[go: up one dir, main page]

JP2013182810A - Collector, and lithium ion secondary battery using the same - Google Patents

Collector, and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2013182810A
JP2013182810A JP2012046718A JP2012046718A JP2013182810A JP 2013182810 A JP2013182810 A JP 2013182810A JP 2012046718 A JP2012046718 A JP 2012046718A JP 2012046718 A JP2012046718 A JP 2012046718A JP 2013182810 A JP2013182810 A JP 2013182810A
Authority
JP
Japan
Prior art keywords
current collector
hole
opening
holes
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012046718A
Other languages
Japanese (ja)
Inventor
Kazumasa Tanaka
一正 田中
Yasuyuki Kawanaka
康之 川中
Yasuhiro Ikeda
泰大 池田
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012046718A priority Critical patent/JP2013182810A/en
Publication of JP2013182810A publication Critical patent/JP2013182810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a coating uniformly, by eliminating nonuniformity in the thickness of a coating applied to both sides of a collector.SOLUTION: The collector is provided with a plurality of through holes penetrating from one main surface to the other main surface of the collector. The through hole penetrates the collector substantially linearly, and one and the other openings of the through hole are located at positions substantially not overlapping each other, in the projection view from a direction perpendicular to one major surface of the collector.

Description

本発明は、集電体、およびそれを用いたリチウムイオン二次電池に関するものである。   The present invention relates to a current collector and a lithium ion secondary battery using the current collector.

リチウムイオン二次電池に代表される電池は、基本的には、正極、負極、正極と負極とを絶縁するセパレータ、及び正極と負極との間でイオンの移動を可能にするための電解液で構成されている。正極及び負極は、金属箔からなる集電体の表面に、各種の活物質が塗布されてなるものである。例えば、正極として、コバルト酸リチウム等を含む活物質がアルミニウム箔よりなる集電体に塗布されてなるものが用いられ、一方、負極としては、黒鉛化カーボン等を含む活物質が銅箔よりなる集電体に塗布されてなるものが用いられている。   Batteries typified by lithium ion secondary batteries are basically a positive electrode, a negative electrode, a separator that insulates the positive electrode from the negative electrode, and an electrolyte solution that allows ions to move between the positive electrode and the negative electrode. It is configured. The positive electrode and the negative electrode are obtained by applying various active materials to the surface of a current collector made of a metal foil. For example, an active material containing lithium cobaltate or the like applied to a current collector made of an aluminum foil is used as the positive electrode, while an active material containing graphitized carbon or the like is made of copper foil as the negative electrode. What was apply | coated to the electrical power collector is used.

一般に、アルミニウム箔や銅箔等の各種金属箔面に、各種の活物質を塗布した場合、金属箔と活物質とが一体化しにくく、比較的、活物質が脱落しやすいという問題があり、活物質が脱落すると、所望の容量を持つ二次電池が得られないという欠点が生じる。また、二次電池を作製した後に、活物質が脱落すると、二次電池の充放電容量が徐々に低下していくという欠点が生じる。   Generally, when various active materials are applied to various metal foil surfaces such as aluminum foil and copper foil, there is a problem that the metal foil and the active material are difficult to be integrated and the active material is relatively easy to fall off. If the material falls off, a secondary battery having a desired capacity cannot be obtained. In addition, when the active material is dropped after the secondary battery is manufactured, there is a disadvantage that the charge / discharge capacity of the secondary battery is gradually reduced.

このため、集電体の表面側から裏面側にかけて垂直に貫通された孔が形成された箔が考案されている(例えば特許文献1、2)。   For this reason, the foil in which the hole penetrated perpendicularly from the surface side to the back surface side of a current collector was devised (for example, patent documents 1 and 2).

特許文献2では、特許文献1の形態からさらに改良されており、エッチング法により集電体に傾斜している貫通孔を形成し、集電体の表裏面に塗布される活物質とバインダーとを、この貫通孔に係止させやすくすることで、活物質の脱落を防止する技術が開示されている(図2、3、4参照)。   In patent document 2, it is further improved from the form of patent document 1, the through-hole which inclined in the electrical power collector is formed by the etching method, and the active material and binder apply | coated to the front and back of a electrical power collector And the technique which prevents dropping of an active material by making it easy to make it latch to this through-hole is disclosed (refer FIG.2,3,4).

しかし、上記のような垂直に貫通された孔(図1)、および傾斜を設けた孔の集電体(図2〜4)に活物質を塗布した場合、一方の集電体表面側から塗料を塗布しても、その塗料が集電体の裏面側に回り込んでしまい、当該裏面に塗料が付着し、塗料の膜厚が不均一になる問題があった。   However, when the active material is applied to the holes (FIG. 1) vertically penetrated as described above and the current collectors (FIGS. 2 to 4) having the inclined holes, the paint is applied from the surface side of one current collector. Even if the coating is applied, the coating material wraps around the back surface side of the current collector, the coating material adheres to the back surface, and the coating film thickness becomes non-uniform.

さらに図2のようなクレーター状の貫通孔が形成された集電体の場合、集電体の表面と裏面での孔径が大きく異なっているため、同量の塗膜を集電体の両面に塗布したとしても、その塗膜の厚みが両面で異なってしまう問題が生じた。図2を使って説明すると、表面側の孔径は広いため塗料が充填されやすいが、裏面側の孔径は狭く、さらに集電体表面と、貫通孔の内壁面とで形成される切片角度が鋭角であるため、塗料が孔内に充填されにくい。このように集電体表裏面の孔径の違い、および塗量の充填のし易さの違いによって、表面と裏面側での塗膜厚みに差が生じやすくなる。
さらに図4のような貫通孔が形成された集電体の場合、塗布した塗料が貫通孔内部の窪み部に回り込みにくいため、孔全体に塗料が充填されにくい問題がある。
Furthermore, in the case of a current collector having crater-like through holes as shown in FIG. 2, the hole diameters on the front surface and the back surface of the current collector are greatly different. Even if it applied, the problem that the thickness of the coating film differs on both surfaces arose. Referring to FIG. 2, since the hole diameter on the front surface side is wide, it is easy to fill with paint, but the hole diameter on the back surface side is narrow, and the intercept angle formed by the current collector surface and the inner wall surface of the through hole is an acute angle. Therefore, it is difficult for the paint to be filled in the holes. As described above, the difference in the hole diameters on the front and back surfaces of the current collector and the difference in ease of filling the coating amount tend to cause a difference in the coating thickness between the front surface and the back surface.
Further, in the case of the current collector in which the through holes are formed as shown in FIG. 4, the applied paint is unlikely to go around into the depressions inside the through holes, so that there is a problem that the whole hole is not easily filled with the paint.

このように集電体の表面側と裏面側で塗膜厚みに差が生じた状態でリチウムイオン二次電池を作製してしまうと、局所的な電気化学反応の不均一性から、例えば所望のサイクル特性が得られない可能性も生じる。   Thus, if a lithium ion secondary battery is produced with a difference in coating film thickness between the front surface side and the back surface side of the current collector, for example, the desired non-uniformity of the electrochemical reaction may cause There is a possibility that the cycle characteristics may not be obtained.

特開2000−294250号公報JP 2000-294250 A 特開平11−67217号公報Japanese Patent Laid-Open No. 11-67217

本発明は貫通孔を有する集電体において、塗布した塗膜厚みの不均一性を解消し、塗膜を均一に形成することが可能な集電体を提供し、その集電体により所望の電池特性が得られる高信頼性のリチウムイオン二次電池を提供することを目的とした。   The present invention provides a current collector that eliminates the unevenness of the thickness of the applied coating film in a current collector having a through-hole and can form a coating film uniformly. An object of the present invention is to provide a highly reliable lithium ion secondary battery capable of obtaining battery characteristics.

上記目的を達成するために、本発明にかかる集電体は、集電体の一方の主面から他方の主面にかけて貫通する貫通孔が複数備えられ、その貫通孔は、略直線状に貫通し、上記集電体の直線状に貫通した一方の開口部と他方の開口部は、集電体の上記一方の主面の鉛直方向から投影視したとき、互いにほぼ重なり合わない位置に配置されている。   In order to achieve the above object, the current collector according to the present invention includes a plurality of through holes penetrating from one main surface of the current collector to the other main surface, and the through holes penetrate substantially linearly. The one opening and the other opening penetrating the current collector in a straight line are arranged at positions that do not substantially overlap each other when projected from the vertical direction of the one main surface of the current collector. ing.

これにより、集電体上に塗料を塗布しても、貫通孔を介して裏面側へ回り込むのを回避することができ、集電体の一方側と他方側での塗膜厚みを均一化することができる。   Thereby, even if a paint is applied on the current collector, it is possible to avoid going around to the back side through the through hole, and to uniformize the coating thickness on one side and the other side of the current collector. be able to.

上記本発明にかかる集電体では、上記一方の開口部の開口面積と上記他方の開口部の開口面積とが実質的に同等であることが好ましい。   In the current collector according to the present invention, it is preferable that the opening area of the one opening and the opening area of the other opening are substantially equal.

これにより上記一方の開口部から充填される塗料と上記他方の開口部から充填される塗料量が同程度となり、集電体表面と集電体裏面に形成される塗膜の膜厚がより均一に形成することができる。   As a result, the amount of paint filled from the one opening and the amount of paint filled from the other opening are approximately the same, and the film thickness of the coating film formed on the current collector surface and the current collector back surface is more uniform. Can be formed.

上記本発明にかかる集電体では、集電体の上記一方の開口部及び上記他方の開口部の開口形状が、円状、または多角形状であることが好ましい。   In the current collector according to the present invention, the opening shape of the one opening and the other opening of the current collector is preferably circular or polygonal.

本発明にかかるリチウムイオン二次電池は、上記集電体の一方の主面から他方の主面にかけて貫通する貫通孔が複数備えられ、上記貫通孔は略直線状に貫通し、上記集電体の直線状に貫通した一方の開口部と他方の開口部は、前記集電体の上記一方の主面の鉛直方向から投影視したとき、互いにほぼ重なり合わない位置に配置されていることを特徴とする集電体を、負極および/または正極に用いて作製されている。   The lithium ion secondary battery according to the present invention includes a plurality of through holes penetrating from one main surface of the current collector to the other main surface, the through holes penetrating substantially linearly, and the current collector The one opening and the other opening penetrating in a straight line are arranged at positions that do not substantially overlap each other when projected from the vertical direction of the one main surface of the current collector. Is used for the negative electrode and / or the positive electrode.

これにより、電極表面側と裏面側で作用する充放電容量を正確に制御することができ、信頼性の高いリチウムイオン二次電池を提供することができる。   Thereby, the charge / discharge capacity acting on the electrode surface side and the back surface side can be accurately controlled, and a highly reliable lithium ion secondary battery can be provided.

ここで、本発明において、略直線状に貫通した貫通孔とは、実質的に直線状になっていればよく、エッチング工程により生じてしまう多少の貫通孔の内壁の変動はあってもよい。   Here, in the present invention, the through-hole penetrating substantially linearly only needs to be substantially linear, and there may be some fluctuation of the inner wall of the through-hole caused by the etching process.

また、本発明における貫通孔の一方の主面における一方の開口部と、他の主面における他方の開口部が互いにほぼ重なり合わないとは、集電体の上記一方の主面の鉛直方向から投影視したとき、実質的に合致していないことを意味するものであり、集電体の一方側と他方側での塗膜厚みに差が生じない程度であれば、上記一方の開口部と上記他方の開口部の一部は重なっていてもよい。   In addition, the fact that one opening on one main surface of the through-hole in the present invention and the other opening on the other main surface do not substantially overlap each other is from the vertical direction of the one main surface of the current collector. When projected, it means that they do not substantially match, and if the difference in coating thickness between the one side and the other side of the current collector does not occur, the one opening A part of the other opening may overlap.

なお、言うまでもないが上述した実質的に同等であるとは、本発明における効果を損ねない程度の差を許容範囲とする意図である。   Needless to say, “substantially equivalent” as described above is intended to allow a difference that does not impair the effects of the present invention as an allowable range.

本発明によれば、従来の貫通孔を有した集電体を用いた場合に比べて、塗料の回り込みを抑止することが可能であり、かつ活物質の膜厚が均一な電極を提供することができる。さらに、本発明の集電体を用いることにより、高い信頼性の電池特性を有するリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to suppress the wraparound of the paint and to provide an electrode having a uniform thickness of the active material as compared with the case where a current collector having a conventional through hole is used. Can do. Further, by using the current collector of the present invention, a lithium ion secondary battery having highly reliable battery characteristics can be provided.

図1は従来の貫通孔を有する集電体を示した説明図である。(特許文献1)FIG. 1 is an explanatory view showing a current collector having a conventional through hole. (Patent Document 1) 図2は従来の貫通孔を有する集電体を示した説明図である。(特許文献2)FIG. 2 is an explanatory view showing a current collector having a conventional through hole. (Patent Document 2) 図3は従来の貫通孔を有する集電体を示した説明図である。(特許文献2)FIG. 3 is an explanatory view showing a current collector having a conventional through hole. (Patent Document 2) 図4は従来の貫通孔を有する集電体を示した説明図である。(特許文献2)FIG. 4 is an explanatory view showing a current collector having a conventional through hole. (Patent Document 2) 図5は本発明の貫通孔を有する集電体を示した説明図の一例である。FIG. 5 is an example of an explanatory view showing a current collector having a through hole of the present invention. 図6はフォトリソグラフィーによるエッチング法によって本発明の貫通孔を有する集電体(図5)を作製するための一工程を示した説明図である。FIG. 6 is an explanatory view showing one process for producing a current collector (FIG. 5) having a through hole of the present invention by an etching method by photolithography. 図7はフォトリソグラフィーによるエッチング法によって千鳥格子状に貫通孔を有する集電体を示した説明図である。FIG. 7 is an explanatory view showing a current collector having through holes in a staggered pattern by an etching method using photolithography. 図8はフォトリソグラフィーによるエッチング法によって従来の貫通孔を有する集電体(図1)を作製するための一工程を示した説明図である。FIG. 8 is an explanatory view showing one process for producing a current collector (FIG. 1) having a conventional through hole by an etching method using photolithography. 図8の作製工法によって作製された従来の貫通孔を有する集電体を示した説明図である。It is explanatory drawing which showed the collector which has the conventional through-hole produced by the preparation method of FIG. 図10は本発明によって得られる別の貫通孔の形態を有する集電体を示した説明図である。FIG. 10 is an explanatory view showing a current collector having another through hole shape obtained by the present invention.

本発明の一実施形態にかかる集電体においては、孔開き集電体を構成する金属箔として、アルミニウム箔、アルミニウム合金箔、銅箔又は銅合金箔などが好ましく用いられる。リチウムイオン二次電池の場合、正極に用いる集電体は、アルミニウム箔、またはアルミニウム合金箔が好適に用いれば良く、一方、負極に用いる集電体としては、銅箔又は銅合金箔を用いれば良い。本実施形態においては、また、集電体の材質に対してフォトリソグラフィー工程におけるエッチング液を適宜選定することで、アルミニウム箔や銅箔以外の金属箔を集電体として用いることもできる。   In the current collector according to one embodiment of the present invention, an aluminum foil, an aluminum alloy foil, a copper foil, a copper alloy foil, or the like is preferably used as the metal foil constituting the perforated current collector. In the case of a lithium ion secondary battery, the current collector used for the positive electrode may be preferably an aluminum foil or an aluminum alloy foil, while the current collector used for the negative electrode is a copper foil or a copper alloy foil. good. In the present embodiment, a metal foil other than an aluminum foil or a copper foil can also be used as the current collector by appropriately selecting an etching solution in the photolithography process with respect to the material of the current collector.

孔開き集電体の厚みは、通常8〜30μm程度が用いられる。リチウム系二次電池に用いられるアルミニウム箔製の集電体は15〜25μm程度であるのが好ましく、銅箔製の集電体は10〜20μmであるのが好ましい。なお、銅箔としては、圧延銅箔(圧延法で得られる銅箔)であっても、電解銅箔(電解法で得られる銅箔)のいずれであっても良い。   The thickness of the perforated current collector is usually about 8 to 30 μm. The current collector made of aluminum foil used for the lithium secondary battery is preferably about 15 to 25 μm, and the current collector made of copper foil is preferably 10 to 20 μm. The copper foil may be a rolled copper foil (a copper foil obtained by a rolling method) or an electrolytic copper foil (a copper foil obtained by an electrolytic method).

集電体に設けられている貫通孔の形状は、円状が好ましいが、特に形状は限定されない。真円や楕円の円状、三角形、四角形、六角形等の多角形状など、任意の形状であっても良い。
特に、円状や六角形が集電体の表裏面で均一な塗膜形成がし易いので好ましい。
The shape of the through hole provided in the current collector is preferably a circular shape, but the shape is not particularly limited. The shape may be any shape such as a perfect circle or an ellipse, a polygon such as a triangle, a quadrangle, or a hexagon.
In particular, a circular shape or a hexagonal shape is preferable because a uniform coating film can be easily formed on the front and back surfaces of the current collector.

また、貫通孔の大きさは、リチウムイオン二次電池の種類や大きさ、あるいは用途によって、適宜任意の大きさに調整することができる。
一般的には、貫通孔の面積を仮想円の面積であるとして、その仮想円の直径が0.1〜3mmになる程度を用いることができる。
Further, the size of the through hole can be appropriately adjusted to an arbitrary size according to the type and size of the lithium ion secondary battery or the application.
Generally, assuming that the area of the through hole is the area of a virtual circle, the diameter of the virtual circle can be 0.1 to 3 mm.

特に、貫通孔の大きさは、集電体の表裏面で実質的に同程度の開口面積であることが均一な塗膜の形成においてより好ましい。   In particular, the size of the through hole is more preferably substantially the same opening area on the front and back surfaces of the current collector in the formation of a uniform coating film.

また、貫通孔は、集電体に多数設けられているのであり、例えば、貫通孔間のピッチは0.2〜10mm程度でよく、貫通孔の密度は1〜2500個/cm2程度で良い。なお、上記貫通孔間のピッチとは、集電体の同一平面上に設けられた貫通孔の開口と貫通孔の開口の中心を結ぶ距離を意味する。 In addition, a large number of through holes are provided in the current collector. For example, the pitch between the through holes may be about 0.2 to 10 mm, and the density of the through holes may be about 1 to 2500 / cm 2. . The pitch between the through holes means a distance connecting the opening of the through hole provided on the same plane of the current collector and the center of the opening of the through hole.

さらに上記貫通孔は、集電体表面に等ピッチで配置されていても良く、千鳥格子状に配置されても良い。   Further, the through holes may be arranged on the current collector surface at an equal pitch, or may be arranged in a staggered pattern.

本発明の特徴の1つには、貫通孔が、金属箔の一方の主面から他方の主面にかけて、特定の切片角度θで傾斜している点がある。ここで、切片角度とは、金属箔の一方の主面に垂直な方向からの断面、つまり貫通孔の上下方向の断面において現われる金属箔の表面または裏面の線と、傾斜した貫通孔における内壁面の線との間で形成される角度のことである。
このことは、図5を参照すれば、より明瞭に理解しうるものである。なお、金属箔の表面と裏面とは、厳密な意味で用いられているのではなく、一方の主面を表面とした場合に、他方の主面が裏面であるという意味で用いられているにすぎない。
One of the features of the present invention is that the through hole is inclined at a specific intercept angle θ from one main surface of the metal foil to the other main surface. Here, the intercept angle is a cross section from a direction perpendicular to one main surface of the metal foil, that is, a line on the front or back surface of the metal foil that appears in the vertical cross section of the through hole, and an inner wall surface in the inclined through hole. This is the angle formed with the line.
This can be understood more clearly with reference to FIG. The front and back surfaces of the metal foil are not used in a strict sense, but when one main surface is used as the front surface, the other main surface is used as the back surface. Only.

図5について、以下に詳細に説明する。
図5は、本発明の集電体の一断面形態を示したものである。
集電体の表面1と貫通孔の内壁面3とで形成される切片角度θ1が10°〜80°であり、集電体の裏面2と貫通孔の内壁面3とで形成される切片角度θ3が100°〜170°であり、さらに集電体の表面1と、貫通孔の内壁面4とで形成される切片角度θ2が100°〜170°であり、集電体の裏面2と貫通孔の内壁面4とで形成される切片角度θ4が10°〜80°から成る貫通孔が設けられている。
上記θ1、θ2、θ3、θ4の各切片角度は、集電体の厚みと、貫通孔の孔径によって適宜選定することができ、集電体における表面側の開口孔と裏面側の開口孔が、垂直に対向していないこと、つまり互いに重なり合わない位置に配置されるように調整する。なお、上記対向しているとは、図1〜4のように、表面側の孔と裏面側の孔が、垂直に対向関係にあり、表面側と裏面側の開孔径が互いに重なり合わさった状態を意味する。
FIG. 5 will be described in detail below.
FIG. 5 shows a cross-sectional form of the current collector of the present invention.
The intercept angle θ1 formed by the surface 1 of the current collector and the inner wall surface 3 of the through hole is 10 ° to 80 °, and the intercept angle formed by the back surface 2 of the current collector and the inner wall surface 3 of the through hole θ3 is 100 ° to 170 °, and the intercept angle θ2 formed by the surface 1 of the current collector and the inner wall surface 4 of the through hole is 100 ° to 170 °. A through hole having an intercept angle θ4 of 10 ° to 80 ° formed by the inner wall surface 4 of the hole is provided.
The intercept angles of the above θ1, θ2, θ3, and θ4 can be appropriately selected depending on the thickness of the current collector and the hole diameter of the through hole, and the opening hole on the front surface side and the opening hole on the back surface side of the current collector are Adjustments are made so that they are not vertically opposed, that is, arranged in positions that do not overlap each other. In addition, the said facing is a state where the holes on the front surface side and the holes on the back surface side are perpendicularly opposed as shown in FIGS. 1 to 4 and the opening diameters on the front surface side and the back surface side overlap each other. Means.

このように、図5のような傾斜した貫通孔が開いている集電体に集電体表面1側から塗料を塗布した場合、塗料は貫通孔内の壁面4にぶつかるため、塗料が集電体の裏面に回り込むのが防止される。また、集電体裏面2側から塗料を塗布した場合も同様に塗料が集電体の表面に回り込むのが防止される。   As described above, when the paint is applied from the current collector surface 1 side to the current collector having the inclined through hole as shown in FIG. 5, the paint hits the wall surface 4 in the through hole. Prevents wrapping around the back of the body. Further, when the paint is applied from the current collector back surface 2 side, the paint is also prevented from flowing around the surface of the current collector.

上記のような貫通孔を有する集電体は、フォトリソグラフィーによるエッチング法、または打ち抜き法等の任意の方法で得ることができる。   The current collector having the through holes as described above can be obtained by an arbitrary method such as an etching method by photolithography or a punching method.

図5で示した集電体は、無孔金属箔の表面に、多数の貫通孔を有する孔開きレジスト膜を接合し、この無孔金属箔の裏面には、孔開きレジスト膜を接合してなる三層積層体に、エッチングを施すことにより、無孔金属箔に、孔開きレジスト膜の孔に対応する多数の貫通孔を形成するという方法で得ることができる。
無孔金属箔としては、孔の開いていないアルミニウム箔や銅箔等の任意の金属箔を用いることができる。
The current collector shown in FIG. 5 has a perforated resist film having a large number of through holes bonded to the surface of the non-porous metal foil, and a perforated resist film is bonded to the back surface of the non-porous metal foil. By etching the three-layer laminate, a large number of through holes corresponding to the holes of the perforated resist film can be formed in the non-porous metal foil.
As the non-porous metal foil, any metal foil such as an aluminum foil or a copper foil having no holes can be used.

このような無孔金属箔の表面に、多数の傾斜した貫通孔を有する孔開きレジスト膜を接合する。孔開きレジスト膜は、無孔金属箔表面に紫外線硬化型感光性樹脂よりなるレジスト液を塗布し、レジスト層を形成した後、このレジスト層にポジフィルム(ポジパターンが施されたフィルム)を通して、孔を開けたい箇所だけに紫外線を照射せずに他の箇所には紫外線を照射し、他の箇所を硬化させた後、硬化していない箇所の感光性樹脂を現像液で洗浄除去することによって容易に得ることができる。
なお、上記紫外線照射の際、紫外線照射光に対して、ポジフィルムに通したレジスト層を形成した無孔金属箔を特定の傾斜角度を設けることによって、傾斜した孔開きレジスト膜が得られる。
A perforated resist film having a large number of inclined through holes is bonded to the surface of such a non-porous metal foil. The perforated resist film is formed by applying a resist solution made of an ultraviolet curable photosensitive resin to the surface of the non-porous metal foil, forming a resist layer, and then passing a positive film (film with a positive pattern) through the resist layer. By irradiating other parts with ultraviolet light without irradiating only the part to be perforated with ultraviolet light, curing the other part, and washing and removing the photosensitive resin in the uncured part with a developer. Can be easily obtained.
In the above ultraviolet irradiation, an inclined perforated resist film can be obtained by providing a specific inclination angle with a non-porous metal foil on which a resist layer passed through a positive film is formed with respect to the ultraviolet irradiation light.

また、逆に、紫外線分解型(崩壊型)感光性樹脂よりなるレジスト液を塗布し、レジスト層を形成した後、このレジスト層にネガフィルム(ネガパターンが施されたガラス板)を通して、孔を開けたい箇所だけに紫外線を照射し、その後、紫外線を照射した箇所の分解している感光性樹脂を洗浄除去することによって、得ることもできる。
一方、無孔金属箔の裏面には、無孔レジスト膜を接合する。無孔レジスト膜は、紫外線硬化型感光性樹脂よりなるレジスト液を使用した場合には、レジスト層を形成した後、紫外線を全面に照射すれば、容易に得ることができる。また、紫外線分解型感光性樹脂よりなるレジスト液を使用した場合には、レジスト層を形成した後、なるべく紫外線が照射しないようにして放置しておけば良い。
Conversely, a resist solution made of an ultraviolet-decomposable (collapse-type) photosensitive resin is applied to form a resist layer, and then a negative film (a glass plate with a negative pattern) is passed through the resist layer. It can also be obtained by irradiating only the part to be opened with ultraviolet rays, and then washing and removing the decomposed photosensitive resin in the part irradiated with the ultraviolet rays.
On the other hand, a non-porous resist film is bonded to the back surface of the non-porous metal foil. The non-porous resist film can be easily obtained by irradiating the entire surface with ultraviolet rays after forming a resist layer when a resist solution made of an ultraviolet curable photosensitive resin is used. Further, when a resist solution made of an ultraviolet-decomposable photosensitive resin is used, it is allowed to leave the resist layer so as not to irradiate ultraviolet rays as much as possible.

そして、上記のような、傾斜した孔開きレジスト膜-無孔金属箔-無孔レジスト膜、の順で積層された三層積層体に、エッチングを施す。エッチングは、無孔金属箔を溶解させるけれども、レジスト膜は溶解させないエッチング液(例えば、塩化第二鉄−硝酸水溶液)を用いて行なう。エッチングは、一般的に、三層積層体の傾斜した孔開きレジスト膜に向けて、エッチング液をスプレーノズルから噴射することによって行なう。また、三層積層体をエッチング液中に浸漬することで行なうこともできる。このような方法によって、レジスト膜の傾斜孔からエッチング液が侵入し、無孔金属箔を溶解させ、図5に示すような傾斜した貫通孔を多数持つ孔開き集電体が得られる。   Etching is then performed on the three-layer laminate in which the inclined perforated resist film, non-porous metal foil, and non-porous resist film are laminated in this order. Etching is performed using an etching solution (for example, ferric chloride-nitric acid aqueous solution) that dissolves the nonporous metal foil but does not dissolve the resist film. Etching is generally performed by spraying an etching solution from a spray nozzle toward the inclined perforated resist film of the three-layer laminate. Moreover, it can also carry out by immersing a three-layer laminated body in an etching liquid. By such a method, the etching solution enters from the inclined holes of the resist film, dissolves the non-porous metal foil, and a perforated current collector having a large number of inclined through holes as shown in FIG. 5 is obtained.

さらに、無孔金属箔の裏面の別の形態としては、傾斜した孔開きレジスト膜を接合してもよい。この裏面側の傾斜した孔開きレジスト膜は、表面側の傾斜した孔開きレジスト膜と同様の方法によって傾斜した孔開きレジスト膜を形成させてもよい。つまり、傾斜した孔開きレジスト膜-無孔金属箔-傾斜した孔開きレジスト膜、の三層構造の形態となる。このような形態の場合、無孔金属箔の両面を同時に塩化第二鉄−硝酸水溶液によってエッチングすることが可能となる。ただし、本実施形態では、集電体の表面側のレジスト膜に設けられた傾斜孔に対して、裏面側のレジスト膜に設けられた傾斜孔が、略直線的に繋がるように調整する必要があり、つまり無孔金属箔を塩化第二鉄-塩酸水溶液によってエッチング溶解させる際、金属箔の表面側から形成される傾斜孔と裏面側から形成される傾斜孔とが、エッチング終了時に1つの直線的な貫通孔を形成させる必要がある。なお、上記に示したレジスト膜とは、エッチングに対するレジスト膜という意味で用いられている。   Furthermore, as another form of the back surface of the non-porous metal foil, an inclined perforated resist film may be bonded. The inclined perforated resist film on the back surface side may be formed by a method similar to that of the perforated resist film inclined on the front surface side. That is, it is in the form of a three-layer structure of an inclined perforated resist film-non-porous metal foil-an inclined perforated resist film. In the case of such a form, both surfaces of the non-porous metal foil can be simultaneously etched with a ferric chloride-nitric acid aqueous solution. However, in the present embodiment, it is necessary to adjust so that the inclined hole provided in the resist film on the back surface side is connected substantially linearly to the inclined hole provided in the resist film on the front surface side of the current collector. Yes, that is, when the non-porous metal foil is etched and dissolved with a ferric chloride-hydrochloric acid aqueous solution, the inclined hole formed from the front side of the metal foil and the inclined hole formed from the back side form one straight line at the end of etching. It is necessary to form a through hole. Note that the resist film described above is used to mean a resist film for etching.

一方、無孔金属箔を特定の傾斜を設けた状態で、打ち抜き冶具によって無孔金属箔を直接打ち抜くことで、傾斜した貫通孔を形成した集電体を作製することが可能である。その他の打ち抜きの方法としては、メカパンチング法、ドリル法、レーザー照射法などによって、傾斜した貫通孔が形成された集電体を得ることができる。   On the other hand, it is possible to produce a current collector in which inclined through holes are formed by directly punching the non-porous metal foil with a punching jig in a state where the non-porous metal foil is provided with a specific inclination. As other punching methods, a current collector in which inclined through holes are formed can be obtained by a mechanical punching method, a drill method, a laser irradiation method, or the like.

上記実施形態に基づいて、さらに以下の実施例にて本発明を詳細に述べる。特に本発明では、フォトリソグラフィーによるエッチング法による孔開き集電体の作製について説明する。ただし、下記実施例は、本発明を制限するものではない。   Based on the above embodiment, the present invention will be further described in the following examples. In particular, in the present invention, preparation of a perforated current collector by an etching method using photolithography will be described. However, the following examples do not limit the present invention.

(実施例1)
幅20cm、長さ50cm、厚さ20μmの無孔の電解銅箔を準備した。この電解銅箔の両面に、レジスト液(東京応化株式会社製、OFPR−800)を、約5μmの厚さで均一に塗布し、110℃で5分間乾燥し、レジスト層を形成した。
Example 1
A non-porous electrolytic copper foil having a width of 20 cm, a length of 50 cm, and a thickness of 20 μm was prepared. A resist solution (OFPR-800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was uniformly applied to both surfaces of this electrolytic copper foil, and dried at 110 ° C. for 5 minutes to form a resist layer.

一方、直径0.2mmの円が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで焼き付けられたネガフィルムを準備した。このネガフィルムの大きさは、電解銅箔の大きさに合致するように、幅20cmとし、長さを50cmとした。なお、ネガフィルムの厚さは0.2mmとした。   On the other hand, a negative film was prepared in which circles having a diameter of 0.2 mm were baked at a pitch of 3 mm in the width direction and at a pitch of 3 mm in the length direction. The negative film had a width of 20 cm and a length of 50 cm so as to match the size of the electrolytic copper foil. The thickness of the negative film was 0.2 mm.

このネガフィルムを、無孔電解銅箔の表面に接合されたレジスト層上に積層し、ネガフィルムから一定の距離を置いて設けた紫外線露光器から、300mJ/cm2の紫外線を照射し、レジスト層に潜像を形成した。このとき、上記ネガフィルムがレジスト層の上に積層された無孔電解銅箔の表面と、紫外線照射光によって形成される切片の鋭角が80°となるように紫外線を照射した。そして、東京応化株式会社製のNMD−3現像液で、少なくとも30秒間以上現像し、軽く水洗した後に110℃で5分間乾燥した。 This negative film is laminated on a resist layer bonded to the surface of the non-porous electrolytic copper foil, and irradiated with 300 mJ / cm 2 of ultraviolet light from an ultraviolet exposure device provided at a certain distance from the negative film. A latent image was formed on the layer. At this time, ultraviolet rays were irradiated so that the acute angle of the surface of the non-porous electrolytic copper foil in which the negative film was laminated on the resist layer and the slice formed by the ultraviolet irradiation light became 80 °. Then, it was developed with an NMD-3 developer manufactured by Tokyo Ohka Kogyo Co., Ltd. for at least 30 seconds, lightly washed with water, and then dried at 110 ° C. for 5 minutes.

この結果、図6に示すように無孔電解銅箔の表面に接合されたレジスト層には、円状の直径ほぼ0.2mmの貫通孔が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで形成され、上記貫通孔は、レジスト層表面と貫通孔の内壁によって形成される切片の鋭角(θ1)がほぼ80°を形成した。また、無孔電解銅箔の裏面に接合されたレジスト層には、紫外線を照射せずに、当初のままの無孔レジスト層とした。以上のようにして、孔開きレジスト層、無孔電解銅箔、無孔レジスト層の順で積層された三層積層体を得た。   As a result, as shown in FIG. 6, in the resist layer bonded to the surface of the non-porous electrolytic copper foil, circular through holes having a diameter of about 0.2 mm are arranged at a pitch of 3 mm in the width direction and in the length direction. The through-holes were formed at a pitch of 3 mm, and the acute angle (θ1) of the section formed by the resist layer surface and the inner walls of the through-holes was approximately 80 °. In addition, the resist layer bonded to the back surface of the non-porous electrolytic copper foil was not irradiated with ultraviolet rays, and was used as the original non-porous resist layer. As described above, a three-layer laminate was obtained in which a perforated resist layer, a nonporous electrolytic copper foil, and a nonporous resist layer were laminated in this order.

そして、この三層積層体の孔開きレジスト層側に形成された貫通孔に対して、垂直に照射されるように、つまり傾斜した貫通孔の孔が延びている方向と同一方向にエッチング液を噴射した。即ち、2.2mol/dm3のFeCl3と1.0mol/cm3のHClとの混合水溶液(液温約50℃)よりなるエッチング液を、6本のノズルから0.15MPaの圧力で、少なくとも15秒間、孔開きレジスト層に向けて噴射して、エッチングを行なった。そして、この後、直ちに水洗および110℃で5分間乾燥した。 Then, the etching solution is applied in the same direction as the direction in which the holes of the inclined through holes extend so that the through holes formed on the perforated resist layer side of the three-layer laminate are irradiated vertically. Jetted. That is, an etching solution composed of a mixed aqueous solution of 2.2 mol / dm 3 FeCl 3 and 1.0 mol / cm 3 HCl (liquid temperature of about 50 ° C.) is applied at least at a pressure of 0.15 MPa from six nozzles. Etching was performed by spraying toward the perforated resist layer for 15 seconds. After this, it was immediately washed with water and dried at 110 ° C. for 5 minutes.

次いで、三層積層体の各レジスト層を除去すべく、アセトンに浸漬し、110℃で5分乾燥した。この結果、直径(銅箔表面側における直径)が約0.2mmの貫通孔が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで設けられた銅箔が得られた。この銅箔を、幅10cm,長さ50cmに切断して、孔開き集電体を得た。   Subsequently, in order to remove each resist layer of a three-layer laminated body, it immersed in acetone and dried for 5 minutes at 110 degreeC. As a result, a copper foil in which through holes having a diameter (diameter on the copper foil surface side) of about 0.2 mm were provided at a pitch of 3 mm in the width direction and at a pitch of 3 mm in the length direction was obtained. This copper foil was cut into a width of 10 cm and a length of 50 cm to obtain a perforated current collector.

この集電体を裁断し、その集電体断面に現れた貫通孔の断面形状を顕微鏡で観察したところ、図5に示すような傾斜した貫通孔であって、θ1は70°程度で、θ2は120°程度で、θ3は110°程度で、θ4は60°程度であった。   When this current collector was cut and the cross-sectional shape of the through hole appearing on the current collector cross section was observed with a microscope, it was an inclined through hole as shown in FIG. 5, and θ1 was about 70 ° and θ2 Was about 120 °, θ3 was about 110 °, and θ4 was about 60 °.

なお、上記実施例1では千鳥格子状に形成したネガフィルムを用いたため、得られた孔開き集電体の貫通孔は、集電体の一方の主面に垂直な方向から見たところ、図7のような千鳥格子状に配置させた孔開き集電体が得られた。   In addition, since the negative film formed in a staggered pattern in Example 1 was used, the through hole of the obtained apertured collector was viewed from a direction perpendicular to one main surface of the collector, A perforated current collector arranged in a staggered pattern as shown in FIG. 7 was obtained.

この孔開き集電体の表面に、シリコンよりなる活物質とポリイミドバインダーとの混合物である粘度35500mPa・sの塗料を塗布したところ、貫通孔から裏面の表面に塗料の回りこみは確認されなかった。さらに、裏面側において上記塗料を同量塗布した結果、裏面の塗膜厚みは、表面側の塗膜厚みとほぼ均一な塗膜が形成された。ここで表面側の塗膜厚みを相対的に100とした場合、裏面側の塗膜厚みも100であった。   When a paint having a viscosity of 35,500 mPa · s, which is a mixture of an active material made of silicon and a polyimide binder, was applied to the surface of the perforated current collector, no wraparound of the paint was confirmed from the through hole to the back surface. . Furthermore, as a result of applying the same amount of the coating material on the back surface side, a coating film having a substantially uniform coating film thickness on the back surface side was formed. Here, when the thickness of the coating film on the front surface side was relatively 100, the coating film thickness on the back surface side was also 100.

さらに上記電極をリチウムイオン二次電池の負極とし、正極、セパレータおよび電解液によって電池セルを作製し、2.5〜4.2Vの電位におけるサイクル特性を評価した結果、50サイクル後の容量保持率は90%を示した。   Further, the above electrode was used as a negative electrode of a lithium ion secondary battery, and a battery cell was prepared using a positive electrode, a separator, and an electrolytic solution, and the cycle characteristics at a potential of 2.5 to 4.2 V were evaluated. Showed 90%.

なお、参考までに実施例1の貫通孔の開口部形状を六角形にした以外は実施例1と同様に作製した集電体では実施例1と全く同様の結果が得られた。   For reference, the current collector manufactured in the same manner as in Example 1 except that the shape of the opening of the through hole in Example 1 was hexagonal, the same result as in Example 1 was obtained.

(比較例1)
幅20cm、長さ50cm、厚さ20μmの無孔の電解銅箔を準備した。この電解銅箔の両面に、レジスト液(東京応化株式会社製、OFPR−800)を、約5μmの厚さで均一に塗布し、110℃で5分間乾燥し、レジスト層を形成した。
(Comparative Example 1)
A non-porous electrolytic copper foil having a width of 20 cm, a length of 50 cm, and a thickness of 20 μm was prepared. A resist solution (OFPR-800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was uniformly applied to both surfaces of this electrolytic copper foil, and dried at 110 ° C. for 5 minutes to form a resist layer.

一方、直径0.2mmの円が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで焼き付けられたネガフィルムを準備した。このネガフィルムの大きさは、電解銅箔の大きさに合致するように、幅20cmとし、長さを50cmとした。なお、ネガフィルムの厚さは0.2mmとした。   On the other hand, a negative film was prepared in which circles having a diameter of 0.2 mm were baked at a pitch of 3 mm in the width direction and at a pitch of 3 mm in the length direction. The negative film had a width of 20 cm and a length of 50 cm so as to match the size of the electrolytic copper foil. The thickness of the negative film was 0.2 mm.

このネガフィルムを、無孔電解銅箔の表面に接合されたレジスト層上に積層し、ネガフィルムから一定の距離を置いて設けた紫外線露光器から、300mJ/cm2の紫外線を照射し、レジスト層に潜像を形成した。このとき、上記ネガフィルムがレジスト層の上に積層された無孔電解銅箔の表面と、紫外線照射光によって形成される切片の鋭角が90°となるように紫外線を照射した。そして、東京応化株式会社製のNMD−3現像液で、少なくとも30秒間以上現像し、軽く水洗した後に110℃で5分間乾燥した。 This negative film is laminated on a resist layer bonded to the surface of the non-porous electrolytic copper foil, and irradiated with 300 mJ / cm 2 of ultraviolet light from an ultraviolet exposure device provided at a certain distance from the negative film. A latent image was formed on the layer. At this time, the surface of the non-porous electrolytic copper foil in which the negative film was laminated on the resist layer and the section formed by the ultraviolet irradiation light were irradiated with ultraviolet rays so that the acute angle was 90 °. Then, it was developed with an NMD-3 developer manufactured by Tokyo Ohka Kogyo Co., Ltd. for at least 30 seconds, lightly washed with water, and then dried at 110 ° C. for 5 minutes.

この結果、図8に示すように無孔電解銅箔の表面に接合されたレジスト層には、直径ほぼ0.2mmの貫通孔が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで形成され、上記貫通孔は、レジスト層表面と貫通孔の内壁によって形成される角度(θ1)がほぼ90°を形成した。また、無孔電解銅箔の裏面に接合されたレジスト層には、紫外線を照射せずに、当初のままの無孔レジスト層とした。以上のようにして、孔開きレジスト層、無孔電解銅箔、無孔レジスト層の順で積層された三層積層体を得た。   As a result, as shown in FIG. 8, the resist layer bonded to the surface of the non-porous electrolytic copper foil has through holes having a diameter of approximately 0.2 mm at a pitch of 3 mm in the width direction and a pitch of 3 mm in the length direction. The through-hole was formed, and the angle (θ1) formed by the resist layer surface and the inner wall of the through-hole formed approximately 90 °. In addition, the resist layer bonded to the back surface of the non-porous electrolytic copper foil was not irradiated with ultraviolet rays, and was used as the original non-porous resist layer. As described above, a three-layer laminate was obtained in which a perforated resist layer, a nonporous electrolytic copper foil, and a nonporous resist layer were laminated in this order.

そして、この三層積層体の孔開きレジスト層側に形成された貫通孔に対して、垂直に照射されるようにエッチング液を噴射した。即ち、2.2mol/dm3のFeCl3と1.0mol/cm3とHClとの混合水溶液(液温約50℃)よりなるエッチング液を、6本のノズルから0.15MPaの圧力で、少なくとも15秒間、孔開きレジスト層に向けて噴射して、エッチングを行なった。そしてこの後、直ちに水洗および110℃で5分間乾燥した。 And the etching liquid was sprayed so that it might irradiate perpendicularly with respect to the through-hole formed in the perforated resist layer side of this three-layer laminated body. That is, an etching solution composed of a mixed aqueous solution of 2.2 mol / dm 3 FeCl 3 , 1.0 mol / cm 3 and HCl (liquid temperature of about 50 ° C.) is applied at least at a pressure of 0.15 MPa from six nozzles. Etching was performed by spraying toward the perforated resist layer for 15 seconds. After this, it was immediately washed with water and dried at 110 ° C. for 5 minutes.

次いで、三層積層体の各レジスト層を除去すべく、アセトンに浸漬し、110℃で5分乾燥した。この結果、直径(銅箔表面側における直径)が約0.2mmの貫通孔が、幅方向に3mmピッチで、かつ長さ方向に3mmピッチで設けられた銅箔(図9)が得られた。この銅箔を、幅10cm,長さ50cmに切断して、孔開き集電体を得た。   Subsequently, in order to remove each resist layer of a three-layer laminated body, it immersed in acetone and dried for 5 minutes at 110 degreeC. As a result, a copper foil (FIG. 9) in which through-holes having a diameter (diameter on the copper foil surface side) of about 0.2 mm were provided at a pitch of 3 mm in the width direction and a pitch of 3 mm in the length direction was obtained. . This copper foil was cut into a width of 10 cm and a length of 50 cm to obtain a perforated current collector.

この集電体を裁断し、その集電体断面に現れた貫通孔の断面形状を顕微鏡で観察したところ、図9に示すような傾斜した貫通孔であって、θ1は90°程度で、θ2は90°程度で、θ3は90°程度で、θ4は90°程度であった。   When this current collector was cut and the cross-sectional shape of the through hole appearing in the current collector cross section was observed with a microscope, it was an inclined through hole as shown in FIG. 9, and θ1 was about 90 ° and θ2 Was about 90 °, θ3 was about 90 °, and θ4 was about 90 °.

この孔開き集電体の表面に、実施例1で作製した塗料を塗布したところ、裏面側の貫通孔から塗料の回り込みが起きた。さらに裏面側においても同量の塗料を塗布した結果、表面側に形成された塗膜の厚みよりも、裏面側での塗膜厚みは大きくなった。
ここで表面側の塗膜厚みを相対的に100とした場合、裏面側の塗膜厚みは120であった。裏面側での塗膜厚みが大きくなった原因としては、表面側で塗布した塗料が貫通孔を介し裏面側に回り込んだためと考えられる。
When the coating material produced in Example 1 was applied to the surface of the perforated current collector, the coating material wraps around from the through hole on the back surface side. Furthermore, as a result of applying the same amount of coating material on the back surface side, the coating film thickness on the back surface side was larger than the thickness of the coating film formed on the front surface side.
Here, when the thickness of the coating film on the front surface side was relatively 100, the coating film thickness on the back surface side was 120. The reason why the thickness of the coating film on the back surface side is increased is considered to be that the coating applied on the front surface side wraps around the back surface side through the through hole.

さらに上記電極をリチウムイオン二次電池の負極とし、正極、セパレータおよび電解液によって電池セルを作製し、2.5〜4.2Vの電位におけるサイクル特性を評価した結果、50サイクル後の容量保持率は82%であった。したがって、リチウムイオン二次電池の負極として、実施例1で作製した負極よりも、比較例1で作製された負極は、リチウムイオン二次電池の電極としては、好適ではないことが明らかであった。   Further, the above electrode was used as a negative electrode of a lithium ion secondary battery, and a battery cell was prepared using a positive electrode, a separator, and an electrolytic solution, and the cycle characteristics at a potential of 2.5 to 4.2 V were evaluated. Was 82%. Therefore, it was clear that the negative electrode produced in Comparative Example 1 was not more suitable as the electrode of the lithium ion secondary battery than the negative electrode produced in Example 1 as the negative electrode of the lithium ion secondary battery. .

表1に上記結果をまとめる。   Table 1 summarizes the results.

Figure 2013182810
Figure 2013182810

なお、本発明で作製された孔開き集電体は、上記作製方法に限定することはなく、適宜好適な方法によって貫通孔を形成すれば、これに限るものではない。   The perforated current collector produced in the present invention is not limited to the above production method, and is not limited to this as long as through holes are formed by a suitable method.

その他、バリエーションの中でも、集電体の断面において、図10に示すように、隣接する2つの傾斜した貫通孔を互いに交差させた形状、図5の集電体と同様に優れた効果を有することがわかっている。なお、図10では明確に図示されていないが、2つの傾斜した直線状の貫通孔が、互いに交差して形成されているため、2つの貫通孔は集電体の内部で合流部分を有する。またその合流部分がなくなる様、互いにずれて形成しても良い。   In addition, among the variations, in the cross section of the current collector, as shown in FIG. 10, a shape in which two adjacent inclined through-holes intersect with each other, as well as the current collector of FIG. I know. Although not clearly shown in FIG. 10, two inclined linear through holes are formed so as to intersect with each other, so that the two through holes have a joining portion inside the current collector. Moreover, you may form mutually shifted | deviated so that the junction part may be eliminated.

図10のような貫通孔は、本発明によるフォトリソグラフィーによるエッチングを複数回実施することによって得ることができる。このように様々なバリエーションが考えられ、本実施形態にて説明した形状に限定されるものではない。また言うまでもないが図5で示される様に、貫通孔形状は平行四辺形になっている必要はなく、本発明の効果を損ねなければ内部で変形してもかまわない。   The through hole as shown in FIG. 10 can be obtained by performing etching by photolithography according to the present invention a plurality of times. Various variations are conceivable as described above, and the present invention is not limited to the shapes described in the present embodiment. Needless to say, as shown in FIG. 5, the through-hole shape does not need to be a parallelogram, and may be deformed inside if the effects of the present invention are not impaired.

本発明で提供された孔開き集電体を用いることで、その後、塗布した塗膜厚みの不均一性を改善できる集電体を提供し、その結果、信頼性の高いリチウムイオン二次電池を提供することができる。   By using the perforated current collector provided in the present invention, a current collector that can improve the non-uniformity of the applied coating thickness is provided, and as a result, a highly reliable lithium ion secondary battery is provided. Can be provided.

1 集電体の表面
2 集電体の裏面
3 傾斜した貫通孔の内壁面
4 傾斜した貫通孔の内壁面
DESCRIPTION OF SYMBOLS 1 Front surface of current collector 2 Back surface of current collector 3 Inner wall surface of inclined through hole 4 Inner wall surface of inclined through hole

Claims (4)

集電体の一方の主面から他方の主面にかけて貫通する貫通孔が複数備えられ、
前記貫通孔は、略直線状に貫通し、
前記集電体の直線状に貫通した一方の開口部と他方の開口部は、
前記集電体の前記一方の主面の鉛直方向から投影視したとき、互いにほぼ重なり合わない位置に配置されていることを特徴とする集電体。
A plurality of through holes penetrating from one main surface of the current collector to the other main surface are provided,
The through hole penetrates substantially linearly,
One opening and the other opening penetrating the current collector linearly,
The current collector is disposed at a position that does not substantially overlap each other when projected from the vertical direction of the one main surface of the current collector.
前記集電体の前記一方の開口部の開口面積と、前記他方の開口部の開口面積とが実質的に同等である請求項1に記載の集電体。   The current collector according to claim 1, wherein an opening area of the one opening of the current collector is substantially equal to an opening area of the other opening. 前記集電体の前記一方の開口部及び前記他方の開口部の開口形状が、円状、または多角形状である請求項1〜2に記載の集電体。   The current collector according to claim 1 or 2, wherein an opening shape of the one opening and the other opening of the current collector is a circular shape or a polygonal shape. 請求項1〜3に記載の集電体を、負極および/または正極に用いられて作製されたリチウムイオン二次電池。   The lithium ion secondary battery produced using the electrical power collector of Claims 1-3 for a negative electrode and / or a positive electrode.
JP2012046718A 2012-03-02 2012-03-02 Collector, and lithium ion secondary battery using the same Pending JP2013182810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046718A JP2013182810A (en) 2012-03-02 2012-03-02 Collector, and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046718A JP2013182810A (en) 2012-03-02 2012-03-02 Collector, and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2013182810A true JP2013182810A (en) 2013-09-12

Family

ID=49273329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046718A Pending JP2013182810A (en) 2012-03-02 2012-03-02 Collector, and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2013182810A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167192A (en) * 2014-03-04 2015-09-24 旭化成パックス株式会社 Punched thin film and power storage device using the same
KR101741412B1 (en) * 2014-10-29 2017-05-30 에스케이이노베이션 주식회사 Current collector for secondary battery, electrode for secondary battery and secondary battery using the same
KR20170091994A (en) * 2016-02-02 2017-08-10 에스케이이노베이션 주식회사 Electrode for a lithium polymer secondary battery
CN108140804A (en) * 2015-11-06 2018-06-08 三洋电机株式会社 The manufacturing method and applying device of electrode plate for electricity storage device
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
WO2019125064A1 (en) * 2017-12-22 2019-06-27 주식회사 엘지화학 Negative electrode for lithium metal battery, and lithium metal battery comprising same
WO2021230547A1 (en) * 2020-05-14 2021-11-18 주식회사 엘지에너지솔루션 Electrode assembly having enhanced safety and lithium secondary battery comprising same
US12009522B2 (en) 2017-12-22 2024-06-11 Lg Energy Solution, Ltd. Anode for lithium metal battery and lithium metal battery comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167192A (en) * 2014-03-04 2015-09-24 旭化成パックス株式会社 Punched thin film and power storage device using the same
KR101741412B1 (en) * 2014-10-29 2017-05-30 에스케이이노베이션 주식회사 Current collector for secondary battery, electrode for secondary battery and secondary battery using the same
CN108140804A (en) * 2015-11-06 2018-06-08 三洋电机株式会社 The manufacturing method and applying device of electrode plate for electricity storage device
KR20170091994A (en) * 2016-02-02 2017-08-10 에스케이이노베이션 주식회사 Electrode for a lithium polymer secondary battery
KR102576726B1 (en) * 2016-02-02 2023-09-07 에스케이온 주식회사 Electrode for a lithium polymer secondary battery
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
US11081762B2 (en) 2017-06-27 2021-08-03 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
WO2019125064A1 (en) * 2017-12-22 2019-06-27 주식회사 엘지화학 Negative electrode for lithium metal battery, and lithium metal battery comprising same
US12009522B2 (en) 2017-12-22 2024-06-11 Lg Energy Solution, Ltd. Anode for lithium metal battery and lithium metal battery comprising the same
WO2021230547A1 (en) * 2020-05-14 2021-11-18 주식회사 엘지에너지솔루션 Electrode assembly having enhanced safety and lithium secondary battery comprising same
US12249720B2 (en) 2020-05-14 2025-03-11 Lg Energy Solution, Ltd. Electrode assembly having enhanced safety and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP2013182810A (en) Collector, and lithium ion secondary battery using the same
TWI536648B (en) Metal foil for negative electrode current collector
TWI616939B (en) Method for making at least one groove or a perforation into a plate-like workpiece
CN101584065A (en) Three-dimensional battery and its manufacturing method
KR101618428B1 (en) Electrode structure for a lithium-sulfur secondary cell and method of manufacturing the same
US12194459B2 (en) Master for micro flow path creation, transfer copy, and method for producing master for micro flow path creation
TW200846189A (en) Engraved plate and base material having conductor layer pattern using the engraved plate
JP4462509B2 (en) Perforated current collector for secondary battery and manufacturing method thereof
CN108352532A (en) It is capable of basic material and layer compound, its manufacturing method and its application of conduction
KR20170091994A (en) Electrode for a lithium polymer secondary battery
JP5787307B2 (en) Porous electrode for secondary battery
WO2019093758A1 (en) Apparatus for manufacturing electrolytic copper foil
US9791774B2 (en) Nanostencil mask and method for forming a nanostencil mask
TWI703238B (en) Microporous copper foil manufacturing method and microporous copper foil
KR20180115152A (en) Unit electrode of battery solving unbalance residual stress and lithium ion polymer battery including the same
JP7154376B2 (en) energy storage device
JP3845372B2 (en) Method for producing hydrogen separation member
CN110112422B (en) Microporous metal foil and method for producing same
JP7027610B2 (en) Energy storage device
KR20160053886A (en) Electrode structure for a lithium-sulfur secondary cell
CN102856144B (en) Light track of rotating anode with microstructure
JP2004200406A (en) Coil member
KR20130005722A (en) Method for manufacturing current collector for electrochemical device and current collector for electrochemical device manufactured by using same
JP2006202658A (en) Manufacturing method of anode for nonaqueous electrolyte solution secondary battery
JP2019192508A (en) Electrode plate manufacturing method