JP2013193945A - SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM - Google Patents
SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM Download PDFInfo
- Publication number
- JP2013193945A JP2013193945A JP2012065026A JP2012065026A JP2013193945A JP 2013193945 A JP2013193945 A JP 2013193945A JP 2012065026 A JP2012065026 A JP 2012065026A JP 2012065026 A JP2012065026 A JP 2012065026A JP 2013193945 A JP2013193945 A JP 2013193945A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- based oxide
- plane
- oxide sintered
- film formation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005477 sputtering target Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 229910007541 Zn O Inorganic materials 0.000 claims abstract description 77
- 239000013078 crystal Substances 0.000 claims abstract description 48
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 26
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 24
- 229910052738 indium Inorganic materials 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 239000000470 constituent Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims description 35
- 239000011701 zinc Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 238000010304 firing Methods 0.000 claims description 25
- 238000000465 moulding Methods 0.000 claims description 22
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 21
- 238000004544 sputter deposition Methods 0.000 claims description 21
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 8
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 6
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000002270 dispersing agent Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000002706 hydrostatic effect Effects 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 17
- 239000010408 film Substances 0.000 description 118
- 230000015572 biosynthetic process Effects 0.000 description 70
- 230000000052 comparative effect Effects 0.000 description 59
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 25
- 238000000151 deposition Methods 0.000 description 14
- 230000008021 deposition Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000011787 zinc oxide Substances 0.000 description 12
- 238000005245 sintering Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- XJVBHCCEUWWHMI-UHFFFAOYSA-N argon(.1+) Chemical compound [Ar+] XJVBHCCEUWWHMI-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
本発明は、直流スパッタリング法等の成膜法で酸化物半導体膜を製造する際、原料のスパッタリングターゲットとして使用されるIn−Ga−Zn−O系酸化物焼結体とその製造方法に係り、特に、成膜時における成膜速度(成膜レート)の改善が図られたIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)とその製造方法、および、このスパッタリングターゲットを原料として用いた酸化物半導体膜に関するものである。 The present invention relates to an In—Ga—Zn—O-based oxide sintered body used as a raw material sputtering target and a method for producing the oxide semiconductor film by a film forming method such as a direct current sputtering method, In particular, an In—Ga—Zn—O-based oxide sintered body (sputtering target) in which the film forming speed (film forming rate) is improved during film formation, a manufacturing method thereof, and the sputtering target as a raw material. The present invention relates to the oxide semiconductor film used.
透明導電膜は、高い導電性と可視光領域での高い透過率とを有し、太陽電池や液晶表示素子、有機エレクトロルミネッセンスおよび無機エレクトロルミネッセンス等の表面素子やタッチパネル用電極等に利用されている他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等の各種の防曇用の透明発熱体としても利用されている。 The transparent conductive film has high conductivity and high transmittance in the visible light region, and is used for surface elements such as solar cells, liquid crystal display elements, organic electroluminescence and inorganic electroluminescence, and electrodes for touch panels. In addition, they are also used as various antifogging transparent heating elements such as automobile windows, heat ray reflective films for buildings, antistatic films, and refrigerated showcases.
透明導電膜には、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)、錫をドーパントとして含む酸化インジウム(In2O3)等が広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜すなわちIn−Sn−O系膜はITO(Indium tin oxide)膜と称され、低抵抗の膜が容易に得られることから広く用いられている。 The transparent conductive film includes a wide range of tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, zinc oxide (ZnO) containing aluminum or gallium as a dopant, indium oxide (In 2 O 3 ) containing tin as a dopant, and the like. It's being used. In particular, an indium oxide film containing tin as a dopant, that is, an In—Sn—O-based film is called an ITO (Indium tin oxide) film and is widely used because a low-resistance film can be easily obtained.
これ等の透明導電膜の製造方法としてはスパッタリング法がよく用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため工業的に広範に利用されている。 A sputtering method is often used as a method for producing these transparent conductive films. The sputtering method is an effective method when film formation of a material having a low vapor pressure or precise film thickness control is required, and is widely used industrially because the operation is very simple.
スパッタリング法は、原料としてターゲットが用いられ、一般に、約10Pa以下のガス圧下で基板を陽極とし、上記ターゲットを陰極とし、これ等の間にグロー放電を起こしてアルゴンプラズマを発生させると共に、プラズマ中のアルゴン陽イオンを陰極のターゲットに衝突させ、これによってはじきとばされるターゲット成分の粒子を基板上に堆積させて膜を形成する手法である。 In the sputtering method, a target is used as a raw material. In general, a substrate is used as an anode under a gas pressure of about 10 Pa or less, the target is used as a cathode, and a glow discharge is generated between them to generate argon plasma. In this method, the argon cation is collided with the target of the cathode, and particles of the target component repelled by this are deposited on the substrate to form a film.
また、これ等の酸化物透明導電膜については、イオンプレーティング等の蒸着法を用いて製造することも検討されている。 Moreover, about manufacturing these oxide transparent conductive films using vapor deposition methods, such as ion plating, is also examined.
しかし、スパッタリング法やイオンプレーティング等の蒸着法で形成されるITO膜やZnO系膜といった酸化物透明導電膜は、酸素欠陥が入り易く、キャリア電子が多数発生して電気伝導度が大きくなり易い材料であるため、逆に電気伝導度を小さくすることが困難である。このため、半導体膜のようなキャリア発生を抑制してある程度電気伝導度を小さくすることが要求される用途には用いられることが無かった。 However, an oxide transparent conductive film such as an ITO film or a ZnO-based film formed by a vapor deposition method such as a sputtering method or ion plating is likely to have oxygen defects, and a large number of carrier electrons are likely to be generated, resulting in an increase in electrical conductivity. Since it is a material, it is difficult to reduce the electrical conductivity. For this reason, it has not been used for an application such as a semiconductor film, in which the generation of carriers is required to be reduced to some extent by suppressing the generation of carriers.
このような状況の中、液晶表示装置(LCD)およびエレクトロルミネッセンス表示装置(EL)等の各種表示装置においては、表示素子への駆動電圧印加により表示装置を駆動させるスイッチングの役割を持つトランジスタが用いられているが、その中でも、特に膜厚が100nm以下である薄膜トランジスタ(TFT)が多く用いられており、高い安定性や移動度を有する材料として、近年、既存のシリコン系半導体に代わって酸化物を用いた酸化物半導体膜が注目されている。 Under such circumstances, in various display devices such as a liquid crystal display device (LCD) and an electroluminescence display device (EL), a transistor having a switching role for driving the display device by applying a driving voltage to the display element is used. Among them, a thin film transistor (TFT) having a film thickness of 100 nm or less is particularly used among them, and as a material having high stability and mobility, an oxide has recently been substituted for an existing silicon-based semiconductor. Oxide semiconductor films using silicon have attracted attention.
すなわち、TFTに用いられる材料としては、古くからシリコンベースの半導体が汎用され、用途によって結晶質と非晶質のものが使い分けられている。例えば、結晶質シリコンは高いキャリア移動度を有していることから、高速動作が必要な高周波増幅素子や集積回路用素子等に用いられている。しかし、結晶質シリコンは大面積化における均一性等で難点を有しており、均一化にはマスク等の付加コストを発生させる課題が存在する。加えて、結晶質のシリコン系薄膜は、結晶化を図る際に800℃以上の高温プロセスを伴うことがあることから耐熱性の無いガラス基板や有機物基板上への形成が困難なため、シリコンウエハーや石英といった高い耐熱性を有する基板上にしか形成することができない。そして、シリコンウエハーや石英等の基板は高価であることに加え、製造に対して必要なエネルギーや工程数が非常に多くなってしまうといった課題も存在した。 That is, as a material used for the TFT, a silicon-based semiconductor has been widely used for a long time, and a crystalline material and an amorphous material are selectively used depending on applications. For example, crystalline silicon has a high carrier mobility, and is therefore used for a high-frequency amplifying element or an integrated circuit element that requires high-speed operation. However, crystalline silicon has a difficulty in uniformity and the like in increasing the area, and there is a problem that additional costs such as a mask are generated in the uniformity. In addition, since a crystalline silicon-based thin film may be accompanied by a high-temperature process of 800 ° C. or higher when crystallization is performed, it is difficult to form a crystalline silicon thin film on a glass substrate or an organic substrate having no heat resistance. It can be formed only on a substrate having high heat resistance such as quartz. In addition to expensive substrates such as silicon wafers and quartz, there has been a problem that the energy and the number of processes required for production become very large.
このような理由から、大面積化が求められるような液晶駆動用素子等には非晶質シリコンが用いられている。 For these reasons, amorphous silicon is used in liquid crystal driving elements that require a large area.
しかし、非晶質シリコン半導体は、比較的低温プロセスで形成できるという利点を有する反面、結晶質シリコンと比較しキャリア移動度が低くてスイッチング速度が遅いため、表示装置を駆動する素子、特に大画面液晶等の素子として使用する場合、高速な画面表示に追随できなくなってくるという課題があった。 However, the amorphous silicon semiconductor has an advantage that it can be formed by a relatively low temperature process, but has a lower carrier mobility and a slower switching speed than crystalline silicon. When used as an element such as a liquid crystal, there is a problem that it becomes impossible to follow high-speed screen display.
これ等の課題を解決する方法として、近年、In2O3、Ga2O3、ZnOを有する非晶質酸化物半導体膜をTFTに利用し、駆動させる方法が検討されている。そして、この材料は、工業的に広く利用され量産性にも優れたスパッタリング法による形成が可能であることから、In−Ga−Zn−Oスパッタリングターゲットの検討が行われている。 As a method for solving these problems, in recent years, a method of driving an amorphous oxide semiconductor film containing In 2 O 3 , Ga 2 O 3 , and ZnO in a TFT has been studied. Since this material can be formed by a sputtering method that is widely used industrially and has excellent mass productivity, an In—Ga—Zn—O sputtering target has been studied.
例を挙げると、組成と共に特性としての比抵抗値を規定したIn−Ga−Zn−Oスパッタリングターゲットが提案されている(特許文献1)。しかし、特許文献1に記載されたIn−Ga−Zn−O系酸化物ターゲットを用いた場合、高電力密度の条件でスパッタリング成膜を行っても成膜レートが遅いため、工業的に利用する場合には難点がある。 For example, an In—Ga—Zn—O sputtering target in which the specific resistance value as a characteristic is defined together with the composition has been proposed (Patent Document 1). However, when the In—Ga—Zn—O-based oxide target described in Patent Document 1 is used, the film formation rate is low even when sputtering film formation is performed under the condition of high power density, so that it is used industrially. There are difficulties in cases.
一方、InGaO3(ZnO)で表されるホモロガス結晶構造を主成分とし、絶縁性の高いGa2O3等の結晶相を生成させないことによる効果の検討もなされている(特許文献2)。 On the other hand, studies have been made on the effect of not generating a crystal phase such as Ga 2 O 3 having a high insulating property, which has a homologous crystal structure represented by InGaO 3 (ZnO) as a main component (Patent Document 2).
更に、酸素欠損を生じ易くさせるため、周囲よりもInの含有量が多い組織と周囲よりもGaとZnの含有量が多い組織との分布を持たせる方法も提案されている(特許文献3)。 Furthermore, in order to make oxygen deficiency easy to occur, a method of providing a distribution of a structure having a higher In content than the surrounding and a structure having a higher Ga and Zn content than the surrounding has been proposed (Patent Document 3). .
しかし、InGaZnO4[InGaO3(ZnO)]結晶相の結晶状態を制御することにより、In−Ga−Zn−O系酸化物を用いたスパッタリング法による成膜速度(成膜レート)を改善させる方法に関しては、従来、検討がなされていなかった。 However, a method for improving a film formation rate (film formation rate) by a sputtering method using an In—Ga—Zn—O-based oxide by controlling a crystal state of an InGaZnO 4 [InGaO 3 (ZnO)] crystal phase. In the past, no investigation has been made.
このように成膜時における成膜レートが改善されて高い生産性と良好な膜特性が得られ、かつ、膜特性の変動も抑制されるスパッタリングターゲットが要望され、このスパッタリングターゲットに供される酸化物焼結体が必要とされている。 Thus, there is a demand for a sputtering target in which the film formation rate at the time of film formation is improved, high productivity and good film characteristics are obtained, and fluctuations in film characteristics are suppressed. There is a need for a sintered body.
本発明は上記課題を解決するためになされており、成膜速度(成膜レート)が改善されたスパッタリングターゲットを提供し、かつ、このスパッタリングターゲットに供されるIn−Ga−Zn−O系酸化物焼結体とその製造方法を提供すると共に、このスパッタリングターゲットを原料とした酸化物半導体膜を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a sputtering target having an improved film formation rate (film formation rate), and an In—Ga—Zn—O-based oxidation provided for the sputtering target. An object of the present invention is to provide a sintered product and a method for manufacturing the same, and to provide an oxide semiconductor film using the sputtering target as a raw material.
そこで、上記課題を解決するため本発明者等が鋭意研究を行ったところ、成膜時における成膜速度(成膜レート)は、In−Ga−Zn−O系酸化物焼結体(すなわちスパッタリングターゲット)の結晶構造とその結晶粒子径に密接に関連しているという技術的発見をするに至った。更に、成膜速度(成膜レート)が改善されるIn−Ga−Zn−O系酸化物焼結体の結晶構造とその結晶粒子径は、焼成前の成形体を得る工程において予備成形とその後の最終成形で結晶配向性を制御し、更に、最終成形体の焼成温度を1350℃以上1600℃以下にすることで達成できることを見出すに至った。本発明はこのような技術的発見と検討を経て完成されたものである。 In order to solve the above problems, the present inventors conducted extensive research and found that the film formation rate (film formation rate) during film formation was In—Ga—Zn—O-based oxide sintered body (ie, sputtering). The technical discovery that it is closely related to the crystal structure of the target) and its crystal particle size. Furthermore, the crystal structure of the In—Ga—Zn—O-based oxide sintered body that improves the film formation rate (film formation rate) and the crystal particle diameter thereof are determined by the pre-molding and the subsequent steps in the step of obtaining the compact before firing. It has been found that this can be achieved by controlling the crystal orientation in the final molding and further setting the firing temperature of the final molded body to 1350 ° C. or higher and 1600 ° C. or lower. The present invention has been completed through such technical discovery and examination.
すなわち、請求項1に係る発明は、
In−Ga−Zn−O系酸化物焼結体において、
インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)を構成元素とし、インジウムに対するガリウムの含有量が原子数比[Ga]/[In]で1.0以上1.6以下、インジウムに対する亜鉛の含有量が原子数比[Zn]/[In]で0.01以上1.0以下であるIn−Ga−Zn−O系酸化物焼結体により構成されると共に、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)がICDD(International Center for Diffraction Date)データベースにおけるInGaZnO4標準ピークリスト(リファレンスコード:00-038-1104)の同ピークと比較して低角側または高角側に0.10°以上ずれており、かつ、比抵抗値が1.0×10-1Ω・cm以下、結晶の平均粒径が8.0μm以上15.0μm以下であることを特徴とするものである。
That is, the invention according to claim 1
In the In—Ga—Zn—O-based oxide sintered body,
Indium (In), gallium (Ga), zinc (Zn), and oxygen (O) are constituent elements, and the content of gallium with respect to indium is 1.0 or more and 1.6 or less in atomic ratio [Ga] / [In]. And an In—Ga—Zn—O-based oxide sintered body having an atomic ratio [Zn] / [In] of 0.01 to 1.0 in terms of atomic ratio, and a CuKα ray The peak positions (2θ) of the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase by X-ray diffraction using X-ray diffraction are InGaZnO 4 standard peak lists in the ICDD (International Center for Diffraction Date) database (reference code) : 00-038-1104) is shifted to the low angle side or the high angle side by 0.10 ° or more and the specific resistance value is 1.0 × 10 −1 Ω · cm or less. The average grain size of the crystal is 8.0 μm or more and 15.0 μm or less.
尚、本発明に係るIn−Ga−Zn−O系酸化物焼結体においては、構成元素が実質的にインジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(O)から成っていればよく、不可避不純物等の混入を制限するものではない。 In the In—Ga—Zn—O-based oxide sintered body according to the present invention, the constituent elements are substantially composed of indium (In), gallium (Ga), zinc (Zn), and oxygen (O). What is necessary is not to limit mixing of inevitable impurities.
次に、請求項2に係る発明は、
請求項1に記載のIn−Ga−Zn−O系酸化物焼結体において、
上記ICDDデータベースにおけるInGaZnO4標準ピークリストの同ピークとのずれが0.10°以上0.30°以下であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載のIn−Ga−Zn−O系酸化物焼結体において、
結晶の平均粒径が10.0μm以上であることを特徴とする。
Next, the invention according to claim 2
In the In-Ga-Zn-O-based oxide sintered body according to claim 1,
The deviation from the same peak of the InGaZnO 4 standard peak list in the ICDD database is 0.10 ° or more and 0.30 ° or less,
The invention according to claim 3
In the In-Ga-Zn-O-based oxide sintered body according to claim 1 or 2,
The average grain size of the crystal is 10.0 μm or more.
また、請求項4に係る発明は、
請求項1〜3のいずれかに記載のIn−Ga−Zn−O系酸化物焼結体を製造する方法において、
In2O3粉末、ZnO粉末およびGa2O3粉末を、純水、有機バインダー、分散剤と混合してスラリーを調製し、このスラリーを乾燥、造粒して造粒粉を得る工程と、
得られた造粒粉を、金型プレスを用いて0.03MPa以上の加圧条件で予備成形した後、98MPa以上の加圧条件で静水加圧方式による本成形を行なって最終成形体を得る工程と、
得られた最終成形体を1350℃〜1600℃で焼成して焼結体を得る工程、
の各工程を具備することを特徴とし、
請求項5に係る発明は、
請求項4に記載のIn−Ga−Zn−O系酸化物焼結体の製造方法において、
焼成炉内の雰囲気を酸素条件にして上記最終成形体を焼成することを特徴とする。
The invention according to claim 4
In the method for producing the In-Ga-Zn-O-based oxide sintered body according to any one of claims 1 to 3,
In 2 O 3 powder, ZnO powder and Ga 2 O 3 powder are mixed with pure water, an organic binder, a dispersant to prepare a slurry, and the slurry is dried and granulated to obtain a granulated powder;
The obtained granulated powder is preformed under a pressure condition of 0.03 MPa or higher using a mold press, and then subjected to a main molding by a hydrostatic pressure method under a pressure condition of 98 MPa or higher to obtain a final molded body. Process,
A step of firing the obtained final molded body at 1350 ° C. to 1600 ° C. to obtain a sintered body,
It is characterized by comprising each step of
The invention according to claim 5
In the manufacturing method of the In-Ga-Zn-O-based oxide sintered body according to claim 4,
The final molded body is fired under an oxygen condition in a firing furnace.
次に、請求項6に係る発明は、
スパッタリングターゲットにおいて、
請求項1〜3のいずれかに記載のIn−Ga−Zn−O系酸化物焼結体を加工し得られることを特徴とし、
また、請求項7に係る発明は、
スパッタリング法により成膜された酸化物半導体膜において、
請求項6に記載のスパッタリングターゲットを原料として用い、インジウム、ガリウム、亜鉛、酸素を構成元素とし、インジウムに対するガリウムの含有量が原子数比[Ga]/[In]で1.0以上1.6以下、インジウムに対する亜鉛の含有量が原子数比[Zn]/[In]で0.01以上1.0以下であることを特徴とするものである。
Next, the invention according to claim 6 is:
In sputtering target,
It is obtained by processing the In-Ga-Zn-O-based oxide sintered body according to any one of claims 1 to 3,
The invention according to claim 7
In an oxide semiconductor film formed by a sputtering method,
The sputtering target according to claim 6 is used as a raw material, and indium, gallium, zinc and oxygen are constituent elements, and the content of gallium with respect to indium is 1.0 or more and 1.6 in terms of atomic ratio [Ga] / [In]. Hereinafter, the content of zinc with respect to indium is 0.01 to 1.0 in terms of atomic ratio [Zn] / [In].
本発明に係るIn−Ga−Zn−O系酸化物焼結体は、
CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)がICDD(International Center for Diffraction Date)データベースにおけるInGaZnO4標準ピークリスト(リファレンスコード:00-038-1104)の同ピークと比較して低角側または高角側に0.10°以上ずれた結晶構造を有し、かつ、結晶の平均粒径が8.0μm以上15.0μm以下となっている。
The In—Ga—Zn—O-based oxide sintered body according to the present invention is:
The peak positions (2θ) of the (009) plane, (101) plane and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays are the InGaZnO 4 standard peak list in the ICDD (International Center for Diffraction Date) database ( Reference code: 00-038-1104) has a crystal structure shifted by 0.10 ° or more on the low angle side or high angle side as compared with the same peak, and the average crystal grain size is 8.0 μm or more and 15. 0 μm or less.
そして、上述した結晶構造と結晶粒子径を具備するIn−Ga−Zn−O系酸化物焼結体を加工して得られたスパッタリングターゲットをスパッタリング法に適用した場合、成膜時における成膜速度(成膜レート)が改善されて速くなるため効率的な成膜処理を行なうことが可能になると共に、膜特性の変動も抑制されるため良好な酸化物半導体膜を形成できる効果を有している。 When a sputtering target obtained by processing the In—Ga—Zn—O-based oxide sintered body having the crystal structure and the crystal particle diameter described above is applied to the sputtering method, the film formation speed during film formation Since the (deposition rate) is improved and becomes faster, it is possible to perform an efficient film formation process, and it is possible to form a favorable oxide semiconductor film because fluctuations in film characteristics are also suppressed. Yes.
以下、本発明の実施の形態について具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.
まず、本発明に係るIn−Ga−Zn−O系酸化物焼結体は、上述したように本発明者等による技術的発見と検討を経て完成されたものである。 First, the In—Ga—Zn—O-based oxide sintered body according to the present invention has been completed through technical discovery and examination by the present inventors as described above.
すなわち、スパッタリング成膜時における成膜速度(成膜レート)は、スパッタリングターゲットを構成するIn−Ga−Zn−O系酸化物焼結体の結晶構造と結晶粒子径と密接に関連しているとの技術的発見を本発明者等は行なっている。そして、成膜時における成膜速度(成膜レート)を速められる結晶構造と結晶粒子径を有するIn−Ga−Zn−O系酸化物焼結体を得るには、焼成前の成形体を得る工程において一軸金型プレス成形による予備成形を行った後、加圧成形を行なって最終成型体を得る工程において結晶配向性を制御し、更に最終成型体を焼成する温度を1350℃以上1600℃以下にすることで結晶粒子の粒成長を促進させることにより達成できることを見出している。 That is, the film formation rate (film formation rate) during sputtering film formation is closely related to the crystal structure and crystal particle diameter of the In—Ga—Zn—O-based oxide sintered body constituting the sputtering target. The present inventors have made a technical discovery. Then, in order to obtain an In—Ga—Zn—O-based oxide sintered body having a crystal structure and a crystal particle diameter capable of increasing the film formation speed (film formation rate) during film formation, a molded body before firing is obtained. In the process, after preforming by uniaxial mold press molding, the crystal orientation is controlled in the process of obtaining the final molded body by performing pressure molding, and further the temperature for firing the final molded body is 1350 ° C or higher and 1600 ° C or lower It has been found that this can be achieved by promoting the grain growth of crystal grains.
(1)本発明に係るIn−Ga−Zn−O系酸化物焼結体
本発明に係るIn−Ga−Zn−O系酸化物焼結体は、スパッタリングターゲットとして適用され、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(O)を構成元素とする酸化物焼結体である。また、上記酸化物焼結体は、インジウムに対するガリウムの含有量が原子数比[Ga]/In]で1.0以上1.6以下、インジウムに対する亜鉛の含有量が原子数比[Zn]/[In]で0.01以上1.0以下であることを特徴としている。酸化物焼結体中におけるインジウム(In)とガリウム(Ga)および亜鉛(Zn)の含有量を上記範囲に規定している理由は、この範囲を逸脱すると得られる酸化物焼結体の抵抗値が増大してしまい、成膜時における生産性の悪化を招くだけでなく、得られる膜の特性劣化を引き起こす可能性があるからである。また、ガリウムと亜鉛の含有量が上記原子数比の範囲より多くなる場合は、結晶性の低下を招いて粒成長が阻害され、酸化物焼結体として必要とする粒径を得ることが難しくなることからも好ましくない。
(1) In-Ga-Zn-O-based oxide sintered body according to the present invention The In-Ga-Zn-O-based oxide sintered body according to the present invention is applied as a sputtering target, and includes indium (In), An oxide sintered body containing gallium (Ga), zinc (Zn), and oxygen (O) as constituent elements. In the oxide sintered body, the gallium content with respect to indium is 1.0 to 1.6 in terms of atomic ratio [Ga] / In, and the zinc content with respect to indium is atomic ratio [Zn] / In. [In] is 0.01 or more and 1.0 or less. The reason why the contents of indium (In), gallium (Ga) and zinc (Zn) in the oxide sintered body are defined in the above range is that the resistance value of the oxide sintered body obtained when the oxide sintered body is out of this range. This is because not only will the productivity increase during the film formation, but also the characteristics of the resulting film may be deteriorated. In addition, when the content of gallium and zinc is larger than the above range of the atomic number ratio, the crystallinity is deteriorated, grain growth is inhibited, and it is difficult to obtain the particle size required for the oxide sintered body. This is also not preferable.
また、本発明に係るIn−Ga−Zn−O系酸化物焼結体は、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)が、ICDD(International Center for Diffraction Date)データベースにおけるInGaZnO4標準ピークリスト(リファレンスコード:00-038-1104)の同ピークと比較して低角側または高角側に0.10°以上ずれており、かつ、上記酸化物焼結体の組織を構成している結晶の平均粒径が8.0μm以上15.0μm以下であることを必要とする。これ等の特性を同時に満たした場合、満たさない場合と比較して、成膜時における成膜速度(成膜レート)を10%以上向上させることが可能となる。 Further, the In—Ga—Zn—O-based oxide sintered body according to the present invention has peaks in the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays. The position (2θ) is 0.10 ° or more on the low angle side or high angle side compared to the same peak in the InGaZnO 4 standard peak list (reference code: 00-038-1104) in the ICDD (International Center for Diffraction Date) database. It is necessary that the average particle size of the crystals constituting the structure of the oxide sintered body is 8.0 μm or more and 15.0 μm or less. When these characteristics are satisfied at the same time, the film formation rate (film formation rate) during film formation can be improved by 10% or more compared to the case where these characteristics are not satisfied.
(2)本発明に係るIn−Ga−Zn−O系酸化物焼結体の製造方法
次に、本発明に係るIn−Ga−Zn−O系酸化物焼結体の製造工程を説明する。
(2) Manufacturing method of In-Ga-Zn-O-based oxide sintered body according to the present invention Next, a manufacturing process of the In-Ga-Zn-O-based oxide sintered body according to the present invention will be described.
[造粒工程]
構成元素であるIn2O3(酸化錫)粉末、Ga2O3(酸化ガリウム)粉末、および、ZnO(酸化亜鉛)粉末を、原料粉末濃度が50〜80wt%、好ましくは60wt%となるように、純水、有機バインダー、分散剤と混合し、かつ、平均粒径が0.5μm以下となるまで湿式粉砕する。混合粉末の平均粒径が0.5μm以下となるまで微細化することにより、ZnO(酸化亜鉛)粉末およびIn2O3(酸化錫)粉末の凝集を確実に取り除くことができる。
[Granulation process]
Constituent elements such as In 2 O 3 (tin oxide) powder, Ga 2 O 3 (gallium oxide) powder, and ZnO (zinc oxide) powder have a raw material powder concentration of 50 to 80 wt%, preferably 60 wt%. In addition, it is mixed with pure water, an organic binder, and a dispersant, and wet pulverized until the average particle size becomes 0.5 μm or less. By reducing the average particle size of the mixed powder to 0.5 μm or less, aggregation of ZnO (zinc oxide) powder and In 2 O 3 (tin oxide) powder can be reliably removed.
湿式粉砕後、10分以上混合攪拌してスラリーを調製し、得られたスラリーを乾燥・造粒して造粒粉を得る。 After wet grinding, a slurry is prepared by mixing and stirring for 10 minutes or more, and the resulting slurry is dried and granulated to obtain a granulated powder.
[成形工程]
次に、得られた造粒粉を、一軸金型プレス成形機を用いて0.03MPa(0.3kgf/cm2)以上の加圧条件で予備成形を行なった後、98MPa以上の加圧条件で本成形を行なって最終成形体を得る。ここで、上記本成形を行う際には、高圧力が得られる冷間静水圧プレスCIP(Cold Isostatic Press)を用いることが望ましい。
[Molding process]
Next, the obtained granulated powder is preformed under a pressing condition of 0.03 MPa (0.3 kgf / cm 2 ) or more using a uniaxial die press molding machine, and then the pressing condition of 98 MPa or more. The final molding is obtained by performing the main molding. Here, when performing the main forming, it is desirable to use a cold isostatic press (CIP) that can obtain a high pressure.
上記予備成形時における圧力を0.03MPa未満とした場合、一軸金型プレス成形機により成形体へ与えられる特定方向の応力が不十分となり、焼結体としたときに目的とする配向制御が困難となる。CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれが、InGaZnO4標準ピークリスト(リファレンスコード:00-038-1104)の同ピークと比較して0.10°未満の場合、成膜速度(成膜レート)向上の改善効果が得られない。尚、ピーク位置(2θ)のずれがあまり大き過ぎると結晶構造の歪みが過度になり、キャリア移動度の低下等によって成膜速度(成膜レート)向上の改善効果に対し悪影響を及ぼすことが懸念されるため、上記ピーク位置(2θ)のずれは0.30°以下が好ましい。 When the pressure at the time of the above preforming is less than 0.03 MPa, the stress in a specific direction applied to the molded body by the uniaxial die press molding machine becomes insufficient, and the desired orientation control is difficult when the sintered body is formed. It becomes. The shift of the peak position (2θ) of the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays is the InGaZnO 4 standard peak list (reference code: 00-038- When the angle is less than 0.10 ° compared to the same peak of 1104), the effect of improving the deposition rate (deposition rate) cannot be obtained. Note that if the shift of the peak position (2θ) is too large, the crystal structure is excessively distorted, which may adversely affect the improvement effect of the film formation rate (film formation rate) due to the decrease in carrier mobility. Therefore, the deviation of the peak position (2θ) is preferably 0.30 ° or less.
また、本成形時における圧力を98MPa未満とした場合、原料粉末の粒子間に存在する空孔を除去することが困難となり、焼結体の密度低下をもたらす。また、成形体強度も低くなるため、安定した製造が困難となる。 Moreover, when the pressure at the time of this shaping | molding is less than 98 Mpa, it will become difficult to remove the void | hole which exists between the particle | grains of raw material powder, and will bring about the density fall of a sintered compact. In addition, since the strength of the compact is reduced, stable production becomes difficult.
尚、予備成形と本成形双方における圧力の上限値について、特に数値を定めていないが、焼成後における高密度化のためにも上記成形時の圧力は高いほど良く、高圧域における圧力差による焼結体の特性に差異は無い。 The upper limit of pressure in both preforming and main molding is not particularly specified, but the higher the pressure during the molding, the better the higher the pressure after firing, and the higher the pressure in the high pressure range. There is no difference in the properties of the body.
[焼結工程]
上記成形工程で得られた最終成形体を常圧で焼成することにより本発明に係るIn−Ga−Zn−O系酸化物焼結体が得られる。
[Sintering process]
The In-Ga-Zn-O-based oxide sintered body according to the present invention is obtained by firing the final molded body obtained in the molding step at normal pressure.
焼成温度は、1350℃〜1600℃、好ましくは1400℃〜1500℃である。焼結温度が1350℃未満の場合、ある程度の密度を有する酸化物焼結体が得られたとしても、必要とする粒成長が起こらないため成膜速度(成膜レート)向上の改善効果が得られない。また、焼結温度が1600℃を超えた場合、ZnO(酸化亜鉛)等が揮発して、特に焼結体表面において所定の組成からずれ易くなる。また、スパッタリング等の成膜には焼結体(すなわちターゲット)中の結晶粒径が大きければ大きいほど成膜速度(成膜レート)の向上が期待できるものの、焼結温度が1600℃を超えた場合、結晶粒径が15μmを超えて焼結体の強度が著しく低下する。そして、焼結体強度の著しい低下により焼結体製造時に割れの発生を招き、歩留まりを悪化させることから好ましくない。 The firing temperature is 1350 ° C to 1600 ° C, preferably 1400 ° C to 1500 ° C. When the sintering temperature is less than 1350 ° C., even if an oxide sintered body having a certain density is obtained, the required grain growth does not occur, so that an improvement effect of improving the film formation rate (film formation rate) is obtained. I can't. In addition, when the sintering temperature exceeds 1600 ° C., ZnO (zinc oxide) and the like are volatilized and easily deviate from a predetermined composition particularly on the surface of the sintered body. In addition, for film formation such as sputtering, the larger the crystal grain size in the sintered body (ie, the target), the higher the film formation rate (film formation rate) can be expected, but the sintering temperature exceeded 1600 ° C. In this case, the crystal grain size exceeds 15 μm, and the strength of the sintered body is significantly reduced. And since the generation | occurrence | production of a crack is caused at the time of sintered compact manufacture by the remarkable fall of a sintered compact strength, and a yield is deteriorated, it is unpreferable.
また、焼成プロセス中は、焼成炉内の雰囲気を、常圧大気、好ましくは酸素雰囲気中とする。酸素ガスを導入して活性化させることにより、焼結体中における結晶粒子の成長が促進され、酸化物ターゲットを使用した際の高い生産性を実現できる。但し、酸素雰囲気とする場合でも、焼成温度が上述した1350℃未満では十分な粒成長が起こるとは言い難く、成膜速度(成膜レート)を向上させる有効な粒径は得られない。 Further, during the firing process, the atmosphere in the firing furnace is atmospheric pressure air, preferably oxygen atmosphere. By introducing and activating oxygen gas, the growth of crystal grains in the sintered body is promoted, and high productivity when using an oxide target can be realized. However, even in an oxygen atmosphere, it is difficult to say that sufficient grain growth occurs if the firing temperature is lower than the above-described 1350 ° C., and an effective grain size that improves the deposition rate (deposition rate) cannot be obtained.
そして、得られたIn−Ga−Zn−O系酸化物焼結体は、必要に応じて所定の形状・寸法に加工される。加えて、スパッタリングに使用する場合、所定のバッキングプレートにボンディングを行い、スパッタリングターゲットとして適用される。 Then, the obtained In—Ga—Zn—O-based oxide sintered body is processed into a predetermined shape and size as necessary. In addition, when used for sputtering, it is bonded to a predetermined backing plate and applied as a sputtering target.
以下、本発明の実施例について比較例を挙げて具体的に説明する。但し、これ等の実施例により本発明が限定されるものではない。 Examples of the present invention will be specifically described below with reference to comparative examples. However, these examples do not limit the present invention.
[サンプル評価]
(1)作製した焼結体は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析した。
[sample test]
(1) The produced sintered body was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000).
(2)作製した焼結体の比抵抗値は、抵抗率計ロレスタEP(ダイアインスツルメンツ社製MCP−T360型)による四探針法で測定した。 (2) The specific resistance value of the produced sintered body was measured by a four-probe method using a resistivity meter Loresta EP (Dia Instruments MCP-T360 type).
(3)作製した焼結体の配向性は、X線回折測定(PANalytical社製、X‘Pert Pro MPD)を行い、焼結体を構成するInGaZnO4結晶相における(009)面、(101)面および(104)面のピーク位置(2θ)がICDD(International Center for Diffraction Date)データベースにおけるInGaZnO4標準ピークリスト(リファレンスコード:00-038-1104)の同ピークと比較して何度ずれているかを評価した。 (3) The orientation of the produced sintered body is measured by X-ray diffraction measurement (manufactured by PANalytical, X′Pert Pro MPD), and the (009) plane in the InGaZnO 4 crystal phase constituting the sintered body, (101) How many times the peak position (2θ) of the plane and (104) plane deviates from that of the InGaZnO 4 standard peak list (reference code: 00-038-1104) in the ICDD (International Center for Diffraction Date) database Evaluated.
尚、ICDDデータベースにおけるピーク位置は、それぞれ(2θ)が(009)面で30.84°、(101)面で31.51°、(104)面で34.28°である。 The peak positions in the ICDD database are (2θ) of 30.84 ° on the (009) plane, 31.51 ° on the (101) plane, and 34.28 ° on the (104) plane, respectively.
(4)作製した焼結体の結晶粒径は、切断面を鏡面研磨した後、熱腐食させて結晶粒界を析出させたサンプルをSEMにより観察し、平均結晶粒径の測定を行なった。 (4) The crystal grain size of the produced sintered body was measured by measuring the average crystal grain size by observing, by SEM, a sample in which the cut surface was mirror-polished and then thermally corroded to precipitate crystal grain boundaries.
(5)成膜時の成膜速度(成膜レート)は、成膜された膜の膜厚を測定し、成膜時間で割ることにより算出した。この際、膜厚は以下の手順で測定した。成膜前に基板の一部に予め油性インクを塗布しておき、成膜後にエタノールで油性インクを拭き取って膜の無い部分を形成し、膜の有る部分と無い部分の段差を接触式表面形状測定器(KLA Tencor社製 Alpha−StepIQ)で測定し求めた。 (5) The film formation rate (film formation rate) during film formation was calculated by measuring the film thickness of the film formed and dividing by the film formation time. At this time, the film thickness was measured by the following procedure. Before forming the film, apply oil-based ink to a part of the substrate in advance, wipe the oil-based ink with ethanol after film formation to form a part without film, and make the step between the part with film and the part without film It measured and calculated | required with the measuring device (Alpha-Step IQ by KLA Tencor).
[実施例1]
平均粒径がそれぞれ1μm以下のIn2O3粉末、Ga2O3粉末およびZnO粉末を原料粉末とし、インジウムに対するガリウムの含有量が原子数比[Ga]/[In]で1.0、インジウムに対する亜鉛の含有量が原子数比[Zn]/[In]で1.0となる割合で調合し、かつ、原料粉末濃度が60wt%となるように純水、有機バインダー、分散剤と混合すると共に、混合タンクにてスラリーを調製した。
[Example 1]
In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder each having an average particle diameter of 1 μm or less are used as raw material powder, and the content of gallium with respect to indium is 1.0 at an atomic ratio [Ga] / [In]. The zinc content is adjusted to 1.0 at an atomic ratio [Zn] / [In] and mixed with pure water, an organic binder, and a dispersant so that the raw material powder concentration is 60 wt%. At the same time, a slurry was prepared in a mixing tank.
次に、硬質ZrO2ボールを投入したビーズミル装置(アシザワ・ファインテック株式会社製、LMZ型)を用いて、原料粉の平均粒径が0.5μm以下となるまで粉砕混合を行った。尚、原料粉の平均粒径の測定には、レーザ回折式粒度分布測定装置(島津製作所製、SALD−2200)を用いた。 Next, using a bead mill apparatus (manufactured by Ashizawa Finetech Co., Ltd., LMZ type) charged with hard ZrO 2 balls, pulverization and mixing were performed until the average particle size of the raw material powder became 0.5 μm or less. A laser diffraction particle size distribution measuring device (SALD-2200, manufactured by Shimadzu Corporation) was used to measure the average particle size of the raw material powder.
次に、得られたスラリーを、スプレードライヤー装置(大川原化工機株式会社製、ODL−20型)にて噴霧および乾燥し、造粒粉を得た。 Next, the obtained slurry was sprayed and dried with a spray dryer (Okawara Kako Co., Ltd., ODL-20 type) to obtain granulated powder.
得られた造粒粉を、10MN粉末成形機(コータキ精機株式会社製、KPS1000−N0769型)により0.06MPa(0.6kgf/cm2)の圧力をかけて冷間プレス(CP:Cold Press)で予備成形した後、冷間静水圧プレス(CIP:Cold Isostatic Press)により294MPa(3ton/cm2)の圧力を掛けて本成形し、直径約200mmの最終成形体を得た。 The obtained granulated powder was cold-pressed (CP: Cold Press) by applying a pressure of 0.06 MPa (0.6 kgf / cm 2 ) with a 10MN powder molding machine (manufactured by Kotaki Seiki Co., Ltd., KPS1000-N0769 type). Then, the film was subjected to main molding by applying a pressure of 294 MPa (3 ton / cm 2 ) by a cold isostatic press (CIP) to obtain a final molded body having a diameter of about 200 mm.
そして、大気圧焼結炉により、常圧大気中、焼成温度を1400℃にして上記最終成形体を20時間焼成し、実施例1に係るIn−Ga−Zn−O系酸化物焼結体を得た。 Then, in the atmospheric pressure sintering furnace, the final compact was fired for 20 hours at a firing temperature of 1400 ° C., and the In—Ga—Zn—O-based oxide sintered body according to Example 1 was obtained. Obtained.
実施例1に係るIn−Ga−Zn−O系酸化物焼結体の組成は、ガリウムの含有量が原子数比[Ga]/[In]で1.0、亜鉛の含有量が原子数比[Zn]/[In]で1.0であり、その比抵抗値は2.1×10-2Ω・cmであった。 In the composition of the In—Ga—Zn—O-based oxide sintered body according to Example 1, the gallium content is 1.0 in atomic ratio [Ga] / [In], and the zinc content is atomic ratio. [Zn] / [In] was 1.0, and the specific resistance value was 2.1 × 10 −2 Ω · cm.
また、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)を確認したところ、それぞれ2θが30.66°、31.27°および34.04°であった。 Further, when the peak positions (2θ) of the (009) plane, the (101) plane, and the (104) plane in the InGaZnO 4 phase were confirmed by X-ray diffraction using CuKα rays, 2θ was 30.66 °, 31. 27 ° and 34.04 °.
更に、実施例1に係るIn−Ga−Zn−O系酸化物焼結体の平均結晶粒径を測定したところ、8.2μmであった。 Furthermore, the average crystal grain size of the In—Ga—Zn—O-based oxide sintered body according to Example 1 was measured and found to be 8.2 μm.
次に、得られた実施例1に係るIn−Ga−Zn−O系酸化物焼結体について、直径が152.4mm(6インチ)で、厚みが5mmとなるように加工してスパッタリングターゲットを得た。 Next, the In—Ga—Zn—O-based oxide sintered body according to Example 1 obtained was processed to have a diameter of 152.4 mm (6 inches) and a thickness of 5 mm, and a sputtering target was formed. Obtained.
そして、得られたスパッタリングターゲットをスパッタ装置(トッキ製、SPF−530K)に装着した後、投入電力量1.6W/cm2で10分間のスパッタリング法による成膜を行ない、膜厚から成膜速度(成膜レート)を確認した。 Then, after the obtained sputtering target was mounted on a sputtering apparatus (SPF-530K, manufactured by Tokki), a film was formed by a sputtering method for 10 minutes at an input power of 1.6 W / cm 2 , and the film formation speed was determined from the film thickness. (Deposition rate) was confirmed.
尚、スパッタリング条件は、基板とターゲットとの距離を46mmとし、到達真空度を2.0×10-4Pa以下、ガス圧を0.6Paとした。 The sputtering conditions were such that the distance between the substrate and the target was 46 mm, the ultimate vacuum was 2.0 × 10 −4 Pa or less, and the gas pressure was 0.6 Pa.
その結果、実施例1の成膜速度は「79.6nm/min.」で、以下に述べる比較例1の「成膜速度:71.0nm/min.」、比較例2の「成膜速度:66.3nm/min.」より優れていた。 As a result, the film formation speed of Example 1 was “79.6 nm / min.”, “Film formation speed: 71.0 nm / min.” Of Comparative Example 1 described below, and “Film formation speed: Comparative Example 2”. 66.3 nm / min. ”.
このように比抵抗値が2.1×10-2Ω・cm(すなわち、1.0×10-1Ω・cm以下の条件)、結晶粒径が8.2μm(すなわち、8.0μm以上の条件)、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面、および、(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件を満たした実施例1に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、以下に述べる比較例1と比較例2に係る酸化物焼結体(スパッタリングターゲット)と較べて成膜速度(成膜レート)が10%以上速くなっていることが確認された。 Thus, the specific resistance value is 2.1 × 10 −2 Ω · cm (that is, 1.0 × 10 −1 Ω · cm or less) and the crystal grain size is 8.2 μm (that is, 8.0 μm or more). Condition) and the peak position (2θ) of the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays is 0.1 ° or more, respectively. An In—Ga—Zn—O-based oxide sintered body (sputtering target) according to Example 1 that satisfies certain conditions is an oxide sintered body (sputtering target) according to Comparative Example 1 and Comparative Example 2 described below. It was confirmed that the film formation rate (film formation rate) was 10% or more faster than that.
[比較例1]
実施例1と同様にして造粒粉を得、得られた造粒粉について10MN粉末成形機(コータキ精機株式会社製、KPS1000−N0769型)による予備成形を行うことなく、冷間静水圧プレス(CIP:Cold Isostatic Press)により294MPa(3ton/cm2)の圧力を掛けて本成形を行ない、かつ、直径約200mmの成形体を得た後、実施例1と同様の条件、すなわち、大気圧焼結炉により、常圧大気中、焼成温度を1400℃にして成形体を20時間焼成し、比較例1に係るIn−Ga−Zn−O系酸化物焼結体を得た。
[Comparative Example 1]
A granulated powder was obtained in the same manner as in Example 1, and the resulting granulated powder was subjected to cold isostatic pressing (10) by using a 10MN powder molding machine (Kotaki Seiki Co., Ltd., KPS1000-N0769). CIP: Cold isostatic press) was applied at a pressure of 294 MPa (3 ton / cm 2 ) to perform the main molding, and after obtaining a molded body having a diameter of about 200 mm, the same conditions as in Example 1, ie, atmospheric pressure sintering A compact was fired for 20 hours in a normal pressure atmosphere at a firing temperature of 1400 ° C. in an atmospheric pressure atmosphere to obtain an In—Ga—Zn—O-based oxide sintered body according to Comparative Example 1.
比較例1に係るIn−Ga−Zn−O系酸化物焼結体の組成は、実施例1と同様、ガリウムの含有量が原子数比[Ga]/[In]で1.0、亜鉛の含有量が原子数比[Zn]/[In]で1.0であり、また、比抵抗値は実施例1と異なり2.4×10-2Ω・cmであった。 As in Example 1, the composition of the In—Ga—Zn—O-based oxide sintered body according to Comparative Example 1 is 1.0 in terms of the atomic ratio [Ga] / [In], and the zinc content is as follows. The content was 1.0 in terms of the atomic ratio [Zn] / [In], and the specific resistance value was 2.4 × 10 −2 Ω · cm, different from Example 1.
また、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)を確認したところ、それぞれ2θが30.79°、31.48°および34.25°であった。 Further, when the peak positions (2θ) of the (009) plane, the (101) plane, and the (104) plane in the InGaZnO 4 phase were confirmed by X-ray diffraction using CuKα rays, 2θ was 30.79 °, 31. 48 ° and 34.25 °.
更に、比較例1に係るIn−Ga−Zn−O系酸化物焼結体の平均結晶粒径を測定したところ、8.3μmであった。 Furthermore, when the average crystal grain size of the In—Ga—Zn—O-based oxide sintered body according to Comparative Example 1 was measured, it was 8.3 μm.
そして、実施例1と同様の条件で比較例1に係るIn−Ga−Zn−O系酸化物焼結体(ターゲット)の成膜速度を確認したところ、上述したように「成膜速度:71.0nm/min.」であった。 And when the film-forming speed | rate of the In-Ga-Zn-O type oxide sintered compact (target) which concerns on the comparative example 1 on the conditions similar to Example 1 was confirmed, as above-mentioned, "film-forming speed | rate: 71 0.0 nm / min. ”.
このように比抵抗値が2.4×10-2Ω・cm(すなわち、1.0×10-1Ω・cm以下の条件)、結晶粒径が8.3μm(すなわち、8.0μm以上の条件)の条件を満たすが、上記X線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件を満たさない比較例1に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、上述した実施例1と較べて成膜速度(成膜レート)が劣っている(実施例1の成膜速度は79.6nm/min.比較例1の成膜速度は71.0nm/min.)ことが確認された。 Thus, the specific resistance value is 2.4 × 10 −2 Ω · cm (that is, 1.0 × 10 −1 Ω · cm or less) and the crystal grain size is 8.3 μm (that is, 8.0 μm or more). Condition), but the deviation of the peak position (2θ) of the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase by the X-ray diffraction is 0.1 ° or more. The In—Ga—Zn—O-based oxide sintered body (sputtering target) according to Comparative Example 1 that is not satisfied is inferior in film formation rate (film formation rate) as compared to Example 1 described above (Example 1). The film formation rate was 79.6 nm / min. The film formation rate of Comparative Example 1 was 71.0 nm / min.).
[比較例2]
実施例1と同様にして造粒粉を得、得られた造粒粉を10MN粉末成形機(コータキ精機株式会社製、KPS1000−N0769型)により0.06MPa(0.6kgf/cm2)の圧力をかけて冷間プレス(CP:Cold Press)で予備成形した後、冷間静水圧プレス(CIP:Cold Isostatic Press)により294MPa(3ton/cm2)の圧力を掛けて本成形し、直径約200mmの最終成形体を得た。
[Comparative Example 2]
A granulated powder was obtained in the same manner as in Example 1, and the obtained granulated powder was subjected to a pressure of 0.06 MPa (0.6 kgf / cm 2 ) with a 10MN powder molding machine (manufactured by Kotaki Seiki Co., Ltd., KPS1000-N0769 type). And then pre-molding with a cold press (CP: Cold Press), followed by main molding with a cold isostatic press (CIP: Cold Isostatic Press) under a pressure of 294 MPa (3 ton / cm 2 ). The final molded product was obtained.
そして、大気圧焼結炉により、常圧大気中、焼成温度を1300℃(実施例1では焼成温度:1400℃)にして上記最終成形体を20時間焼成し、比較例2に係るIn−Ga−Zn−O系酸化物焼結体を得た。 Then, the final molded body was fired for 20 hours at a firing temperature of 1300 ° C. (fire temperature: 1400 ° C. in Example 1) in an atmospheric pressure atmosphere in an atmospheric pressure sintering furnace. A —Zn—O-based oxide sintered body was obtained.
比較例2に係るIn−Ga−Zn−O系酸化物焼結体の組成は、実施例1と同様、ガリウムの含有量が原子数比[Ga]/[In]で1.0、亜鉛の含有量が原子数比[Zn]/[In]で1.0であり、また、比抵抗値は実施例1と異なり3.8×10-2Ω・cmであった。 As in Example 1, the composition of the In—Ga—Zn—O-based oxide sintered body according to Comparative Example 2 has a gallium content of 1.0 at an atomic ratio [Ga] / [In] of zinc, The content was 1.0 in terms of the atomic ratio [Zn] / [In], and the specific resistance value was 3.8 × 10 −2 Ω · cm, unlike Example 1.
また、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)を確認したところ、それぞれ2θが30.71°、31.31°および34.06°であった。 Further, when the peak positions (2θ) of the (009) plane, (101) plane, and (104) plane in the InGaZnO 4 phase were confirmed by X-ray diffraction using CuKα rays, 2θ was 30.71 ° and 31.31 °, respectively. 31 ° and 34.06 °.
更に、比較例2に係るIn−Ga−Zn−O系酸化物焼結体の平均結晶粒径を測定したところ、3.9μmであった。 Furthermore, the average crystal grain size of the In—Ga—Zn—O-based oxide sintered body according to Comparative Example 2 was measured and found to be 3.9 μm.
そして、実施例1と同様の条件で比較例2に係るIn−Ga−Zn−O系酸化物焼結体(ターゲット)の成膜速度を確認したところ、上述したように「成膜速度:66.3nm/min.」であった。 And when the film-forming speed | rate of the In-Ga-Zn-O type oxide sintered compact (target) which concerns on the comparative example 2 on the conditions similar to Example 1 was confirmed, as above-mentioned, "film-forming speed | rate: 66 .3 nm / min. "
このように比抵抗値が3.8×10-2Ω・cm(すなわち、1.0×10-1Ω・cm以下の条件)、上記X線回折によるInGaZnO4相における(009)面、(101)面、および、(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件を満たすが、上記結晶粒径が3.9μmで8.0μm以上の条件を満たさない比較例2に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、上述した実施例1と較べて成膜速度(成膜レート)が劣っている(実施例1の成膜速度は79.6nm/min.比較例2の成膜速度は66.3nm/min.)ことが確認された。 Thus, the specific resistance value is 3.8 × 10 −2 Ω · cm (that is, the condition of 1.0 × 10 −1 Ω · cm or less), the (009) plane in the InGaZnO 4 phase by the X-ray diffraction, The deviation of the peak position (2θ) of the (101) plane and the (104) plane is 0.1 ° or more, but the crystal grain size is 3.9 μm and does not satisfy the condition of 8.0 μm or more. The In—Ga—Zn—O-based oxide sintered body (sputtering target) according to Comparative Example 2 is inferior in film formation rate (film formation rate) as compared to Example 1 described above (the composition of Example 1). It was confirmed that the film speed was 79.6 nm / min. The film formation speed of Comparative Example 2 was 66.3 nm / min.).
[実施例2と比較例3]
上記CPによる予備成形時の圧力を0.03MPa(実施例2)、0.01MPa(比較例3)とした以外は実施例1と同様の条件にてIn−Ga−Zn−O系酸化物焼結体を製造した。
[Example 2 and Comparative Example 3]
In-Ga-Zn-O-based oxide firing was performed under the same conditions as in Example 1 except that the pressure at the time of preforming with CP was set to 0.03 MPa (Example 2) and 0.01 MPa (Comparative Example 3). A ligation was produced.
得られた実施例2と比較例3に係るIn−Ga−Zn−O系酸化物焼結体の組成は、実施例1と同様、ガリウムの含有量が原子数比[Ga]/[In]で1.0、亜鉛の含有量が原子数比[Zn]/[In]で1.0であった。 The composition of the obtained In—Ga—Zn—O-based oxide sintered bodies according to Example 2 and Comparative Example 3 was the same as in Example 1 in that the gallium content was atomic ratio [Ga] / [In]. The zinc content was 1.0 at an atomic ratio [Zn] / [In].
また、得られた実施例2と比較例3に係るIn−Ga−Zn−O系酸化物焼結体の比抵抗値、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれ、平均結晶粒径値について実施例1と同様の方法にて測定したところ、以下の表2に示す結果が得られた。 Moreover, the specific resistance value of the In-Ga-Zn-O-based oxide sintered body according to Example 2 and Comparative Example 3 obtained, (009) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays, When the deviation of the peak position (2θ) of the (101) plane and the (104) plane and the average crystal grain size were measured in the same manner as in Example 1, the results shown in Table 2 below were obtained.
この結果、実施例2に係るIn−Ga−Zn−O系酸化物焼結体においては、比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしているのに対し、比較例3では、CP予備成形値の圧力が不足していたことからX線回折ピーク位置のずれが小さかった。 As a result, in the In—Ga—Zn—O-based oxide sintered body according to Example 2, the specific resistance value (1.0 × 10 −1 Ω · cm or less), the crystal grain size (8.0 μm) were obtained. The deviation of the peak position (2θ) of the (009) plane, (101) plane and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays is 0.1 ° or more, respectively. While all of the certain conditions were satisfied, in Comparative Example 3, the deviation of the X-ray diffraction peak position was small because the pressure of the CP preforming value was insufficient.
次に、得られた実施例2と比較例3に係るIn−Ga−Zn−O系酸化物焼結体を実施例1と同様の条件で加工してスパッタリングターゲットを得、かつ、実施例1と同様の条件にてスパッタリング法による成膜を行い、その膜厚から成膜速度(成膜レート)を確認したところ、実施例2が「78.4nm/min.」、比較例3が「70.3nm/min.」であった。 Next, the obtained In—Ga—Zn—O-based oxide sintered body according to Example 2 and Comparative Example 3 was processed under the same conditions as in Example 1 to obtain a sputtering target. The film formation rate (deposition rate) was confirmed from the film thickness under the same conditions as in Example 1, and the film formation rate (film formation rate) was confirmed. Example 2 was “78.4 nm / min.” And Comparative Example 3 was “70”. .3 nm / min. "
このように比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしている実施例2に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、これ等の全ての条件を満たさない比較例1〜3に係る酸化物焼結体(スパッタリングターゲット)と較べて成膜速度(成膜レート)が10%以上速くなっていることが確認された。 Thus, in the condition of the specific resistance value (1.0 × 10 −1 Ω · cm or less), the condition of the crystal grain size (8.0 μm or more), and the InGaZnO 4 phase by X-ray diffraction using CuKα rays ( The In—Ga—Zn—O system according to Example 2 that satisfies all of the conditions that the deviation of the peak position (2θ) of the (009) plane, the (101) plane, and the (104) plane is 0.1 ° or more, respectively. The oxide sintered body (sputtering target) has a film formation rate (deposition rate) of 10% as compared with the oxide sintered bodies (sputtering target) according to Comparative Examples 1 to 3 that do not satisfy all these conditions. It was confirmed that it was faster.
[実施例3と比較例4]
成形体の焼成時において焼成炉内の雰囲気をO2とし、それぞれ焼成温度を1400℃(実施例3)、1300℃(比較例4)とした以外は実施例1と同様にしてIn−Ga−Zn−O系酸化物焼結体を製造した。
[Example 3 and Comparative Example 4]
In—Ga— was performed in the same manner as in Example 1 except that the atmosphere in the firing furnace was O 2 and the firing temperature was 1400 ° C. (Example 3) and 1300 ° C. (Comparative Example 4), respectively. A Zn—O-based oxide sintered body was produced.
得られた実施例3と比較例4に係るIn−Ga−Zn−O系酸化物焼結体の組成は、実施例1と同様、ガリウムの含有量が原子数比[Ga]/[In]で1.0、亜鉛の含有量が原子数比[Zn]/[In]で1.0であった。 As for the composition of the obtained In—Ga—Zn—O-based oxide sintered body according to Example 3 and Comparative Example 4, the gallium content is the atomic ratio [Ga] / [In]. The zinc content was 1.0 at an atomic ratio [Zn] / [In].
また、得られた実施例3と比較例4に係るIn−Ga−Zn−O系酸化物焼結体の比抵抗値、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれ、平均結晶粒径値について実施例1と同様の方法にて測定したところ、以下の表2に示す結果が得られた。 Moreover, the specific resistance value of the In-Ga-Zn-O-based oxide sintered body according to Example 3 and Comparative Example 4 obtained, (009) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays, When the deviation of the peak position (2θ) of the (101) plane and the (104) plane and the average crystal grain size were measured in the same manner as in Example 1, the results shown in Table 2 below were obtained.
この結果、実施例3に係るIn−Ga−Zn−O系酸化物焼結体においては、比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしているのに対し、比較例4では、焼成温度(1300℃)が低すぎたことにより、酸素雰囲気で焼成しても十分な粒成長が起こっていなかった。 As a result, in the In—Ga—Zn—O-based oxide sintered body according to Example 3, the specific resistance value (1.0 × 10 −1 Ω · cm or less), the crystal grain size (8.0 μm) were obtained. The deviation of the peak position (2θ) of the (009) plane, (101) plane and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays is 0.1 ° or more, respectively. While all of the certain conditions were satisfied, in Comparative Example 4, the firing temperature (1300 ° C.) was too low, so that sufficient grain growth did not occur even when firing in an oxygen atmosphere.
次に、得られた実施例3と比較例4に係るIn−Ga−Zn−O系酸化物焼結体を実施例1と同様の条件で加工してスパッタリングターゲットを得、かつ、実施例1と同様の条件にてスパッタリング法による成膜を行い、その膜厚から成膜速度(成膜レート)を確認したところ、実施例3が「84.5nm/min.」、比較例4が「70.8nm/min」であった。 Next, the obtained In—Ga—Zn—O-based oxide sintered body according to Example 3 and Comparative Example 4 was processed under the same conditions as in Example 1 to obtain a sputtering target. The film formation rate (deposition rate) was confirmed from the film thickness under the same conditions as in Example 1, and the film formation rate (film formation rate) was confirmed. Example 3 was “84.5 nm / min.” And Comparative Example 4 was “70”. .8 nm / min ".
このように比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしている実施例3に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、これ等の全ての条件を満たさない比較例1〜4に係る酸化物焼結体(スパッタリングターゲット)と較べて成膜速度(成膜レート)が10%以上速くなっていることが確認された。 Thus, in the condition of the specific resistance value (1.0 × 10 −1 Ω · cm or less), the condition of the crystal grain size (8.0 μm or more), and the InGaZnO 4 phase by X-ray diffraction using CuKα rays ( The In—Ga—Zn—O system according to Example 3 that satisfies all of the conditions that the deviation of the peak position (2θ) of the (009) plane, (101) plane, and (104) plane is 0.1 ° or more, respectively. The oxide sintered body (sputtering target) has a film formation rate (film formation rate) of 10% compared to the oxide sintered body (sputtering target) according to Comparative Examples 1 to 4 that does not satisfy all these conditions. It was confirmed that it was faster.
[比較例5]
成形体の焼成時において焼成温度を1650℃とした以外は実施例1と同様にしてIn−Ga−Zn−O系酸化物焼結体を製造した。
[Comparative Example 5]
An In—Ga—Zn—O-based oxide sintered body was produced in the same manner as in Example 1 except that the firing temperature was 1650 ° C. during firing of the molded body.
得られた比較例5に係るIn−Ga−Zn−O系酸化物焼結体の組成は、ガリウムの含有量が原子数比[Ga]/[In]で1.1、亜鉛の含有量が原子数比[Zn]/[In]で0.7となっており、焼結温度(1650℃)が高すぎたため、揮発が発生したためか投入組成と較べて組成にずれが生じており、製造条件としては工業的に有用でないことが確認された。 The composition of the obtained In—Ga—Zn—O-based oxide sintered body according to Comparative Example 5 has a gallium content of 1.1 in atomic ratio [Ga] / [In], and a zinc content of The atomic ratio [Zn] / [In] is 0.7, and since the sintering temperature (1650 ° C.) is too high, the volatilization has occurred or the composition has shifted compared to the input composition. It was confirmed that the conditions were not industrially useful.
尚、得られた比較例5に係るIn−Ga−Zn−O系酸化物焼結体の比抵抗値、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれ、平均結晶粒径値について実施例1と同様の方法にて測定したところ、以下の表2に示す結果が得られた。 In addition, the specific resistance value of the obtained In—Ga—Zn—O-based oxide sintered body according to Comparative Example 5, (009) plane, (101) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα ray Further, when the deviation of the peak position (2θ) on the (104) plane and the average crystal grain size value were measured by the same method as in Example 1, the results shown in Table 2 below were obtained.
次に、得られた比較例5に係るIn−Ga−Zn−O系酸化物焼結体を実施例1と同様の条件で加工してスパッタリングターゲットを得、かつ、実施例1と同様の条件にてスパッタリング法による成膜を行い、その膜厚から成膜速度(成膜レート)を確認したところ、比較例5の成膜速度(成膜レート)は「88.4nm/min.」であった。 Next, the obtained In—Ga—Zn—O-based oxide sintered body according to Comparative Example 5 was processed under the same conditions as in Example 1 to obtain a sputtering target, and the same conditions as in Example 1 were obtained. The film formation rate (deposition rate) was confirmed from the film thickness by sputtering, and the film formation rate (deposition rate) of Comparative Example 5 was “88.4 nm / min.”. It was.
そして、比較例5においては粒成長(15.2μm)とXRDピーク位置の効果から成膜速度(成膜レート)改善の効果を確認できたものの、得られた膜は比較例5の焼結体と同様に目的の組成からずれており、かつ、得られた焼結体は過度な粒成長のためにその強度が低下したためか、製造時に20枚中6枚で割れが発生した。 In Comparative Example 5, although the effect of improving the film formation rate (deposition rate) was confirmed from the effects of grain growth (15.2 μm) and the XRD peak position, the obtained film was a sintered body of Comparative Example 5 Similarly, the obtained sintered body was deviated from the intended composition, and the strength of the sintered body was reduced due to excessive grain growth.
これ等の結果から、比較例5の条件は工業的に有用でないことが確認された。 From these results, it was confirmed that the conditions of Comparative Example 5 were not industrially useful.
[実施例4と比較例6〜8]
ガリウムの含有量を原子数比[Ga]/[In]で1.5(実施例4)、0.9(比較例6)、1.7(比較例7)とし、かつ、亜鉛の含有量を原子数比[Zn]/[In]で1.2(比較例8)とした以外は実施例1と同様にて、実施例4と比較例6〜8に係るIn−Ga−Zn−O系酸化物焼結体を製造した。
[Example 4 and Comparative Examples 6 to 8]
The gallium content is 1.5 (Example 4), 0.9 (Comparative Example 6), and 1.7 (Comparative Example 7) in terms of atomic ratio [Ga] / [In], and the zinc content Is the same as Example 1 except that the atomic ratio [Zn] / [In] is 1.2 (Comparative Example 8). In-Ga-Zn-O according to Example 4 and Comparative Examples 6-8 A system oxide sintered body was produced.
得られた実施例4と比較例6〜8に係るIn−Ga−Zn−O系酸化物焼結体の組成は、表2に示すように投入組成と一致していた。 The compositions of the obtained In—Ga—Zn—O-based oxide sintered bodies according to Example 4 and Comparative Examples 6 to 8 matched the input composition as shown in Table 2.
また、得られた実施例4と比較例6〜8に係るIn−Ga−Zn−O系酸化物焼結体の比抵抗値、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれ、平均結晶粒径値について実施例1と同様の方法にて測定したところ、表2に示す結果が得られた。 In addition, specific resistance values of the obtained In-Ga-Zn-O-based oxide sintered bodies according to Example 4 and Comparative Examples 6 to 8, in the InGaZnO 4 phase by X-ray diffraction using CuKα rays (009) When the surface, (101) plane, (104) plane peak position (2θ) deviation, and average crystal grain size were measured in the same manner as in Example 1, the results shown in Table 2 were obtained.
この結果、実施例4に係るIn−Ga−Zn−O系酸化物焼結体においては、比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしているのに対し、比較例6ではGa量が少なかったことにより比抵抗値(1.2×10-1Ω・cm)が1.0×10-1Ω・cmを超えていた。また、比較例7と比較例8では、それぞれGaあるいはZnが多すぎたせいか、比抵抗値(1.3×10-1Ω・cm)が高かっただけでなく結晶性の低下により焼結体中の粒径が8.0μmより小さく(比較例7が7.6μm、比較例8が7.8μm、)なっていた。 As a result, in the In—Ga—Zn—O-based oxide sintered body according to Example 4, the specific resistance value (1.0 × 10 −1 Ω · cm or less), the crystal grain size (8.0 μm) were obtained. The deviation of the peak position (2θ) of the (009) plane, (101) plane and (104) plane in the InGaZnO 4 phase by X-ray diffraction using CuKα rays is 0.1 ° or more, respectively. While all of the certain conditions are satisfied, in Comparative Example 6, the specific resistance value (1.2 × 10 −1 Ω · cm) is 1.0 × 10 −1 Ω · cm due to the small amount of Ga. It was over. In Comparative Example 7 and Comparative Example 8, sintering was not only caused by high specific resistance (1.3 × 10 −1 Ω · cm) but also due to a decrease in crystallinity because of excessive Ga or Zn, respectively. The particle size in the body was smaller than 8.0 μm (Comparative Example 7 was 7.6 μm, Comparative Example 8 was 7.8 μm).
次に、得られた実施例4と比較例6〜8に係るIn−Ga−Zn−O系酸化物焼結体を実施例1と同様の条件で加工してスパッタリングターゲットを得、かつ、実施例1と同様の条件にてスパッタリング法による成膜を行い、その膜厚から成膜速度(成膜レート)を確認したところ、実施例4が「78.3nm/min.」、比較例6が「70.9nm/min.」、比較例7が「69.9nm/min.」、比較例8が「70.4nm/min.」であった。 Next, the obtained In—Ga—Zn—O-based oxide sintered body according to Example 4 and Comparative Examples 6 to 8 was processed under the same conditions as in Example 1 to obtain a sputtering target, and Film formation by sputtering was performed under the same conditions as in Example 1, and the film formation rate (deposition rate) was confirmed from the film thickness. As a result, Example 4 was “78.3 nm / min.” And Comparative Example 6 was “70.9 nm / min.”, Comparative Example 7 was “69.9 nm / min.”, And Comparative Example 8 was “70.4 nm / min.”.
このように比抵抗値(1.0×10-1Ω・cm以下)の条件、結晶粒径(8.0μm以上)の条件、および、CuKα線を使用したX線回折によるInGaZnO4相における(009)面、(101)面および(104)面のピーク位置(2θ)のずれがそれぞれ0.1°以上である条件の全てを満たしている実施例4に係るIn−Ga−Zn−O系酸化物焼結体(スパッタリングターゲット)は、これ等の全ての条件を満たさない比較例1〜8に係る酸化物焼結体(スパッタリングターゲット)と較べて成膜速度(成膜レート)が10%以上速くなっていることが確認された。 Thus, in the condition of the specific resistance value (1.0 × 10 −1 Ω · cm or less), the condition of the crystal grain size (8.0 μm or more), and the InGaZnO 4 phase by X-ray diffraction using CuKα rays ( The In—Ga—Zn—O system according to Example 4 that satisfies all of the conditions that the deviation of the peak position (2θ) of the (009) plane, the (101) plane, and the (104) plane is 0.1 ° or more, respectively. The oxide sintered body (sputtering target) has a film formation rate (deposition rate) of 10% as compared with the oxide sintered bodies (sputtering target) according to Comparative Examples 1 to 8 that do not satisfy all these conditions. It was confirmed that it was faster.
本発明に係るIn−Ga−Zn−O系酸化物焼結体を加工して得られるスパッタリングターゲットは成膜速度(成膜レート)が改善されて速いため、例えば、薄膜トランジスタ(TFT)をスパッタリング成膜して形成するときのスパッタリングターゲットに適用される産業上の利用可能性を有している。 Since a sputtering target obtained by processing the In—Ga—Zn—O-based oxide sintered body according to the present invention has a high film formation speed (film formation rate) and is fast, for example, a thin film transistor (TFT) is formed by sputtering. It has industrial applicability applied to sputtering targets when formed as a film.
Claims (7)
In2O3粉末、ZnO粉末およびGa2O3粉末を、純水、有機バインダー、分散剤と混合してスラリーを調製し、このスラリーを乾燥、造粒して造粒粉を得る工程と、
得られた造粒粉を、金型プレスを用いて0.03MPa以上の加圧条件で予備成形した後、98MPa以上の加圧条件で静水加圧方式による本成形を行なって最終成形体を得る工程と、
得られた最終成形体を1350℃〜1600℃で焼成して焼結体を得る工程、
の各工程を具備することを特徴とするIn−Ga−Zn−O系酸化物焼結体の製造方法。 In the method for producing the In-Ga-Zn-O-based oxide sintered body according to any one of claims 1 to 3,
In 2 O 3 powder, ZnO powder and Ga 2 O 3 powder are mixed with pure water, an organic binder, a dispersant to prepare a slurry, and the slurry is dried and granulated to obtain a granulated powder;
The obtained granulated powder is preformed under a pressure condition of 0.03 MPa or higher using a mold press, and then subjected to a main molding by a hydrostatic pressure method under a pressure condition of 98 MPa or higher to obtain a final molded body. Process,
A step of firing the obtained final molded body at 1350 ° C. to 1600 ° C. to obtain a sintered body,
The manufacturing method of the In-Ga-Zn-O type oxide sintered compact characterized by comprising each process of these.
請求項6に記載のスパッタリングターゲットを原料として用い、インジウム、ガリウム、亜鉛、酸素を構成元素とし、インジウムに対するガリウムの含有量が原子数比[Ga]/[In]で1.0以上1.6以下、インジウムに対する亜鉛の含有量が原子数比[Zn]/[In]で0.01以上1.0以下であることを特徴とする酸化物半導体膜。 In an oxide semiconductor film formed by a sputtering method,
The sputtering target according to claim 6 is used as a raw material, and indium, gallium, zinc and oxygen are constituent elements, and the content of gallium with respect to indium is 1.0 or more and 1.6 in terms of atomic ratio [Ga] / [In]. An oxide semiconductor film having a zinc content with respect to indium of 0.01 to 1.0 in terms of atomic ratio [Zn] / [In].
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012065026A JP2013193945A (en) | 2012-03-22 | 2012-03-22 | SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM |
PCT/JP2013/050749 WO2013140838A1 (en) | 2012-03-22 | 2013-01-17 | SINTERED In-Ga-Zn-O-BASED OXIDE COMPACT AND METHOD FOR PRODUCING SAME, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR FILM |
TW102102568A TW201339332A (en) | 2012-03-22 | 2013-01-24 | In-Ga-Zn-O based oxide sintered body, manufacturing method thereof, sputtering target and oxide semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012065026A JP2013193945A (en) | 2012-03-22 | 2012-03-22 | SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013193945A true JP2013193945A (en) | 2013-09-30 |
Family
ID=49222306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012065026A Pending JP2013193945A (en) | 2012-03-22 | 2012-03-22 | SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013193945A (en) |
TW (1) | TW201339332A (en) |
WO (1) | WO2013140838A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019202753A1 (en) * | 2018-04-18 | 2019-10-24 | 三井金属鉱業株式会社 | Oxide sintered body, sputtering target, and method for producing oxide thin film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5205696B2 (en) * | 2006-02-24 | 2013-06-05 | 住友金属鉱山株式会社 | Gallium oxide based sintered body and method for producing the same |
JP5591523B2 (en) * | 2009-11-19 | 2014-09-17 | 出光興産株式会社 | In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation |
JP2012144410A (en) * | 2011-01-14 | 2012-08-02 | Kobelco Kaken:Kk | Oxide sintered compact, and sputtering target |
-
2012
- 2012-03-22 JP JP2012065026A patent/JP2013193945A/en active Pending
-
2013
- 2013-01-17 WO PCT/JP2013/050749 patent/WO2013140838A1/en active Application Filing
- 2013-01-24 TW TW102102568A patent/TW201339332A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW201339332A (en) | 2013-10-01 |
WO2013140838A1 (en) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102471160B (en) | The manufacture method of indium oxide sintered body, indium oxide transparent conductive film and this nesa coating | |
JP5339100B2 (en) | Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition | |
TWI480255B (en) | Oxide sintered body and sputtering target | |
JP4885274B2 (en) | Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film | |
US10000842B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US9941415B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
TW201307244A (en) | Zn-Sn-O type oxide sintered compact and method for manufacturing same | |
TW201538431A (en) | Sintered oxide and sputtering target, and method for producing same | |
US10128108B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
TW201546018A (en) | Sintered oxide and sputtering target | |
KR101331293B1 (en) | Sintered oxide and oxide semiconductor thin film | |
JP2019038735A (en) | Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film | |
JP2007246318A (en) | Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film | |
US9670578B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
TWI622568B (en) | Oxide sintered body and sputtering target | |
US9670577B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US9688580B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
JP2013193945A (en) | SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM | |
JP2017036198A (en) | Sn-Zn-O-BASED OXIDE SINTERED BODY AND MANUFACTURING METHOD THEREFOR | |
JP5761253B2 (en) | Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition | |
JP2012148937A (en) | Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target | |
JP5822034B2 (en) | Sputtering target and manufacturing method thereof |