[go: up one dir, main page]

JP2013157487A - Magnetic material and magnet - Google Patents

Magnetic material and magnet Download PDF

Info

Publication number
JP2013157487A
JP2013157487A JP2012017471A JP2012017471A JP2013157487A JP 2013157487 A JP2013157487 A JP 2013157487A JP 2012017471 A JP2012017471 A JP 2012017471A JP 2012017471 A JP2012017471 A JP 2012017471A JP 2013157487 A JP2013157487 A JP 2013157487A
Authority
JP
Japan
Prior art keywords
magnetic material
phase
fluorine
magnetic
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012017471A
Other languages
Japanese (ja)
Inventor
Takayuki Kanda
喬之 神田
Yuichi Satsu
祐一 佐通
Matahiro Komuro
又洋 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012017471A priority Critical patent/JP2013157487A/en
Publication of JP2013157487A publication Critical patent/JP2013157487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

【課題】従来技術の磁性材料では、フッ化物中の希土類元素が磁性材料の表面に浸透することで、磁気特性を向上している。しかし、希土類元素は希少資源であり、その使用量の削減が求められている。
【解決手段】本発明の磁性材料(Re−Fe系材料(ここでReはスカンジウム、イットリウムを含めた希土類元素))は、フッ素が侵入して結晶格子が膨張したReFe相と、Sn相と、SnFe合金相と、を有し、スズの含有量は0.01〜50原子%である。
【選択図】 図1
In a magnetic material of the prior art, a rare earth element in fluoride permeates the surface of the magnetic material, thereby improving magnetic characteristics. However, rare earth elements are rare resources, and there is a need to reduce their usage.
A magnetic material (Re-Fe-based material (where Re is a rare earth element including scandium and yttrium)) of the present invention includes a ReFe phase in which fluorine has penetrated and a crystal lattice has expanded, an Sn phase, An SnFe alloy phase, and the tin content is 0.01 to 50 atomic%.
[Selection] Figure 1

Description

本発明は、希土類元素を含み、磁石の製造に用いる磁石材料に関する。   The present invention relates to a magnet material containing a rare earth element and used for manufacturing a magnet.

特許文献1〜3及び5、6には、従来のフッ素化合物あるいは酸フッ素化合物を含む希土類磁石について開示されている。また、特許文献4のブラジル特許には、Sm2Fe17をフッ化している例が記載されている。 Patent Documents 1 to 3, 5, and 6 disclose conventional rare earth magnets containing a fluorine compound or an oxyfluorine compound. Moreover, the Brazil patent of patent document 4 describes an example in which Sm 2 Fe 17 is fluorinated.

特開2011−014600号公報JP 2011-014600 A 特開2010−034335号公報JP 2010-034335 A 特開2007−116088号公報JP 2007-116088 A ブラジル国特許9701631−4ABrazilian patent 9701631-4A 特開2011−114247号公報JP 2011-114247 A 特開2010−211106号公報JP 2010-211106 A

特許文献1〜3は、Nd−Fe−B系磁性材料やSm−Fe系磁性材料にフッ素を含有する化合物を反応させたものであり、これにより磁気特性の向上または低下の防止を行うものである。ここで用いられているフッ化物は希土類元素を含有しており、その効果はフッ化物中の希土類元素が磁性材料を構成する粒子の表面に浸透することによる。しかし希土類元素は希少資源であり、その使用量の削減が求められている。   Patent Documents 1 to 3 are obtained by reacting a fluorine-containing compound with an Nd—Fe—B based magnetic material or an Sm—Fe based magnetic material, thereby improving or preventing magnetic characteristics from being reduced. is there. The fluoride used here contains a rare earth element, and the effect is due to the penetration of the rare earth element in the fluoride into the surface of the particles constituting the magnetic material. However, rare earth elements are rare resources, and there is a need to reduce their usage.

一方、特許文献4ではSm−Fe系磁性材料にフッ素ガスを作用させ、その磁気的性質を向上させることも開示されているが、そのキュリー温度は155℃と低く、その熱的安定性については確認されていない。また使用しているフッ素ガスの反応性が極めて高いため、反応に際してはその濃度を極めて低く保ったまま進行させる必要があり、そのため反応時間は数日から数十日に及ぶ。しかしこのように処理した場合にもSm−Fe系材料が有していた構造の一部破壊が生じており、これに伴い発生するα−Feなどの軟磁性相は保磁力を低下させる。また反応後の磁性材料は粉末状であるが、磁石として用いるためには成形する必要がある。しかし耐熱性が低いため焼結等の高密度化プロセスを適用できず、樹脂などによる成形では低密度のものしか作製できないため、実用的な磁性材料を得ることはできない。   On the other hand, Patent Document 4 discloses that fluorine gas is allowed to act on the Sm—Fe based magnetic material to improve its magnetic properties, but its Curie temperature is as low as 155 ° C. It has not been confirmed. In addition, since the fluorine gas used has a very high reactivity, it is necessary to proceed while keeping its concentration very low during the reaction, and therefore the reaction time ranges from several days to several tens of days. However, even when treated in this way, the structure of the Sm—Fe-based material partially breaks down, and the soft magnetic phase such as α-Fe that occurs with this lowers the coercive force. Moreover, although the magnetic material after reaction is a powder form, in order to use as a magnet, it is necessary to shape | mold. However, since the heat resistance is low, a densification process such as sintering cannot be applied, and only a low density can be produced by molding with a resin or the like, so that a practical magnetic material cannot be obtained.

特許文献5及び6には、希土類鉄フッ素化合物や構造安定化元素を添加した希土類鉄フッ素化合物に関する記載があるが軟磁性相の成長を抑制可能な手法については開示されていない。   Patent Documents 5 and 6 describe a rare earth iron fluorine compound and a rare earth iron fluorine compound to which a structure stabilizing element is added, but do not disclose a technique capable of suppressing the growth of the soft magnetic phase.

本発明では、軟磁性相の成長を抑制しつつ、磁気的性質を向上させた磁性材料の提供を目的とする。   An object of the present invention is to provide a magnetic material having improved magnetic properties while suppressing the growth of a soft magnetic phase.

上記課題を解決するため、本発明はフッ化物磁性材料において、フッ素が侵入して結晶格子が膨張したReFe相と、Sn相と、SnFe合金相と、を有し、スズの含有量は0.01〜50原子%である。   In order to solve the above problems, the present invention provides a fluoride magnetic material having a ReFe phase in which fluorine has penetrated and a crystal lattice has expanded, an Sn phase, and an SnFe alloy phase, and the tin content is 0.1. 01 to 50 atomic%.

本発明により希土類元素の使用量を増加することなく、フッ素原子が結晶格子間に侵入することで磁気特性である飽和磁化や保磁力が増加した磁性材料を得ることができる。   According to the present invention, a magnetic material having increased saturation magnetization and coercive force, which are magnetic properties, can be obtained by allowing fluorine atoms to enter between crystal lattices without increasing the amount of rare earth elements used.

本発明に係る金属で結合したフッ化物磁性材料を示す図である。It is a figure which shows the fluoride magnetic material couple | bonded with the metal which concerns on this invention.

本発明では、Re−Fe系材料(ここでReはスカンジウム、イットリウムを含めた希土類元素)の結晶格子間にフッ素原子を侵入させ、さらに反応に伴い発生する軟磁性相を除去することで磁気的性質を向上させ、さらに高密度に成型された磁性材料を提供することを目的とする。フッ素が結晶格子間に侵入することで、飽和磁化は侵入前より10Am2/kg以上、保磁力は侵入前より0.08MA/m以上増加する。 In the present invention, fluorine atoms are intruded between crystal lattices of a Re—Fe-based material (where Re is a rare earth element including scandium and yttrium), and the soft magnetic phase generated by the reaction is further removed to magnetically It is an object to provide a magnetic material having improved properties and molded at a higher density. As fluorine penetrates between crystal lattices, the saturation magnetization increases by 10 Am 2 / kg or more before penetration, and the coercive force increases by 0.08 MA / m or more before penetration.

また、フッ素を導入する反応に伴いフッ化物中の金属元素は還元されて金属が生じる。これを用いてRe−Fe材料の粒子同士を結合させることで、高密度の成形体を作成することができる。   Further, with the reaction of introducing fluorine, the metal element in the fluoride is reduced to produce a metal. By using this to bond particles of the Re—Fe material, a high-density molded body can be created.

本発明に係るフッ化物磁性材料を得るためには、Re−Fe系材料の結晶構造の分解を抑制しつつフッ素を導入する必要がある。フッ素の導入は高温ほど進行しやすくなるが、一方で構造の破壊も生じやすくなる。特に330℃以上の温度では構造の破壊が著しく、実用的な磁気特性は得られない。このような330℃以下でのフッ化反応においては、フッ素濃度の高い高密度物質、すなわち溶融フッ化物塩を用いることが有効である。溶融フッ化物塩はフッ素ガスなどの気体と比較して密度が高く、従ってRe−Fe系材料に接するフッ素原子の数が多くなるため反応が進行しやすくなる。   In order to obtain the fluoride magnetic material according to the present invention, it is necessary to introduce fluorine while suppressing the decomposition of the crystal structure of the Re—Fe-based material. The introduction of fluorine is more likely to proceed at higher temperatures, but on the other hand, the structure is likely to be destroyed. In particular, at a temperature of 330 ° C. or higher, the structure is remarkably broken and practical magnetic properties cannot be obtained. In such a fluorination reaction at 330 ° C. or lower, it is effective to use a high-density substance having a high fluorine concentration, that is, a molten fluoride salt. The molten fluoride salt has a higher density than a gas such as fluorine gas, and therefore the number of fluorine atoms in contact with the Re—Fe-based material is increased, so that the reaction is likely to proceed.

一方、フッ化物の固体は高密度ではあるがRe−Fe系材料との接触面積が小さいため反応しにくい。また液体である溶融塩中にRe−Fe系材料が置かれることで周囲雰囲気中の酸素などによる酸化を抑制することができる。   On the other hand, although the fluoride solid is dense, it is difficult to react because the contact area with the Re—Fe-based material is small. In addition, since the Re—Fe-based material is placed in a molten salt that is a liquid, oxidation due to oxygen or the like in the ambient atmosphere can be suppressed.

フッ化塩を構成するフッ素以外の元素が鉄と反応することにより磁化を低減し、磁化反転サイトとなる軟磁性相の磁化を小さくすることで保磁力を増加させる。bcc構造の鉄リッチ相は合金化により磁化が減少し、飽和磁化は200Am2/kg以下となる。 Magnetization is reduced by an element other than fluorine constituting the fluoride salt reacting with iron, and the coercive force is increased by reducing the magnetization of the soft magnetic phase serving as a magnetization reversal site. Magnetization of the iron-rich phase of the bcc structure decreases due to alloying, and the saturation magnetization becomes 200 Am 2 / kg or less.

Re−Fe系材料のフッ化に用いることができるフッ化物塩としては融点が330℃以下である必要がある。このようなフッ化物塩中でRe−Fe系材料を加熱することでフッ化反応を進行させることができ、反応後は洗浄等により不要な塩を除去することで目的とするフッ化物磁性材料を得ることができる。   The fluoride salt that can be used for fluorination of the Re—Fe-based material needs to have a melting point of 330 ° C. or lower. By heating the Re-Fe-based material in such a fluoride salt, the fluorination reaction can proceed, and after the reaction, the desired fluoride magnetic material can be obtained by removing unnecessary salt by washing or the like. Can be obtained.

以下実施例を説明する。   Examples will be described below.

本実施例では溶融した金属フッ化物塩によりRe−Fe系材料であるSm2Fe17を処理することで、フッ素が侵入し磁気特性の向上したRe−Fe系材料を得る方法について説明する。 In this example, a method for obtaining a Re—Fe-based material with improved magnetic properties due to penetration of fluorine by treating Sm 2 Fe 17 which is a Re—Fe-based material with a molten metal fluoride salt will be described.

まず低融点の金属フッ化物塩であるフッ化スズ(SnF2)10〜200gとSm2Fe17の粉末100gをグローブボックス中で混合し、サファイアるつぼに入れ、これをさらにフラスコに入れてサンドバスに設置した。次にフラスコにArガスをフローさせながら内部温度250℃まで加熱し、1時間保持してフッ化反応を行った。反応終了後は容器を冷却の後グローブボックスに移して解体し、サファイアるつぼから内容物を取り出した。これをメタノールで洗浄して未反応のフッ化スズを除去し乾燥させることで磁性材料粉末を得た。 First, 10 to 200 g of tin fluoride (SnF 2 ), which is a low-melting metal fluoride salt, and 100 g of Sm 2 Fe 17 powder are mixed in a glove box, placed in a sapphire crucible, and placed in a flask to add a sand bath. Installed. Next, while flowing Ar gas through the flask, the flask was heated to an internal temperature of 250 ° C. and held for 1 hour to conduct a fluorination reaction. After completion of the reaction, the container was cooled and transferred to a glove box and disassembled, and the contents were taken out of the sapphire crucible. This was washed with methanol to remove unreacted tin fluoride and dried to obtain a magnetic material powder.

この粉末を粉末X線回折により分析したところ、フッ素の侵入により結晶格子が膨張したSm2Fe17相と、微量のSn相およびSn−Fe合金相が見られ、SnF2相は見られなかった。一部のSm−Sn−Fe−F系粉末はSnやSnFe合金で結着されている。 This powder was analyzed by powder X-ray diffraction. As a result, an Sm 2 Fe 17 phase in which the crystal lattice was expanded by the penetration of fluorine, a small amount of Sn phase and an Sn—Fe alloy phase were observed, and no SnF 2 phase was observed. . Some Sm—Sn—Fe—F-based powders are bound with Sn or SnFe alloy.

上記工程で作成した粉末を試料振動型磁力計にて測定したところ、飽和磁化は反応前の124Am2/kgから増加した。各実験条件と磁気特性の関係を表1に示す。 When the powder prepared in the above process was measured with a sample vibration magnetometer, the saturation magnetization increased from 124 Am 2 / kg before the reaction. Table 1 shows the relationship between each experimental condition and magnetic characteristics.

一方、350℃で加熱処理を行った場合、飽和磁化は減少し、いずれのフッ化スズ使用量においても100Am2/kg以下となった。 On the other hand, when the heat treatment was performed at 350 ° C., the saturation magnetization decreased and became 100 Am 2 / kg or less for any tin fluoride used.

表1において、0.5MA/m以上の保磁力を示すSm−Fe−Sn−F系材料には、スズ(Sn)が0.01〜50原子%含有されていることを質量分析で確認している。Snが0.01原子%未満の場合、フッ化反応と共にbcc(体心立方晶)構造のα−Feの成長が認められ、保磁力が0.1MA/m以下に低下する。また、Snが50原子%を超えるとSm2Fe17x(Xは正数)よりもSn相やSn−Fe合金相の体積が大きくなり飽和磁化が124Am2/kg以下に減少する。 In Table 1, mass spectrometry confirmed that 0.01 to 50 atomic% of tin (Sn) was contained in the Sm—Fe—Sn—F-based material exhibiting a coercive force of 0.5 MA / m or more. ing. When Sn is less than 0.01 atomic%, the growth of α-Fe having a bcc (body-centered cubic) structure is observed together with the fluorination reaction, and the coercive force is reduced to 0.1 MA / m or less. On the other hand, if Sn exceeds 50 atomic%, the volume of the Sn phase or Sn—Fe alloy phase becomes larger than Sm 2 Fe 17 F x (X is a positive number), and the saturation magnetization is reduced to 124 Am 2 / kg or less.

また、表1において、0.5MA/m以上の保磁力を示すSm−Sn−Fe−F系材料は0.1〜15原子%のフッ素(F)を含有しており、0.1原子%未満のフッ素濃度では0.5MA/mの保磁力に達しない。15原子%以上のフッ素濃度の場合、SmF系化合物などの飽和磁化が10Am2/kg以下の希土類元素を含有するフッ化物や酸フッ化物が成長し、飽和磁化が減少する。 In Table 1, the Sm—Sn—Fe—F-based material exhibiting a coercive force of 0.5 MA / m or more contains 0.1 to 15 atomic% of fluorine (F), and is 0.1 atomic%. If the fluorine concentration is less than 0.5, the coercive force of 0.5 MA / m is not reached. When the fluorine concentration is 15 atomic% or more, a fluoride or oxyfluoride containing a rare earth element having a saturation magnetization of 10 Am 2 / kg or less, such as an SmF compound, grows and the saturation magnetization decreases.

表2にSm2Fe17以外の組成についてフッ化スズを使用した磁気特性の向上効果を示す。フッ化スズ使用量を100gにして250℃、1時間のフッ化処理を施した。フッ化することで、Nd2Fe17、Pr2Fe17及びCe2Fe17粉のいずれも飽和磁化、保磁力及びキュリー点がフッ化スズ不使用の場合と比較して上昇する。これらの試料に含有するスズ(Sn)の量は1〜10原子%であり、α−Feの回折ピークはX線回折あるいは電子線回折パターンには認められず、α−Feは成長していない。このような磁気特性向上効果はSm2Fe17や表2のNd2Fe17、Pr2Fe17及びCe2Fe17以外にもY2Fe17、La2Fe17粉においても確認している。 Table 2 shows the effect of improving magnetic properties using tin fluoride for compositions other than Sm 2 Fe 17 . The amount of tin fluoride used was 100 g, and a fluorination treatment was performed at 250 ° C. for 1 hour. By fluorination, all of Nd 2 Fe 17 , Pr 2 Fe 17 and Ce 2 Fe 17 powder have higher saturation magnetization, coercive force and Curie point than when tin fluoride is not used. The amount of tin (Sn) contained in these samples is 1 to 10 atomic%, the diffraction peak of α-Fe is not observed in the X-ray diffraction or electron diffraction pattern, and α-Fe is not grown. . Such an effect of improving magnetic characteristics has been confirmed in Y 2 Fe 17 and La 2 Fe 17 powders in addition to Sm 2 Fe 17 and Nd 2 Fe 17 , Pr 2 Fe 17 and Ce 2 Fe 17 in Table 2.

本実施例では溶融した金属フッ化物塩によりRe−Fe系材料であるSm2Fe17を処理することでフッ素が侵入し磁気特性の向上したRe−Fe系材料を、処理に伴い形成される低融点金属相により結合し成形する方法について説明する。 In this example, by processing Sm 2 Fe 17 , which is a Re—Fe based material, with a molten metal fluoride salt, a Re—Fe based material having improved magnetic properties due to the penetration of fluorine is obtained. A method of bonding and forming with a melting point metal phase will be described.

フッ化スズSnF2100gとSm2Fe17の粉末100gをグローブボックス中で混合し、サファイアるつぼに入れ、サンドバス上のフラスコに設置した。次にフラスコにArガスをフローさせながら内部温度250℃で1時間保持して反応させた。反応終了後は容器を冷却し、グローブボックス中で解体し内容物を回収しメタノールで洗浄の後乾燥させた。 100 g of tin fluoride SnF 2 and 100 g of Sm 2 Fe 17 powder were mixed in a glove box, placed in a sapphire crucible, and placed in a flask on a sand bath. Next, the reaction was carried out by maintaining the internal temperature at 250 ° C. for 1 hour while flowing Ar gas into the flask. After completion of the reaction, the container was cooled, disassembled in a glove box, the contents were collected, washed with methanol, and dried.

得られた粉末10gを非磁性金型に詰め、20kOeの磁界中で5トンの圧力をかけて仮成型し、これを280℃で1時間保持することにより含まれる低融点金属相を融解後、冷却し固化させることで高密度成形体を得た。   10 g of the obtained powder was packed in a nonmagnetic mold, preliminarily molded by applying a pressure of 5 tons in a magnetic field of 20 kOe, and kept at 280 ° C. for 1 hour, after melting the low melting point metal phase contained, A high-density molded body was obtained by cooling and solidifying.

得られた成形体の表面を研磨後、X線回折により測定を行ったところα−Fe相の存在は認められず、Sm2Fe173相が確認できた。さらに磁気特性を試料振動型磁力計にて測定したところ、飽和磁化は174Am2/kg、保磁力は1.6MA/mであった。 When the surface of the obtained molded body was polished and measured by X-ray diffraction, the presence of the α-Fe phase was not recognized, and the Sm 2 Fe 17 F 3 phase was confirmed. Further, when the magnetic properties were measured with a sample vibration type magnetometer, the saturation magnetization was 174 Am 2 / kg and the coercive force was 1.6 MA / m.

SnF2の使用はα−Fe相の成長を抑制するため、主相のSm2Fe173相の保磁力が増加する。1MA/m以上の保磁力を得るためにはSm2Fe17に対するSnF2 粉末の比率を1重量%以上にする必要がある。1重量%未満ではα−Fe相の成長が認められ保磁力が低下する。 Since the use of SnF 2 suppresses the growth of the α-Fe phase, the coercivity of the main phase Sm 2 Fe 17 F 3 phase increases. In order to obtain a coercive force of 1 MA / m or more, the ratio of SnF 2 powder to Sm 2 Fe 17 needs to be 1% by weight or more. If it is less than 1% by weight, the growth of α-Fe phase is recognized and the coercive force is lowered.

本実施例では各種溶融金属フッ化物塩によりRe−Fe系材料であるSm2Fe17を処理することで、フッ素が侵入し磁気特性の向上したRe−Fe系材料を得る方法について説明する。 In this example, a method for obtaining a Re—Fe-based material having improved magnetic properties due to the penetration of fluorine by treating Sm 2 Fe 17 which is a Re—Fe-based material with various molten metal fluoride salts will be described.

表3に示した各種フッ化物塩100gとSm2Fe17の粉末100gをグローブボックス中で混合し、サファイアるつぼに入れ、ヒータ付のマグネチックスターラー上のフラスコに設置した。次にマグネチックスターラーで内容物を撹拌しながらArフロー下、表3に示した処理温度で1時間保持して反応させた。反応終了後はグローブボックス中でフラスコを解体し、サファイアるつぼの内容物を取り出しメタノールで洗浄・乾燥させ磁性材料粉末を得た。これを試料振動型磁力計により飽和磁化を測定したところ、表3に示した通り元の124Am2/kgよりも増加した。ただし330℃以上ではSm−Fe−F系材料が分解しはじめるために飽和磁化の増加は小さなものとなった。 100 g of various fluoride salts shown in Table 3 and 100 g of Sm 2 Fe 17 powder were mixed in a glove box, placed in a sapphire crucible, and placed in a flask on a magnetic stirrer with a heater. Next, while stirring the contents with a magnetic stirrer, the reaction was carried out by maintaining at the treatment temperature shown in Table 3 for 1 hour under Ar flow. After completion of the reaction, the flask was disassembled in a glove box, the contents of the sapphire crucible were taken out, washed with methanol and dried to obtain a magnetic material powder. When this was measured with a sample vibration type magnetometer, saturation magnetization was measured, and as shown in Table 3, it increased from the original 124 Am 2 / kg. However, since the Sm—Fe—F-based material began to decompose above 330 ° C., the increase in saturation magnetization was small.

飽和磁化130Am2/kg以上、保磁力0.5MA/m以上を満足するSmFeF系磁粉を得るためには、融点が330℃未満のフッ化物塩を使用することが望ましい。融点が330℃未満のフッ化物塩を使用した場合、α−Feの成長を抑制しながらフッ化させることが可能であり、これらの磁粉に成長するα−Feの体積率は0.1〜20%である。このα−Feは、フッ化物塩の構成元素を含有するbcc構造のFeであり、その飽和磁化は200Am2/kg以下である。α−Feの体積率が20%を超えると保磁力が急激に小さくなり、0.5MA/m以上の保磁力確保が困難となる。またα−Feの体積率を0.1未満にすることは原料粉の製造条件を含めた添加元素利用などの材料組成設計をすることにより可能となる。 In order to obtain an SmFeF-based magnetic powder satisfying a saturation magnetization of 130 Am 2 / kg or more and a coercive force of 0.5 MA / m or more, it is desirable to use a fluoride salt having a melting point of less than 330 ° C. When a fluoride salt having a melting point of less than 330 ° C. is used, it can be fluorinated while suppressing the growth of α-Fe, and the volume fraction of α-Fe grown on these magnetic powders is 0.1-20. %. This α-Fe is a bcc structure Fe containing a constituent element of a fluoride salt, and its saturation magnetization is 200 Am 2 / kg or less. When the volume ratio of α-Fe exceeds 20%, the coercive force is rapidly reduced, and it is difficult to secure a coercive force of 0.5 MA / m or more. In addition, the volume fraction of α-Fe can be made less than 0.1 by designing the material composition such as the use of additive elements including the production conditions of the raw material powder.

本実施例では溶融した金属フッ化物塩によりRe−Fe系材料であるSmFe12を粉砕処理することで、フッ素が侵入し磁気特性の向上したRe−Fe系材料を得る方法について説明する。 In this example, a method for obtaining a Re—Fe-based material having improved magnetic properties due to penetration of fluorine by pulverizing SmFe 12 which is a Re—Fe-based material with a molten metal fluoride salt will be described.

グローブボックス中でフッ化物塩であるSnF2とSnF4をそれぞれ30gずつ混合し、これにSmFe12100gを加えてさらに混合した。これをニッケル製のポットに入れ、さらにニッケル製のボールを入れ内部をArで満たして密封した。ポットにヒータをセットし、250℃に加熱しながら3時間ボールミリングを行った。その後冷却しグローブボックス中でポットを開けて内容物を取り出し、メタノールで洗浄・乾燥後磁性材料粉末を得た。ここで用いたSnF2は融点が220℃以下であり250℃では液体となり有効に反応するのに対し、SnF4は700℃以上でありそのままでは固体状で反応しにくい。しかしボールミリングにより粉砕することでSnF2への溶解を促進することでよりフッ素含有量の高いSnF4を使用可能となるため、使用するフッ化物塩の総量を低減することができる。 In the glove box, 30 g each of SnF 2 and SnF 4 which are fluoride salts were mixed, and 100 g of SmFe 12 was added thereto and further mixed. This was put in a nickel pot, and further a nickel ball was put in and filled with Ar to be sealed. A heater was set in the pot, and ball milling was performed for 3 hours while heating to 250 ° C. After cooling, the pot was opened in the glove box, the contents were taken out, washed with methanol and dried to obtain a magnetic material powder. SnF 2 used here has a melting point of 220 ° C. or less and becomes a liquid at 250 ° C. and reacts effectively, whereas SnF 4 is 700 ° C. or more and remains solid and hardly reacts. However, by pulverizing by ball milling, SnF 4 having a higher fluorine content can be used by promoting dissolution in SnF 2 , so that the total amount of fluoride salt used can be reduced.

得られた磁性材料について試料振動型磁力計により飽和磁化を測定したところ、処理前の124Am2/kgよりも増加し179Am2/kgとなり、保磁力は1.7MA/mであった。 When the saturation magnetization of the obtained magnetic material was measured by a sample vibration type magnetometer, it increased from 124 Am 2 / kg before treatment to 179 Am 2 / kg, and the coercive force was 1.7 MA / m.

本実施例では、金属フッ化物塩の気体によりRe−Fe系材料であるNd2Fe17を処理することで、フッ素が侵入し磁気特性の向上したRe−Fe−F系材料を得る方法について説明する。 In this example, a method for obtaining a Re—Fe—F material having improved magnetic properties by intrusion of fluorine by treating Nd 2 Fe 17 , which is a Re—Fe material, with a metal fluoride salt gas will be described. To do.

サファイア管にSnF2100gを入れたサファイアボートと、Nd2Fe1750gを入れたサファイアボートを数cm離して挿入し、冷却トラップを接続した真空ポンプにより0.01atmまで真空引きし、その後コックを閉じて内部を隔離した。そしてNd2Fe17を置いた部分を250℃に加熱し、それ以外の部分を500℃に加熱した。6時間保持した。SnF2は500℃減圧下において一部が蒸発し、温度の低いNd2Fe17のある部分で液体に戻るため、SnF2が移動しその液中でNd2Fe17のフッ化反応が進行する。反応後はNd2Fe17のある部分のみ250℃にし、他の部分は室温まで放冷し、コックを開けて真空引きしてNd2Fe17に残留したSnF2を蒸発・分離させた。その後サファイア管を開けてボートを回収した。SnF2の蒸発を利用することで洗浄溶媒を使用することなく未反応のフッ化物塩を除去することができるため、溶媒に含まれる水分等による酸化を抑制することが可能である。また、冷却トラップにて回収されたSnF2はフッ化剤として再利用することが可能である。 Insert a sapphire boat with 100 g of SnF 2 into a sapphire tube and a sapphire boat with 50 g of Nd 2 Fe 17 at a distance of several centimeters. Closed and isolated inside. The part where Nd 2 Fe 17 was placed was heated to 250 ° C., and the other part was heated to 500 ° C. Hold for 6 hours. SnF 2 partially evaporates under reduced pressure at 500 ° C. and returns to liquid at a portion where Nd 2 Fe 17 has a low temperature, so SnF 2 moves and fluorination reaction of Nd 2 Fe 17 proceeds in the liquid. . After the reaction, only the portion with Nd 2 Fe 17 was brought to 250 ° C., and the other portion was allowed to cool to room temperature, and the cock was opened and evacuated to evaporate and separate SnF 2 remaining in Nd 2 Fe 17 . Then the sapphire tube was opened and the boat was recovered. By utilizing the evaporation of SnF 2 , unreacted fluoride salts can be removed without using a washing solvent, and therefore, oxidation due to moisture contained in the solvent can be suppressed. Further, SnF 2 recovered by the cooling trap can be reused as a fluorinating agent.

得られた磁性材料について粉末X線回折により分析したところ、SnF2相は検出されなかった。また試料振動型磁力計により磁気特性を調べると、飽和磁化は186Am2/kgとなり、保磁力は1.72MA/mであった。 When the obtained magnetic material was analyzed by powder X-ray diffraction, the SnF 2 phase was not detected. Further, when the magnetic characteristics were examined with a sample vibration type magnetometer, the saturation magnetization was 186 Am 2 / kg and the coercive force was 1.72 MA / m.

Claims (8)

Re−Fe−F系(Reはスカンジウム、イットリウムを含めた希土類元素)の磁性材料において、
フッ素が結晶格子位置に侵入したReFe相と、
Sn相と、
SnFe合金相と、を有し、
スズの含有量は0.01〜50原子%であることを特徴とする磁性材料。
In the magnetic material of the Re-Fe-F system (Re is a rare earth element including scandium and yttrium),
A ReFe phase in which fluorine enters the crystal lattice position;
Sn phase,
An SnFe alloy phase,
A magnetic material characterized in that the tin content is 0.01 to 50 atomic%.
請求項1に記載の磁性材料であって、
フッ素の含有量は0.1〜15原子%であることを特徴とする磁性材料。
The magnetic material according to claim 1,
A magnetic material having a fluorine content of 0.1 to 15 atomic%.
請求項2に記載の磁性材料であって、
前記フッ素は、Re−Fe系の磁性材料に対しフッ化物塩を用いた液中処理により導入されていることを特徴とする磁性材料。
The magnetic material according to claim 2,
The magnetic material, wherein the fluorine is introduced into the Re-Fe-based magnetic material by a submerged treatment using a fluoride salt.
請求項3に記載の磁性材料であって、
前記フッ化物塩の融点は330℃以下であることを特徴とする磁性材料。
The magnetic material according to claim 3,
A magnetic material, wherein the fluoride salt has a melting point of 330 ° C. or lower.
請求項3に記載の磁性材料であって、
前記フッ化物塩はSeF4、AsF3、SbF5、NbF5、RuF5、TaF5、TeF4、SbF3またはTlFであることを特徴とする磁性材料。
The magnetic material according to claim 3,
The magnetic material, wherein the fluoride salt is SeF 4 , AsF 3 , SbF 5 , NbF 5 , RuF 5 , TaF 5 , TeF 4 , SbF 3 or TlF.
請求項1乃至5のいずれかに記載の磁性材料であって、
α−Feを体積率で0.1〜20%含有することを特徴とする磁性材料。
A magnetic material according to any one of claims 1 to 5,
A magnetic material comprising α-Fe in a volume ratio of 0.1 to 20%.
請求項1乃至6のいずれかに記載の磁性材料であって、
前記α−Feの飽和磁化は200Am2/kg以下であることを特徴とする磁性材料。
A magnetic material according to any one of claims 1 to 6,
The magnetic material, wherein the saturation magnetization of α-Fe is 200 Am 2 / kg or less.
請求項1乃至7のいずれかに記載の磁性材料をスズにより結合することで構成されることを特徴とする磁石。   A magnet comprising the magnetic material according to claim 1 bonded with tin.
JP2012017471A 2012-01-31 2012-01-31 Magnetic material and magnet Pending JP2013157487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017471A JP2013157487A (en) 2012-01-31 2012-01-31 Magnetic material and magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017471A JP2013157487A (en) 2012-01-31 2012-01-31 Magnetic material and magnet

Publications (1)

Publication Number Publication Date
JP2013157487A true JP2013157487A (en) 2013-08-15

Family

ID=49052385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017471A Pending JP2013157487A (en) 2012-01-31 2012-01-31 Magnetic material and magnet

Country Status (1)

Country Link
JP (1) JP2013157487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733296B1 (en) * 2014-09-09 2017-05-08 도요타 지도샤(주) Magnetic compound and method of producing the same
US10351935B2 (en) 2014-09-09 2019-07-16 Toyota Jidosha Kabushiki Kaisha Magnetic compound and method of producing the same
US10937577B2 (en) 2015-09-17 2021-03-02 Toyota Jidosha Kabushiki Kaisha Magnetic compound and production method thereof
KR20210037449A (en) * 2019-09-27 2021-04-06 주식회사 엘지화학 Manufacturing method of sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733296B1 (en) * 2014-09-09 2017-05-08 도요타 지도샤(주) Magnetic compound and method of producing the same
US10351935B2 (en) 2014-09-09 2019-07-16 Toyota Jidosha Kabushiki Kaisha Magnetic compound and method of producing the same
US10937577B2 (en) 2015-09-17 2021-03-02 Toyota Jidosha Kabushiki Kaisha Magnetic compound and production method thereof
KR20210037449A (en) * 2019-09-27 2021-04-06 주식회사 엘지화학 Manufacturing method of sintered magnet
KR102650623B1 (en) 2019-09-27 2024-03-21 주식회사 엘지화학 Manufacturing method of sintered magnet

Similar Documents

Publication Publication Date Title
KR101936174B1 (en) Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
Gabay et al. ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1− xCexFe10Si2 alloys
Rial et al. Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders
JPWO2002103719A1 (en) Rare earth permanent magnet material
Moon et al. Synthesis and magnetic properties of MnBi (LTP) magnets with high-energy product
JP2014231624A (en) METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET
JP7287220B2 (en) Rare earth magnet and manufacturing method thereof
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
JP2013157487A (en) Magnetic material and magnet
Mohapatra et al. Advances in grain-boundary diffusion for high-performance permanent magnets
Saito et al. Production of Sm–Fe–N bulk magnets by the spark plasma sintering method with dynamic compression
JP6614365B2 (en) Rare earth-transition metal ferromagnetic alloys
Rahimi et al. Coercivity Mechanism in Nd-Fe-B Nanoparticles synthesized by reduction-diffusion process
Si et al. Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders
Saito Magnetic properties of Sm–Fe–N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
Qian et al. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling
KR20200023107A (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
Saito Magnetic properties of anisotropic Sm–Fe–N bulk magnets produced by spark plasma sintering method
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
Saito et al. Extraction of Sm from Sm–Fe–N magnets by the glass slag method
Jurczyk Magnetic studies of YCo12− xVx compounds
Saito Structures and magnetic properties of Sm-Fe-N bulk magnets produced by the spark plasma sintering method
JP7556248B2 (en) Sm-Fe-N magnetic material and its manufacturing method