JP2013198391A - Thermomagnetic actuator - Google Patents
Thermomagnetic actuator Download PDFInfo
- Publication number
- JP2013198391A JP2013198391A JP2012085880A JP2012085880A JP2013198391A JP 2013198391 A JP2013198391 A JP 2013198391A JP 2012085880 A JP2012085880 A JP 2012085880A JP 2012085880 A JP2012085880 A JP 2012085880A JP 2013198391 A JP2013198391 A JP 2013198391A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic material
- actuator according
- magnet
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- 230000005415 magnetization Effects 0.000 claims abstract description 15
- 239000000696 magnetic material Substances 0.000 claims description 34
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims description 2
- 238000005452 bending Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は、熱磁気アクチュエ−タ−に関するものである。 The present invention relates to a thermomagnetic actuator.
磁性体のキュリ−温度近傍における磁化率の変位を利用して熱エネルギ−を力学的エネルギ−に変換する方法がいくつか考案されているが、アクチュエ−タ−に関しては明確化されていなかった。 Several methods have been devised to convert thermal energy into mechanical energy using the magnetic susceptibility displacement near the Curie temperature of the magnetic material, but the actuator has not been clarified.
本発明は、従来の課題を解決し、磁性体の熱磁気特性を利用した新たな原理に基づく熱磁気アクチュエ−タ−を提供する目的からなされたものである。 The present invention has been made for the purpose of solving a conventional problem and providing a thermomagnetic actuator based on a new principle utilizing the thermomagnetic characteristics of a magnetic material.
上記の課題を解決する本発明は、以下の通りである。
磁石(2)で磁場を作り、この磁場中に、所定の寸法の磁性体板(1)を適度な隙間をもって連ねた磁性体の軌道(5)を通し、磁石(2)を移動局とし磁性体の軌道(5)を固定局として、磁場の一部は低温に保って磁性体板(1)の磁化を強めておき、それ以外の磁場の磁性体板(1)を加熱手段(6)を用いて加熱して磁化を弱め、磁場中の磁性体の軌道(5)の磁化の均衡を崩して、低温に保たれ磁化されている磁性体の軌道(5)に磁石(2)の移動局が引き込まれる力を生じさせ、加熱箇所を移動して移動局を移動することを特徴とする熱磁気アクチュエ−タ−を提供できたものである。The present invention for solving the above problems is as follows.
A magnetic field is created by the magnet (2), and a magnetic material orbit (5) in which magnetic plates (1) of a predetermined size are connected with an appropriate gap is passed through the magnetic field, and the magnet (2) is used as a mobile station for magnetism. The body trajectory (5) is used as a fixed station, a part of the magnetic field is kept at a low temperature, the magnetization of the magnetic plate (1) is strengthened, and the magnetic plate (1) of the other magnetic field is heated (6). The magnet (2) is moved to the orbit (5) of the magnetic material that is kept at a low temperature by demagnetizing the magnetization by heating with the magnetic field and breaking the balance of the magnetization of the orbit (5) of the magnetic material in the magnetic field. It was possible to provide a thermomagnetic actuator characterized in that the station generates a pulling force and moves the mobile station by moving the heating point.
本発明の熱磁気アクチュエ−タ−は、磁石と磁性体の軌道で構成され、磁石を移動局とし磁性体の軌道を固定局とした極めて簡便なものである。 The thermomagnetic actuator of the present invention is composed of a magnet and a magnetic orbit, and is extremely simple with the magnet as a mobile station and the magnetic orbit as a fixed station.
本発明の熱磁気アクチュエ−タ−は、磁場中の磁性体の軌道の一部は磁化を強めておき、それ以外はを加熱して磁化を弱め、磁場中の磁性体の軌道の磁化の均衡を崩すことによって作動する原理に基づく新たなアクチュエ−タ−であり、今後幅広い分野で利用できるものである。 According to the thermomagnetic actuator of the present invention, the magnetization of part of the orbit of the magnetic substance in the magnetic field is strengthened and the magnetization of the other part is heated to weaken the magnetization to balance the magnetization of the orbit of the magnetic substance in the magnetic field. It is a new actuator based on the principle that operates by breaking down and can be used in a wide range of fields in the future.
磁性体のキュリ−温度は低温から高温まで広い温度帯で選択できるので、加熱源も可燃ガスの燃焼熱から太陽熱まで様々なものが使用できる。 Since the Curie temperature of the magnetic material can be selected in a wide temperature range from a low temperature to a high temperature, various heating sources can be used from the combustion heat of combustible gas to solar heat.
本発明の熱磁気アクチュエ−タ−は宇宙空間においても利用できるものである。 The thermomagnetic actuator of the present invention can also be used in outer space.
以下、本発明の実施の形態を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1に示す様に、1枚の磁性体板(1)が磁石(2)の端面近傍に置かれている場合、磁性体板(1)は図2に示す様に磁石(2)の端面から中心に引き寄せられ、磁石(2)の中心位置で磁力線に沿って真っ直ぐに停止する。 As shown in FIG. 1, when one magnetic plate (1) is placed in the vicinity of the end face of the magnet (2), the magnetic plate (1) is end face of the magnet (2) as shown in FIG. From the center of the magnet (2) and stops straight along the lines of magnetic force at the center of the magnet (2).
この事は磁性体板(1)は磁力線の張力によって磁石(2)中央に引き込まれたことであり、磁力線というものはゴム紐のように真っ直ぐになろうとして張力を発生するものとしたマックスウェルの磁力線の概念と合致する。 This is because the magnetic plate (1) was pulled into the center of the magnet (2) by the tension of the magnetic lines of force, and the magnetic lines of force generated tension to try to be straight like a rubber string. This is consistent with the concept of magnetic field lines.
図3に示す様に、磁性体板(1)を適度な隙間をもって連ねた磁性体の軌道(5)を磁石(2)の端面に置くと、磁石(2)は磁性体の軌道(5)に引き込まれ、図4の位置で停止する。 As shown in FIG. 3, when the magnetic material track (5) in which the magnetic plates (1) are connected with an appropriate gap is placed on the end surface of the magnet (2), the magnet (2) becomes the magnetic material track (5). And stops at the position shown in FIG.
図4において磁石(2)を右側に移動することは、容易であるが左側に移動しようとすると磁気の吸着力が生じ引き戻される。 In FIG. 4, it is easy to move the magnet (2) to the right side, but if it tries to move to the left side, a magnetic attractive force is generated and pulled back.
本発明は磁石(2)によって作られる磁場と磁性体の軌道(5)の端面で生じる磁気力に着眼してなされたもので、図5に示す様に、所定の加熱幅を有する加熱手段(6)を用いて磁場の特定域の磁性体板(1)を加熱して磁化を弱め消磁すると、この消磁された部分が磁性体の軌道(5)の端面となり、低温に保たれ磁化されている磁性体の軌道(5)側に磁石(2)が引き込まれる力が生じ、磁石(2)は加熱手段(6)側から遠ざかり右側に移動する。 The present invention has been made with a focus on the magnetic field generated by the magnet (2) and the magnetic force generated at the end face of the magnetic material trajectory (5). As shown in FIG. When the magnetic plate (1) in a specific region of the magnetic field is heated using 6) to weaken and demagnetize the magnetization, the demagnetized portion becomes the end face of the magnetic material orbit (5), and is maintained at a low temperature and magnetized. The magnetic (2) is pulled into the orbit (5) side of the magnetic body, and the magnet (2) moves away from the heating means (6) side and moves to the right side.
加熱手段(6)の加熱を続け右側に移動すると、磁性体の軌道(5)の端面は右側に移動し、同時に磁石(2)も右側に移動し、加熱を停止すると所定の位置で停止する。 When heating of the heating means (6) is continued and moved to the right side, the end surface of the magnetic orbit (5) moves to the right side, and at the same time the magnet (2) also moves to the right side and stops at a predetermined position when heating is stopped. .
加熱手段(6)を2個用いて磁場の両端面の磁性体板(1)を加熱して消磁すると、磁石(2)は磁石(2)内部の磁性体板(1)と吸着して停止し、左右何れにも動かなくなる。 When the magnetic plate (1) on both end faces of the magnetic field is heated using two heating means (6) and demagnetized, the magnet (2) is attracted to the magnetic plate (1) inside the magnet (2) and stopped. However, it does not move to the left or right.
磁性体の軌道(5)を冷却後に加熱手段(6)を磁石(2)の右側位置に移して加熱を続け、左側に移動すると、磁石(2)は左側に移動を続ける。 After cooling the magnetic orbit (5), the heating means (6) is moved to the right position of the magnet (2) to continue heating, and when moving to the left, the magnet (2) continues to move to the left.
本発明の熱磁気アクチュエ−タ−は、磁性体の軌道(5)の加熱・冷却の熱サイクルによるものであるから、電動や空動アクチュエ−タ−と比べると移動局の移動速度は遙に遅いものである。 Since the thermomagnetic actuator of the present invention is based on the heat cycle of heating and cooling of the magnetic material trajectory (5), the moving speed of the mobile station is much lower than that of the electric or pneumatic actuator. It is slow.
本発明の最大の特長は、磁性体の軌道(5)が所定の幅と厚みのある連続した固体磁性体でなく、所定の寸法の磁性体板(1)を適度な隙間をもって連ねた磁性体の軌道(5)としたことによって、加熱手段(6)によって加熱された部分のみの磁性体板(1)を素早く消磁でき、低温に保たれ磁化されている磁性体板(1)の磁化を弱めることなく、加熱領域と非加熱領域で定量的な温度差を与えることができる結果、磁気吸着力による強い駆動力を得ることができることである。 The greatest feature of the present invention is that the magnetic body orbit (5) is not a continuous solid magnetic body having a predetermined width and thickness, but a magnetic body in which magnetic plates (1) having a predetermined size are connected with an appropriate gap. The orbit (5) makes it possible to quickly demagnetize the magnetic plate (1) only in the portion heated by the heating means (6), and to maintain the magnetization of the magnetic plate (1) magnetized at a low temperature. As a result of providing a quantitative temperature difference between the heated region and the non-heated region without weakening, it is possible to obtain a strong driving force due to the magnetic attractive force.
所定の幅と厚みのある連続した固体磁性体では、熱が横軸にも拡散するため部分加熱が不可能であり、加熱領域と非加熱領域で定量的な温度差を与えることができない、また表面は加熱できても内部まで短時間で加熱することは困難である。 In a continuous solid magnetic material having a predetermined width and thickness, heat is diffused also in the horizontal axis, so partial heating is impossible, and a quantitative temperature difference cannot be given between the heating region and the non-heating region. Even if the surface can be heated, it is difficult to heat it to the inside in a short time.
図6は、本発明の熱磁気アクチュエ−タ−の実施例の側面図で、所定の寸法の磁性体板(1)を適度な隙間をもって連ねて所定の長さにした磁性体の軌道(5)を磁場中に通し、磁石(2)を移動局とし、磁性体の軌道(5)を固定局として台(11)に固定したものであるが、実施においては磁性体の軌道(5)は所定の幅のある磁性体板を所定の長さで折り曲げたり、所定の幅と厚さのある固体磁性体に所定の間隔で適度な深さと幅のある溝をいれたり、穴をあけても良く、また無数の針状、棒状、粒状等の磁性体片を適度な隙間をもって並べる、あるいは編目あるいはこれに類似した形状のものも使用できる。 FIG. 6 is a side view of an embodiment of the thermomagnetic actuator of the present invention, in which a magnetic material track (5) having a predetermined length by connecting magnetic plates (1) of a predetermined size with an appropriate gap. ) In a magnetic field, the magnet (2) is a mobile station, and the magnetic material trajectory (5) is fixed to the base (11) as a fixed station. In practice, the magnetic material trajectory (5) is Even if a magnetic plate with a predetermined width is bent at a predetermined length, or a solid magnetic body with a predetermined width and thickness is inserted with a groove having an appropriate depth and width at a predetermined interval, or a hole is made, Also, innumerable needle-like, rod-like, and granular magnetic pieces can be arranged with an appropriate gap, or a stitch or similar shape can be used.
磁性体の軌道(5)は加熱手段(6)によって素早く加熱でき、非加熱領域に熱の拡散を低減できる形体であれば何れでも良く、基本的には所定の幅と厚みのある連続した固体磁性体以外はいずれも使用できる。 The magnetic material trajectory (5) may be any shape as long as it can be heated quickly by the heating means (6) and can reduce the diffusion of heat in the non-heated region, and is basically a continuous solid having a predetermined width and thickness. Any material other than a magnetic material can be used.
本実施例は、磁性体の軌道(5)の上側にレ−ル(8)を取り付け、磁石(2)の移動局にロ−ラ−(9)を設けて移動局の移動を可能とした実施例であり、図7はその断面図であるが、実施においてはレ−ル(8)は磁性体の軌道(5)と切り離し、台(11)に取り付けることもできる。 In this embodiment, the rail (8) is attached to the upper side of the magnetic orbit (5), and the roller (9) is provided on the mobile station of the magnet (2) to enable the mobile station to move. FIG. 7 is a cross-sectional view of an embodiment, but in the implementation, the rail (8) can be separated from the magnetic track (5) and attached to the base (11).
図8は本発明の他の実施例で、ロ−ラ−(9)の代わりに、スライドベアリング(10))を用いた例であるが、実施においては摩擦の少ない樹脂や金属を用いる等様々な移動機構ができる。 FIG. 8 shows another embodiment of the present invention in which a slide bearing (10)) is used in place of the roller (9). A simple moving mechanism.
磁性体として現時点では、Fe、Ni、Co等の強磁性体およびこれらの化合物、金属感温磁性材料、感温フェライト等様々な磁性体を使用できるが、将来的にはレアア−ス等を使用した磁気特性の優れた材料が開発される可能性を秘めている。 At present, various magnetic materials such as ferromagnets such as Fe, Ni, Co, etc., their compounds, metal temperature-sensitive magnetic materials, temperature-sensitive ferrites can be used as magnetic materials, but in the future, rare earths will be used. It has the potential to develop materials with excellent magnetic properties.
感温フェライト等の熱伝導率が低い磁性体を使用する場合は、板状、粒状、粉体の磁性体をアルミニウム等の熱良導体と溶着または圧着することで加熱、冷却効果を改善し移動局の移動速度を早めることもできる。 When using a magnetic material with low thermal conductivity such as temperature-sensitive ferrite, the heating and cooling effects are improved by welding or pressure bonding a plate-like, granular, and powdery magnetic material to a good thermal conductor such as aluminum. You can also increase the speed of movement.
キュリ−温度が比較的高温域にある磁性体板(1)を使用する場合、冷却は自然空冷で対応できるがキュリ−温度が常温近傍あるいは常温以下の低温域にある磁性体板(1)を使用する場合には、冷却手段(12)が必要となる。 When the magnetic plate (1) having a Curie temperature in a relatively high temperature range is used, cooling can be performed by natural air cooling, but the magnetic plate (1) in which the Curie temperature is in the low temperature range near or below room temperature. When used, the cooling means (12) is required.
図9は、本発明の他の実施例で加熱手段(6)と冷却手段(12)を用いた構成図である。 FIG. 9 is a configuration diagram using the heating means (6) and the cooling means (12) in another embodiment of the present invention.
本発明の他の実施例としては、加熱手段(6)として電熱ヒ−タ−を用い、電熱ヒ−タ−を内蔵した磁性体板(1)を適度な隙間をもって連ねて磁性体の軌道(5)とすることもできる。 As another embodiment of the present invention, an electric heater is used as the heating means (6), and the magnetic plates (1) incorporating the electric heater are connected with an appropriate gap to form a magnetic orbit ( 5).
実施においては電熱ヒ−タ−を内蔵した磁性体板(1)の合間を断熱板で仕切り、相互間の熱伝導を低減することもできる。 In practice, the space between the magnetic plates (1) incorporating the electric heater can be partitioned by a heat insulating plate to reduce heat conduction between them.
加熱手段(6)としては可燃性ガスや可燃物の燃焼熱、高温の液体や気体、太陽光の集光熱やレ−ザ−光線、マイクロ波、電磁誘導、電熱ヒ−タ−等様々な加熱ができる。 As the heating means (6), various heating such as combustion heat of flammable gas or combustible material, high temperature liquid or gas, condensing heat of sunlight, laser beam, microwave, electromagnetic induction, electric heater, etc. Can do.
宇宙スティ−ションや月面においては、太陽光の集光熱で高温の加熱ができる。 On the space station and the moon surface, high-temperature heating can be performed by the concentrated heat of sunlight.
加熱手段(6)の加熱によって、磁石(2)の温度が上昇すると磁界が弱くなりトルクが小さくなるので、磁石(2)の温度上昇を抑える熱対策は重要である。 When the temperature of the magnet (2) rises due to the heating of the heating means (6), the magnetic field becomes weak and the torque becomes small. Therefore, it is important to take measures against heat to suppress the temperature rise of the magnet (2).
本実施例の様に磁石(2)の周辺に遮熱板(13)を設けたり、実施においては磁石(2)に放熱器を取り付けたり、磁石(2)を水冷して温度上昇を抑える事もできるし、永久磁石以外に電磁石や超伝導磁石を用いることもできる。 As in this embodiment, a heat shield (13) is provided around the magnet (2), and in practice, a radiator is attached to the magnet (2), or the magnet (2) is cooled with water to suppress the temperature rise. It is also possible to use an electromagnet or a superconducting magnet in addition to the permanent magnet.
実施例は、磁性体の軌道(5)1個と磁石(2)1個の組み合わせの構成であるが、実施においては磁石(2)を複数にしたり、磁性体の軌道(5)と磁石(2)の組み合わせを複数連結して駆動トルクの大きい熱磁気アクチュエ−タ−を構成することもできる。 The embodiment has a configuration of a combination of one magnetic material orbit (5) and one magnet (2). However, in practice, a plurality of magnets (2) or a magnetic material orbit (5) and magnet ( A thermomagnetic actuator having a large driving torque can be configured by connecting a plurality of combinations 2).
本発明の熱磁気アクチュエ−タ−の宇宙空間での応用例としては、例えば、月面や宇宙スティ−ションの船内または船外に磁性体の軌道(5)を設けたり、磁性体の軌道(5)をロ−プ状にすると太陽光の集光熱を加熱源とする移動体システムを構築できる。 As an application example of the thermomagnetic actuator of the present invention in outer space, for example, a magnetic orbit (5) is provided on or out of the moon or in a space station, or a magnetic orbit ( If 5) is made into a loop shape, a moving body system using the condensed heat of sunlight as a heating source can be constructed.
宇宙空間では磁性体板(1)は各々真空断熱された雰囲気で、加熱と非加熱領域で激的な温度差を与える事ができ、更に無重力あるいは無重力に近い状態にあるので、極めて少ないエネルギ−で移動体システムを構築することができ、本発明はこれらにも適応できるものである。 In outer space, each magnetic plate (1) is in a vacuum insulated atmosphere, can give a dramatic temperature difference between heated and non-heated regions, and is in a state of weightlessness or near weightlessness. Thus, a mobile system can be constructed, and the present invention can be applied to these systems.
レ−ザ−光線やマイクロ波あるいは電磁誘導によって、非接触で磁性体板(1)を加熱することもできる熱磁気アクチュエ−タ−は、一般産業はもとより、医療、宇宙開発等幅広い分野での応用が期待できるものである。 Thermomagnetic actuators that can heat the magnetic plate (1) in a non-contact manner by laser beam, microwave, or electromagnetic induction are used in a wide range of fields such as medical and space development as well as general industries. Applications can be expected.
1 磁性体板
2 磁石
3 移動方向
4 磁性体板支持体
5 磁性体の軌道
6 加熱手段
7 鉄心
8 レ−ル
9 ロ−ラ−
10 スライドベアリング
11 台
12 冷却手段
13 遮熱板DESCRIPTION OF
10 Slide bearing 11
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012085880A JP2013198391A (en) | 2012-03-16 | 2012-03-16 | Thermomagnetic actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012085880A JP2013198391A (en) | 2012-03-16 | 2012-03-16 | Thermomagnetic actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013198391A true JP2013198391A (en) | 2013-09-30 |
Family
ID=49396679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012085880A Pending JP2013198391A (en) | 2012-03-16 | 2012-03-16 | Thermomagnetic actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013198391A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018125070A1 (en) * | 2016-12-28 | 2018-07-05 | Halliburton Energy Services, Inc. | Magnetic coupler with force balancing |
-
2012
- 2012-03-16 JP JP2012085880A patent/JP2013198391A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018125070A1 (en) * | 2016-12-28 | 2018-07-05 | Halliburton Energy Services, Inc. | Magnetic coupler with force balancing |
GB2569517A (en) * | 2016-12-28 | 2019-06-19 | Halliburton Energy Services Inc | Magnetic coupler with force balancing |
US11374480B2 (en) | 2016-12-28 | 2022-06-28 | Halliburton Energy Services, Inc. | Magnetic coupler with force balancing |
GB2569517B (en) * | 2016-12-28 | 2023-03-15 | Halliburton Energy Services Inc | Magnetic coupler with force balancing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110062821A1 (en) | Heat-power conversion magnetism devices | |
US20160330867A1 (en) | Electromagnetic heat transfer circuit | |
AU646466B2 (en) | Electromagnetic device for heating metal elements | |
US20120139676A1 (en) | Magnetic field generator and magnetocaloric device comprising said magnetic field generator | |
JP6172945B2 (en) | MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME | |
EP1832828A1 (en) | Magnetic convection heat circulation pump | |
TW201121211A (en) | Linear motor | |
US8242662B2 (en) | Special thermo magnetic motor device | |
JP6732529B2 (en) | Conduction cooling device and conduction cooling method | |
JP2013198391A (en) | Thermomagnetic actuator | |
JP5413876B2 (en) | Magnetic drive apparatus, method and system for diamagnetic material | |
CN104067493A (en) | Linear motor | |
JP2013198392A (en) | Thermomagnetic actuator | |
JP2012177499A (en) | Magnetic temperature control apparatus | |
CN102403447B (en) | Thermo-acoustic driven thermomagnetic power generation system | |
US20130247572A1 (en) | Magnetic thermal device | |
CN105680671A (en) | Transverse-flux high-temperature superconducting magnetic levitation linear motor | |
JP2014207843A (en) | Heat engine applying magnetic characteristics of temperature-sensitive magnetic material | |
JP4940428B2 (en) | Non-contact magnetic levitation method using magnetic material and non-contact magnetic levitation apparatus using the same | |
JP2014139500A (en) | Heat engine applying magnetic characteristics of thermosensitive magnetic metal material | |
JP3661978B2 (en) | Moving coil linear motor | |
JP2014155428A (en) | Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material | |
JP2014138550A (en) | Thermomagnetic generator applying magnetic characteristic of metal temperature-sensitive magnetic material | |
JP5176097B2 (en) | Magnetic levitation device and magnetic levitation method | |
KR101811296B1 (en) | high efficient and continuous electric generation cycle device employing ferrofluid |