[go: up one dir, main page]

JP2013191458A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013191458A
JP2013191458A JP2012057769A JP2012057769A JP2013191458A JP 2013191458 A JP2013191458 A JP 2013191458A JP 2012057769 A JP2012057769 A JP 2012057769A JP 2012057769 A JP2012057769 A JP 2012057769A JP 2013191458 A JP2013191458 A JP 2013191458A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057769A
Other languages
Japanese (ja)
Other versions
JP5900853B2 (en
Inventor
Hitoshi Nakayama
仁 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2012057769A priority Critical patent/JP5900853B2/en
Publication of JP2013191458A publication Critical patent/JP2013191458A/en
Application granted granted Critical
Publication of JP5900853B2 publication Critical patent/JP5900853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】本発明は、サイクル特性が高い非水電解質二次電池を提供する。
【解決手段】正極10と負極20との間を移動して電子の授受を行うLiを有する正極10と、正極10と負極20との間を移動して電子の授受を行うLi及びSiO(0≦x<2)を有する負極20とが組み込まれたことよりなる。前記正極10は、前記の正極10と負極20との間を移動して電子の授受を行うLiを有する正極活物質(A)を含有することが好ましく、前記正極10は、前記正極活物質(A)以外の正極活物質(B)を併有してもよく、前記正極活物質(A)は、リチウム鉄リン酸化合物、リチウムコバルト酸化物及びリチウムニッケル酸化物から選択される1種以上であり、前記正極活物質(B)は、スピネル型リチウムマンガン酸化物、モリブデン酸化物及びバナジウム酸化物から選択される1種以上であることが好ましい。
【選択図】図1
The present invention provides a non-aqueous electrolyte secondary battery having high cycle characteristics.
SOLUTION: A positive electrode 10 having Li that moves between a positive electrode 10 and a negative electrode 20 to exchange electrons, and Li and SiO x that moves between a positive electrode 10 and a negative electrode 20 to exchange electrons. The negative electrode 20 having 0 ≦ x <2) is incorporated. The positive electrode 10 preferably contains a positive electrode active material (A) having Li that moves between the positive electrode 10 and the negative electrode 20 to exchange electrons, and the positive electrode 10 includes the positive electrode active material ( A positive electrode active material (B) other than A) may be included, and the positive electrode active material (A) is one or more selected from lithium iron phosphate compounds, lithium cobalt oxides, and lithium nickel oxides. In addition, the positive electrode active material (B) is preferably at least one selected from spinel type lithium manganese oxide, molybdenum oxide and vanadium oxide.
[Selection] Figure 1

Description

本発明は、非水電解質二次電池に関する。  The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、エネルギー密度が高く軽量であることから、電子機器の電源として注目され、特にボタン型の非水電解質二次電池は、小型であることから携帯電話等の携帯電子機器のバックアップ用途を含め広く利用されている。
非水電解質二次電池は、充放電が繰り返されると、次第に放電容量が低下する。非水電解質二次電池は、電子機器から発せられた熱により50℃以上に加熱されることがあり、このような高温状況下で充放電が繰り返されると、容量の低下がより速くなる傾向にある。このため、非水電解質二次電池には、充放電が繰り返されても、放電容量が低下しにくい(サイクル特性が高い)ものが求められている。
例えば、正極活物質としてLiMn12を用い、負極活物質としてSiOを用いたものが知られている(例えば、特許文献1)。特許文献1の発明によれば、特定の正極活物質と特定の負極活物質を組み合わせることによって、サイクル特性の向上が図られている。
Non-aqueous electrolyte secondary batteries are attracting attention as a power source for electronic devices because of their high energy density and light weight. In particular, button-type non-aqueous electrolyte secondary batteries are small in size and are therefore portable electronic devices such as mobile phones. Widely used including backup applications.
The discharge capacity of the nonaqueous electrolyte secondary battery gradually decreases when charging and discharging are repeated. The nonaqueous electrolyte secondary battery may be heated to 50 ° C. or more by heat generated from the electronic device, and when charge and discharge are repeated under such a high temperature condition, the capacity is likely to decrease more rapidly. is there. For this reason, a nonaqueous electrolyte secondary battery is required that has a low discharge capacity (high cycle characteristics) even when charging and discharging are repeated.
For example, using Li 4 Mn 5 O 12 as the positive electrode active material, one using a SiO is known as an anode active material (e.g., Patent Document 1). According to the invention of Patent Document 1, the cycle characteristics are improved by combining a specific positive electrode active material and a specific negative electrode active material.

特開2004−327282号公報JP 2004-327282 A

しかしながら、非水電解質二次電池には、さらなるサイクル特性の向上が求められている。
そこで、本発明は、サイクル特性が高い非水電解質二次電池を目的とする。
However, further improvement in cycle characteristics is required for nonaqueous electrolyte secondary batteries.
Accordingly, the present invention is directed to a non-aqueous electrolyte secondary battery having high cycle characteristics.

従来の非水電解質二次電池は、正極又は負極にのみ、正極と負極との間を移動して電子の授受を行うLi(以下、可逆Liということがある)を有している。例えば、ボタン型(コイン型)の非水電解質二次電池は、負極にLiを吸蔵させ、この吸蔵させたLiの移動によって正極と負極との間で電子の授受を行わせている。通常、負極に吸蔵させたLiの一部は可逆容量分として正極と負極との間を移動し、他の一部は不可逆容量分として負極内に保持される。このため、負極に不可逆容量分を加味した量のLiを吸蔵させておくことで、可逆容量分のLiの必要量を確保することが図られている。
可逆Liは、充放電を繰り返す間に電極表面で電解液との反応物(有機物、フッ化物、水酸化物等)等を生成することで消費されて低減すると共に、先の反応物によって生じた皮膜(以下、SEIということがある)がリチウムイオンの電荷抵抗を増大させ、充放電時の過電圧を増大させて、電池機能を低下させていく。ここで、正極の容量よりも負極の容量を大きくして、多量のLiを負極に吸蔵させることで、サイクル特性の向上を図れるものの、小型のボタン型の非水電解質二次電池では、電池全体に占める負極の体積の割合が制限されるため、負極の体積割合を大きくすることによるサイクル特性の向上に限界がある。
本発明者らは鋭意検討した結果、予め、正極及び負極のそれぞれに、可逆Liを含有させておくことで、非水電解質二次電池のサイクル特性の向上が図れることを見出し、本発明に至った。
A conventional non-aqueous electrolyte secondary battery has Li (hereinafter sometimes referred to as reversible Li) that transfers electrons between the positive electrode and the negative electrode only in the positive electrode or the negative electrode. For example, in a button-type (coin-type) non-aqueous electrolyte secondary battery, Li is occluded in a negative electrode, and electrons are transferred between the positive electrode and the negative electrode by movement of the occluded Li. Usually, a part of Li occluded in the negative electrode moves between the positive electrode and the negative electrode as a reversible capacity, and the other part is held in the negative electrode as an irreversible capacity. For this reason, it has been attempted to ensure the necessary amount of Li for the reversible capacity by storing the amount of Li with the irreversible capacity added to the negative electrode.
Reversible Li is consumed and reduced by generating a reaction product (organic matter, fluoride, hydroxide, etc.) with the electrolyte solution on the electrode surface during repeated charge and discharge, and is generated by the previous reaction product. The film (hereinafter sometimes referred to as SEI) increases the charge resistance of lithium ions, increases the overvoltage during charging and discharging, and decreases the battery function. Here, although the capacity of the negative electrode is made larger than the capacity of the positive electrode and a large amount of Li is occluded in the negative electrode, the cycle characteristics can be improved. However, in the small button type non-aqueous electrolyte secondary battery, the entire battery Since the ratio of the volume of the negative electrode occupying is limited, there is a limit to improving the cycle characteristics by increasing the volume ratio of the negative electrode.
As a result of intensive studies, the present inventors have found that the cycle characteristics of the nonaqueous electrolyte secondary battery can be improved by incorporating reversible Li in each of the positive electrode and the negative electrode in advance, leading to the present invention. It was.

即ち、本発明の非水電解質二次電池は、正極と負極との間を移動して電子の授受を行うLiを有する正極と、正極と負極との間を移動して電子の授受を行うLi及びSiO(0≦x<2)を有する負極とが組み込まれたことを特徴とする。
前記正極は、前記の正極と負極との間を移動して電子の授受を行うLiを有する正極活物質(A)を含有することが好ましく、前記正極は、前記正極活物質(A)以外の正極活物質(B)を併有してもよく、前記正極活物質(A)は、リチウム鉄リン酸化合物、リチウムコバルト酸化物及びリチウムニッケル酸化物から選択される1種以上であり、前記正極活物質(B)は、スピネル型リチウムマンガン酸化物、モリブデン酸化物及びバナジウム酸化物から選択される1種以上が好ましい。
That is, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode having Li that moves between the positive electrode and the negative electrode to transfer electrons, and a Li that moves between the positive electrode and the negative electrode to transfer electrons. And a negative electrode having SiO x (0 ≦ x <2).
The positive electrode preferably contains a positive electrode active material (A) having Li that moves between the positive electrode and the negative electrode to exchange electrons, and the positive electrode is a material other than the positive electrode active material (A). The positive electrode active material (B) may be included, and the positive electrode active material (A) is at least one selected from a lithium iron phosphate compound, a lithium cobalt oxide, and a lithium nickel oxide, The active material (B) is preferably at least one selected from spinel type lithium manganese oxide, molybdenum oxide and vanadium oxide.

本発明の非水電解質二次電池によれば、サイクル特性の向上が図れる。   According to the nonaqueous electrolyte secondary battery of the present invention, the cycle characteristics can be improved.

本発明の一実施形態にかかる非水電解質二次電池の断面図である。It is sectional drawing of the nonaqueous electrolyte secondary battery concerning one Embodiment of this invention.

本発明の非水電解質二次電池は、正極と負極との間を移動して電子の授受を行うLiを有する正極と、正極と負極との間を移動して電子の授受を行うLi及びSiO(0≦x<2)を有する負極とが組み込まれたものである。
本発明の非水電解質二次電池の一実施形態について、図1を参照して説明する。非水電解質二次電池1は、いわゆるコイン型構造のものである。
図1の非水電解質二次電池1は、有底円筒状の本体部(正極缶)12と、正極缶12の開口部を塞ぐ有蓋円筒状の蓋部(負極缶)22と、正極缶12の内周面に沿って設けられたガスケット40とからなり、正極缶12の開口部周縁を内側にかしめた収納容器2を備えるものである。
非水電解質二次電池1は、収納容器2内に、正極10と負極20とがセパレータ30を介して対向配置され、電解液50が充填されたものである。正極10は正極集電体14を介して正極缶12の内面に電気的に接続され、負極20は負極集電体24を介して負極缶22の内面に電気的に接続されている。そして、正極10、負極20及びセパレータ30には、収納容器2内に充填された電解液50が含浸している。
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode having Li that moves between the positive electrode and the negative electrode to transfer electrons, and Li and SiO that moves between the positive electrode and the negative electrode to transfer electrons. and a negative electrode having x (0 ≦ x <2).
An embodiment of the nonaqueous electrolyte secondary battery of the present invention will be described with reference to FIG. The nonaqueous electrolyte secondary battery 1 has a so-called coin-type structure.
A non-aqueous electrolyte secondary battery 1 in FIG. 1 includes a bottomed cylindrical main body (positive electrode can) 12, a covered cylindrical lid (negative electrode can) 22 that closes the opening of the positive electrode can 12, and a positive electrode can 12. The container 40 is provided with a gasket 40 provided along the inner peripheral surface thereof, and the opening peripheral edge of the positive electrode can 12 is caulked inward.
In the nonaqueous electrolyte secondary battery 1, a positive electrode 10 and a negative electrode 20 are disposed opposite to each other with a separator 30 in a storage container 2 and filled with an electrolytic solution 50. The positive electrode 10 is electrically connected to the inner surface of the positive electrode can 12 via the positive electrode current collector 14, and the negative electrode 20 is electrically connected to the inner surface of the negative electrode can 22 via the negative electrode current collector 24. The positive electrode 10, the negative electrode 20, and the separator 30 are impregnated with the electrolytic solution 50 filled in the storage container 2.

正極缶12の材質としては、従来公知のものが用いられ、例えば、ステンレス鋼等が挙げられる。
負極缶22の材質は、正極缶12と同様である。
As the material of the positive electrode can 12, conventionally known materials are used, and examples thereof include stainless steel.
The material of the negative electrode can 22 is the same as that of the positive electrode can 12.

正極10としては、可逆Liを有するものが用いられる。
可逆Liは、正極10と負極20との間を移動して電子の授受を行えるものであれば、特に限定されないが、例えば、可逆Liを有する正極活物質(A)として、正極10に添加される。
正極活物質(A)としては、LiFe1−p PO(0≦p≦1、MはMn、Ni、Co、Ti、Al、Cr、V、Nbのうちの少なくとも1種類)、LiFe2−q (PO(0≦q≦1、MはMと同じである)等のリチウム鉄リン酸化合物、LiCo1−r (0≦r<1、MはMn、Ti、Fe、Cr、Al、Mo、V、Cu、Nb、Zn、Ca、Mgのうちの少なくとも1種類)等のリチウムコバルト酸化物、LiNi1−s (0≦s<1、MはMn、Co、Ti、Fe、Cr、Al、Mo、V、Cu、Nb、Zn、Ca、Mgのうちの少なくとも1種類)等のリチウムニッケル酸化物、LiCo1−t PO(0≦t<1、MはMと同じである)等のリチウムコバルトリン酸化合物、LiNi1−u PO(0≦u<1、MはMと同じである)等のリチウムニッケルリン酸化合物等が挙げられる。
As the positive electrode 10, one having reversible Li is used.
The reversible Li is not particularly limited as long as it can move between the positive electrode 10 and the negative electrode 20 to exchange electrons. For example, the reversible Li is added to the positive electrode 10 as a positive electrode active material (A) having reversible Li. The
As the positive electrode active material (A), LiFe 1-p M 4 p PO 4 (0 ≦ p ≦ 1, M 4 is at least one of Mn, Ni, Co, Ti, Al, Cr, V, and Nb) Li 3 Fe 2 -q M 5 q (PO 4 ) 3 (0 ≦ q ≦ 1, M 5 is the same as M 4 ), etc., lithium iron phosphate compounds, LiCo 1-r M 6 r O 2 ( 0 ≦ r <1, M 6 is Mn, Ti, Fe, Cr, Al, Mo, V, Cu, Nb, Zn, Ca, at least one) of lithium cobalt oxide such as of Mg, LiNi 1-s Lithium such as M 7 s O 2 (0 ≦ s <1, M 7 is Mn, Co, Ti, Fe, Cr, Al, Mo, V, Cu, Nb, Zn, Ca, Mg) Nickel oxide, LiCo 1-t M 8 t PO 4 (0 ≦ t <1, M 8 is the same as M 6 And lithium nickel phosphate compounds such as LiNi 1-u M 9 u PO 4 (0 ≦ u <1, M 9 is the same as M 7 ).

正極活物質(A)の平均粒子径(D50)は、特に限定されないが、例えば、リチウムコバルト酸化物やリチウムニッケル酸化物の場合には、0.1〜100μmが好ましく、1〜10μmがより好ましい。また、リチウム鉄リン酸化合物では、0.001〜1μmが好ましく、0.01〜0.1μmがより好ましい。上記下限値未満では、後述する正極活物質(B)と混合しにくく、上記上限値超では放電レートが低下するためである。なお、平均粒子径(D50)は、レーザー回折法を用いて測定される質量平均粒子径である。  The average particle diameter (D50) of the positive electrode active material (A) is not particularly limited. For example, in the case of lithium cobalt oxide or lithium nickel oxide, 0.1 to 100 μm is preferable, and 1 to 10 μm is more preferable. . Moreover, in a lithium iron phosphate compound, 0.001-1 micrometer is preferable and 0.01-0.1 micrometer is more preferable. This is because if it is less than the above lower limit value, it is difficult to mix with the positive electrode active material (B) described later, and if it exceeds the above upper limit value, the discharge rate decreases. In addition, an average particle diameter (D50) is a mass average particle diameter measured using a laser diffraction method.

正極10中の正極活物質(A)の含有量は、正極活物質(A)の種類等を勘案して決定でき、例えば、10〜76質量%が好ましく、28〜53質量%がより好ましい。上記下限値以上であれば、サイクル特性をより高められ、上記上限値以下であれば、正極10を成形しやすい。  The content of the positive electrode active material (A) in the positive electrode 10 can be determined in consideration of the type of the positive electrode active material (A) and the like, for example, preferably 10 to 76% by mass, and more preferably 28 to 53% by mass. If it is more than the said lower limit, cycling characteristics can be improved more, and if it is below the said upper limit, the positive electrode 10 will be easy to shape | mold.

正極10は、正極活物質(A)以外の正極活物質(B)を含有してもよい。
正極活物質(B)としては、例えば、LiMn5−w 12(0≦w<1、MはNi、Co、Ti、Fe、Cr、Al、Mo、V、Cu、Nb、Zn、Ca、Mgのうちの少なくとも1種類)、LiMn2−y (0≦y<1、MはMと同じである)、LiMn4−z (0≦z<1、MはMと同じである)等のスピネル型リチウムマンガン酸化物、MoO、MoO等のモリブデン酸化物、V、V、V13等のバナジウム酸化物等が挙げられる。これらの正極活物質(B)を含有することで、非水電解質二次電池1の放電容量を高められる。
正極活物質(B)は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
The positive electrode 10 may contain a positive electrode active material (B) other than the positive electrode active material (A).
As the positive electrode active material (B), for example, Li 4 Mn 5-w M 1 w O 12 (0 ≦ w <1, M 1 is Ni, Co, Ti, Fe, Cr, Al, Mo, V, Cu, Nb, Zn, Ca, Mg), LiMn 2-y M 2 y O 4 (0 ≦ y <1, M 2 is the same as M 1 ), Li 2 Mn 4-z M 3 spinel lithium manganese oxide such as z O 9 (0 ≦ z <1, M 3 is the same as M 1 ), molybdenum oxide such as MoO 3 and MoO 2 , V 2 O 5 , V 3 O 8 , Examples thereof include vanadium oxides such as V 6 O 13 . By containing these positive electrode active materials (B), the discharge capacity of the nonaqueous electrolyte secondary battery 1 can be increased.
A positive electrode active material (B) may be used individually by 1 type, and may be used in combination of 2 or more type.

正極活物質(A)と正極活物質(B)との組み合わせは、非水電解質二次電池1の電圧値等を勘案して決定される。
例えば、非水電解質二次電池1を電圧値4V以上5V未満のもの(4V系二次電池)とする場合、正極活物質(A)を含み、かつ正極活物質(B)を含まない構成、正極活物質(A)と、LiMnを除く正極活物質(B)とを組み合わせた構成等が好適である。
また、例えば、非水電解質二次電池1を電圧値3V以上4V未満のもの(3V系二次電池)とする場合、正極活物質(A)と、正極活物質(B)とを組み合わせた構成が好適である。
The combination of the positive electrode active material (A) and the positive electrode active material (B) is determined in consideration of the voltage value of the nonaqueous electrolyte secondary battery 1 and the like.
For example, when the nonaqueous electrolyte secondary battery 1 has a voltage value of 4 V or more and less than 5 V (4 V secondary battery), the positive electrode active material (A) is included and the positive electrode active material (B) is not included. a positive electrode active material (a), configured like a combination of a positive electrode active material (B) excluding the LiMn 2 O 4 are preferred.
For example, when the non-aqueous electrolyte secondary battery 1 has a voltage value of 3 V or more and less than 4 V (3 V secondary battery), the positive electrode active material (A) and the positive electrode active material (B) are combined. Is preferred.

正極活物質(B)の平均粒子径は、特に限定されないが、例えば、0.1〜100μmが好ましく、10〜50μmがより好ましい。上記下限値未満では、電解液との反応性が高まるため扱いにくく、上記上限値超では放電レートが低下するためである。  Although the average particle diameter of a positive electrode active material (B) is not specifically limited, For example, 0.1-100 micrometers is preferable and 10-50 micrometers is more preferable. If it is less than the above lower limit value, the reactivity with the electrolytic solution is increased, which is difficult to handle, and if it exceeds the above upper limit value, the discharge rate decreases.

正極10中の正極活物質(B)の含有量は、非水電解質二次電池1に求める放電容量等を勘案して決定され、例えば、10〜76質量%が好ましく、28〜53質量%がより好ましい。上記下限値以上であれば、放電容量をより高められ、上記上限値以下であれば、正極10を成形しやすい。  The content of the positive electrode active material (B) in the positive electrode 10 is determined in consideration of the discharge capacity and the like required for the nonaqueous electrolyte secondary battery 1, and is preferably 10 to 76% by mass, for example, 28 to 53% by mass. More preferred. If it is more than the said lower limit, discharge capacity can be raised more, and if it is below the said upper limit, the positive electrode 10 will be easy to shape | mold.

正極活物質(A)/正極活物質(B)で表される質量比(以下、A/B比ということがある)は、非水電解質二次電池1の電圧値等を勘案して決定される。A/B比が低すぎるとサイクル特性を十分に高められないおそれがあり、A/B比が高すぎると、所望する電圧値が得られなかったり、過充電によって正極活物質(A)が析出して非水電解質二次電池1が過熱する場合がある。
このため、例えば、3V系二次電池であれば、A/B比は、2/8〜8/2が好ましく、3/7〜7/3がより好ましく、4/6〜6/4がさらに好ましい。
The mass ratio represented by the positive electrode active material (A) / the positive electrode active material (B) (hereinafter sometimes referred to as A / B ratio) is determined in consideration of the voltage value of the nonaqueous electrolyte secondary battery 1 and the like. The If the A / B ratio is too low, the cycle characteristics may not be sufficiently improved. If the A / B ratio is too high, a desired voltage value cannot be obtained, or the positive electrode active material (A) is precipitated by overcharging. As a result, the non-aqueous electrolyte secondary battery 1 may overheat.
For this reason, for example, in the case of a 3V secondary battery, the A / B ratio is preferably 2/8 to 8/2, more preferably 3/7 to 7/3, and further preferably 4/6 to 6/4. preferable.

正極10中の正極活物質(A)と正極活物質(B)との合計量は、非水電解質二次電池1に求める放電容量等を勘案して決定され、例えば、50〜95質量%が好ましく、70〜88質量%がより好ましい。上記下限値未満では、十分な放電容量を得にくく、上記上限値超では、正極10を成形しにくい傾向となる。  The total amount of the positive electrode active material (A) and the positive electrode active material (B) in the positive electrode 10 is determined in consideration of the discharge capacity and the like required for the nonaqueous electrolyte secondary battery 1, and is, for example, 50 to 95% by mass. Preferably, 70 to 88% by mass is more preferable. If it is less than the above lower limit value, it is difficult to obtain a sufficient discharge capacity, and if it exceeds the above upper limit value, it tends to be difficult to form the positive electrode 10.

正極10は、導電助剤(正極10に用いられる導電助剤を正極導電助剤ということがある)を含有してもよい。正極導電助剤としては、例えば、ファーネスブラック、ケッチェンブラック、アセチレンブラック、グラファイト等の炭素材料等が挙げられる。これらの正極導電助剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
正極10中の正極導電助剤の含有量は、例えば、4〜40質量%が好ましく、10〜25質量%がより好ましい。上記下限値未満では、十分な導電性を得にくく、正極10をペレット状に成形する場合には成形しにくく、上記上限値超では正極10の放電容量が不十分になるおそれがある。
The positive electrode 10 may contain a conductive additive (the conductive additive used for the positive electrode 10 may be referred to as a positive conductive additive). Examples of the positive electrode conductive assistant include carbon materials such as furnace black, ketjen black, acetylene black, and graphite. These positive electrode conductive aids may be used alone or in combination of two or more.
4-40 mass% is preferable, for example, and, as for content of the positive electrode conductive support agent in the positive electrode 10, 10-25 mass% is more preferable. If it is less than the lower limit, it is difficult to obtain sufficient conductivity, and it is difficult to form the positive electrode 10 in the form of a pellet, and if it exceeds the upper limit, the discharge capacity of the positive electrode 10 may be insufficient.

正極10はバインダ(正極10に用いられるバインダを正極バインダということがある)を含有してもよい。正極バインダとしては、従来公知の物質を用いることができ、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)等のポリマー、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)等が挙げられ、中でも、ポリアクリル酸が好ましく、架橋型のポリアクリル酸がより好ましい。これらの正極バインダは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。なお、ポリアクリル酸を用いる場合には、ポリアクリル酸を予めpH3〜10に調整しておくことが好ましい。pHの調整には、水酸化リチウム等のアルカリ金属水酸化物や水酸化マグネシウム等のアルカリ土類金属水酸化物を用いることができる。
正極10中の正極バインダの含有量は、例えば、1〜20質量%とされる。
The positive electrode 10 may contain a binder (the binder used for the positive electrode 10 may be referred to as a positive electrode binder). As the positive electrode binder, conventionally known materials can be used. For example, polymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxy, etc. Examples thereof include methyl cellulose (CMC) and polyvinyl alcohol (PVA). Among them, polyacrylic acid is preferable, and cross-linked polyacrylic acid is more preferable. These positive electrode binders may be used alone or in combination of two or more. In addition, when using polyacrylic acid, it is preferable to adjust polyacrylic acid to pH 3-10 previously. For adjusting the pH, an alkali metal hydroxide such as lithium hydroxide or an alkaline earth metal hydroxide such as magnesium hydroxide can be used.
The content of the positive electrode binder in the positive electrode 10 is, for example, 1 to 20% by mass.

正極10の大きさは、非水電解質二次電池1の大きさに応じて決定される。
正極10の厚さは、非水電解質二次電池1の大きさに応じて決定され、非水電解質二次電池1が、バックアップ用のボタン型の非水電解質二次電池であれば、300〜1000μmとされる。
The size of the positive electrode 10 is determined according to the size of the nonaqueous electrolyte secondary battery 1.
The thickness of the positive electrode 10 is determined according to the size of the non-aqueous electrolyte secondary battery 1, and if the non-aqueous electrolyte secondary battery 1 is a button-type non-aqueous electrolyte secondary battery for backup, 300 to 1000 μm.

正極10は、従来公知の製造方法により得られる。正極10の製造方法は、例えば、正極活物質(A)、ならびに必要に応じて正極活物質(B)、正極導電助剤及び正極バインダから選択される1種以上を混合して正極合剤とし、この正極合剤を任意の形状に加圧成形する方法が挙げられる。
加圧成形時の圧力は、正極導電助剤の種類等を勘案して決定され、例えば、0.2〜5ton/cmとされる。
The positive electrode 10 is obtained by a conventionally known manufacturing method. The method for producing the positive electrode 10 includes, for example, a positive electrode active material (A) and, if necessary, at least one selected from a positive electrode active material (B), a positive electrode conductive additive, and a positive electrode binder to form a positive electrode mixture. And a method of pressure-molding the positive electrode mixture into an arbitrary shape.
The pressure at the time of pressure molding is determined in consideration of the type of the positive electrode conductive additive, and is, for example, 0.2 to 5 ton / cm 2 .

正極集電体14としては、従来公知のものが用いられ、例えば、炭素を導電性フィラーとする導電性樹脂接着剤等が挙げられる。  A conventionally well-known thing is used as the positive electrode electrical power collector 14, For example, the conductive resin adhesive etc. which use carbon as a conductive filler are mentioned.

負極20としては、可逆Liを含有するものが用いられ、例えば、負極活物質等を含有する負極ペレットに、可逆Liである金属リチウムを吸蔵させたものが挙げられる。
負極20中の可逆Liの含有量は、非水電解質二次電池1の放電容量等を勘案して決定され、例えば、負極20において、負極活物質の理論的な可逆容量(以下、理論容量ということがある)の5〜100%となる量が好ましく、20〜100%となる量がより好ましい(負極における負極活物質の理論容量に対する可逆Liの含有量を負極可逆Li量ということがある)。負極活物質がSiO(x=1)である場合、SiO(x=1)1モルに対し4モルのLiを吸蔵させられるが、この内の2モルのLiは負極活物質にトラップされて可逆Liの含有量は2モルとなる。このため、SiO(x=1)1モルに対して2.1〜4モルのLiを吸蔵させれば負極可逆Li量が5〜100%となり、SiO(x=1)1モルに対して2.4〜4モルのLiを吸蔵させれば負極可逆Li量が20〜100%となる。負極可逆Li量が上記下限値未満であると、サイクル特性を十分に高められないおそれがあり、上記上限値超では、サイクルに伴い負極20の表面にLi金属が析出しやすくなって非水電解質二次電池1の安定性が低下するおそれがある。
As the negative electrode 20, a material containing reversible Li is used, and for example, a negative electrode pellet containing a negative electrode active material and the like, in which metallic lithium as reversible Li is occluded, can be mentioned.
The content of reversible Li in the negative electrode 20 is determined in consideration of the discharge capacity of the nonaqueous electrolyte secondary battery 1. For example, in the negative electrode 20, the theoretical reversible capacity (hereinafter referred to as theoretical capacity) of the negative electrode active material. 5) to 100% is preferable, and an amount of 20 to 100% is more preferable (the content of reversible Li relative to the theoretical capacity of the negative electrode active material in the negative electrode may be referred to as negative electrode reversible Li amount) . When the negative electrode active material is SiO x (x = 1), 4 mol of Li is occluded with respect to 1 mol of SiO x (x = 1), but 2 mol of Li is trapped by the negative electrode active material. Thus, the reversible Li content is 2 mol. For this reason, if 2.1-4 mol of Li is occluded with respect to 1 mol of SiO x (x = 1), the negative electrode reversible Li amount becomes 5 to 100%, and with respect to 1 mol of SiO x (x = 1). If 2.4 to 4 mol of Li is occluded, the amount of negative electrode reversible Li becomes 20 to 100%. If the amount of negative electrode reversible Li is less than the above lower limit value, the cycle characteristics may not be sufficiently improved. If the amount exceeds the upper limit value, Li metal tends to precipitate on the surface of the negative electrode 20 with the cycle, and the nonaqueous electrolyte The stability of the secondary battery 1 may be reduced.

非水電解質二次電池1に組み込まれる正極10中の可逆Liと、非水電解質二次電池1に組み込まれる負極20中の可逆Liとの合計量(可逆Li総量)は、正極10の理論容量と負極20の理論容量との合計を100とした場合、50超100以下が好ましく、60〜70がより好ましい(正極10の理論容量と負極20の理論容量との合計100に対する可逆Li総量の比を可逆Li含有比ということがある)。可逆Li含有比が上記下限値以下では、サイクル特性を十分に高められないおそれがあり、可逆Li含有比が上記上限値超では、サイクルに伴い負極20の表面にLi金属が析出しやすくなって、非水電解質二次電池1の安定性が低下するおそれがある。  The total amount (reversible Li total amount) of reversible Li in the positive electrode 10 incorporated in the nonaqueous electrolyte secondary battery 1 and reversible Li in the negative electrode 20 incorporated in the nonaqueous electrolyte secondary battery 1 is the theoretical capacity of the positive electrode 10. And the theoretical capacity of the negative electrode 20 is 100, preferably more than 50 and less than 100, more preferably 60 to 70 (ratio of total reversible Li to 100 total of the theoretical capacity of the positive electrode 10 and the theoretical capacity of the negative electrode 20) May be referred to as a reversible Li content ratio). If the reversible Li content ratio is less than or equal to the above lower limit value, the cycle characteristics may not be sufficiently improved, and if the reversible Li content ratio exceeds the above upper limit value, Li metal tends to precipitate on the surface of the negative electrode 20 along with the cycle. The stability of the nonaqueous electrolyte secondary battery 1 may be reduced.

負極ペレットとしては、例えば、負極活物質としてSiO(0≦x<2)を含有するものであり、SiO(x=1)を含有するものが好ましい。このような負極活物質を含有することで、非水電解質二次電池1のサイクル特性をより高めたり、放電容量をより高めたりできる。なお、SiO(0≦x<2)は、X線回折パターンでブロードを示すアモルファス状で用いられてもよいが、予めSiO(0≦x<2)に熱処理を施して不均化した状態で用いられてもよい。 As a negative electrode pellet, for example, a material containing SiO x (0 ≦ x <2) as a negative electrode active material, and a material containing SiO x (x = 1) are preferable. By including such a negative electrode active material, the cycle characteristics of the nonaqueous electrolyte secondary battery 1 can be further increased, and the discharge capacity can be further increased. Note that SiO x (0 ≦ x <2) may be used in an amorphous state that shows broad in an X-ray diffraction pattern, but was previously disproportionated by subjecting SiO x (0 ≦ x <2) to heat treatment. It may be used in a state.

負極ペレットは、SiO(0≦x<2)以外の負極活物質(任意負極活物質)を含有できる。任意負極活物質としては、SnO(0≦v<1)、C(グラファイト、ハードカーボン等)、LiTi12、LiAl等が挙げられる。 The negative electrode pellet can contain a negative electrode active material (optional negative electrode active material) other than SiO x (0 ≦ x <2). Examples of the optional negative electrode active material include SnO v (0 ≦ v <1), C (graphite, hard carbon, etc.), Li 4 Ti 5 O 12 , LiAl, and the like.

負極ペレット中のSiO(0≦x<2)と任意負極活物質との合計量は、特に限定されないが、例えば、40〜85質量%とされる。負極活物質の含有量は、主に負極活物質の導電性により決まり、導電性の低い負極活物質であっても表面を炭素で被覆する等して導電性を高めたものであれば、負極活物質の含有比率を高められる。
負極活物質中のSiO(0≦x<2)の含有量は、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上がさらに好ましく、100質量%であってもよい。上記下限値以上であれば、可逆Liの含有量を増やし、サイクル特性のさらなる向上を図れるためである。
The total amount of SiO x of the negative electrode pellet (0 ≦ x <2) and any negative electrode active material is not particularly limited, for example, are 40 to 85 mass%. The content of the negative electrode active material is mainly determined by the conductivity of the negative electrode active material. Even if the negative electrode active material has a low conductivity, the negative electrode active material has a higher conductivity by coating the surface with carbon, etc. The content ratio of the active material can be increased.
The content of SiO x (0 ≦ x <2) in the negative electrode active material is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, and may be 100% by mass. . This is because the content of reversible Li can be increased and the cycle characteristics can be further improved if the lower limit is exceeded.

負極ペレットは、導電助剤(負極20に用いられる導電助剤を負極導電助剤ということがある)を含有できる。負極導電助剤は、正極導電助剤と同様である。
負極ペレット中の負極導電助剤の含有量は、例えば、4〜40質量%とされる。
負極ペレットは、バインダ(負極20に用いられるバインダを負極バインダということがある)を含有できる。負極バインダは、従来公知の物質を用いることができ、例えば、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアミドイミド(PAI)等が挙げられ、中でも、ポリアクリル酸が好ましく、架橋型のポリアクリル酸がより好ましい。これらの負極バインダは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。なお、ポリアクリル酸を用いる場合には、ポリアクリル酸を予めpH3〜10に調整しておくことが好ましい。pHの調整には、水酸化リチウム等のアルカリ金属水酸化物や水酸化マグネシウム等のアルカリ土類金属水酸化物を用いることができる。
負極ペレット中の負極バインダの含有量は、例えば、1〜20質量%とされる。
The negative electrode pellet can contain a conductive additive (the conductive aid used for the negative electrode 20 may be referred to as a negative conductive additive). The negative electrode conductive auxiliary is the same as the positive electrode conductive auxiliary.
Content of the negative electrode conductive support agent in a negative electrode pellet shall be 4-40 mass%, for example.
The negative electrode pellet can contain a binder (the binder used for the negative electrode 20 may be referred to as a negative electrode binder). As the negative electrode binder, a conventionally known material can be used. For example, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC), polyimide (PI), polyamideimide (PAI) and the like can be mentioned. Among them, polyacrylic acid is preferable, and cross-linked polyacrylic acid is more preferable. These negative electrode binders may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, when using polyacrylic acid, it is preferable to adjust polyacrylic acid to pH 3-10 previously. For adjusting the pH, an alkali metal hydroxide such as lithium hydroxide or an alkaline earth metal hydroxide such as magnesium hydroxide can be used.
The content of the negative electrode binder in the negative electrode pellet is, for example, 1 to 20% by mass.

負極20の大きさは、負極活物質の種類、非水電解質二次電池1の大きさや、正極10の大きさ等を勘案して決定される。負極20の大きさは、負極20の容量が正極10の容量よりも大きくなるように設計されることが好ましい。
(負極20の理論容量)/(正極10の理論容量)で表される負極/正極容量比は、例えば、0.5〜5が好ましく、1〜3がより好ましい。負極/正極容量比が上記下限値未満では、非水電解質二次電池1のサイクル特性を十分に高められないおそれがあり、上記上限値超では、例えば、正極10の大きさが制限され、非水電解質二次電池1の放電容量が低下するおそれがある。
The size of the negative electrode 20 is determined in consideration of the type of the negative electrode active material, the size of the non-aqueous electrolyte secondary battery 1, the size of the positive electrode 10, and the like. The size of the negative electrode 20 is preferably designed so that the capacity of the negative electrode 20 is larger than the capacity of the positive electrode 10.
The negative electrode / positive electrode capacity ratio represented by (theoretical capacity of the negative electrode 20) / (theoretical capacity of the positive electrode 10) is, for example, preferably 0.5 to 5, and more preferably 1 to 3. If the negative electrode / positive electrode capacity ratio is less than the lower limit, the cycle characteristics of the nonaqueous electrolyte secondary battery 1 may not be sufficiently improved. If the upper limit exceeds the upper limit, for example, the size of the positive electrode 10 is limited, The discharge capacity of the water electrolyte secondary battery 1 may be reduced.

負極集電体24は、正極集電体14と同様である。  The negative electrode current collector 24 is the same as the positive electrode current collector 14.

負極20の製造方法としては、例えば、以下の方法が挙げられる。
まず、負極活物質ならびに必要に応じて負極導電助剤及び/又は負極バインダを混合して負極合剤とし、この負極合剤を任意の形状に加圧成形して負極ペレットとする。
加圧成形時の圧力は、負極導電助剤の種類等を勘案して決定され、例えば、0.2〜5ton/cmとされる。
次いで、負極ペレットの表面に、リチウムフォイル等のLiの成形物を任意の圧力で押し付けつつ、任意の温度で静置して、負極ペレットにLiを吸蔵させる。この際、所望する可逆Liの量に、負極活物質の不可逆容量分のLiを加えた量のLiを負極ペレットに吸蔵(負極活物質のSiO(0≦x<2)にリチウムイオンをインターカレーション)させる。
Liの成形物を負極ペレットに押し付ける圧力は、特に限定されず、例えば、0.01〜1MPaとされる。
静置する温度は、特に限定されず、例えば、10〜60℃とされ、好ましくは20〜30℃とされる。
静置する時間は、Liを負極ペレットに十分に吸蔵できる時間とされ、例えば、5〜7日間とされる。
また、負極20の製造方法としては、負極ペレットの表面にLi層をスパッタリング等で形成し、その後、任意の温度で静置して負極ペレットにLiを吸蔵させる方法が挙げられる。
As a manufacturing method of the negative electrode 20, the following method is mentioned, for example.
First, a negative electrode active material and, if necessary, a negative electrode conductive additive and / or a negative electrode binder are mixed to form a negative electrode mixture, and the negative electrode mixture is pressure-molded into an arbitrary shape to form a negative electrode pellet.
The pressure at the time of pressure molding is determined in consideration of the type of the negative electrode conductive auxiliary agent, and is, for example, 0.2 to 5 ton / cm 2 .
Next, while pressing a molded product of Li such as lithium foil on the surface of the negative electrode pellet at an arbitrary pressure, the negative electrode pellet is allowed to stand at an arbitrary temperature to occlude Li in the negative electrode pellet. In this case, the amount of Li obtained by adding the amount of Li for the irreversible capacity of the negative electrode active material to the desired amount of reversible Li is occluded in the negative electrode pellet (intercalation of lithium ions into SiO x (0 ≦ x <2) of the negative electrode active material). (Calation).
The pressure which presses the molding of Li against a negative electrode pellet is not specifically limited, For example, you may be 0.01-1 Mpa.
The temperature to stand still is not specifically limited, For example, it is 10-60 degreeC, Preferably it is 20-30 degreeC.
The time to stand still is time which can fully occlude Li in a negative electrode pellet, for example, is 5 to 7 days.
Moreover, as a manufacturing method of the negative electrode 20, the method of forming Li layer on the surface of a negative electrode pellet by sputtering etc., and leaving still at arbitrary temperature and occluding Li in a negative electrode pellet is mentioned.

電解液50は、支持塩を非水溶媒に溶解させたものである。
非水溶媒としては、従来公知のものが用いられ、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2−ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等のカーボネート、γ−ブチロラクトン(GBL)、スルホラン(SL)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、1,2−エトキシメトキシエタン(EME)、テトラヒドロフラン(THF)、1,3−ジオキソラン(DOL)等が挙げられる。これらの非水溶媒は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
The electrolytic solution 50 is obtained by dissolving a supporting salt in a non-aqueous solvent.
As the non-aqueous solvent, conventionally known solvents are used. For example, ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), Carbonates such as diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), γ-butyrolactone (GBL), sulfolane (SL), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 1 , 2-ethoxymethoxyethane (EME), tetrahydrofuran (THF), 1,3-dioxolane (DOL) and the like. These non-aqueous solvents may be used alone or in combination of two or more.

支持塩は、非水電解質二次電池の電解液に支持塩として用いられる公知の物質を用いることができる。例えば、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSO等の有機酸リチウム塩、LiPF、LiBF、LiB(C、LiCl、LiBr等の無機酸リチウム塩等のリチウム塩等が挙げられる。中でも、リチウムイオン導電性を有する化合物であるリチウム塩が好ましく、LiN(CFSO2、LiN(FSO2、LiBFがより好ましく、耐熱性及び水分との反応性が低く、保存特性を十分に発揮できるという観点から、LiN(CFSOが特に好ましい。これらの支持塩は1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。 As the supporting salt, a known substance used as a supporting salt in the electrolyte solution of the nonaqueous electrolyte secondary battery can be used. For example, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 3 ) 2 , Organic acid lithium salts such as LiN (FSO 2 ) 2 , lithium salts such as LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, and other inorganic acid lithium salts can be used. Among these, lithium salts that are compounds having lithium ion conductivity are preferable, LiN (CF 3 SO 2 ) 2, LiN (FSO 2 ) 2, and LiBF 4 are more preferable, heat resistance and reactivity with moisture are low, and storage is performed. From the viewpoint of sufficiently exhibiting the characteristics, LiN (CF 3 SO 2 ) 2 is particularly preferable. These supporting salts may be used singly or in combination of two or more.

電解液50中の支持塩の含有量は、支持塩の種類等を勘案して決定でき、例えば、リチウム塩を用いる場合、0.5〜3.5mol/Lが好ましく、0.5〜3.0mol/Lがより好ましく、1〜2.5mol/Lが特に好ましい。リチウム塩濃度が高すぎても低すぎても電導度の低下が起き、電池特性に悪影響を及ぼすおそれがある。   The content of the supporting salt in the electrolytic solution 50 can be determined in consideration of the type of the supporting salt and the like. For example, when a lithium salt is used, 0.5 to 3.5 mol / L is preferable, and 0.5 to 3. 0 mol / L is more preferable, and 1 to 2.5 mol / L is particularly preferable. If the lithium salt concentration is too high or too low, the electrical conductivity is lowered, which may adversely affect the battery characteristics.

セパレータ30は、従来、非水電解質二次電池のセパレータに用いられるものを適用でき、例えば、ホウ珪酸ガラス、アルカリガラス、石英ガラス、鉛ガラス等のガラス、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリアミドイミド(PAI)、ポリイミド(PI)等の樹脂からなる不織布等が挙げられる。中でも、ガラス製不織布が好ましく、ホウ珪酸ガラス製不織布がより好ましい。ガラス製不織布は、機械強度に優れると共に、大きなイオン透過度を有するため、内部抵抗を低減して放電容量の向上を図れる。  As the separator 30, those conventionally used for separators of non-aqueous electrolyte secondary batteries can be applied, for example, glass such as borosilicate glass, alkali glass, quartz glass, lead glass, polyphenylene sulfide (PPS), polyether ether ketone. Nonwoven fabric made of a resin such as (PEEK), polyethylene terephthalate (PET), polyamideimide (PAI), polyimide (PI), and the like. Among these, a glass nonwoven fabric is preferable, and a borosilicate glass nonwoven fabric is more preferable. Since the glass nonwoven fabric has excellent mechanical strength and high ion permeability, the internal resistance can be reduced and the discharge capacity can be improved.

セパレータ30の厚さは、非水電解質二次電池1の大きさやセパレータ30の材質等を勘案して決定され、例えば、5〜300μmとされる。  The thickness of the separator 30 is determined in consideration of the size of the nonaqueous electrolyte secondary battery 1, the material of the separator 30, and the like, and is, for example, 5 to 300 μm.

ガスケット40の材質は、熱変形温度が230℃以上の樹脂が好ましい。熱変形温度が230℃以上であれば、例えばリフロー処理で、ガスケット40が著しく変形して電解液50が漏出するのを防止できる。ガスケット40の材質としては、例えば、ポリフェニルサルファイド(PPS)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、液晶ポリマー(LCP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)、ポリエーテルケトン樹脂(PEK)、ポリアリレート樹脂、ポリブチレンテレフタレート樹脂(PBT)、ポリシクロヘキサンジメチレンテレフタレート樹脂、ポリエーテルスルフォン樹脂(PES)、ポリアミノビスマレイミド樹脂、ポリエーテルイミド樹脂、フッ素樹脂等が挙げられる。また、これらの材料にガラス繊維、マイカウイスカー、セラミック微粉末等を30質量%以下の添加量で添加したものを好適に用いることができる。このような材質を用いることで、リフローハンダ付けにおいて、ガスケット40の変形を防止し、電解液50の揮発や漏出を防止できる。   The material of the gasket 40 is preferably a resin having a heat distortion temperature of 230 ° C. or higher. If the heat distortion temperature is 230 ° C. or higher, for example, reflow treatment can prevent the gasket 40 from being significantly deformed and the electrolyte solution 50 from leaking out. Examples of the material of the gasket 40 include polyphenyl sulfide (PPS), polyethylene terephthalate (PET), polyamide (PA), liquid crystal polymer (LCP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), and polyether. Ether ketone resin (PEEK), polyether nitrile resin (PEN), polyether ketone resin (PEK), polyarylate resin, polybutylene terephthalate resin (PBT), polycyclohexanedimethylene terephthalate resin, polyether sulfone resin (PES), Examples thereof include polyamino bismaleimide resin, polyetherimide resin, and fluororesin. Moreover, what added glass fiber, my cowsker, ceramic fine powder, etc. to these materials with the addition amount of 30 mass% or less can be used conveniently. By using such a material, deformation of the gasket 40 can be prevented in reflow soldering, and volatilization and leakage of the electrolytic solution 50 can be prevented.

本実施形態の非水電解質二次電池によれば、可逆Liを有する正極と、負極活物質としてSiO(0≦x<2)を含有し、かつ可逆Liを有する負極とが組み込まれているため、サイクル特性を高められる。 According to the nonaqueous electrolyte secondary battery of the present embodiment, a positive electrode having reversible Li and a negative electrode containing SiO x (0 ≦ x <2) as a negative electrode active material and having reversible Li are incorporated. Therefore, cycle characteristics can be improved.

上述の実施形態では、ステンレス鋼製の正極缶とステンレス鋼製の負極缶とをかしめた収納容器を備えるコイン型構造の非水電解質二次電池を例にして説明したが、本発明はこれに限定されない。例えば、非水電解質二次電池は、セラミックス製の容器本体の開口部が、金属製の封口部材を用いたシーム溶接等の加熱処理によってセラミックス製の蓋体で封止された構造であってもよい。  In the above-described embodiment, a coin-type nonaqueous electrolyte secondary battery including a storage container in which a stainless steel positive electrode can and a stainless steel negative electrode can are crimped has been described as an example. It is not limited. For example, the nonaqueous electrolyte secondary battery has a structure in which the opening of the ceramic container body is sealed with a ceramic lid by a heat treatment such as seam welding using a metal sealing member. Good.

以下に実施例を示して本発明を説明するが、本発明はこれらの実施例に限定されるものではない。  EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1〜36、比較例1〜6)
表1〜4の正極活物質の配合に従い、正極活物質(A)と正極活物質(B)とを混合した。表中の正極の配合に従い、正極活物質70質量部と、正極導電助剤である炭素28質量部と、バインダである架橋型のポリアクリル酸2質量部とを混合して正極合剤とした。この正極合剤7mgを2ton/cmで加圧成形し、直径2mm、厚さ600μmの円盤型の正極を得た。
粉砕したSiO(x=1)45質量部と、炭素40質量部と、架橋型のポリアクリル酸15質量部とを混合して負極合剤とした。この負極合剤1.0mgを2ton/cmで加圧成形し、直径2.0mm、厚さ200μmの円盤型の負極ペレットを得た。
30質量部のエチレンカーボネートと35質量部のプロピレンカーボネートと35質量部のスルホランとを混合して非水溶媒とし、得られた非水溶媒に支持塩(LiN(CFSO)を2.0mol/Lとなるように溶解して電解液を得た。
(Examples 1-36, Comparative Examples 1-6)
According to the composition of the positive electrode active materials in Tables 1 to 4, the positive electrode active material (A) and the positive electrode active material (B) were mixed. According to the composition of the positive electrode in the table, 70 parts by mass of the positive electrode active material, 28 parts by mass of carbon as the positive electrode conductive auxiliary agent, and 2 parts by mass of cross-linked polyacrylic acid as the binder were mixed to obtain a positive electrode mixture. . 7 mg of this positive electrode mixture was pressure-molded at 2 ton / cm 2 to obtain a disk-type positive electrode having a diameter of 2 mm and a thickness of 600 μm.
45 parts by mass of pulverized SiO x (x = 1), 40 parts by mass of carbon, and 15 parts by mass of cross-linked polyacrylic acid were mixed to obtain a negative electrode mixture. 1.0 mg of this negative electrode mixture was pressure-molded at 2 ton / cm 2 to obtain a disc-shaped negative electrode pellet having a diameter of 2.0 mm and a thickness of 200 μm.
30 parts by mass of ethylene carbonate, 35 parts by mass of propylene carbonate and 35 parts by mass of sulfolane are mixed to form a non-aqueous solvent, and the resulting non-aqueous solvent is mixed with 2 supporting salts (LiN (CF 3 SO 2 ) 2 ). An electrolytic solution was obtained by dissolving to 0.0 mol / L.

ステンレス鋼製の正極缶の内面に、炭素を導電性フィラーとする導電性樹脂接着剤からなる正極集電体を用いて正極を接着して正極ユニットを得た。正極ユニットを大気中で、200℃、10時間加熱して、乾燥した。
次いで、正極ユニットの正極缶の開口部の内側面にシール剤を塗布した。
ステンレス鋼製の負極缶の内面に、炭素を導電性フィラーとする導電性樹脂接着剤からなる負極集電体を用いて負極を接着し、表中の負極可逆Li量となるように負極上にリチウムフォイルを載置した。
次いで、ホウ珪酸ガラス製繊維を原料とする不織布を乾燥後、直径3mm、厚さ200μmの円盤型に打ち抜いてセパレータとした。このセパレータを負極上に載置し、負極缶の開口部にガスケットを設け、負極ユニットを得た。
正極缶及び負極缶に計5μLの電解液を充填した。
リチウムフォイルがセパレータに当接するように、負極ユニットを正極ユニットに嵌めた。次いで、正極缶の開口部をかしめて正極缶と負極缶とを密封した後、25℃で7日間静置して、各例の非水電解質二次電池を得た。
得られた非水電解質二次電池について、サイクル特性を評価し、その結果を表中に示す。
なお、負極可逆Li量を100、60、30、7、0とするために、負極上に載置するリチウムフォイル(直径2mm)の厚さをそれぞれ220μm、170μm、140μm、120μm、110μmとした。
A positive electrode unit was obtained by adhering the positive electrode to the inner surface of a stainless steel positive electrode can using a positive electrode current collector made of a conductive resin adhesive containing carbon as a conductive filler. The positive electrode unit was dried in the air at 200 ° C. for 10 hours.
Subsequently, the sealing agent was apply | coated to the inner surface of the opening part of the positive electrode can of a positive electrode unit.
A negative electrode is bonded to the inner surface of a stainless steel negative electrode can using a negative electrode current collector made of a conductive resin adhesive containing carbon as a conductive filler, and the negative electrode reversible Li amount in the table is set on the negative electrode. Lithium foil was placed.
Next, the nonwoven fabric made from borosilicate glass fiber was dried, and then punched into a disk shape having a diameter of 3 mm and a thickness of 200 μm to obtain a separator. This separator was placed on the negative electrode, and a gasket was provided in the opening of the negative electrode can to obtain a negative electrode unit.
A total of 5 μL of electrolyte solution was filled in the positive electrode can and the negative electrode can.
The negative electrode unit was fitted into the positive electrode unit so that the lithium foil contacted the separator. Next, the positive electrode can and the negative electrode can were sealed by caulking the opening of the positive electrode can, and then allowed to stand at 25 ° C. for 7 days to obtain the nonaqueous electrolyte secondary battery of each example.
About the obtained nonaqueous electrolyte secondary battery, cycling characteristics were evaluated and the result is shown in a table | surface.
In order to set the negative electrode reversible Li amount to 100, 60, 30, 7, and 0, the thickness of the lithium foil (diameter 2 mm) placed on the negative electrode was 220 μm, 170 μm, 140 μm, 120 μm, and 110 μm, respectively.

(評価方法)
<サイクル特性>
製造直後の各例の非水電解質二次電池6個について、24℃の環境下、定電流5μA(放電電流)で2.0Vになるまで放電した。次いで、24℃の環境下、表1〜4に示す充電電圧値で48時間印加した。その後、24℃の環境下、定電流5μA(放電電流)で2.0Vになるまで放電し、下記(i)式により放電容量を算出し、その平均値を初期放電容量とした
(Evaluation method)
<Cycle characteristics>
Six nonaqueous electrolyte secondary batteries of each example immediately after production were discharged in a 24 ° C. environment at a constant current of 5 μA (discharge current) until 2.0 V was reached. Subsequently, it applied for 48 hours by the charging voltage value shown to Tables 1-4 in 24 degreeC environment. Thereafter, the battery was discharged at a constant current of 5 μA (discharge current) until it reached 2.0 V in a 24 ° C. environment, and the discharge capacity was calculated according to the following formula (i).

放電容量(μAh)=放電電流(5μA)×放電時間(h) ・・・(i)  Discharge capacity (μAh) = discharge current (5 μA) × discharge time (h) (i)

初期放電容量を測定した非水電解質二次電池について、表1〜4に示す充電電圧値で48時間印加した後、24℃の環境下、定電流5μA(放電電流)で2.0Vになるまで放電する操作(充放電サイクル)を100回繰り返した。100回目の充放電サイクルにおける放電容量(サイクル後放電容量)を初期放電容量と同様にして求め、下記(ii)式により容量維持率を算出した。容量維持率が高いほど、サイクル特性が高いといえる。  For the nonaqueous electrolyte secondary battery whose initial discharge capacity was measured, after applying for 48 hours at the charging voltage values shown in Tables 1 to 4, until 2.0 V at a constant current of 5 μA (discharge current) in a 24 ° C. environment The operation of discharging (charging / discharging cycle) was repeated 100 times. The discharge capacity (post-cycle discharge capacity) in the 100th charge / discharge cycle was determined in the same manner as the initial discharge capacity, and the capacity retention rate was calculated by the following equation (ii). It can be said that the higher the capacity retention rate, the higher the cycle characteristics.

容量維持率(%)=サイクル後放電容量÷初期放電容量×100 ・・・・(ii)  Capacity maintenance ratio (%) = discharge capacity after cycle ÷ initial discharge capacity × 100 (ii)

Figure 2013191458
Figure 2013191458

Figure 2013191458
Figure 2013191458

Figure 2013191458
Figure 2013191458

Figure 2013191458
Figure 2013191458

実施例1〜27、比較例1〜3は、3V系二次電池の例であり、実施例28〜36、比較例4〜6は、4V系二次電池の例である。
表1〜4に示すように、本発明を適用した実施例1〜36の容量維持率は83%以上であった。
一方、正極に可逆Liを有さず、負極にのみ可逆Liを有する比較例1〜3の容量維持率、及び、負極に可逆Liを有さず、正極にのみ可逆Liを有する比較例4〜6の容量維持率は、82%以下であった。
この結果から、本発明を適用することで、サイクル特性を高められることが判った。
Examples 1-27 and Comparative Examples 1-3 are examples of 3V secondary batteries, and Examples 28-36 and Comparative Examples 4-6 are examples of 4V secondary batteries.
As shown in Tables 1 to 4, the capacity retention rates of Examples 1 to 36 to which the present invention was applied were 83% or more.
On the other hand, the capacity maintenance rate of Comparative Examples 1 to 3 having no reversible Li in the positive electrode and having reversible Li only in the negative electrode, and Comparative Examples 4 to 4 having no reversible Li in the negative electrode and having reversible Li only in the positive electrode The capacity retention rate of 6 was 82% or less.
From this result, it was found that the cycle characteristics can be improved by applying the present invention.

加えて、3V系二次電池において、実施例1〜27の容量維持率は87%以上であったのに対し、比較例1〜3の容量維持率は78%以下であった。
この結果から、本発明の効果は、3V系二次電池において、顕著であることが判った。
In addition, in the 3V secondary battery, the capacity retention rate of Examples 1 to 27 was 87% or higher, while the capacity retention rate of Comparative Examples 1 to 3 was 78% or lower.
From this result, it was found that the effect of the present invention is remarkable in the 3V secondary battery.

1 非水電解質二次電池
10 正極
20 負極
1 Nonaqueous electrolyte secondary battery 10 Positive electrode 20 Negative electrode

Claims (4)

正極と負極との間を移動して電子の授受を行うLiを有する正極と、正極と負極との間を移動して電子の授受を行うLi及びSiO(0≦x<2)を有する負極とが組み込まれた非水電解質二次電池。 A positive electrode having Li that moves between the positive electrode and the negative electrode to transfer electrons, and a negative electrode having Li and SiO x (0 ≦ x <2) that transfers between the positive electrode and the negative electrode to transfer electrons And non-aqueous electrolyte secondary battery. 前記正極は、前記の正極と負極との間を移動して電子の授受を行うLiを有する正極活物質(A)を含有する請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode contains a positive electrode active material (A) having Li that moves between the positive electrode and the negative electrode to exchange electrons. 前記正極は、前記正極活物質(A)以外の正極活物質(B)を併有する請求項2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the positive electrode has a positive electrode active material (B) other than the positive electrode active material (A). 前記正極活物質(A)は、リチウム鉄リン酸化合物、リチウムコバルト酸化物及びリチウムニッケル酸化物から選択される1種以上であり、前記正極活物質(B)は、スピネル型リチウムマンガン酸化物、モリブデン酸化物及びバナジウム酸化物から選択される1種以上である請求項3に記載の非水電解質二次電池。
The positive electrode active material (A) is one or more selected from a lithium iron phosphate compound, a lithium cobalt oxide, and a lithium nickel oxide, and the positive electrode active material (B) is a spinel type lithium manganese oxide, The nonaqueous electrolyte secondary battery according to claim 3, which is at least one selected from molybdenum oxide and vanadium oxide.
JP2012057769A 2012-03-14 2012-03-14 Nonaqueous electrolyte secondary battery Active JP5900853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057769A JP5900853B2 (en) 2012-03-14 2012-03-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057769A JP5900853B2 (en) 2012-03-14 2012-03-14 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013191458A true JP2013191458A (en) 2013-09-26
JP5900853B2 JP5900853B2 (en) 2016-04-06

Family

ID=49391494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057769A Active JP5900853B2 (en) 2012-03-14 2012-03-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5900853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108056A1 (en) * 2014-01-14 2015-07-23 昭和電工株式会社 Lithium secondary battery and conductive assistant used in same
WO2025107539A1 (en) * 2023-11-24 2025-05-30 宁德时代新能源科技股份有限公司 Positive electrode active material and preparation method therefor, battery and electrical apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (en) * 1992-07-29 1994-11-25 Seiko Instr Inc Nonaqueous electrolytic secondary battery and its manufacture
JPH097638A (en) * 1995-06-22 1997-01-10 Seiko Instr Inc Nonaqueous electrolytic secondary battery
JP2006269331A (en) * 2005-03-25 2006-10-05 Sony Corp Cathode, battery, and manufacturing method of them
JP2010033924A (en) * 2008-07-30 2010-02-12 Nec Tokin Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP2011076997A (en) * 2009-10-02 2011-04-14 Nec Energy Devices Ltd Lithium-ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (en) * 1992-07-29 1994-11-25 Seiko Instr Inc Nonaqueous electrolytic secondary battery and its manufacture
JPH097638A (en) * 1995-06-22 1997-01-10 Seiko Instr Inc Nonaqueous electrolytic secondary battery
JP2006269331A (en) * 2005-03-25 2006-10-05 Sony Corp Cathode, battery, and manufacturing method of them
JP2010033924A (en) * 2008-07-30 2010-02-12 Nec Tokin Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP2011076997A (en) * 2009-10-02 2011-04-14 Nec Energy Devices Ltd Lithium-ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108056A1 (en) * 2014-01-14 2015-07-23 昭和電工株式会社 Lithium secondary battery and conductive assistant used in same
JPWO2015108056A1 (en) * 2014-01-14 2017-03-23 昭和電工株式会社 Lithium secondary battery and conductive aid used therefor
US10084190B2 (en) 2014-01-14 2018-09-25 Showa Denko K.K. Lithium secondary battery and conductive assistant used in same
WO2025107539A1 (en) * 2023-11-24 2025-05-30 宁德时代新能源科技股份有限公司 Positive electrode active material and preparation method therefor, battery and electrical apparatus

Also Published As

Publication number Publication date
JP5900853B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
CN107078340B (en) Nonaqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
CN105870494A (en) Lithium ion secondary battery
CN108352525A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2009187940A (en) Cathode active material, cathode using it and nonaqueous electrolyte secondary battery
JP7618335B2 (en) Electrodes for lithium secondary batteries
JP4167103B2 (en) Nonaqueous electrolyte secondary battery
JPWO2014068904A1 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2009087885A (en) Method for manufacturing positive electrode
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2009200043A (en) Battery
JP2012160463A (en) Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
CN114762166A (en) Non-aqueous electrolyte secondary battery
JP2009295290A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP6226412B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP5900853B2 (en) Nonaqueous electrolyte secondary battery
JP7236657B2 (en) Non-aqueous electrolyte secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP2012074403A (en) Secondary battery
JP2013219015A (en) Electrolyte for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP2002222651A (en) Non-aqueous electrolyte secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP6066464B2 (en) Electrolytic solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160229

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5900853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250