[go: up one dir, main page]

JP2013173387A - 車両衝突判定装置及び車両乗員保護システム - Google Patents

車両衝突判定装置及び車両乗員保護システム Download PDF

Info

Publication number
JP2013173387A
JP2013173387A JP2012037742A JP2012037742A JP2013173387A JP 2013173387 A JP2013173387 A JP 2013173387A JP 2012037742 A JP2012037742 A JP 2012037742A JP 2012037742 A JP2012037742 A JP 2012037742A JP 2013173387 A JP2013173387 A JP 2013173387A
Authority
JP
Japan
Prior art keywords
occupant protection
vehicle
rebound
axis acceleration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012037742A
Other languages
English (en)
Inventor
Masatoshi Hayasaka
昌寿 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2012037742A priority Critical patent/JP2013173387A/ja
Publication of JP2013173387A publication Critical patent/JP2013173387A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Bags (AREA)

Abstract

【課題】サイドインパクトセンサを使用せずに、対リバウンド乗員保護装置の起動制御を実現する。
【解決手段】車両衝突判定装置は、車両の長さ方向に作用する第1軸加速度を検出する第1軸加速度検出手段と、前記車両の高さ方向を中心軸とする回転速度を検出する回転速度検出手段と、前記第1軸加速度及び前記回転速度の検出結果に基づいて、対リバウンド乗員保護装置を起動すべきか否かを判断するリバウンド判定手段とを備える。
【選択図】図2

Description

本発明は、車両衝突判定装置及び車両乗員保護システムに関する。
一般的に、車両衝突時に乗員を保護するためのシステムとして、SRS(Supplemental Restraint System)エアバッグシステムが知られている。このSRSエアバッグシステムとは、車両の各部に設置された加速度センサから取得した加速度データを基に、車両衝突の発生を検知してエアバッグ等の乗員保護装置を起動するものである。
エアバッグの種類としては、正面衝突時に展開するフロントエアバッグや、側面衝突時に展開するサイドエアバッグ及びカーテンエアバッグ等がある。特に、カーテンエアバッグは、車両のルーフサイド全体に亘って展開して前席及び後席の乗員が側面衝突時にサイドウインドウやピラーに叩き付けられることを防ぐことができるため、乗員保護性能向上の観点から急速に普及が進んでいる。
さらに、近年では、側面衝突時だけでなく、片側正面衝突時(いわゆるオフセット衝突時)にカーテンエアバッグを展開するSRSエアバッグシステムも開発されている。オフセット衝突とは、図4に示すように、障害物に対して車両正面の片側が衝突することを指し、衝突後に車両は横方向に振られながら後退(リバウンド)する。その際、乗員の頭部がサイドウインドウやピラーに二次衝突し、頭部への傷害値が大きくなる可能性がある(窓が開いていた場合は車外への飛び出しの可能性もある)。従って、オフセット衝突後のリバウンド時にカーテンエアバッグを展開することで、頭部への傷害値を軽減することが必要となる。
下記特許文献1には、車両前部に設置されたフロントクラッシュセンサ(FCS)と、車両中央部に設置されたSRSユニット(SRSエアバッグシステムを統括制御するECU)に内蔵されたメイン加速度センサ(MGS)と、車両の両サイドに設置されたサイドインパクトセンサ(SIS)とから得られる加速度データに基づいて、オフセット衝突の発生を検知した場合に、まずフロントエアバッグを展開し、続いて、リバウンドの発生を検知した場合にカーテンエアバッグを展開する技術が開示されている。
なお、FCS及びMGSは、感応軸が車両の長さ方向(X軸方向)と平行になるよう配置された加速度センサであり、車両のX軸方向に作用する加速度を検出する。また、SISは、感応軸が車両の幅方向(Y軸方向)と平行になるよう配置された加速度センサであり、車両のY軸方向に作用する加速度を検出する。これらの内、FCS及びSISはサテライトセンサとも呼ばれ、マイコンによるデータ通信機能や故障診断機能などのインテリジェントな機能を持ったセンサユニットである。
特開2009−96297号公報
上記従来技術は、本来、側面衝突時におけるサイドエアバッグの起動制御に用いられていたSISを、オフセット衝突後のリバウンド発生時におけるカーテンエアバッグの起動制御に利用したものである。一方、近年では、オフセット衝突後のリバウンドにより乗員が負う傷害を軽減可能なカーテンエアバッグ搭載車の需要が高まっており、将来的には、サイドエアバッグ非搭載車(つまりSIS非搭載車)にカーテンエアバッグを搭載することが予想されるが、従来技術では、SISが無ければカーテンエアバッグの起動制御を実施することができない。
本発明は、上述した事情に鑑みてなされたものであり、SISを使用せずに、対リバウンド乗員保護装置の起動制御を実現することを目的とする。
上記課題を解決するために、本発明では、車両衝突判定装置に係る第1の解決手段として、車両の長さ方向に作用する第1軸加速度を検出する第1軸加速度検出手段と、前記車両の高さ方向を中心軸とする回転速度を検出する回転速度検出手段と、前記第1軸加速度及び前記回転速度の検出結果に基づいて、対リバウンド乗員保護装置を起動すべきか否かを判断するリバウンド判定手段とを備えることを特徴とする。
また、本発明では、車両衝突判定装置に係る第2の解決手段として、上記第1の解決手段において、前記車両の幅方向に作用する第2軸加速度を検出する第2軸加速度検出手段を備え、前記リバウンド判定手段は、前記第1軸加速度の検出結果に基づく第1演算値が第1閾値より大きく、且つ前記回転速度の検出結果に基づく第2演算値が第2閾値より大きく、且つ前記第2軸加速度の検出結果に基づく第3演算値が第3閾値より大きい場合に、前記対リバウンド乗員保護装置を起動すべきと判断することを特徴とする。
また、本発明では、車両衝突判定装置に係る第3の解決手段として、上記第2の解決手段において、前記リバウンド判定手段は、前記回転速度検出手段が故障している場合には、常に前記回転速度の検出結果に基づく第2演算値が第2閾値より大きいと見做すことを特徴とする。
また、本発明では、車両衝突判定装置に係る第4の解決手段として、上記第1〜第3のいずれか1つの解決手段において、前記第1軸加速度検出手段から得られた第1軸加速度の検出結果に基づいて、対前突乗員保護装置を起動すべきか否かを判断する前突判定手段と、外部から得られた車両前部の長さ方向に作用する第1軸加速度の検出結果に基づいて、全ての乗員保護装置を起動すべきか否かを判断するセーフィング判定手段と、前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記前突判定手段にて前記対前突乗員保護装置を起動すべきと判断された場合に、前記対前突乗員保護装置を起動させる第1起動手段と、前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記リバウンド判定手段にて前記対リバウンド乗員保護装置を起動すべきと判断された場合に、前記対リバウンド乗員保護装置を起動させる第2起動手段とをさらに備えることを特徴とする。
また、本発明では、車両衝突判定装置に係る第5の解決手段として、上記第4の解決手段において、前記第2起動手段は、前記第1起動手段によって前記対前突乗員保護装置が起動された後に、前記対リバウンド乗員保護装置を起動させることを特徴とする。
一方、本発明では、車両乗員保護システムに係る第1の解決手段として、前記車両の片側正面衝突後に発生するリバウンドから乗員を保護するための対リバウンド乗員保護装置と、前記対リバウンド乗員保護装置の起動制御を行う車両衝突判定装置とを備えた車両乗員保護システムにおいて、前記車両衝突判定装置は、前記車両の長さ方向に作用する第1軸加速度を検出する第1軸加速度検出手段と、前記車両の高さ方向を中心軸とする回転速度を検出する回転速度検出手段と、前記第1軸加速度及び前記回転速度の検出結果に基づいて、前記対リバウンド乗員保護装置を起動すべきか否かを判断するリバウンド判定手段とを備えることを特徴とする。
また、本発明では、車両乗員保護システムに係る第2の解決手段として、上記第1の解決手段において、前記車両衝突判定装置は、前記車両の幅方向に作用する第2軸加速度を検出する第2軸加速度検出手段を備え、前記リバウンド判定手段は、前記第1軸加速度の検出結果に基づく第1演算値が第1閾値より大きく、且つ前記回転速度の検出結果に基づく第2演算値が第2閾値より大きく、且つ前記第2軸加速度の検出結果に基づく第3演算値が第3閾値より大きい場合に、前記対リバウンド乗員保護装置を起動すべきと判断することを特徴とする。
また、本発明では、車両乗員保護システムに係る第3の解決手段として、上記第2の解決手段において、前記側突判定手段は、前記回転速度検出手段が故障している場合には、常に前記回転速度の検出結果に基づく第2演算値が第2閾値より大きいと見做すことを特徴とする。
また、本発明では、車両乗員保護システムに係る第4の解決手段として、上記第1〜第3のいずれか1つの解決手段において、車両前部に設置され、当該車両の長さ方向に作用する第1軸加速度を検出する前部加速度検出手段と、前記車両の前面衝突による衝撃から乗員を保護するための対前突乗員保護装置とを備え、前記車両衝突判定装置は、前記第1軸加速度検出手段から得られた第1軸加速度の検出結果に基づいて、前記対前突乗員保護装置を起動すべきか否かを判断する前突判定手段と、前記前部加速度検出手段から得られた第1軸加速度の検出結果に基づいて、全ての乗員保護装置を起動すべきか否かを判断するセーフィング判定手段と、前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記前突判定手段にて前記対前突乗員保護装置を起動すべきと判断された場合に、前記対前突乗員保護装置を起動させる第1起動手段と、前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記リバウンド判定手段にて前記対リバウンド乗員保護装置を起動すべきと判断された場合に、前記対リバウンド乗員保護装置を起動させる第2起動手段とをさらに備えることを特徴とする。
また、本発明では、車両乗員保護システムに係る第5の解決手段として、上記第4の解決手段において、前記第2起動手段は、前記第1起動手段によって前記対前突乗員保護装置が起動された後に、前記対リバウンド乗員保護装置を起動させることを特徴とする。
本発明では、車両の長さ方向に作用する第1軸加速度の検出結果と、車両の高さ方向を中心軸とする回転速度の検出結果とに基づいて、対リバウンド乗員保護装置を起動すべきか否かを判断する。
このように、対リバウンド乗員保護装置を起動すべきか否かを判断するための情報として、第1軸加速度及び回転速度を用いることにより、障害物に対して車両が片側正面衝突した後に、車両の後端が横方向に振られながら後退するという現象(つまり、オフセット衝突後に車両が回転しながらリバウンドする現象)を精度よく捉えることができる。
つまり、本発明によれば、SISを使用せずに、対リバウンド乗員保護装置の起動制御を実施することが可能となる。
本実施形態に係る車両乗員保護システムの概略構成図である。 第1実施形態におけるSRSユニット6(車両衝突判定装置)の機能ブロック図である。 第2実施形態におけるSRSユニット6A(車両衝突判定装置)の機能ブロック図である。 車両100がオフセット衝突後にリバウンドする様子を示す図である。
以下、図面を参照しながら、本発明の一実施形態について説明する。
〔第1実施形態〕
図1は、第1実施形態に係る車両乗員保護システムの概略構成図である。この図1に示すように、この車両乗員保護システムは、車両100の前部右側に設置されたフロントクラッシュセンサ(以下、R−FCSと称す)1と、車両100の前部左側に設置されたフロントクラッシュセンサ(以下、L−FCSと称す)2とを備えている。
また、この車両乗員保護システムは、車両100の前席側に設置されたフロントエアバッグ(以下、F−A/Bと称す)3と、車両100の右ルーフサイドに設置された右カーテンエアバッグ(以下、R−C/Bと称す)4と、車両100の左ルーフサイドに設置された左カーテンエアバッグ(以下、L−C/Bと称す)5とを備えている。
さらに、この車両乗員保護システムは、車両100のセンターフロアトンネル内(詳細には運転席と助手席との間)に設置されたSRSユニット6を備えている。
R−FCS1及びL−FCS2は、通信バスを介してSRSユニット6と通信可能に接続されたサテライトセンサであり、それぞれ車両100の特定方向に作用する加速度を検出するセンサ本体と、SRSユニット6との間でデータ通信を行うマイコンとがユニット化された構成となっている。
R−FCS1及びL−FCS2は、それぞれの設置位置における車両100の長さ方向(図中のX軸方向)に作用するX軸加速度(第1軸加速度)を検出し、その検出結果を示す信号をSRSユニット6に送信する。これらR−FCS1及びL−FCS2は、本発明における前部加速度検出手段に相当する。
F−A/B3は、車両100の前面衝突(正面衝突、オフセット衝突を含む)による衝撃から乗員を保護するための対前突乗員保護装置であり、SRSユニット6から起動命令信号を受信した時に展開して、乗員が前方に移動することで負う傷害を軽減する。
R−C/B4及びL−C/B5は、車両100のオフセット衝突後に発生するリバウンドから乗員を保護するための対リバウンド乗員保護装置であり、SRSユニット6から起動命令信号を受信した時に展開して、乗員が側方に移動することで負う傷害を軽減する。
SRSユニット6は、R−FCS1及びL−FCS2から受信した信号と、内部に設けられたメイン加速度センサ(以下、MGSと称す)11及びヨーレートセンサ(以下、YRSと称す)12の出力信号とに基づいて、F−A/B3、R−C/B4及びL−C/B5の起動制御を行うECU(Electric Control Unit)である。このSRSユニット6は、本発明における車両衝突判定装置に相当する。
MGS11は、その設置位置(つまりSRSユニット6の設置位置)における車両100のX軸方向に作用するX軸加速度を検出し、その検出結果を示す信号を不図示のマイコンに出力する。このMGS11は、本発明における第1軸加速度検出手段に相当する。
YRS12は、その設置位置(つまりSRSユニット6の設置位置)における車両100の高さ方向(XY平面に直交する方向)を中心軸とする回転速度(角速度)を検出し、その検出結果を示す信号を不図示のマイコンに出力する。このYRS12は、本発明における回転速度検出手段に相当する。
図2は、SRSユニット6に内蔵された不図示のマイコンが、制御プログラムに従って各処理を実行することで実現される機能をブロック図で示したものである。この図2に示すように、SRSユニット6は、マイコンによるソフトウェア的な処理によって実現される機能として、セーフィング判定部13、前突判定部14、リバウンド判定部15、F−A/B起動部16、R−C/B起動部17及びL−C/B起動部18を備えている。
セーフィング判定部13は、R−FCS1及びL−FCS2から受信した信号、つまり車両100の前部右側及び前部左側に作用するX軸加速度の検出結果に基づいて、全ての乗員保護装置(F−A/B3、R−C/B4及びL−C/B5)を起動すべきか否かを判断し、その判断結果をF−A/B起動部16、R−C/B起動部17及びL−C/B起動部18に提供する。
詳細には、このセーフィング判定部13は、バンドパスフィルタ(以下、BPFと称す)13a及び13bと、積分部13c及び13dと、比較部13e及び13fと、論理和演算部13gとを備えている。
BPF13aは、R−FCS1から受信した信号から特定の周波数帯域の信号を抽出する。BPF13bは、L−FCS2から受信した信号から特定の周波数帯域の信号を抽出する。積分部13cは、BPF13aによって抽出された信号を積分(例えば区間積分)し、その積分値ΔV_FCRを比較部13eに提供する。積分部13dは、BPF13bによって抽出された信号を積分(例えば区間積分)し、その積分値ΔV_FCLを比較部13fに提供する。
比較部13eは、積分部13cから得られる積分値ΔV_FCRと、予め設定されているセーフィング判定閾値Vth_SFとを比較し、その比較結果を論理和演算部13gに提供する。具体的には、比較部13eは、積分値ΔV_FCRがセーフィング判定閾値Vth_SFより大きい場合に、比較結果を示すフラグの値を真値(例えば「1」)にセットする。
比較部13fは、積分部13dから得られる積分値ΔV_FCLと、予め設定されているセーフィング判定閾値Vth_SFとを比較し、その比較結果を論理和演算部13gに提供する。具体的には、比較部13fは、積分値ΔV_FCLがセーフィング判定閾値Vth_SFより大きい場合に、比較結果を示すフラグの値を真値にセットする。
論理和演算部13gは、比較部13eの比較結果と比較部13fの比較結果との論理和を演算し、その演算結果をセーフィング判定結果としてF−A/B起動部16、R−C/B起動部17及びL−C/B起動部18に提供する。具体的には、論理和演算部13gは、比較部13eの比較結果と比較部13fの比較結果との少なくとも一方が真値であった場合に、セーフィング判定結果を示すフラグの値を真値にセットする。
前突判定部14は、MGS11の出力信号、つまりSRSユニット6の設置位置に作用するX軸加速度の検出結果に基づいて、F−A/B3を起動すべきか否かを判断し、その判断結果(起動要否判定結果)をF−A/B起動部16に提供するものであり、BPF14a、積分部14b及び比較部14cを備えている。
BPF14aは、MGS11の出力信号から特定の周波数帯域の信号を抽出する。積分部14bは、BPF14aによって抽出された信号を積分(例えば区間積分)し、その積分値ΔV_MGを比較部14cに提供する。比較部14cは、積分部14bから得られる積分値ΔV_MGと、予め設定されている前突判定閾値Vth_XFとを比較し、その比較結果をF−A/B3の起動要否判定結果としてF−A/B起動部16に提供する。具体的には、比較部14cは、積分値ΔV_MGが前突判定閾値Vth_XFより大きい場合に、F−A/B3の起動要否判定結果を示すフラグの値を真値にセットする。
リバウンド判定部15は、MGS11及びYRS12の出力信号、つまりSRSユニット6の設置位置に作用するX軸加速度の検出結果と、車両100の回転速度の検出結果とに基づいて、R−C/B4及びL−C/B5を起動すべきか否かを判断し、その判断結果(起動要否判定結果)をR−C/B起動部17及びL−C/B起動部18に提供する。
詳細には、このリバウンド判定部15は、BPF15aと、ローパスフィルタ(以下、LPFと称す)15bと、積分部15c、15dと、比較部15e、15f、15gと、論理積演算部15h、15iとを備えている。
BPF15aは、MGS11の出力信号から特定の周波数帯域の信号を抽出する。LPF15bは、YRS12の出力信号から低周波帯域の信号を抽出する。
積分部15cは、BPF15aによって抽出された信号を積分(例えば累積積分)し、その積分値ΔVX(第1演算値)を比較部15eに提供する。積分部15dは、LPF15bによって抽出された信号を積分(例えば累積積分)し、その積分値IY(第2演算値)を比較部15f及び15gに提供する。
比較部15eは、積分部15cから得られる積分値ΔVXと、予め設定されているX軸リバウンド判定閾値Vth_X(第1閾値)とを比較し、その比較結果を論理積演算部15h及び15iに提供する。具体的には、比較部15eは、積分値ΔVXがX軸リバウンド判定閾値Vth_Xより大きい場合、比較結果を示すフラグの値を真値にセットする。
比較部15fは、積分部15dから得られる積分値IYと、予め設定されている右回転判定閾値IYth_R(第2閾値)とを比較し、その比較結果を論理積演算部15hに提供する。具体的には、比較部15fは、積分値IYが右回転判定閾値IYth_Rより大きい場合に、比較結果を示すフラグの値を真値にセットする。
比較部15gは、積分部15dから得られる積分値IYと、予め設定されている左回転判定閾値IYth_L(第2閾値)とを比較し、その比較結果を論理積演算部15iに提供する。具体的には、比較部15gは、積分値IYが左回転判定閾値IYth_Lより大きい場合に、比較結果を示すフラグの値を真値にセットする。
論理積演算部15hは、比較部15eの比較結果と、比較部15fの比較結果との論理積を演算し、その演算結果をR−C/B4の起動要否判定結果としてR−C/B起動部17に提供する。具体的には、論理積演算部15hは、比較部15eの比較結果と、比較部15fの比較結果との両方が真値であった場合に、R−C/B4の起動要否判定結果を示すフラグを真値にセットする。
論理積演算部15iは、比較部15eの比較結果と、比較部15gの比較結果との論理積を演算し、その演算結果をL−C/B5の起動要否判定結果としてL−C/B起動部18に提供する。具体的には、論理積演算部15iは、比較部15eの比較結果と、比較部15gの比較結果との両方が真値であった場合に、L−C/B5の起動要否判定結果を示すフラグを真値にセットする。
F−A/B起動部16は、セーフィング判定部13にて全ての乗員保護装置を起動すべきと判断され、且つ前突判定部14にてF−A/B3を起動すべきと判断された場合に、最終的にF−A/B3を起動させるものである。具体的には、このF−A/B起動部16は、セーフィング判定部13のセーフィング判定結果と、前突判定部14のF−A/B3の起動要否判定結果との論理積を演算し、その演算結果を起動命令信号としてF−A/B3に送信する。つまり、F−A/B3は、F−A/B起動部16から真値の起動命令信号を受信した時に展開する。
R−C/B起動部17は、セーフィング判定部13にて全ての乗員保護装置を起動すべきと判断され、且つリバウンド判定部15にてR−C/B4を起動すべきと判断された場合に、最終的にR−C/B4を起動させるものである。具体的には、このR−C/B起動部17は、セーフィング判定部13のセーフィング判定結果と、リバウンド判定部15のR−C/B4の起動要否判定結果との論理積を演算し、その演算結果を起動命令信号としてR−C/B4に送信する。つまり、R−C/B4は、R−C/B起動部17から真値の起動命令信号を受信した時に展開する。
L−C/B起動部18は、セーフィング判定部13にて全ての乗員保護装置を起動すべきと判断され、且つリバウンド判定部15にてL−C/B5を起動すべきと判断された場合に、最終的にL−C/B5を起動させるものである。具体的には、このL−C/B起動部18は、セーフィング判定部13のセーフィング判定結果と、リバウンド判定部15のL−C/B5の起動要否判定結果との論理積を演算し、その演算結果を起動命令信号としてL−C/B5に送信する。つまり、L−C/B5は、L−C/B起動部18から真値の起動命令信号を受信した時に展開する。
なお、各閾値の値は、F−A/B3、R−C/B4及びL−C/B5を適切に起動させることができれば特に限定されるものではなく、車両100の機械的な構造に応じて試験的に求めた値を使用すれば良い。ただし、本実施形態では、車両100の前面衝突(正面衝突、オフセット衝突を含む)を早期且つ確実に検出するために、前突判定閾値Vth_XFよりセーフィング判定閾値Vth_SFの方を小さく設定している。また、本実施形態では、オフセット衝突後にリバウンドが発生する状況での乗員の安全を最大限確保するために、先行してF−A/B3が展開した後に、R−C/B4及びL−C/B5が展開するように、X軸リバウンド判定閾値Vth_Xより前突判定閾値Vth_XFの方を小さく設定している。
次に、上記のように構成された車両乗員保護システムの動作について、具体的な衝突事例を挙げながら説明する。
例えば、図4に示すように、障害物に対して車両100の前部左側でオフセット衝突し、その後、車両100の後端が右方向に振られながら後退(リバウンド)する場合、つまり車両100がオフセット衝突後に左旋回しながらリバウンドする事例を想定する。
この場合、オフセット衝突直後から、特に衝突位置に近いL−FCS2によって衝突の衝撃によるX軸加速度が検出され始め、セーフィング判定部13の積分部13dにて算出される積分値ΔV_FCLがセーフィング判定閾値Vth_SFを越えた時点で、論理和演算部13gの論理和演算結果、つまりセーフィング判定結果が先行して真値となる。
SRSユニット6は、車両100の中央付近に設置されているので、オフセット衝突による衝撃が伝達するまで少し時間がかかる。そのため、オフセット衝突が発生してから、ある程度の時間経過後に、SRSユニット6内のMGS11によって衝突の衝撃によるX軸加速度が検出され始める。
そして、前突判定部14の積分部14bにて算出される積分値ΔV_MGが前突判定閾値Vth_XFを越えた時点で、比較部14cの比較結果、つまりF−A/B3の起動要否判定結果が真値となり、さらに、リバウンド判定部15の積分部15cにて算出される積分値ΔVXがX軸リバウンド判定閾値Vth_Xを越えた時点で、比較部15eの比較結果が真値となる。
ここで、上記のように、X軸リバウンド判定閾値Vth_Xより前突判定閾値Vth_XFの方が小さく設定されているので、F−A/B3の起動要否判定結果が先行して真値となる。このようにF−A/B3の起動要否判定結果が真値となった時点では、セーフィング判定結果が既に真値となっているため、この時点でF−A/B起動部16から真値の起動命令信号が出力されてF−A/B3が展開することになる。これにより、最初のオフセット衝突による衝撃によって乗員が前方に移動することで負う傷害を軽減することができる。
さらに時間が経過し、車両100がリバウンドによる左旋回を開始すると、SRSユニット6内のYRS12によって左回転の角速度が検出され始める。ここで、既に比較部15eの比較結果が真値となっているので、積分部15dにて算出される積分値IYが左回転判定閾値IYth_Lを越えた時点で、論理和演算部15iの論理積演算結果、つまりL−C/B5の起動要否判定結果が真値となる。
このようにL−C/B5の起動要否判定結果が真値となった時点では、セーフィング判定結果が既に真値となっているため、この時点でL−C/B起動部18から真値の起動命令信号が出力されてL−C/B5が展開することになる。これにより、オフセット衝突後のリバウンド(左旋回)によって乗員が左側に移動することで負う傷害を軽減することができる。
以上のように、本実施形態では、対リバウンド乗員保護装置(R−C/B4、L−C/B5)を起動すべきか否かを判断するための情報として、MGS11にて検出されたX軸加速度と、YRS12にて検出された回転速度とを用いることにより、障害物に対して車両100がオフセット衝突した後に車両100が回転しながらリバウンドする現象を精度よく捉えることができる。つまり、本実施形態によれば、SISを使用せずに、対リバウンド乗員保護装置の起動制御を実施することが可能となる。
〔第2実施形態〕
次に、本発明の第2実施形態について説明する。
図3は、第2実施形態におけるSRSユニット6Aの機能ブロック図である。この図3に示すように、SRSユニット6Aは、R−FCS1及びL−FCS2から受信した信号と、内部に設けられたメインX軸加速度センサ(以下、XMGSと称す)11a、メインY軸加速度センサ(以下、YMGSと称す)11b及びヨーレートセンサ(YRS)12の出力信号とに基づいて、F−A/B3、R−C/B4及びL−C/B5の起動制御を行うECUである。
XMGS11aは、車両100のX軸方向に作用するX軸加速度を検出し、その検出結果を示す信号を不図示のマイコンに出力する。このXMGS11aは、本発明における第1軸加速度検出手段に相当する。
YMGS11bは、車両100の幅方向(図1中のY軸方向)に作用するY軸加速度(第2軸加速度)を検出し、その検出結果を示す信号を不図示のマイコンに出力する。このYMGS11bは、本発明における第2軸加速度検出手段に相当する。
YRS12は、第1実施形態と同様に、車両100の高さ方向を中心軸とする回転速度を検出し、その検出結果を示す信号を不図示のマイコンに出力する。
SRSユニット6Aは、マイコンによるソフトウェア的な処理によって実現される機能として、セーフィング判定部13、前突判定部14、リバウンド判定部15A、F−A/B起動部16、R−C/B起動部17及びL−C/B起動部18を備えている。リバウンド判定部15A以外の機能は第1実施形態と同様であるので、以下ではリバウンド判定部15Aに着目して説明する。
リバウンド判定部15Aは、XMGS11a、YMGS11b及びYRS12の出力信号、つまりSRSユニット6の設置位置に作用するX軸加速度及びY軸加速度の検出結果と、車両100の回転速度の検出結果とに基づいて、R−C/B4及びL−C/B5を起動すべきか否かを判断し、その判断結果(起動要否判定結果)をR−C/B起動部17及びL−C/B起動部18に提供する。
詳細には、このリバウンド判定部15Aは、第1実施形態と同一機能であるBPF15a、LPF15b、積分部15c、15d、比較部15e、15f、15g、論理積演算部15h、15iに加えて、新たな機能であるBPF15j、積分部15k、比較部15m及び15nを備えている。
BPF15aは、XMGS11aの出力信号から特定の周波数帯域の信号を抽出する。BPF15jは、YMGS11bの出力信号から特定の周波数帯域の信号を抽出する。LPF15bは、YRS12の出力信号から低周波帯域の信号を抽出する。
積分部15cは、BPF15aによって抽出された信号を積分(例えば累積積分)し、その積分値ΔVX(第1演算値)を比較部15eに提供する。積分部15kは、BPF15jによって抽出された信号を積分(例えば累積積分)し、その積分値ΔVY(第3演算値)を比較部15m及び15nに提供する。
積分部15dは、LPF15bによって抽出された信号を積分(例えば累積積分)し、その積分値IY(第2演算値)を比較部15f及び15gに提供する。
比較部15eは、積分部15cから得られる積分値ΔVXと、予め設定されているX軸リバウンド判定閾値Vth_X(第1閾値)とを比較し、その比較結果を論理積演算部15h及び15iに提供する。具体的には、比較部15eは、積分値ΔVXがX軸リバウンド判定閾値Vth_Xより大きい場合、比較結果を示すフラグの値を真値にセットする。
比較部15mは、積分部15kから得られる積分値ΔVYと、予め設定されている右側Y軸リバウンド判定閾値Vth_YR(第3閾値)とを比較し、その比較結果を論理積演算部15hに提供する。具体的には、比較部15mは、積分値ΔVYが右側Y軸リバウンド判定閾値Vth_YRより大きい場合、比較結果を示すフラグの値を真値にセットする。
比較部15nは、積分部15kから得られる積分値ΔVYと、予め設定されている左側Y軸リバウンド判定閾値Vth_YL(第3閾値)とを比較し、その比較結果を論理積演算部15iに提供する。具体的には、比較部15nは、積分値ΔVYが左側Y軸リバウンド判定閾値Vth_YLより大きい場合、比較結果を示すフラグの値を真値にセットする。
比較部15fは、積分部15dから得られる積分値IYと、予め設定されている右回転判定閾値IYth_R(第2閾値)とを比較し、その比較結果を論理積演算部15hに提供する。具体的には、比較部15fは、積分値IYが右回転判定閾値IYth_Rより大きい場合に、比較結果を示すフラグの値を真値にセットする。
比較部15gは、積分部15dから得られる積分値IYと、予め設定されている左回転判定閾値IYth_L(第2閾値)とを比較し、その比較結果を論理積演算部15iに提供する。具体的には、比較部15gは、積分値IYが左回転判定閾値IYth_Lより大きい場合に、比較結果を示すフラグの値を真値にセットする。
論理積演算部15hは、比較部15eの比較結果と、比較部15mの比較結果と、比較部15fの比較結果との論理積を演算し、その演算結果をR−C/B4の起動要否判定結果としてR−C/B起動部17に提供する。具体的には、論理積演算部15hは、比較部15eの比較結果と、比較部15mの比較結果と、比較部15fの比較結果との全てが真値であった場合に、R−C/B4の起動要否判定結果を示すフラグを真値にセットする。
論理積演算部15iは、比較部15eの比較結果と、比較部15nの比較結果と、比較部15gの比較結果との論理積を演算し、その演算結果をL−C/B5の起動要否判定結果としてL−C/B起動部18に提供する。具体的には、論理積演算部15iは、比較部15eの比較結果と、比較部15nの比較結果と、比較部15gの比較結果との全てが真値であった場合に、L−C/B5の起動要否判定結果を示すフラグを真値にセットする。
つまり、第1実施形態のリバウンド判定部15が、X軸加速度の検出結果に基づく第1演算値が第1閾値より大きく、且つ回転速度の検出結果に基づく第2演算値が第2閾値より大きい場合に、対リバウンド乗員保護装置を起動すべきと判断するのに対して、第2実施形態のリバウンド判定部15Aは、上記の2条件に加えて、Y軸加速度の検出結果に基づく第3演算値が第3閾値より大きい場合に、対リバウンド乗員保護装置を起動すべきと判断する点で異なる。
このような第2実施形態によると、障害物に対して車両100がオフセット衝突した後に車両100が回転しながらリバウンドする現象を第1実施形態よりも確実に捉えることができ、対リバウンド乗員保護装置の起動制御をより正確に実施することができる。
なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、対リバウンド乗員保護装置としてカーテンエアバッグを例示したが、オフセット衝突後に発生するリバウンドから乗員を保護できるものであれば他の保護装置を使用しても良い。また、上記実施形態では、対前突乗員保護装置としてフロントエアバッグを例示したが、この他、シートベルトプリテンショナなどの他の保護装置も起動させるような構成としても良い。
(2)上記実施形態では、SRSユニット6(6A)の内部に回転速度検出手段であるヨーレートセンサ(YRS12)が設けられている場合を例示したが、このヨーレートセンサがSRSユニット6(6A)の外部に設けられている場合であっても、その外部のヨーレートセンサの出力信号をSRSユニット6(6A)に入力する構成とすることで同様の効果を得ることができる。
横滑り防止機能を備える車両100の場合、車両の所定位置にヨーレートセンサが取り付けられているので、その出力信号を利用すれば、SRSユニット6(6A)に新たにヨーレートセンサを設ける必要がなくなるので、コストの上昇を抑えることができる。または、横滑り防止機能用のヨーレートセンサをSRSユニット6(6A)に内蔵し、その出力信号をSRSユニット6(6A)で利用するだけでなく、SRSユニット6(6A)から横滑り防止機能を統括制御するECU(いわゆるESCユニット)へ車両100の回転速度情報を送信するような構成を採用することもできる。
(3)YRS12が故障している場合には、常に比較部15f及び15gの比較結果を真値としておき、MGS11(或いはXMGS11a、YMGS11b)の出力信号のみでR−C/B4及びL−C/B5の起動要否判定を行うようにしても良い。つまり、リバウンド判定部15(15A)は、YRS12が故障している場合、回転速度の検出結果に基づく積分値IY(第3演算値)が、常に、右回転判定閾値IYth_R及び左回転側突閾値IYth_L(第3閾値)より大きいと見做すことになる。なお、YRS12が故障しているか否かを判断するには、SRSユニット6(6A)にセンサの故障診断機能を設ければ良い。
1…R−FCS(前部加速度検出手段)、2…L−FCS(前部加速度検出手段)、3…F−A/B(対前突乗員保護装置)、4…R−C/B(対リバウンド乗員保護装置)、5…L−C/B(対リバウンド乗員保護装置)、6、6A…SRSユニット(車両衝突判定装置)、11…MGS(第1軸加速度検出手段)、11a…XMG(第1軸加速度検出手段)、11b…YMGS(第2軸加速度検出手段)、12…YRS(回転速度検出手段)、13…セーフィング判定部(セーフィング判定手段)、14…前突判定部(前突判定手段)、15、15A…リバウンド判定部(リバウンド判定手段)、16…F−A/B起動部(第1起動手段)、17…R−C/B起動部(第2起動手段)、18…L−C/B起動部(第2起動手段)、100…車両

Claims (10)

  1. 車両の長さ方向に作用する第1軸加速度を検出する第1軸加速度検出手段と、
    前記車両の高さ方向を中心軸とする回転速度を検出する回転速度検出手段と、
    前記第1軸加速度及び前記回転速度の検出結果に基づいて、対リバウンド乗員保護装置を起動すべきか否かを判断するリバウンド判定手段と、
    を備えることを特徴とする車両衝突判定装置。
  2. 前記車両の幅方向に作用する第2軸加速度を検出する第2軸加速度検出手段を備え、
    前記リバウンド判定手段は、前記第1軸加速度の検出結果に基づく第1演算値が第1閾値より大きく、且つ前記回転速度の検出結果に基づく第2演算値が第2閾値より大きく、且つ前記第2軸加速度の検出結果に基づく第3演算値が第3閾値より大きい場合に、前記対リバウンド乗員保護装置を起動すべきと判断することを特徴とする請求項1に記載の車両衝突判定装置。
  3. 前記リバウンド判定手段は、前記回転速度検出手段が故障している場合には、常に前記回転速度の検出結果に基づく第2演算値が第2閾値より大きいと見做すことを特徴とする請求項2に記載の車両衝突判定装置。
  4. 前記第1軸加速度検出手段から得られた第1軸加速度の検出結果に基づいて、対前突乗員保護装置を起動すべきか否かを判断する前突判定手段と、
    外部から得られた車両前部の長さ方向に作用する第1軸加速度の検出結果に基づいて、全ての乗員保護装置を起動すべきか否かを判断するセーフィング判定手段と、
    前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記前突判定手段にて前記対前突乗員保護装置を起動すべきと判断された場合に、前記対前突乗員保護装置を起動させる第1起動手段と、
    前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記リバウンド判定手段にて前記対リバウンド乗員保護装置を起動すべきと判断された場合に、前記対リバウンド乗員保護装置を起動させる第2起動手段と、
    をさらに備えることを特徴とする請求項1〜3のいずれか一項に記載の車両衝突判定装置。
  5. 前記第2起動手段は、前記第1起動手段によって前記対前突乗員保護装置が起動された後に、前記対リバウンド乗員保護装置を起動させることを特徴とする請求項4に記載の車両衝突判定装置。
  6. 前記車両の片側正面衝突後に発生するリバウンドから乗員を保護するための対リバウンド乗員保護装置と、
    前記対リバウンド乗員保護装置の起動制御を行う車両衝突判定装置と、
    を備えた車両乗員保護システムにおいて、
    前記車両衝突判定装置は、
    前記車両の長さ方向に作用する第1軸加速度を検出する第1軸加速度検出手段と、
    前記車両の高さ方向を中心軸とする回転速度を検出する回転速度検出手段と、
    前記第1軸加速度及び前記回転速度の検出結果に基づいて、前記対リバウンド乗員保護装置を起動すべきか否かを判断するリバウンド判定手段と、
    を備えることを特徴とする車両乗員保護システム。
  7. 前記車両衝突判定装置は、前記車両の幅方向に作用する第2軸加速度を検出する第2軸加速度検出手段を備え、
    前記リバウンド判定手段は、前記第1軸加速度の検出結果に基づく第1演算値が第1閾値より大きく、且つ前記回転速度の検出結果に基づく第2演算値が第2閾値より大きく、且つ前記第2軸加速度の検出結果に基づく第3演算値が第3閾値より大きい場合に、前記対リバウンド乗員保護装置を起動すべきと判断することを特徴とする請求項6に記載の車両乗員保護システム。
  8. 前記リバウンド判定手段は、前記回転速度検出手段が故障している場合には、常に前記回転速度の検出結果に基づく第2演算値が第2閾値より大きいと見做すことを特徴とする請求項7に記載の車両乗員保護システム。
  9. 車両前部に設置され、当該車両の長さ方向に作用する第1軸加速度を検出する前部加速度検出手段と、
    前記車両の前面衝突による衝撃から乗員を保護するための対前突乗員保護装置と、
    を備え、
    前記車両衝突判定装置は、
    前記第1軸加速度検出手段から得られた第1軸加速度の検出結果に基づいて、前記対前突乗員保護装置を起動すべきか否かを判断する前突判定手段と、
    前記前部加速度検出手段から得られた第1軸加速度の検出結果に基づいて、全ての乗員保護装置を起動すべきか否かを判断するセーフィング判定手段と、
    前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記前突判定手段にて前記対前突乗員保護装置を起動すべきと判断された場合に、前記対前突乗員保護装置を起動させる第1起動手段と、
    前記セーフィング判定手段にて前記全ての乗員保護装置を起動すべきと判断され、且つ前記リバウンド判定手段にて前記対リバウンド乗員保護装置を起動すべきと判断された場合に、前記対リバウンド乗員保護装置を起動させる第2起動手段と、
    をさらに備えることを特徴とする請求項6〜8のいずれか一項に記載の車両乗員保護システム。
  10. 前記第2起動手段は、前記第1起動手段によって前記対前突乗員保護装置が起動された後に、前記対リバウンド乗員保護装置を起動させることを特徴とする請求項9に記載の車両乗員保護システム。
JP2012037742A 2012-02-23 2012-02-23 車両衝突判定装置及び車両乗員保護システム Pending JP2013173387A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037742A JP2013173387A (ja) 2012-02-23 2012-02-23 車両衝突判定装置及び車両乗員保護システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037742A JP2013173387A (ja) 2012-02-23 2012-02-23 車両衝突判定装置及び車両乗員保護システム

Publications (1)

Publication Number Publication Date
JP2013173387A true JP2013173387A (ja) 2013-09-05

Family

ID=49266761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037742A Pending JP2013173387A (ja) 2012-02-23 2012-02-23 車両衝突判定装置及び車両乗員保護システム

Country Status (1)

Country Link
JP (1) JP2013173387A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189993A1 (ja) * 2017-04-11 2018-10-18 ヴィオニア スウェーデン エービー 制御装置、及び保護装置の制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189993A1 (ja) * 2017-04-11 2018-10-18 ヴィオニア スウェーデン エービー 制御装置、及び保護装置の制御方法
JPWO2018189993A1 (ja) * 2017-04-11 2020-02-20 ヴィオニア スウェーデン エービー 制御装置、及び保護装置の制御方法
JP2022180592A (ja) * 2017-04-11 2022-12-06 アライバー ソフトウェア エービー 制御装置、及び保護装置の制御方法
US11554735B2 (en) 2017-04-11 2023-01-17 Arriver Software Ab Control device, and method for controlling protective device
JP7507558B2 (ja) 2017-04-11 2024-06-28 アライバー ソフトウェア エービー 制御装置、及び保護装置の制御方法
JP2024105606A (ja) * 2017-04-11 2024-08-06 アライバー ソフトウェア エービー 制御装置、及び保護装置の制御方法
JP7532466B2 (ja) 2017-04-11 2024-08-13 アライバー ソフトウェア エービー 制御装置、及び保護装置の制御方法

Similar Documents

Publication Publication Date Title
JP5243442B2 (ja) 車両安全システム
US9415737B2 (en) Vehicle occupant protection device
JP3608050B2 (ja) ロールオーバ判別装置
CN101962003B (zh) 乘员保护控制装置、乘员保护系统及乘员保护控制方法
US20110004377A1 (en) Activation apparatus for occupant protection system
KR102131448B1 (ko) 자동차의 승객 보호장치
JP4835344B2 (ja) 車両用乗員保護装置の起動制御装置
US8855884B1 (en) Occupant protection system
JP6078325B2 (ja) 乗員保護システム
US9393931B2 (en) Occupant protection apparatus for vehicle
US8073596B2 (en) System and method for deploying a safety system
JP5772706B2 (ja) 乗員保護システム
JP4424183B2 (ja) エアバッグ展開制御装置、エアバッグ展開制御方法
KR20200003479A (ko) 차량용 에어백 구동장치 및 그 제어방법
JP2013173387A (ja) 車両衝突判定装置及び車両乗員保護システム
JP2008080979A (ja) 乗員保護制御装置の制御方法
JP2013173386A (ja) 車両衝突判定装置及び車両乗員保護システム
KR102074761B1 (ko) 자동차의 승객보호장치 및 그 제어방법
JP2018149987A (ja) 乗員保護システム
KR20120071995A (ko) 측면승객보호장치의 제어방법
KR102270575B1 (ko) 차량 승객 보호 방법
KR20070121093A (ko) 차량전복시 도어잠금 제어방법
JP6019694B2 (ja) 車両制御装置
KR102828537B1 (ko) 오프로드 및 롤오버 검출을 갖는 작동 가능 보호 디바이스를 제어하기 위한 방법 및 장치
JP5075732B2 (ja) 乗員保護制御装置及び乗員保護システム