the produced fin material, and then brazed at 600 ° C. for 3 minutes in a nitrogen gas atmosphere. Thereafter, the amount of flux residue in a certain area was measured.

Figure 2013204076
Figure 2013204076

10 伝熱管
20 フィン材
21 芯材
20s フィン材表面
21s 芯材表面
30,31 ろう材
40 有機系耐食皮膜
10 Heat Transfer Tube 20 Fin Material 21 Core Material 20s Fin Material Surface 21s Core Material Surfaces 30, 31 Brazing Material 40 Organic Corrosion Resistant Coating

Claims (7)

伝熱管とろう付けされることでエアコン用の熱交換器を構成するプレート状のフィン材であって、
前記フィン材が、質量%で、Fe:0.80〜2.0%、Ni:0.2〜1.5%の1種または2種を含有し、残部がAlおよび不可避不純物からなり、
前記ろう付け処理後に前記フィン材の表面に、円相当径1.0〜5.0μmの範囲の金属間化合物が数密度102〜105個/mm2で存在し、その表面に有機系耐食皮膜の表面処理が施される、
ことを特徴とするエアコン熱交換器用フィン材。
It is a plate-shaped fin material that constitutes a heat exchanger for an air conditioner by being brazed with a heat transfer tube,
The fin material contains one or two of mass%, Fe: 0.80 to 2.0%, Ni: 0.2 to 1.5%, and the balance is made of Al and inevitable impurities.
After the brazing treatment, an intermetallic compound having a circle equivalent diameter in the range of 1.0 to 5.0 μm is present at a number density of 10 2 to 10 5 pieces / mm 2 on the surface of the fin material, and the surface of the organic corrosion-resistant film on the surface Processed,
A fin material for an air conditioner heat exchanger.
前記フィン材の一方の面又は双方の面にろう材がクラッドにより設けられ、
前記ろう材は、質量%で、Si: 5.0〜12.5%を含有し、残部がAlおよび不可避不純物からなり、
前記ろう付け処理後に前記ろう材の表面に、円相当径1.0〜5.0μmの範囲の金属間化合物が数密度102〜105個/mm2で存在する、
請求項1に記載のエアコン熱交換器用フィン材。
A brazing material is provided by cladding on one or both sides of the fin material;
The brazing material is, by mass%, containing Si: 5.0 to 12.5%, the balance consisting of Al and inevitable impurities,
On the surface of the brazing material after the brazing treatment, an intermetallic compound having a circle equivalent diameter of 1.0 to 5.0 μm exists in a number density of 10 2 to 10 5 pieces / mm 2 .
The fin material for an air conditioner heat exchanger according to claim 1.
前記フィン材は、さらにZn:0.10〜5.0%を含有する、
請求項1または2に記載のエアコン熱交換器用フィン材。
The fin material further contains Zn: 0.10 to 5.0%,
The fin material for an air conditioner heat exchanger according to claim 1 or 2.
前記ろう材は、さらにZn:0.10〜5.0%およびSr:0.01〜0.05%の、1種または2種を含有する、
請求項2又は3に記載のエアコン熱交換器用フィン材。
The brazing material further contains one or two of Zn: 0.10 to 5.0% and Sr: 0.01 to 0.05%.
The fin material for an air conditioner heat exchanger according to claim 2 or 3.
前記フィン材のろう付け後における、芯材またはろう材表面の中心線平均粗さ(Ra)が0.2〜2.0μmである請求項1〜4のいずれか一項に記載のエアコン熱交換器用フィン材。   The fin material for an air conditioner heat exchanger according to any one of claims 1 to 4, wherein a center line average roughness (Ra) of the surface of the core material or the brazing material after the fin material is brazed is 0.2 to 2.0 µm. . 前記フィン材のろう付け後における、芯材またはろう材表面のフラックス残渣量が6.5g/m2以下である請求項1〜5のいずれか一項に記載のエアコン熱交換器用フィン材。 The fin material for an air conditioner heat exchanger according to any one of claims 1 to 5, wherein the amount of flux residue on the surface of the core material or the brazing material after brazing of the fin material is 6.5 g / m 2 or less. 請求項1〜6のいずれか一項に記載の熱交換器用フィン材を素材とするプレートフィンの接合部位に伝熱管がろう付け接合されていることを特徴とするエアコン熱交換器。   An air conditioner heat exchanger, wherein a heat transfer tube is brazed and joined to a joint portion of a plate fin made of the heat exchanger fin material according to any one of claims 1 to 6.
JP2012073162A 2012-03-28 2012-03-28 Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger Pending JP2013204076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073162A JP2013204076A (en) 2012-03-28 2012-03-28 Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073162A JP2013204076A (en) 2012-03-28 2012-03-28 Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger

Publications (1)

Publication Number Publication Date
JP2013204076A true JP2013204076A (en) 2013-10-07

Family

ID=49523508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073162A Pending JP2013204076A (en) 2012-03-28 2012-03-28 Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger

Country Status (1)

Country Link
JP (1) JP2013204076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202503A (en) * 2014-04-12 2015-11-16 株式会社Uacj Manufacturing method of brazed structure, brazed structure manufactured according to the same, aluminum-resin composite structure and aluminum material used in the manufacturing method
JP2016179494A (en) * 2015-03-25 2016-10-13 三菱アルミニウム株式会社 Aluminum material brazing method
CN113454416A (en) * 2019-10-15 2021-09-28 松下知识产权经营株式会社 Heat exchanger and air conditioning device with same
JP7596100B2 (en) 2020-09-09 2024-12-09 Maアルミニウム株式会社 Aluminum alloy bare material and brazing sheet with excellent thermal conductivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202503A (en) * 2014-04-12 2015-11-16 株式会社Uacj Manufacturing method of brazed structure, brazed structure manufactured according to the same, aluminum-resin composite structure and aluminum material used in the manufacturing method
JP2016179494A (en) * 2015-03-25 2016-10-13 三菱アルミニウム株式会社 Aluminum material brazing method
CN113454416A (en) * 2019-10-15 2021-09-28 松下知识产权经营株式会社 Heat exchanger and air conditioning device with same
JP7596100B2 (en) 2020-09-09 2024-12-09 Maアルミニウム株式会社 Aluminum alloy bare material and brazing sheet with excellent thermal conductivity

Similar Documents

Publication Publication Date Title
JP6186239B2 (en) Aluminum alloy heat exchanger
US8524377B2 (en) Aluminum alloy clad sheet for heat exchanger
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
CZ201654A3 (en) Aluminium alloy sheet for brazing and process for producing thereof
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2007152421A (en) Aluminum alloy brazing sheet
WO2014077237A1 (en) Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP2014077179A (en) High strength aluminum alloy brazing sheet and its manufacturing method
JP2013204076A (en) Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger
JP2014177694A (en) Aluminum alloy heat exchanger excellent in corrosion resistance in strongly acidic environment
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2010185646A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
JP6399438B2 (en) Heat exchanger
JP2013133517A (en) High temperature resistant three-layered brazing sheet
JP4874074B2 (en) Aluminum alloy clad material for heat exchanger
JP5599131B2 (en) Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP2014178101A (en) Aluminum alloy heat exchanger excellent in corrosion resistance in strong acid environment
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger