[go: up one dir, main page]

JP2013149790A - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
JP2013149790A
JP2013149790A JP2012009114A JP2012009114A JP2013149790A JP 2013149790 A JP2013149790 A JP 2013149790A JP 2012009114 A JP2012009114 A JP 2012009114A JP 2012009114 A JP2012009114 A JP 2012009114A JP 2013149790 A JP2013149790 A JP 2013149790A
Authority
JP
Japan
Prior art keywords
upper electrode
frequency
electrode
plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009114A
Other languages
Japanese (ja)
Inventor
Manabu Iwata
学 岩田
Akihiro Yoshimura
章弘 吉村
Hiroshi Tsujimoto
宏 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012009114A priority Critical patent/JP2013149790A/en
Priority to TW102101894A priority patent/TWI582842B/en
Priority to KR1020130006094A priority patent/KR102009369B1/en
Publication of JP2013149790A publication Critical patent/JP2013149790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the occurrence of an undesired resonance phenomenon without inducing the generation of a particle on a high-frequency transmission line around an upper electrode formed to be movable in up and down directions.SOLUTION: A capacitive coupling plasma processing device of cathode-coupling type comprises: a chamber 10; an upper electrode 44 provided in an upper portion of the chamber 10 to be movable in up and down directions; and a susceptor (lower electrode) 14 opposed to the upper electrode, provided that the upper electrode is arranged coaxially and in parallel with the susceptor. The upper electrode 44 has: an electrode main body 46 opposed to the susceptor 14; a conductive backing plate 48 opposed to a ceiling wall (top cover) 10b of the chamber 10; and a ring-like dielectric 52 for joining between a peripheral portion of the electrode main body 46 and a peripheral portion of the backing plate 48 so as to form a gap 50 therebetween. The backing plate 48 of the upper electrode 44 is physically and electrically connected through a bellows 72 to the chamber 10 which is a member at an earth potential.

Description

本発明は、カソードカップリング方式の容量結合型プラズマ処理装置に係り、特に上下移動可能な上部電極に関する。   The present invention relates to a cathode-coupled capacitively coupled plasma processing apparatus, and more particularly to an upper electrode that can move up and down.

一般に、容量結合型のプラズマ処理装置は、真空チャンバとして構成される処理容器内に上部電極と下部電極とを平行に配置し、下部電極の上に被処理基板(半導体ウエハ、ガラス基板等)を載置し、両電極のいずれか一方に高周波電力を印加する。この高周波電力によって両電極間に形成される電界により電子が加速され、電子と処理ガスとの衝突電離によってプラズマが発生し、プラズマ中のラジカルやイオンによって基板表面に所望の処理または加工が施される。ここで、上部電極と下部電極間の距離(以下「電極間ギャップ」と称する。)は、圧力等の他のプロセス条件とも関連して、高周波電力の印加効率や安定性、プラズマ密度分布等を左右する。したがって、プラズマプロセスの特性や結果を左右するハードウェア上の重要なプロセス条件となっている。   In general, in a capacitively coupled plasma processing apparatus, an upper electrode and a lower electrode are arranged in parallel in a processing vessel configured as a vacuum chamber, and a substrate to be processed (semiconductor wafer, glass substrate, etc.) is placed on the lower electrode. The high frequency power is applied to either one of the electrodes. Electrons are accelerated by the electric field formed between the two electrodes by this high-frequency power, and plasma is generated by impact ionization between the electrons and the processing gas, and the substrate surface is subjected to desired processing or processing by radicals or ions in the plasma. The Here, the distance between the upper electrode and the lower electrode (hereinafter referred to as “interelectrode gap”) is related to other process conditions such as pressure, and the application efficiency and stability of the high frequency power, the plasma density distribution, etc. It depends on you. Therefore, it is an important hardware process condition that affects the characteristics and results of the plasma process.

近年、このようなカソードカップリング方式の容量結合型プラズマ処理装置においては、電極間ギャップを調整可能とするために、基板を載せるカソード側の下部電極を固定設置して、対向電極である上部電極を上下方向に移動できるようにした装置構成が注目されている(特許文献1)。このような上部電極可動型のプラズマ処理装置は、チャンバ(処理容器)の減圧空間の中で上部電極をチャンバの側壁から少し離して上下方向に移動可能に支持する上部電極支持機構を有するとともに、下部電極側から見て上部電極の裏側領域とチャンバ天井壁とを気密に接続する伸縮自在なベローズを備える。ベローズは強度および耐久性の高い金属たとえばステンレス鋼からなるので、上部電極は電気的にもベローズを介してチャンバに接続され、接地される。上部電極可動型においても、上部電極は、両電極間のプラズマ生成空間または処理空間に処理ガスを供給するための多数のガス噴射孔を有するシャワーヘッドとして構成されるのが一般的である。   In recent years, in such a cathode coupling type capacitively coupled plasma processing apparatus, in order to adjust the gap between electrodes, a lower electrode on the cathode side on which a substrate is placed is fixedly installed, and an upper electrode which is a counter electrode is provided. Attention has been focused on a device configuration that can move the device up and down (Patent Document 1). Such an upper electrode movable type plasma processing apparatus has an upper electrode support mechanism that supports the upper electrode so that the upper electrode can be moved in the vertical direction slightly away from the side wall of the chamber in the reduced pressure space of the chamber (processing vessel), A telescopic bellows that hermetically connects the back side region of the upper electrode and the chamber ceiling wall when viewed from the lower electrode side is provided. Since the bellows is made of a metal having high strength and durability such as stainless steel, the upper electrode is electrically connected to the chamber via the bellows and grounded. Even in the upper electrode movable type, the upper electrode is generally configured as a shower head having a large number of gas injection holes for supplying a processing gas to a plasma generation space or a processing space between both electrodes.

所定の圧力に減圧されたチャンバ内でシャワーヘッド(上部電極)から処理ガスが供給され、高周波電源よりプラズマ生成に適した周波数の高周波電力が下部電極に印加されると、下部電極と上部電極との間の高周波放電によって処理ガスのプラズマが生成される。生成したプラズマは処理空間に拡散し、高周波電力は上部電極を通って接地電位のチャンバに流れる。このとき、処理空間から上部電極を介して接地電位のチャンバに至るまでの高周波伝送路(以下、「上部電極回り高周波伝送路」と称する。)上で電気的な共振現象が起きる場合がある。このような共振現象の発生は、プラズマの安定的な発生を妨げることになるので、望ましくない。   When processing gas is supplied from a shower head (upper electrode) in a chamber depressurized to a predetermined pressure and high frequency power having a frequency suitable for plasma generation is applied from a high frequency power source to the lower electrode, the lower electrode and the upper electrode Plasma of the processing gas is generated by the high frequency discharge during. The generated plasma diffuses into the processing space, and high-frequency power flows through the upper electrode to the ground potential chamber. At this time, an electrical resonance phenomenon may occur on a high-frequency transmission path (hereinafter referred to as “high-frequency transmission path around the upper electrode”) from the processing space to the chamber having the ground potential via the upper electrode. The occurrence of such a resonance phenomenon is undesirable because it prevents the stable generation of plasma.

上部電極回りの高周波伝送路には、複数の経路がある。特に、処理空間から上部電極およびベローズを介して接地電位のチャンバに至るまでの高周波伝送路(以下、「上部電極裏側高周波伝送路」と称する。)上での共振現象は、プラズマ空間に加えられた高周波電力の損失や、ベローズの焼損だけでなく、下部電極側から見て上部電極の裏側領域とチャンバ天井壁との間の減圧空間(天井空間)での異常放電をも誘発してしまうので、積極的な共振現象の抑制が必要となる。   There are a plurality of high-frequency transmission paths around the upper electrode. In particular, a resonance phenomenon on a high-frequency transmission path (hereinafter referred to as “upper electrode back side high-frequency transmission path”) from the processing space to the ground potential chamber via the upper electrode and the bellows is applied to the plasma space. In addition to high frequency power loss and bellows burning, it also induces abnormal discharge in the decompression space (ceiling space) between the back side area of the upper electrode and the chamber ceiling wall when viewed from the lower electrode side. Therefore, it is necessary to actively suppress the resonance phenomenon.

そのためには、上部電極回り高周波伝送路における固有の共振周波数がプラズマ生成時に印加する高周波電力の周波数に重ならないようにする必要がある。ところが、上部電極可動型においては、電極間ギャップが最適なプロセス条件となるように調整されるため、ベローズの伸縮に伴う上部電極裏側高周波伝送路のインダクダンス成分の変動が生ずる。したがって、プロセス条件により、上部電極回り高周波伝送路の周波数−インピーダンス特性も変化する。すなわち、高周波伝送路固有の共振周波数が変化することになる。   For this purpose, it is necessary to prevent the unique resonance frequency in the high-frequency transmission path around the upper electrode from overlapping the frequency of the high-frequency power applied during plasma generation. However, in the upper electrode movable type, since the gap between the electrodes is adjusted so as to be an optimum process condition, the inductance component of the high frequency transmission line on the back side of the upper electrode varies due to expansion and contraction of the bellows. Therefore, the frequency-impedance characteristic of the high-frequency transmission line around the upper electrode also changes depending on the process conditions. That is, the resonance frequency specific to the high-frequency transmission line changes.

より具体的には、電極間ギャップを小さくするほど、ベローズが長く伸びて、そのインダクタンスは大きくなるので、固有共振周波数は低くなる。反対に、電極間ギャップを大きくするほど、ベローズは短く収縮して、そのインダクタンスが小さくなるので、固有共振周波数は高くなる。たとえば、上部電極の移動範囲(つまりベローズの伸縮範囲)が70mmの場合、電極間ギャップを最小値から最大値まで連続的に変化させると、固有直列共振周波数は40MHz弱から60MHz強まで連続的に変化する(特許文献1の図4)。したがって、プラズマ生成用の高周波に40MHz〜60MHzの周波数を用いる場合は、電極間ギャップの調整により、上部電極回り高周波伝送路の固有直列共振周波数が上記プラズマ生成用高周波の周波数に重なるときに、直列共振が生ずる。   More specifically, the smaller the gap between the electrodes, the longer the bellows extends and the inductance increases, so the natural resonance frequency decreases. On the contrary, the larger the gap between the electrodes, the shorter the bellows contract and the smaller the inductance thereof, so that the natural resonance frequency becomes higher. For example, when the movement range of the upper electrode (that is, the expansion / contraction range of the bellows) is 70 mm and the gap between the electrodes is continuously changed from the minimum value to the maximum value, the natural series resonance frequency is continuously reduced from less than 40 MHz to more than 60 MHz. It changes (FIG. 4 of patent document 1). Therefore, when a frequency of 40 MHz to 60 MHz is used for the high frequency for plasma generation, when the intrinsic series resonance frequency of the high frequency transmission path around the upper electrode overlaps the frequency of the high frequency for plasma generation by adjusting the gap between the electrodes, Resonance occurs.

上記特許文献1の技法は、この問題に対処するために、上部電極とチャンバ天井壁との間の減圧空間(天井空間)内に導電性のバイパス部材を備える。このバイパス部材は、典型的には短冊状のアルミニウム薄板を折り曲げて伸縮自在に構成され、ベローズと並列に上部電極とチャンバ天井壁とを接続する。このバイパス部材を備えることにより、上部電極回り高周波伝送路上の周波数−インピーダンス特性の共振点をより高い周波数領域側、たとえば70MHz強以上にすることができる(特許文献1の図6)。したがって、電極間ギャップを最小値から最大値まで変化させたとき、40MHz〜60MHzのプラズマ生成用高周波を用いて電極間ギャップを任意に調整したとしても、上部電極回り高周波伝送路上の固有直列共振周波数に重なることがないので、プラズマの安定性を損なう共振現象は発生しない。   In order to cope with this problem, the technique of Patent Document 1 includes a conductive bypass member in a decompression space (ceiling space) between the upper electrode and the chamber ceiling wall. This bypass member is typically configured to be able to expand and contract by bending a strip-shaped aluminum thin plate, and connects the upper electrode and the chamber ceiling wall in parallel with the bellows. By providing this bypass member, the resonance point of the frequency-impedance characteristic on the high-frequency transmission line around the upper electrode can be set to a higher frequency region side, for example, more than 70 MHz (FIG. 6 of Patent Document 1). Accordingly, when the gap between the electrodes is changed from the minimum value to the maximum value, even if the gap between the electrodes is arbitrarily adjusted using a high frequency for plasma generation of 40 MHz to 60 MHz, the intrinsic series resonance frequency on the high frequency transmission path around the upper electrode Therefore, the resonance phenomenon that impairs the stability of the plasma does not occur.

特開2011−204764JP 2011-204764 A

しかしながら、上記のようなバイパス部材は、その物理的構造と伸縮機能からパーティクル発生源となるおそれがある。天井空間でバイパス部材から発生したパーティクルは、上部電極とチャンバ側壁との間の隙間を通って処理空間に回り込み、異常放電を生じさせるなどプラズマプロセスに望ましくない影響を及ぼす。また、バイパス部材を用いても、上部電極回り高周波伝送路上の周波数−インピーダンス特性の共振点をより高い周波数領域側に移すことには限界があり、共振防止対策としても万全なものではない。   However, the bypass member as described above may become a particle generation source due to its physical structure and expansion / contraction function. Particles generated from the bypass member in the ceiling space undesirably affect the plasma process, for example, through the gap between the upper electrode and the chamber side wall and into the processing space, causing abnormal discharge. Even if the bypass member is used, there is a limit to moving the resonance point of the frequency-impedance characteristic on the high-frequency transmission line around the upper electrode to the higher frequency region side, and it is not perfect as a resonance prevention measure.

なぜなら、プラズマは概して非線形な負荷であるため、容量結合型プラズマ処理装置のチャンバ内では、基本波の整数倍の周波数を有する高調波や、基本波同士あるいは基本波と高調波との和または差の周波数を有するIMD(混変調歪)が不可避的に発生する。これらの高調波やIMDの中で最も影響力がある、すなわち大きな高周波電力を有するのは2次高調波である。このため、たとえば40MHzのプラズマ生成用高周波を用いる場合は、40MHzの基本波での共振のみならず80MHzの2次高調波での共振現象の発生も防止する必要がある。したがって、上記のようにバイパス部材を備えることにより直列共振周波数の変動範囲を70MHzより高い周波数となるようにした場合でも、電極間ギャップの調整によって上部電極回り高周波伝送路の直列共振周波数が2次高調波の周波数(80MHz)に重なるときは、直列共振が起きることになる。2次高調波で直列共振が起きると、基本波で直列共振が発生した場合と同様に電力損失や部品焼損の問題が生じるだけでなく、プラズマプロセスにも影響がある。   This is because plasma is generally a non-linear load, and therefore, in a chamber of a capacitively coupled plasma processing apparatus, harmonics having a frequency that is an integral multiple of the fundamental wave, or the sum or difference of fundamental waves or between fundamental waves and harmonics. IMD (cross modulation distortion) having a frequency of inevitably occurs. Of these harmonics and IMD, the second harmonic is the most influential, that is, the one having a large high frequency power. For this reason, for example, when a high frequency for plasma generation of 40 MHz is used, it is necessary to prevent not only the resonance at the fundamental frequency of 40 MHz but also the resonance phenomenon at the second harmonic of 80 MHz. Therefore, even when the fluctuation range of the series resonance frequency is set to a frequency higher than 70 MHz by providing the bypass member as described above, the series resonance frequency of the high-frequency transmission path around the upper electrode is adjusted to the second order by adjusting the gap between the electrodes. When it overlaps with the harmonic frequency (80 MHz), series resonance occurs. When series resonance occurs in the second harmonic, not only the problem of power loss and component burnout occurs, but also the plasma process is affected as in the case where series resonance occurs in the fundamental wave.

本発明は、上記のような従来技術の問題を解決するものであり、対向電極である上部電極を上下方向で移動可能に構成するカソードカップリング方式において上部電極回り高周波伝送路上でパーティクルの発生を誘発せずに不所望な共振現象の発生を効果的に防止できる容量結合型のプラズマ処理装置を提供する。   The present invention solves the above-described problems of the prior art, and in the cathode coupling system in which the upper electrode as the counter electrode is configured to be movable in the vertical direction, the generation of particles on the high-frequency transmission line around the upper electrode is achieved. Provided is a capacitively coupled plasma processing apparatus that can effectively prevent the occurrence of an undesired resonance phenomenon without induction.

さらに、本発明は、上部電極回り高周波伝送路上の周波数−インピーダンス特性の共振点をより高い周波数領域側に移す機能を向上させる容量結合型のプラズマ処理装置を提供する。   Furthermore, the present invention provides a capacitively coupled plasma processing apparatus that improves the function of moving the resonance point of the frequency-impedance characteristic on the high-frequency transmission line around the upper electrode to a higher frequency region side.

本発明の第1の観点におけるプラズマ処理装置は、被処理基板を出し入れ可能に収容する真空排気可能な筒状の処理容器内に相対向して設けられた上部電極および下部電極の間の処理空間で処理ガスの高周波放電によるプラズマを生成し、前記プラズマの下で前記下部電極上に保持される前記基板に所望の処理を施すプラズマ処理装置であって、前記上部電極を前記処理容器の側壁から離して上下方向に移動可能に支持する上部電極支持機構と、前記下部電極側から見て前記上部電極の裏側で前記上部電極と前記処理容器の天井壁とを接続する伸縮自在な導電性の隔壁とを具備し、前記上部電極が、前記下部電極と対向する電極本体と、前記処理容器の天井壁と対向する導電性の背板と、前記電極本体と前記背板の間に空隙が形成されるように前記電極本体の周辺部と前記背板の周辺部とを結合するリング状の誘電体とを有する。   A plasma processing apparatus according to a first aspect of the present invention is a processing space between an upper electrode and a lower electrode provided opposite to each other in a cylindrical processing container capable of being evacuated to accommodate a substrate to be processed. A plasma processing apparatus for generating a plasma by high-frequency discharge of a processing gas and performing a desired processing on the substrate held on the lower electrode under the plasma, the upper electrode being removed from a side wall of the processing vessel An upper electrode support mechanism that supports the upper electrode so as to be movable in the vertical direction, and a stretchable conductive partition wall that connects the upper electrode and the ceiling wall of the processing vessel on the back side of the upper electrode when viewed from the lower electrode side. And the upper electrode has an electrode body facing the lower electrode, a conductive back plate facing the ceiling wall of the processing vessel, and a gap formed between the electrode body and the back plate. And a ring-shaped dielectric coupling the peripheral portion of the a peripheral portion backplate of the electrode body.

上記の装置構成においては、電極間ギャップを調整するために上部電極の高さ位置を変えると、導電性隔壁が伸縮してそのインダクタンスが変化し、ひいては上部電極回り高周波伝送路上の固有共振周波数が変化する。特に、処理空間から上部電極および導電性隔壁を介して接地電位の処理容器に至るまでの高周波伝送路(上部電極裏側高周波伝送路)上の直列共振周波数が変化する。   In the above device configuration, when the height position of the upper electrode is changed in order to adjust the gap between the electrodes, the conductive partition wall expands and contracts and its inductance changes, and as a result, the natural resonance frequency on the high-frequency transmission path around the upper electrode is changed. Change. In particular, the series resonance frequency on the high-frequency transmission path (upper electrode back side high-frequency transmission path) from the processing space to the processing container having the ground potential via the upper electrode and the conductive partition changes.

一方で、上記の装置構成においては、上部電極の電極本体と背板との間にコンデンサが形成され、そのキャパシタンスは空隙の誘電率、面積および厚さによって決まる。したがって、上部電極裏側高周波伝送路上にキャパシタンスの非常に低いコンデンサを挿入したことになり、これによって電極間ギャップ調整に伴って上部電極裏側高周波伝送路上の直列共振周波数の変動する範囲を高い周波数領域側へ大きく移すことが可能となり、使用する高周波の周波数よりも、さらにはその2次高調波の周波数よりも高い周波数領域へ容易に移すことができる。   On the other hand, in the above device configuration, a capacitor is formed between the electrode body of the upper electrode and the back plate, and the capacitance is determined by the dielectric constant, area and thickness of the air gap. Therefore, a capacitor having a very low capacitance is inserted on the high frequency transmission line on the back side of the upper electrode, and as a result, the range in which the series resonance frequency on the high frequency transmission line on the back side of the upper electrode fluctuates with the adjustment of the gap between the electrodes is increased. It is possible to shift to a frequency region higher than the frequency of the high frequency used and even higher than the frequency of the second harmonic.

本発明の第2の観点におけるプラズマ処理装置は、被処理基板を出し入れ可能に収容する真空排気可能な筒状の処理容器内に相対向して設けられた上部電極および下部電極の間の処理空間で処理ガスの高周波放電によるプラズマを生成し、前記プラズマの下で前記下部電極上に保持される前記基板に所望の処理を施すプラズマ処理装置であって、前記上部電極を前記処理容器の側壁から離して上下方向に移動可能に支持する上部電極支持機構と、前記下部電極側から見て前記上部電極の裏側で前記上部電極と前記処理容器の天井壁とを接続する伸縮自在な導電性の隔壁とを具備し、前記上部電極が、前記下部電極と対向する電極本体と、前記処理容器の天井壁と対向する導電性の背板と、前記電極本体と前記背板との間に挟まって介在する誘電体とを有する。   A plasma processing apparatus according to a second aspect of the present invention provides a processing space between an upper electrode and a lower electrode that are provided opposite to each other in a cylindrical processing container that can be evacuated and accommodates a substrate to be processed. A plasma processing apparatus for generating a plasma by high-frequency discharge of a processing gas and performing a desired processing on the substrate held on the lower electrode under the plasma, the upper electrode being removed from a side wall of the processing vessel An upper electrode support mechanism that supports the upper electrode so as to be movable in the vertical direction, and a stretchable conductive partition wall that connects the upper electrode and the ceiling wall of the processing vessel on the back side of the upper electrode when viewed from the lower electrode side. The upper electrode is interposed between the electrode body and the back plate, the electrode main body facing the lower electrode, the conductive back plate facing the ceiling wall of the processing vessel Invitation And a body.

上記の装置構成においては、電極間ギャップを調整するために上部電極の高さ位置を変えると、導電性隔壁が伸縮してそのインダクタンスが変化し、ひいては上部電極回り高周波伝送路上の固有共振周波数が変化する。特に、処理空間から上部電極および導電性隔壁を介して接地電位の処理容器に至るまでの高周波伝送路(上部電極裏側高周波伝送路)上の直列共振周波数が変化する。   In the above device configuration, when the height position of the upper electrode is changed in order to adjust the gap between the electrodes, the conductive partition wall expands and contracts and its inductance changes, and as a result, the natural resonance frequency on the high-frequency transmission path around the upper electrode is changed. Change. In particular, the series resonance frequency on the high-frequency transmission path (upper electrode back side high-frequency transmission path) from the processing space to the processing container having the ground potential via the upper electrode and the conductive partition changes.

一方で、上記の装置構成においては、上部電極の電極本体と背板との間にコンデンサが形成され、そのキャパシタンスは誘電体の誘電率、面積および厚さによって決まる。したがって、上部電極裏側高周波伝送路上にキャパシタンスの低いコンデンサを挿入したことになり、これによって電極間ギャップ調整に伴って上部電極裏側高周波伝送路上の直列共振周波数の変動する範囲を高い周波数領域側へ移すことが可能となり、少なくとも、使用する高周波の周波数よりも高い周波数領域へ移すことができる。   On the other hand, in the above device configuration, a capacitor is formed between the electrode body of the upper electrode and the back plate, and the capacitance is determined by the dielectric constant, area and thickness of the dielectric. Therefore, a low-capacitance capacitor is inserted on the high-frequency transmission line on the back side of the upper electrode, and as a result, the range in which the series resonant frequency on the high-frequency transmission line on the back side of the upper electrode fluctuates is shifted to the high-frequency region side. It is possible to move to a frequency region higher than the frequency of the high frequency used.

本発明のプラズマ処理装置によれば、上記のような構成を有することにより、対向電極である上部電極を上下方向で移動可能に構成するカソードカップリング方式において上部電極回り高周波伝送路上でパーティクルの発生を誘発せずに不所望な共振現象の発生を効果的に防止できる。さらには、上部電極回り高周波伝送路上の周波数−インピーダンス特性の共振点をより高い周波数領域側に移す機能を向上させることもできる。   According to the plasma processing apparatus of the present invention, by having the configuration as described above, particles are generated on the high-frequency transmission path around the upper electrode in the cathode coupling method in which the upper electrode as the counter electrode is configured to be movable in the vertical direction. It is possible to effectively prevent the occurrence of an undesired resonance phenomenon without inducing. Furthermore, the function of moving the resonance point of the frequency-impedance characteristic on the high-frequency transmission line around the upper electrode to the higher frequency region side can be improved.

本発明の一実施形態におけるプラズマ処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the plasma processing apparatus in one Embodiment of this invention. 上記プラズマ処理装置における上部電極回りの主要な構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the main structures around the upper electrode in the said plasma processing apparatus. 上記プラズマ処理装置における上部電極回り高周波伝送路の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the high frequency transmission path around an upper electrode in the said plasma processing apparatus. 比較例における上部電極回りの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the upper electrode periphery in a comparative example. 比較例における上部電極回り高周波伝送路の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the high frequency transmission line around the upper electrode in a comparative example. 比較例における上部電極回り高周波伝送路の周波数−インピーダンス特性を示す図である。It is a figure which shows the frequency-impedance characteristic of the high-frequency transmission line around an upper electrode in a comparative example. 実施例における上部電極回り高周波伝送路の周波数−インピーダンス特性(一部推定値)を示す図である。It is a figure which shows the frequency-impedance characteristic (partially estimated value) of the high frequency transmission line around an upper electrode in an Example. 第2の実施形態におけるプラズマ処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the plasma processing apparatus in 2nd Embodiment. 上部電極回りの構成に関する一変形例を示す部分拡大断面図である。It is a partial expanded sectional view which shows the one modification regarding the structure of the upper electrode periphery. 上部電極回りの構成に関する別の変形例を示す部分拡大断面図である。It is a partial expanded sectional view which shows another modification regarding the structure around an upper electrode. 上部電極回りの構成に関する別の変形例を示す部分拡大断面図である。It is a partial expanded sectional view which shows another modification regarding the structure around an upper electrode.

以下、添付図を参照して本発明の好適な実施の形態を説明する。
[実施形態1]
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[Embodiment 1]

図1に、本発明の一実施形態におけるプラズマ処理装置の構成を示す。このプラズマ処理装置は、カソードカップリング方式の容量結合型(平行平板型)プラズマエッチング装置として構成されており、たとえば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる筒状の真空チャンバ(処理容器)10を有している。チャンバ10は、円筒形の側壁10aと、この側壁10aの上端を気密に覆う円板状の上蓋10bと、この側壁10aの下端に接続された底壁(図示せず)とを有しており、接地されている。   FIG. 1 shows the configuration of a plasma processing apparatus according to an embodiment of the present invention. This plasma processing apparatus is configured as a cathode coupling type capacitively coupled (parallel plate type) plasma etching apparatus. For example, a cylindrical vacuum chamber (processing) made of aluminum whose surface is anodized (anodized). Container) 10. The chamber 10 has a cylindrical side wall 10a, a disk-shaped upper lid 10b that airtightly covers the upper end of the side wall 10a, and a bottom wall (not shown) connected to the lower end of the side wall 10a. Is grounded.

チャンバ10の底部中央には、チャンバ10から電気的に絶縁されたサセプタ支持台12が設けられ、このサセプタ支持台12の上にたとえばアルミニウムからなる肉厚な円板状のサセプタ14がチャンバ10と同軸で固定配置されている。サセプタ14は下部電極を構成し、この上に被処理基板としてたとえば半導体ウエハWが載置される。   A susceptor support 12 that is electrically insulated from the chamber 10 is provided at the center of the bottom of the chamber 10, and a thick disk-shaped susceptor 14 made of, for example, aluminum is formed on the susceptor support 12 with the chamber 10. It is fixedly arranged coaxially. The susceptor 14 constitutes a lower electrode, on which, for example, a semiconductor wafer W is placed as a substrate to be processed.

サセプタ14の上面には、半導体ウエハWを保持するための静電チャック16が取り付けられている。この静電チャック16は導電膜からなる電極18を一対の絶縁層または絶縁シートの間に挟み込んだものであり、電極18にはスイッチ20を介して直流電源22が電気的に接続されている。直流電源22からの直流電圧により、半導体ウエハWを静電吸着力で静電チャック16に保持できるようになっている。図示省略するが、サセプタ支持台12を冷媒たとえば冷却水によって一定温度に冷却し、ガス供給ラインを介して伝熱ガスたとえばHeガスを静電チャック16の上面と半導体ウエハWの裏面との間に供給するウエハ温度制御機構も備わっている。   An electrostatic chuck 16 for holding the semiconductor wafer W is attached to the upper surface of the susceptor 14. The electrostatic chuck 16 is obtained by sandwiching an electrode 18 made of a conductive film between a pair of insulating layers or insulating sheets, and a DC power source 22 is electrically connected to the electrode 18 via a switch 20. The semiconductor wafer W can be held on the electrostatic chuck 16 by an electrostatic attraction force by a DC voltage from the DC power source 22. Although not shown in the figure, the susceptor support 12 is cooled to a constant temperature with a coolant such as cooling water, and a heat transfer gas such as He gas is passed between the upper surface of the electrostatic chuck 16 and the back surface of the semiconductor wafer W via a gas supply line. A wafer temperature control mechanism is also provided.

サセプタ14の周囲には、リング状の絶縁体24を介してたとえば表面がアルマイト処理されたアルミニウムからなる円筒状の内壁部材26が設けられ、この内壁部材26とチャンバ10の側壁10aとの間にチャンバ10の底まで延びる環状の排気空間27が形成されている。リング状絶縁体24および内壁部材26の上にはたとえば石英からなる環状の誘電体28を介してフォーカスリング30が取り付けられる。フォーカスリング30は、エッチングの均一性を向上させるためのもので、たとえばシリコンからなり、静電チャック16上で半導体ウエハWの周囲を覆うように配置されている。   Around the susceptor 14, a cylindrical inner wall member 26 made of, for example, aluminum whose surface is anodized is provided via a ring-shaped insulator 24, and between the inner wall member 26 and the side wall 10 a of the chamber 10. An annular exhaust space 27 extending to the bottom of the chamber 10 is formed. A focus ring 30 is attached on the ring-shaped insulator 24 and the inner wall member 26 via an annular dielectric 28 made of, for example, quartz. The focus ring 30 is for improving the uniformity of etching, and is made of, for example, silicon, and is disposed on the electrostatic chuck 16 so as to cover the periphery of the semiconductor wafer W.

排気空間27の底にはチャンバ10の排気口(図示せず)が設けられている。その排気口に排気管32を介して排気装置34が接続されている。排気装置34は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10の室内を所望の真空度まで減圧できるようになっている。排気管32の途中にはチャンバ10内の圧力を制御するためのAPCバルブ(図示せず)が設けられている。チャンバ10の側壁には半導体ウエハWの搬入出口(図示せず)を開閉するゲートバルブ(図示せず)が取り付けられている。   An exhaust port (not shown) of the chamber 10 is provided at the bottom of the exhaust space 27. An exhaust device 34 is connected to the exhaust port via an exhaust pipe 32. The exhaust device 34 has a vacuum pump such as a turbo molecular pump, and can reduce the pressure in the chamber 10 to a desired degree of vacuum. An APC valve (not shown) for controlling the pressure in the chamber 10 is provided in the middle of the exhaust pipe 32. A gate valve (not shown) for opening and closing a loading / unloading port (not shown) for the semiconductor wafer W is attached to the side wall of the chamber 10.

サセプタ14には、2系統の高周波給電部が電気的に接続されている。第1系統の高周波給電部は、プラズマの生成に適した一定の周波数(たとえば40.68MHz)の高周波RF1を出力する高周波電源36と、この高周波電源36のインピーダンスに負荷側のインピーダンスを整合させるための整合器38とを有している。第2系統の高周波給電部は、プラズマからサセプタ14上の半導体ウエハWへのイオンの引き込みに適した一定の周波数(たとえば3.2MHz)の高周波RF2を出力する高周波電源40と、この高周波電源40のインピーダンスに負荷側のインピーダンスを整合させるための整合器42とを有している。 Two systems of high-frequency power feeding units are electrically connected to the susceptor 14. The high frequency power supply unit of the first system matches the impedance on the load side with the high frequency power source 36 that outputs a high frequency RF 1 having a constant frequency (for example, 40.68 MHz) suitable for plasma generation. For matching. The high-frequency power supply unit of the second system includes a high-frequency power source 40 that outputs a high-frequency RF 2 having a constant frequency (for example, 3.2 MHz) suitable for drawing ions from the plasma into the semiconductor wafer W on the susceptor 14, and the high-frequency power source. And a matching unit 42 for matching the impedance on the load side with the impedance of 40.

対向電極である上部電極回りの構成は、次のようになっている。チャンバ10の上部には、サセプタ14と平行に向かいあって上下方向に可動に構成された上部電極44がサセプタ14と同軸に設けられている。この上部電極44は、サセプタ14と対向する電極本体46と、チャンバ10の天井壁(上蓋)10bと対向する導電性の背板48と、電極本体46と背板48との間に空隙50が形成されるように電極本体46の周辺部と背板48の周辺部とを結合するリング状の誘電体52とを有している。   The configuration around the upper electrode, which is the counter electrode, is as follows. An upper electrode 44 is provided on the upper portion of the chamber 10 so as to be parallel to the susceptor 14 and movable in the vertical direction coaxially with the susceptor 14. The upper electrode 44 includes an electrode body 46 facing the susceptor 14, a conductive back plate 48 facing the ceiling wall (upper lid) 10 b of the chamber 10, and a gap 50 between the electrode body 46 and the back plate 48. The ring-shaped dielectric 52 which couple | bonds the peripheral part of the electrode main body 46 and the peripheral part of the backplate 48 so that it may be formed.

上部電極44の電極本体46は、たとえば表面がアルマイト処理されたアルミニウムからなる肉厚な円盤状の導電体であり、その内部にガスバッファ室54を有し、その下面に多数のガス通気孔46aを有し、その上面にガス導入口46bを有している。この実施例では、半導体ウエハWの主面上でシリコンのエッチングを行うために、電極本体46の表面(下面)にエッチング耐性の高い石英からなる円板状の天板56を貼り付けている。この石英天板56には、電極本体46のガス通気孔46aと連通する多数のガス通気孔(貫通孔)56aが形成されている。電極本体46と石英天板56が一体となってシャワーヘッドを構成している。   The electrode main body 46 of the upper electrode 44 is a thick disk-shaped conductor made of, for example, aluminum whose surface is anodized, has a gas buffer chamber 54 inside thereof, and has a number of gas vent holes 46a on its lower surface. And has a gas inlet 46b on its upper surface. In this embodiment, in order to etch silicon on the main surface of the semiconductor wafer W, a disk-shaped top plate 56 made of quartz having high etching resistance is attached to the surface (lower surface) of the electrode body 46. A large number of gas vent holes (through holes) 56 a communicating with the gas vent holes 46 a of the electrode body 46 are formed in the quartz top plate 56. The electrode body 46 and the quartz top plate 56 are integrated to form a shower head.

上部電極44の背板48は、たとえば表面がアルマイト処理されたアルミニウムからなる円形の板体であり、その中心部に鉛直方向に延びる円筒状のシャフト(上部電極支持部材)58を通すための開口48aが形成されている。シャフト58の下端部外周面に背板48が固着される。電極本体46は、後述するようにリング状誘電体52を介して背板48に固定されるので、シャフト58の下端に直接固着されていてもよいし、別の部材が介在していてもよい。   The back plate 48 of the upper electrode 44 is, for example, a circular plate body made of aluminum whose surface is anodized, and an opening for passing a cylindrical shaft (upper electrode support member) 58 extending vertically in the center of the plate. 48a is formed. A back plate 48 is fixed to the outer peripheral surface of the lower end portion of the shaft 58. Since the electrode body 46 is fixed to the back plate 48 via the ring-shaped dielectric 52 as will be described later, it may be directly fixed to the lower end of the shaft 58, or another member may be interposed. .

リング状誘電体52は、たとえばアルミナからなり、電極本体46と背板48との間に空隙50が形成されるように、その周辺部の上面が電極本体46の上面よりも空隙50のギャップサイズだけ高い位置で背板48の周辺部下面に密着し、その内周面より半径方向内側に突出するフランジ部52aに電極本体46を載せて支持している。この実施例では、シリコンエッチング用にリング状誘電体52の下面にも石英からなるリング状の天板60を貼り付けている。背板48、リング状誘電体52およびリング状天板60の各外周面とチャンバ10の側壁10aとの間には、数mm以下のわずかな隙間61が形成されている。   The ring-shaped dielectric 52 is made of alumina, for example, and the upper surface of the peripheral portion thereof is larger than the upper surface of the electrode body 46 so that the gap 50 is formed between the electrode body 46 and the back plate 48. The electrode main body 46 is placed on and supported by a flange portion 52a that protrudes inward in the radial direction from the inner peripheral surface thereof. In this embodiment, a ring-shaped top plate 60 made of quartz is also attached to the lower surface of the ring-shaped dielectric 52 for silicon etching. A slight gap 61 of several mm or less is formed between the outer peripheral surfaces of the back plate 48, the ring-shaped dielectric 52 and the ring-shaped top plate 60 and the side wall 10 a of the chamber 10.

シャフト58は、たとえばステンレス鋼からなり、チャンバ10の天井壁(上蓋)10bの中心開口部に取り付けられている絶縁性の案内部材たとえばカラー62に沿って上下方向に移動可能に設けられている。そして、チャンバ10の上方でシャフト58の上端部がリフト機構(図示せず)に結合されており、リフト機構の昇降駆動力によって上部電極44がピストンのように上下方向に移動できるとともに、可動範囲(たとえば70mm)内の任意の高さ位置で静止ないし固定できるようになっている。   The shaft 58 is made of, for example, stainless steel, and is provided so as to be movable in the vertical direction along an insulating guide member such as a collar 62 attached to the central opening of the ceiling wall (upper lid) 10 b of the chamber 10. The upper end of the shaft 58 is coupled to a lift mechanism (not shown) above the chamber 10, and the upper electrode 44 can be moved up and down like a piston by the lift driving force of the lift mechanism and has a movable range. It can be stationary or fixed at an arbitrary height position within (for example, 70 mm).

シャフト58の内側は中空になっており、チャンバ10の外に配置されている処理ガス供給部64からの処理ガス供給管66がシャフト58内側の空間を通って電極本体46のガス導入口46bに接続されている。図示の構成例における処理ガス供給管66は、リフト機構の駆動力によって上部電極44と一緒に昇降移動するリジッドな下流側ガス管68と、定置の処理ガス供給部64と下流側ガス管68の入口ポート68aとを結ぶ可撓性の上流側ガス管70とで構成されている。   The inside of the shaft 58 is hollow, and the processing gas supply pipe 66 from the processing gas supply unit 64 arranged outside the chamber 10 passes through the space inside the shaft 58 to the gas inlet 46 b of the electrode body 46. It is connected. The processing gas supply pipe 66 in the illustrated configuration example includes a rigid downstream gas pipe 68 that moves up and down together with the upper electrode 44 by the driving force of the lift mechanism, and a stationary processing gas supply section 64 and a downstream gas pipe 68. It is comprised with the flexible upstream gas pipe 70 which connects the inlet port 68a.

シャフト58の外側に隣接して、上部電極44とチャンバ10の天井壁(上蓋)10bとを気密に接続するベローズ72が取り付けられている。このベローズ72は、たとえばステンレス鋼からなり、圧力を遮断する伸縮自在な隔壁として機能する。このベローズ72によって、上部電極44とチャンバ10の天井壁10bとの間に天井空間CSが形成される。この天井空間CSは、チャンバ側壁10a際の隙間61を介して両電極14,44間のプラズマ生成空間または処理空間PSと連通しており、減圧空間である。   Adjacent to the outside of the shaft 58, a bellows 72 is attached that hermetically connects the upper electrode 44 and the ceiling wall (upper lid) 10 b of the chamber 10. The bellows 72 is made of, for example, stainless steel and functions as a stretchable partition wall that blocks pressure. By the bellows 72, a ceiling space CS is formed between the upper electrode 44 and the ceiling wall 10b of the chamber 10. The ceiling space CS communicates with the plasma generation space or the processing space PS between the electrodes 14 and 44 through a gap 61 at the chamber side wall 10a, and is a decompressed space.

ベローズ72は、その上端がチャンバ10の天井壁10bに結合され、その下端が上部電極44の背板48に結合されている。これにより、上部電極44の背板48は、電気的にもベローズ72を介して接地電位部材であるチャンバ10に接続されている。   The bellows 72 has an upper end coupled to the ceiling wall 10 b of the chamber 10 and a lower end coupled to the back plate 48 of the upper electrode 44. Thereby, the back plate 48 of the upper electrode 44 is electrically connected to the chamber 10 which is a ground potential member via the bellows 72.

制御部74は、1つまたは複数のマイクロコンピュータを含み、外部メモリまたは内部メモリに格納されるソフトウェア(プログラム)およびレシピ情報にしたがって、装置内の各部、特に高周波電源36,40、整合器38,42、排気装置34、リフト機構等の個々の動作および装置全体の動作(シーケンス)を制御する。   The control unit 74 includes one or a plurality of microcomputers, and in accordance with software (program) and recipe information stored in an external memory or internal memory, each unit in the apparatus, in particular, the high frequency power sources 36 and 40, the matching unit 38, 42, the individual operations of the exhaust device 34, the lift mechanism, and the like (sequence) of the entire device are controlled.

また、制御部74は、キーボード等の入力装置や液晶ディスプレイ等の表示装置を含むマン・マシン・インタフェース用の操作パネル(図示せず)および各種プログラムやレシピ、設定値等の各種データを格納または蓄積する外部記憶装置(図示せず)等とも接続されている。この実施形態では、制御部72が1つの制御ユニットとして示されているが、複数の制御ユニットが制御部74の機能を並列的または階層的に分担する形態を採ってもよい。   The control unit 74 stores an operation panel (not shown) for a man-machine interface including an input device such as a keyboard and a display device such as a liquid crystal display, and various data such as various programs, recipes, and setting values. An external storage device (not shown) for storage is also connected. In this embodiment, the control unit 72 is shown as one control unit, but a plurality of control units may share the functions of the control unit 74 in parallel or hierarchically.

この容量結合型プラズマエッチング装置における枚葉ドライエッチングの基本的な動作は次のようにして行われる。先ず、ゲートバルブを開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック18の上に載置する。そして、処理ガス供給部64より処理ガスたとえばCl系のエッチングガスを所定の流量および流量比でチャンバ10内に導入し、排気装置34による真空排気でチャンバ10内の圧力を設定値にする。さらに、高周波電源36からの高周波RF1(40.68MHz)と高周波電源40からの高周波RF2(3.2MHz)とを重畳して(あるいは単独で)サセプタ14に印加する。また、直流電源22より直流電圧を静電チャック16の電極18に印加して、半導体ウエハWを静電チャック16上に固定する。シャワーヘッド(上部電極)44より吐出されたエッチングガスは両電極44,14間の高周波電界の下で放電し、処理空間PS内にプラズマが生成される。このプラズマに含まれるラジカルやイオンによって半導体ウエハWの主面の被加工材(この実施例ではシリコン)がエッチングされる。   The basic operation of single wafer dry etching in this capacitively coupled plasma etching apparatus is performed as follows. First, the gate valve is opened and the semiconductor wafer W to be processed is loaded into the chamber 10 and placed on the electrostatic chuck 18. Then, a processing gas such as a Cl-based etching gas is introduced into the chamber 10 from the processing gas supply unit 64 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 10 is set to a set value by evacuation by the exhaust device 34. Further, the high frequency RF1 (40.68 MHz) from the high frequency power supply 36 and the high frequency RF2 (3.2 MHz) from the high frequency power supply 40 are superimposed (or singly) and applied to the susceptor 14. Further, a DC voltage is applied from the DC power source 22 to the electrode 18 of the electrostatic chuck 16 to fix the semiconductor wafer W on the electrostatic chuck 16. The etching gas discharged from the shower head (upper electrode) 44 is discharged under a high-frequency electric field between the electrodes 44 and 14, and plasma is generated in the processing space PS. The workpiece (silicon in this embodiment) on the main surface of the semiconductor wafer W is etched by radicals and ions contained in the plasma.

このプラズマエッチング装置においては、上部電極44を上下に移動させてその高さ位置を変えることにより、プロセス条件の1つである電極間ギャップを任意に調整できるようになっており、更にそれによって圧力、ガス流量、RFパワー等の他のプロセス条件の使用可能範囲(マージン)も拡げられるようになっている。   In this plasma etching apparatus, the gap between the electrodes, which is one of the process conditions, can be arbitrarily adjusted by moving the upper electrode 44 up and down to change its height position. In addition, the usable range (margin) of other process conditions such as gas flow rate and RF power can be expanded.

一方で、チャンバ10内で生成されるプラズマから各基本波の整数倍の周波数を有する高調波や、基本波同士あるいは基本波と高調波との和または差の周波数を有するIMD(混変調歪)が発生する。これらの高調波やIMDは、電力損失や部品焼損を生じさせるだけでなく、プラズマプロセスに影響を与えることもある。このカソードカップリング方式の容量結合型プラズマエッチング装置において、これらの望ましくない現象は、処理空間から上部電極44を介して接地電位のチャンバ10に至るまでの高周波伝送路つまり上部電極回り高周波伝送路75上で、特に処理空間から上部電極44およびベローズ72を介して接地電位のチャンバ10に至るまでの高周波伝送路つまり上部電極裏側高周波伝送路76上で、いずれかの高調波またはIMDに対して直列共振が起きるときに、顕著に現れる。もちろん、上部電極回り高周波伝送路75上でいずれかの基本波に対して直列共振が起きるときも、該高周波伝送路75上の部品を焼損させるおそれがあり、望ましくない。   On the other hand, harmonics having a frequency that is an integral multiple of each fundamental wave from plasma generated in the chamber 10, or IMDs (intermodulation distortion) having a frequency that is the sum or difference of fundamental waves or between fundamental waves and harmonics. Will occur. These harmonics and IMD not only cause power loss and component burnout, but may also affect the plasma process. In the cathode coupling type capacitively coupled plasma etching apparatus, these undesirable phenomena are caused by a high-frequency transmission path from the processing space to the chamber 10 at the ground potential via the upper electrode 44, that is, a high-frequency transmission path 75 around the upper electrode. Above, especially on the high-frequency transmission path from the processing space to the chamber 10 at the ground potential via the upper electrode 44 and the bellows 72, that is, on the high-frequency transmission path 76 on the back side of the upper electrode, in series with any harmonic or IMD. It appears prominently when resonance occurs. Of course, even when series resonance occurs with respect to any of the fundamental waves on the high-frequency transmission path 75 around the upper electrode, parts on the high-frequency transmission path 75 may be burned out, which is not desirable.

したがって、基本波、高調波およびIMDのいずれに対しても上部電極回り高周波伝送路75上で直列共振が起きないように工夫する必要がある。もっとも、高調波やIMDの中で最も影響力がある、すなわち大きな高周波電力を有するのは2次高調波であり、基本波と2次高調波で直列共振を防止すれば実用上十分である。この実施例のように、プラズマ生成用に40.68MHzの高周波RF1を使用する場合は、その基本波周波数の40.68MHzおよび2次高調波周波数の81.36MHzで直列共振を防止すればよい。 Therefore, it is necessary to devise so that series resonance does not occur on the high-frequency transmission path 75 around the upper electrode with respect to any of the fundamental wave, harmonics, and IMD. However, it is the second harmonic that has the greatest influence among the harmonics and the IMD, that is, has a large high frequency power, and it is practically sufficient if series resonance is prevented by the fundamental wave and the second harmonic. When the high frequency RF 1 of 40.68 MHz is used for plasma generation as in this embodiment, series resonance should be prevented at the fundamental frequency of 40.68 MHz and the second harmonic frequency of 81.36 MHz. .

なお、イオン引き込み用の高周波RF2(3.2MHz)とその2次高調波(6.4MHz)に対しても直列共振を防止する必要があるのは勿論である。しかし、通常、この種の上部電極可動型プラズマ処理装置においては、電極間ギャップを最小にしても上部電極回り高周波伝送路75の固有直列共振周波数が数10MHz以下になることはない。したがって、高周波RF2(3.2MHz)およびその2次高調波(6.4MHz)について直列共振が問題になることはない。 Of course, it is necessary to prevent series resonance with respect to the high frequency RF 2 (3.2 MHz) for ion attraction and its second harmonic (6.4 MHz). However, normally, in this type of upper electrode movable plasma processing apparatus, even if the gap between the electrodes is minimized, the natural series resonance frequency of the high-frequency transmission path 75 around the upper electrode does not become several tens of MHz or less. Therefore, series resonance does not become a problem for the high frequency RF2 (3.2 MHz) and its second harmonic (6.4 MHz).

この実施形態では、上記特許文献1に開示されるようなバイパス部材を備える代わりに、上部電極44自体の構成に特別な工夫を施すことによって、上部電極回り高周波伝送路上でパーティクルの発生を誘発せずにプラズマ生成用高周波RF1での直列共振の発生を確実に防止し、さらにはその2次高調波での直列共振も確実に防止するようにしている。 In this embodiment, instead of providing a bypass member as disclosed in Patent Document 1, the generation of particles on the high-frequency transmission path around the upper electrode is induced by specially contriving the configuration of the upper electrode 44 itself. Therefore, it is possible to reliably prevent the occurrence of series resonance at the high frequency RF 1 for plasma generation, and also to reliably prevent series resonance at the second harmonic.

この実施形態における上部電極44は、図2に要部を拡大して示すように、処理空間PSを介してサセプタ14と対向する電極本体46と、天井空間CS内でチャンバ10の天井壁10bと対向する導電性の背板48と、電極本体46と背板48との間に空隙50が形成されるように電極本体46の周辺部と背板48の周辺部とを結合するリング状の誘電体52とで構成されている。なお、図2(および図4,図9〜図11)においては、図解と理解を容易にするために、リング状誘電体52および/またはリング状天板60の内周面を平坦面に簡略化している。   The upper electrode 44 in this embodiment includes an electrode main body 46 that faces the susceptor 14 through the processing space PS, and the ceiling wall 10b of the chamber 10 in the ceiling space CS, as shown in an enlarged view in FIG. A ring-shaped dielectric that connects the periphery of the electrode body 46 and the periphery of the back plate 48 such that a gap 50 is formed between the opposing conductive back plate 48 and the electrode body 46 and the back plate 48. The body 52 is comprised. In FIG. 2 (and FIGS. 4, 9 to 11), the inner peripheral surface of the ring-shaped dielectric 52 and / or the ring-shaped top plate 60 is simplified to a flat surface for easy illustration and understanding. It has become.

図3に、上部電極回り高周波伝送路75の等価回路を示す。この等価回路において、コンデンサC56,C50、コイルL72および抵抗R72は境界面44Sと接地電位との間で直列回路を形成し、上部電極裏側高周波伝送路76に対応している。 FIG. 3 shows an equivalent circuit of the high-frequency transmission path 75 around the upper electrode. In this equivalent circuit, capacitors C 56 and C 50 , a coil L 72 and a resistor R 72 form a series circuit between the boundary surface 44S and the ground potential, and correspond to the upper electrode back side high-frequency transmission line 76.

ここで、コンデンサC56は、電極本体46の下面に貼り付けられる石英天板56によって与えられ、そのキャパシタンスは石英天板56の誘電率、面積および厚さで決まる。コンデンサC50は、上部電極44の電極本体46と背板46との間に形成され、そのキャパシタンスは主として空隙50の誘電率、面積および厚さで決まる。コイルL72はベローズ72のインダクタ分で与えられ、そのインダクタンスはベローズ72の材質、形状および大きさにも依存するが、ベローズ72の長さによって変わる。すなわち、ベローズ72が短く縮まるほどそのインダクタンスは小さくなり、ベローズ72が長く伸びるほどそのインダクタンスは大きくなる。抵抗R72はベローズ72の抵抗分で与えられ、その抵抗値はベローズ72の材質、形状および大きさで決まり、ベローズ72の長さに依存しない。コンデンサC61は、上部電極裏側高周波伝送路76と並列に上記の境界面44Sから隙間61を通ってチャンバ側壁10aに至るまでの高周波伝送路に存在するキャパシタであり、主として隙間61の誘電率および寸法によって決まり、上部電極44の高さ位置に依存しない。 Here, the capacitor C 56 is provided by a quartz top plate 56 attached to the lower surface of the electrode body 46, and its capacitance is determined by the dielectric constant, area and thickness of the quartz top plate 56. The capacitor C 50 is formed between the electrode body 46 and the back plate 46 of the upper electrode 44, and the capacitance is mainly determined by the dielectric constant, area, and thickness of the air gap 50. The coil L 72 is given by the inductor portion of the bellows 72, and its inductance depends on the material, shape and size of the bellows 72, but varies depending on the length of the bellows 72. That is, the shorter the bellows 72 are shortened, the smaller the inductance is. The longer the bellows 72 is elongated, the larger the inductance is. The resistance R 72 is given by the resistance of the bellows 72, and the resistance value is determined by the material, shape and size of the bellows 72 and does not depend on the length of the bellows 72. The capacitor C 61 is a capacitor that exists in the high-frequency transmission path from the boundary surface 44S through the gap 61 to the chamber side wall 10a in parallel with the high-frequency transmission path 76 on the back side of the upper electrode. It depends on the dimensions and does not depend on the height position of the upper electrode 44.

ここで、比較例として、図4に示すように、上部電極44において背板48、空隙50およびリング状誘電体52の各要素を省いた構成について考える。この比較例では、ベローズ72の下端が電極本体46の上面(裏面)に結合される。   Here, as a comparative example, as shown in FIG. 4, a configuration in which each element of the back plate 48, the gap 50, and the ring-shaped dielectric 52 is omitted from the upper electrode 44 will be considered. In this comparative example, the lower end of the bellows 72 is coupled to the upper surface (back surface) of the electrode body 46.

図5に、この比較例における上部電極回り高周波伝送路75'の等価回路を示す。この等価回路におけるコンデンサC56,C50、コイルL72および抵抗R72は、実施例の等価回路(図3)におけるコンデンサC56,C50、コイルL72および抵抗R72とそれぞれ同じである。すなわち、実施例の等価回路(図3)からコンデンサC50を省くと、比較例の等価回路(図5)になる。逆の見方をすると、比較例の等価回路(図5)にコンデンサC50を加えると、実施例の等価回路(図3)になる。 FIG. 5 shows an equivalent circuit of the high-frequency transmission line 75 ′ around the upper electrode in this comparative example. Capacitor C 56, C 50 in the equivalent circuit, coils L 72 and resistor R 72, the capacitor C 56, C 50 in the equivalent circuit of the embodiment (FIG. 3), respectively the same as the coil L 72 and resistor R 72. That is, if omitted capacitor C 50 from the equivalent circuit of the embodiment (FIG. 3), the equivalent circuit of the comparative example (FIG. 5). In other words, when the capacitor C 50 is added to the equivalent circuit of the comparative example (FIG. 5), the equivalent circuit of the embodiment (FIG. 3) is obtained.

ところで、比較例における上部電極回りの構成は、上記特許文献1においてバイパス部材を除いた上部電極回りの構成と実質的に同じである。したがって、チャンバ、上部電極、ベローズ、サセプタ等の材質、形状およびサイズを上記特許文献1における上部電極回りと同じにした場合、上部電極回り高周波伝送路75'の周波数−インピーダンス特性は図6に示すようになる(この図6は、特許文献1の図4に相当する)。   By the way, the structure around the upper electrode in the comparative example is substantially the same as the structure around the upper electrode in Patent Document 1 except for the bypass member. Therefore, when the material, shape and size of the chamber, upper electrode, bellows, susceptor, etc. are the same as those around the upper electrode in Patent Document 1, the frequency-impedance characteristic of the high-frequency transmission path 75 'around the upper electrode is shown in FIG. (FIG. 6 corresponds to FIG. 4 of Patent Document 1).

図6において、「ギャップ最小時」とは、電極間ギャップを最小にしたとき、つまりベローズ72が最も長くなって、そのインダクタンスが最大値L72maxになるときである。このときの上部電極回り高周波伝送路75'における固有の直列共振周波数fS1および並列共振周波数fP1は、図5の等価回路から理論的には次式(1),(2)で表わされる。
S1=1/2π√(L72max・C56) ・・・・(1)
P1=1/2π√{(L72max・C56・C61/(C56+C61)} ・・・・(2)
ただし、C56,C61はコンデンサC56,C61のキャパシタンスである。
In FIG. 6, “when the gap is minimum” means when the gap between the electrodes is minimized, that is, when the bellows 72 becomes the longest and the inductance becomes the maximum value L 72max . The inherent series resonance frequency f S1 and parallel resonance frequency f P1 in the high-frequency transmission line 75 ′ around the upper electrode at this time are theoretically expressed by the following equations (1) and (2) from the equivalent circuit of FIG.
f S1 = 1 / 2π√ (L 72max · C 56 ) (1)
f P1 = 1 / 2π√ {(L 72max · C 56 · C 61 / (C 56 + C 61 )}} (2)
However, C 56 and C 61 are capacitances of the capacitors C 56 and C 61 .

図6において、直列共振周波数fS1は約38MHz、並列共振周波数fP1は約45MHzである。 In FIG. 6, the series resonance frequency f S1 is about 38 MHz, and the parallel resonance frequency f P1 is about 45 MHz.

また、「ギャップ最大時」とは、電極間ギャップを最大にしたとき、つまりベローズ72が最も短くなって、そのインダクタンスが最小値L72minになるときである。このときの上部電極回り高周波伝送路75'における固有の直列共振周波数fS2および並列共振周波数fP2は、図5の等価回路から理論的には次式(3),(4)で表わされる。
S2=1/2π√(L72minx・C56) ・・・・(3)
P2=1/2π√{(L72min・C56・C61/(C56+C61)} ・・・・(4)
Further, “when the gap is maximum” is when the gap between the electrodes is maximized, that is, when the bellows 72 is the shortest and the inductance becomes the minimum value L 72min . The inherent series resonance frequency f S2 and parallel resonance frequency f P2 in the high-frequency transmission line 75 ′ around the upper electrode at this time are theoretically expressed by the following equations (3) and (4) from the equivalent circuit of FIG.
f S2 = 1 / 2π√ (L 72minx · C 56 ) (3)
f P2 = 1 / 2π√ {(L 72 min · C 56 · C 61 / (C 56 + C 61 )}} (4)

図6において、直列共振周波数fS2は約64MHz、並列共振周波数fP2は約75MHzである。 In FIG. 6, the series resonance frequency f S2 is about 64 MHz, and the parallel resonance frequency f P2 is about 75 MHz.

上記のように、実施例の上部電極44は、電極本体46および石英天板56の他に背板48、空隙50およびリング状誘電体52を備える構成を有し、等価回路についてみれば上部電極裏側高周波伝送路76上にコンデンサC50を含んでいる。この場合、コンデンサC50はコンデンサC56と直列接続され、その合成キャパシタンスCSは次の式(5)で表わされる。
S=C50・C56/(C50+C56) ・・・・(5)
ただし、C50,C56はコンデンサC50,C56のキャパシタンスである。
As described above, the upper electrode 44 of the embodiment has a configuration including the back plate 48, the gap 50, and the ring-shaped dielectric 52 in addition to the electrode main body 46 and the quartz top plate 56. A capacitor C 50 is included on the back side high-frequency transmission line 76. In this case, the capacitor C 50 is connected in series with the capacitor C 56, and the combined capacitance C S is expressed by the following equation (5).
C S = C 50 · C 56 / (C 50 + C 56 ) (5)
However, C 50 and C 56 are capacitances of the capacitors C 50 and C 56 .

ここで、コンデンサC50のキャパシタンスは、空隙50の誘電率をε50、面積をS50、厚さをd50とすると、次の式(6)で表わされる。
50=ε50・S50/d50 ・・・・(6)
Here, the capacitance of the capacitor C 50 is the dielectric constant epsilon 50 of gap 50, S 50 the area, and the thickness and d 50, expressed by the following equation (6).
C 50 = ε 50 · S 50 / d 50 ··· (6)

一方、コンデンサC56のキャパシタンスは、石英天板56の誘電率をε56、面積をS56、厚さをd56とすると、次の式(7)で表わされる。
56=ε56・S56/d56 ・・・・(7)
On the other hand, the capacitance of the capacitor C 56 is expressed by the following equation (7), where the dielectric constant of the quartz top plate 56 is ε 56 , the area is S 56 , and the thickness is d 56 .
C 56 = ε 56 · S 56 / d 56 ··· (7)

空隙50の誘電率ε50は1であり、石英天板56の誘電率ε56の約1/4である。また、空隙50の面積S50は、石英天板56の面積S56よりも小さく(おおよそ背面48の中心開口48aの面積分だけ小さく)、たとえばその0.8倍である。したがって、たとえば、空隙50の厚さd50を石英天板56の厚さd56と同じにすると、式(6),(7)からC50=0.2C56であり、式(5)からCS≒0.17C56である。 The dielectric constant ε 50 of the air gap 50 is 1, which is about ¼ of the dielectric constant ε 56 of the quartz top plate 56. The area S 50 of the air gap 50 is smaller than the area S 56 of the quartz ceiling plate 56 (only approximate area fraction of the center opening 48a of the back 48 small), for example 0.8 times that. Thus, for example, and the thickness d 50 of the gap 50 is the same as the thickness d 56 of the quartz ceiling plate 56, the formula (6), a C 50 = 0.2 C 56 (7), from equation (5) C S ≈0.17C 56

このように、実施例によれば、上部電極44の背板48、空隙50およびリング状誘電体52によって形成されるコンデンサC50を上部電極裏側高周波伝送路76上に設ける構成により、上部電極裏側高周波伝送路76上の合成キャパタンスCSを著しく減少させることができる。これにより、比較例における上部電極回り高周波伝送路75'の周波数−インピーダンス特性の共振点に比して実施例における上部電極回り高周波伝送路75の周波数−インピーダンス特性の共振点をより高い周波数領域側へ大きく移すことができる。すなわち、CS≒KC56(Kは1より小さい係数)とすると、約1/√K倍だけ周波数−インピーダンス特性(特に各共振点)を全体的に高い周波数となるようにすることができる。 As described above, according to the embodiment, the capacitor C 50 formed by the back plate 48 of the upper electrode 44, the gap 50 and the ring-shaped dielectric 52 is provided on the upper electrode rear side high-frequency transmission line 76, so that the upper electrode rear side is provided. The synthetic capacity C S on the high-frequency transmission line 76 can be significantly reduced. Thus, the resonance point of the frequency-impedance characteristic of the high-frequency transmission line 75 around the upper electrode in the embodiment is higher than the resonance point of the frequency-impedance characteristic of the high-frequency transmission line 75 ′ around the upper electrode in the comparative example. Can be moved greatly to. That is, if C S ≈KC 56 (K is a coefficient smaller than 1), the frequency-impedance characteristic (particularly each resonance point) can be made to have a high frequency as a whole by about 1 / √K times.

なお、「ギャップ最小時」における上部電極回り高周波伝送路75の固有直列共振周波数fS1および並列共振周波数fP1は、図3の等価回路から理論的には次式(8),(9)で表わされる。
S1=1/2π√(L72max・CS) ・・・・(8)
P1=1/2π√{(L72max・CS・C61/(CS+C61)} ・・・・(9)
ただし、CS,C61はコンデンサCS,C61のキャパシタンスである。
The theoretical series resonance frequency f S1 and the parallel resonance frequency f P1 of the high-frequency transmission line 75 around the upper electrode at the “minimum gap” are theoretically expressed by the following equations (8) and (9) from the equivalent circuit of FIG. Represented.
f S1 = 1 / 2π√ (L 72max · C S ) (8)
f P1 = 1 / 2π√ {(L 72max · C S · C 61 / (C S + C 61 )} (9)
However, C S and C 61 are capacitances of the capacitors C S and C 61 .

また、「ギャップ最大時」における上部電極回り高周波伝送路75の固有直列共振周波数fS1および並列共振周波数fP1は、図3の等価回路から理論的には次式(10),(11)で表わされる。
S2=1/2π√(L72minx・CS) ・・・・(10)
P2=1/2π√{(L72min・CS・C61/(CS+C61)} ・・・(11)
Further, the intrinsic series resonance frequency f S1 and the parallel resonance frequency f P1 of the high-frequency transmission line 75 around the upper electrode at the “maximum gap” are theoretically expressed by the following equations (10) and (11) from the equivalent circuit of FIG. Represented.
f S2 = 1 / 2π√ (L 72minx · C S ) (10)
f P2 = 1 / 2π√ {(L 72 min · C S · C 61 / (C S + C 61 )} (11)

上記の例のように空隙50の厚さd50を石英天板56の厚さd56と同じにしてCS≒0.17C56とした場合、上部電極回り高周波伝送路75の周波数−インピーダンス特性は図7に示すようなものとなる。ここで、「ギャップ最小時」の固有直列共振周波数fS1は約93MHz(38×1/√0.17)であり、「ギャップ最大時」の固有直列共振周波数fS1は約156MHz(64×1/√0.17)である。電極間ギャップが最小値と最大値の中間にあるときの固有直列共振周波数fSは約93MHzと約156MHzとの中間の値になる。 When the thickness d 50 of the gap 50 is the same as the thickness d 56 of the quartz top plate 56 and C S ≈0.17C 56 as in the above example, the frequency-impedance characteristic of the high-frequency transmission line 75 around the upper electrode is set. Is as shown in FIG. Here, the natural series resonance frequency f S1 at the “minimum gap” is about 93 MHz (38 × 1 / √0.17), and the natural series resonance frequency f S1 at the “maximum gap” is about 156 MHz (64 × 1). /√0.17). When the gap between the electrodes is between the minimum value and the maximum value, the natural series resonance frequency f S is an intermediate value between about 93 MHz and about 156 MHz.

なお、実施例による「ギャップ最小時」および「ギャップ最大時」における固有並列共振周波数fP1,fP2の値は、コンデンサC61のキャパシタンスにも依存するので、比較例における固有並列共振周波数fP1,fP2の値(既知)とCS≒KC56の関係式におけるKの値(既知)とから算出することはできない。ただし、Kが1より小さい係数なので、実施例における固有並列共振周波数fP1,fP2は、比較例における固有並列共振周波数fP1,fP2より高い周波数領域側に移り、かつ式(8)(10)と式(9)(11)との関係から実施例における固有直列列共振周波数fS1,fS2よりも高い周波数領域に存在する。したがって、図7に示す並列共振点は、推定であり、計算で求めたものではない。 Note that the values of the natural parallel resonance frequencies f P1 and f P2 at the “minimum gap” and “maximum gap” according to the embodiment also depend on the capacitance of the capacitor C 61 , and thus the natural parallel resonance frequency f P1 in the comparative example. , F P2 (known) and the value of K in the relational expression C S ≈KC 56 (known) cannot be calculated. However, since K is a coefficient smaller than 1, inherent parallel resonance frequency f P1, f P2 in the embodiment shifts to a higher frequency region side than inherent parallel resonance frequency f P1, f P2 in the comparative example, and the formula (8) ( 10) and the expressions (9) and (11), they exist in a frequency region higher than the natural series string resonance frequencies f S1 and f S2 in the embodiment. Therefore, the parallel resonance point shown in FIG. 7 is an estimate and is not calculated.

このように、この実施形態のプラズマエッチング装置においては、リフト機構により上部電極44の高さ位置を変えて電極間ギャップをどのように調整しても、上部電極回り高周波伝送路76上でのプラズマ生成用高周波RF1(40.68MHz)での直列共振を完全に回避できるのはもちろん、その2次高調波(81.36MHz)での直列共振も完全に回避することができる。

[他の実施形態または変形例]
As described above, in the plasma etching apparatus of this embodiment, the plasma on the high-frequency transmission path 76 around the upper electrode is adjusted no matter how the gap between the electrodes is adjusted by changing the height position of the upper electrode 44 by the lift mechanism. In addition to completely avoiding series resonance at the generating high frequency RF 1 (40.68 MHz), series resonance at its second harmonic (81.36 MHz) can also be completely avoided.

[Other Embodiments or Modifications]

図8に、本発明の第2の実施形態におけるプラズマ処理装置の構成を示す。この第2の実施形態において、上述した第1の実施形態と異なるのは、上部電極44の電極本体46に直流電圧を印加するために直流電源ユニット80、スイッチ82およびフィルタ回路84を備える構成であり、それ以外は全て第1の実施形態と同じである。   FIG. 8 shows the configuration of the plasma processing apparatus in the second embodiment of the present invention. The second embodiment differs from the first embodiment described above in a configuration including a DC power supply unit 80, a switch 82, and a filter circuit 84 in order to apply a DC voltage to the electrode body 46 of the upper electrode 44. Yes, everything else is the same as in the first embodiment.

直流電源ユニット80は、たとえば可変直流電源からなり、−2000〜+1000Vの直流電圧VDCを出力できるように構成されている。あるいは、直流電源ユニット80は、別の形態として、異なる直流電圧を出力する複数の直流電源を有し、それら複数の直流電圧の中の1つを選択的に出力することも可能である。直流電源ユニット80の出力(電圧、電流)の極性および絶対値およびスイッチ82のオン・オフ切換は、制御部74により制御されるようになっている。 The DC power supply unit 80 is composed of a variable DC power supply, for example, and is configured to output a DC voltage V DC of −2000 to +1000 V. Alternatively, as another form, the DC power supply unit 80 may include a plurality of DC power supplies that output different DC voltages, and selectively output one of the plurality of DC voltages. The polarity and absolute value of the output (voltage, current) of the DC power supply unit 80 and on / off switching of the switch 82 are controlled by the control unit 74.

チャンバ10内で処理空間PSに面する適当な箇所に、たとえばSi,SiC等の導電性材料からなるDC接地部品(図示せず)が取り付けられている。このDC接地部品は、接地ライン(図示せず)を介して常時接地されている。   A DC grounding component (not shown) made of a conductive material such as Si or SiC is attached to an appropriate location facing the processing space PS in the chamber 10. This DC grounding component is always grounded via a grounding line (not shown).

フィルタ回路84は、直流電源ユニット80からの直流電圧VDCを上部電極44の電極本体46に印加する一方で、サセプタ12から処理空間PSおよび上部電極44を通って入ってきた高周波電流を接地ラインへ流して直流電源ユニット80側へは流さないように構成されている。図示省略するが、フィルタ回路84はたとえばLCはしご型回路からなり、処理空間PSから上部電極44の電極本体46およびフィルタ回路84を介して接地電位に至るまでの高周波伝送路(以下、「上部電極DC印加系高周波伝送路」と称する。)86上で共振が起きないように、LCはしご型回路内のコイルのインダクタンスおよびコンデンサのキャパシタンスが選定される。これらのコイルおよびコンデンサは市販の電子部品であり、ハードウェア上の制約を受けずにそれらのインダクタンスおよびキャパシタンスの選定を行える。なお、上部電極DC印加系高周波伝送路86は、プラズマ側から見て上部電極回り高周波伝送路75ないし上部電極裏側高周波伝送路76と電気的に並列の関係にあり、直列共振に関しては互いに独立した関係にある。 The filter circuit 84 applies the DC voltage VDC from the DC power supply unit 80 to the electrode body 46 of the upper electrode 44, while the high frequency current that has entered from the susceptor 12 through the processing space PS and the upper electrode 44 is grounded. So that it does not flow to the DC power supply unit 80 side. Although not shown, the filter circuit 84 is composed of, for example, an LC ladder circuit, and a high-frequency transmission path (hereinafter referred to as “upper electrode”) from the processing space PS to the ground potential via the electrode body 46 of the upper electrode 44 and the filter circuit 84. It is referred to as a “DC application system high-frequency transmission line.”) The inductance of the coil and the capacitance of the capacitor in the LC ladder circuit are selected so that resonance does not occur on 86. These coils and capacitors are commercially available electronic components, and their inductance and capacitance can be selected without being restricted by hardware. The upper electrode DC application system high-frequency transmission path 86 is in an electrically parallel relationship with the high-frequency transmission path 75 around the upper electrode or the high-frequency transmission path 76 around the upper electrode as viewed from the plasma side, and is independent from each other with respect to series resonance. There is a relationship.

このような上部DCバイアス機構を備える構成においては、たとえば、上部電極44の電極本体46に負極性の直流電圧VDCを印加することにより、プラズマエッチングのマスクに使われるフォトレジスト膜(特にArFレジスト膜)のエッチング耐性を強化することができる。 In the configuration including such an upper DC bias mechanism, for example, a negative DC voltage V DC is applied to the electrode body 46 of the upper electrode 44 to thereby form a photoresist film (especially an ArF resist) used as a plasma etching mask. The etching resistance of the film) can be enhanced.

なお、チャンバ10内でプラズマが生成されるときは、プラズマと上部電極44との間にイオンシース(以下、「上部電極シース」と称する。)が形成される。この上部電極シースは高周波電力に対してコンデンサとして作用する。したがって、プラズマから上部電極シースおよび上部電極44の電極本体46を介して接地電位に至るまでの高周波伝送路は、上部電極回り高周波伝送路75や上部電極DC印加系高周波伝送路86の入口に上部電極シースのコンデンサが直列に追加されたものに相当する。ここで、上部電極シースのコンデンサは、プロセス条件(圧力、RFパワー、ガス種等)や直流電圧VDCに応じてその厚さ(ひいてはその静電容量)が変化し、シース厚が大きいほどそのキャパシタンスは小さくなり、シース厚が小さいほどそのキャパシタンスは大きくなる。したがって、上部電極シースが存在することによって直列共振周波数がより高い周波数領域側へ若干移り、シース厚が大きくなるほどその移動量が増大する。 When plasma is generated in the chamber 10, an ion sheath (hereinafter referred to as “upper electrode sheath”) is formed between the plasma and the upper electrode 44. This upper electrode sheath acts as a capacitor for high frequency power. Therefore, the high-frequency transmission path from the plasma to the ground potential through the electrode body 46 of the upper electrode sheath and the upper electrode 44 is located above the entrance of the high-frequency transmission path 75 around the upper electrode and the high-frequency transmission path 86 around the upper electrode DC application system. This corresponds to an electrode sheath capacitor added in series. Here, the capacitor of the upper electrode sheath changes its thickness (and hence its capacitance) according to the process conditions (pressure, RF power, gas type, etc.) and the DC voltage VDC , and the larger the sheath thickness, the more The capacitance decreases, and the capacitance increases as the sheath thickness decreases. Therefore, due to the presence of the upper electrode sheath, the series resonance frequency slightly shifts toward the higher frequency region, and the amount of movement increases as the sheath thickness increases.

図9〜図11に、本発明における上部電極の変形例を示す。図9の変形例は、上部電極44において空隙50のスペースを誘電体88で埋め尽して、空隙50の無い電極構造とするものである。この場合、上部電極44の電極本体46と背板46との間に形成されるコンデンサC88のキャパシタンスは主として誘電体88の誘電率、面積および厚さで決まる。したがって、誘電体88の材質は誘電率の低いものが望ましい。たとえば、誘電体88に石英を用いる場合は、コンデンサC88のキャパシタンスは空隙50を設けた場合のコンデンサC50のキャパシタンスの約4倍になる。それでも、石英天板56のコンデンサC56との合成キャパシタンスCSは、上式(5)からCS≒0.5C56であり、上部電極回り高周波伝送路75の周波数−インピーダンス特性における直列共振周波数を周波数軸上で約1/√0.5倍だけ右に移すことができる。つまり、「ギャップ最小時」の直列共振周波数を約54MHzまで移すことができる。したがって、この場合、少なくともプラズマ生成用の高周波RF1の基本波周波数40.68MHzに対しては直列共振を防止することができる。 9 to 11 show modifications of the upper electrode in the present invention. In the modification of FIG. 9, the space of the gap 50 in the upper electrode 44 is filled with a dielectric 88 to form an electrode structure without the gap 50. In this case, the capacitance of the capacitor C 88 formed between the electrode body 46 and the back plate 46 of the upper electrode 44 is mainly determined by the dielectric constant, area, and thickness of the dielectric 88. Therefore, the material of the dielectric 88 is preferably a low dielectric constant. For example, in the case of using a quartz dielectric 88, the capacitance of the capacitor C 88 is about four times the capacitance of the capacitor C 50 of the case of providing the air gap 50. Nevertheless, the combined capacitance C S of the quartz top plate 56 and the capacitor C 56 is C S ≈0.5C 56 from the above equation (5), and the series resonance frequency in the frequency-impedance characteristic of the high-frequency transmission path 75 around the upper electrode. Can be shifted to the right by about 1 / √0.5 times on the frequency axis. That is, the series resonance frequency of “when the gap is minimum” can be shifted to about 54 MHz. Therefore, in this case, series resonance can be prevented at least for the fundamental frequency 40.68 MHz of the high frequency RF 1 for plasma generation.

図10の変形例は、背板48の周辺部を下に延ばして誘電体88の外周面に回り込ませている。基本的には図9の変形例に準ずるものである。   In the modified example of FIG. 10, the peripheral portion of the back plate 48 is extended downward to wrap around the outer peripheral surface of the dielectric 88. Basically, it conforms to the modification of FIG.

図11の変形例は、電極本体46の下面に導体たとえばシリコンの電極板90を貼り付けるものである。たとえば、半導体ウエハWの主面上でシリコン酸化膜のエッチングを行う場合に、このようなシリコン電極板90が天板に用いられる。この場合、上部電極回り高周波伝送路75においてはコンデンサC56が無くなり、上部電極裏側高周波伝送路76上のコンデンサはコンデンサC50だけになる。しかし、コンデンサC50のキャパシタンスは上記のように非常小さく、たとえば空隙50の厚さを石英天板56の厚さと同じにした場合はC50≒0.2C56である。したがって、この場合、上部電極回り高周波伝送路75の周波数−インピーダンス特性における直列共振周波数を約1/√0.2倍だけ右に移すことができる。つまり、「ギャップ最小時」の直列共振周波数を約84MHzまで移すことができる。したがって、この場合、プラズマ生成用の高周波RF1の基本波周波数40.68MHzでの直列共振を防止できるとともに、2次高調波の81.36MHzでの直列共振も防止することができる。 In the modification of FIG. 11, a conductor, for example, an electrode plate 90 made of silicon is attached to the lower surface of the electrode body 46. For example, when the silicon oxide film is etched on the main surface of the semiconductor wafer W, such a silicon electrode plate 90 is used as a top plate. In this case, the capacitor C 56 is eliminated in the high-frequency transmission path 75 around the upper electrode, and the capacitor C 50 is the only capacitor on the high-frequency transmission path 76 on the back side of the upper electrode. However, the capacitance of the capacitor C 50 is very small as described above. For example, when the thickness of the gap 50 is the same as the thickness of the quartz top plate 56, C 50 ≈0.2C 56 . Therefore, in this case, the series resonance frequency in the frequency-impedance characteristic of the high-frequency transmission line 75 around the upper electrode can be shifted to the right by about 1 / √0.2 times. That is, the series resonance frequency of “when the gap is minimum” can be shifted to about 84 MHz. Therefore, in this case, the series resonance at the fundamental frequency of 40.68 MHz of the high frequency RF1 for plasma generation can be prevented, and the series resonance at 81.36 MHz of the second harmonic can also be prevented.

もちろん、空隙50の厚さd50を増やすことによって、上記の移動効果を一層高めることができる。たとえば、d50を2倍にすると、C50≒0.1C56である。したがって、この場合、上部電極回り高周波伝送路75の周波数−インピーダンス特性における直列共振周波数を周波数軸上で約1/√0.1倍だけ右に移すことができる。つまり、「ギャップ最小時」の直列共振周波数を約118MHzまで移すことができる。 Of course, by increasing the thickness d 50 of the gap 50, it can be further enhanced transfer effect described above. For example, if d 50 is doubled, C 50 ≈0.1C 56 . Therefore, in this case, the series resonance frequency in the frequency-impedance characteristic of the high-frequency transmission line 75 around the upper electrode can be shifted to the right by about 1 / √0.1 times on the frequency axis. That is, the series resonance frequency of “when the gap is minimum” can be shifted to about 118 MHz.

このように、上部電極44の内部に小さなコンデンサC50を与える空隙50を設けることにより、上部電極回り高周波伝送路75の周波数−インピーダンス特性において直列共振周波数を大幅に右(より高い周波数領域側)に移すことができ、これによってプラズマ生成用高周波RF1での直列共振およびその2次高調波での直列共振を確実に防止することができる。 In this way, by providing the gap 50 that gives the small capacitor C 50 inside the upper electrode 44, the series resonance frequency in the frequency-impedance characteristic of the high-frequency transmission path 75 around the upper electrode is greatly increased to the right (higher frequency region side). Thus, the series resonance at the high frequency RF 1 for plasma generation and the series resonance at the second harmonic can be surely prevented.

また、上部電極44の内部に空隙50を設ける構成は、空隙50を誘電体88で埋める構成(図9、図10)と比較して、上部電極44全体の体積、重量およびコストが格段に低いという利点もある。   Further, the configuration in which the gap 50 is provided inside the upper electrode 44 has a significantly lower volume, weight, and cost of the entire upper electrode 44 than the configuration in which the gap 50 is filled with the dielectric 88 (FIGS. 9 and 10). There is also an advantage.

なお、本発明による上部電極構造と特許文献1記載のバイパス部材とを併用することも勿論可能である。特に、本発明において上部電極44を空隙50の無い電極構造とする場合は、バイパス部材との併用が実用的になることがあり得る。その場合、バイパス部材においては、周波数−インピーダンス特性の共振点をより高い周波数領域側へ移す効果に関しては負担が軽いので、パーティクル発生の防止、コスト低減あるいは取付容易性等の別の観点で最適な構成を採ることができる。   Of course, the upper electrode structure according to the present invention and the bypass member described in Patent Document 1 can be used in combination. In particular, when the upper electrode 44 has an electrode structure without the gap 50 in the present invention, the combined use with the bypass member may be practical. In that case, the bypass member is light in terms of the effect of moving the resonance point of the frequency-impedance characteristic to the higher frequency region side, so it is optimal from another viewpoint such as prevention of particle generation, cost reduction, or ease of installation. The configuration can be taken.

本発明は、上記実施形態のようなプラズマエッチング装置に限定されず、プラズマCVD、プラズマALD、プラズマ酸化、プラズマ窒化、スパッタリングなど任意のプラズマプロセスを行うカソードカップリング方式の容量結合型プラズマ処理装置に適用可能である。本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ、有機EL、太陽電池用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。   The present invention is not limited to the plasma etching apparatus as in the above-described embodiment, and is a cathode coupling type capacitively coupled plasma processing apparatus that performs an arbitrary plasma process such as plasma CVD, plasma ALD, plasma oxidation, plasma nitridation, and sputtering. Applicable. The substrate to be treated in the present invention is not limited to a semiconductor wafer, and a flat panel display, organic EL, various substrates for solar cells, a photomask, a CD substrate, a printed substrate, and the like are also possible.

10 チャンバ
10a チャンバ側壁
10b チャンバ天井(上蓋)
14 サセプタ(下部電極)
34 排気装置
36,40 高周波電源
38,42 整合器
44 上部電極(シャワーヘッド)
46 電極本体
50 空隙
52 リング状誘電体
64 処理ガス供給部
74 制御部
75 上部電極回り高周波伝送路
76 上部電極裏側高周波伝送路
80 直流電源ユニット
84 フィルタ回路
10 chamber 10a chamber side wall 10b chamber ceiling (top lid)
14 Susceptor (lower electrode)
34 Exhaust device 36, 40 High frequency power supply 38, 42 Matching device 44 Upper electrode (shower head)
46 Electrode body 50 Void 52 Ring-shaped dielectric 64 Processing gas supply unit 74 Control unit 75 High frequency transmission path around upper electrode 76 High frequency transmission path on the back side of upper electrode 80 DC power supply unit 84 Filter circuit

Claims (10)

被処理基板を出し入れ可能に収容する真空排気可能な筒状の処理容器内に相対向して設けられた上部電極および下部電極の間の処理空間で処理ガスの高周波放電によるプラズマを生成し、前記プラズマの下で前記下部電極上に保持される前記基板に所望の処理を施すプラズマ処理装置であって、
前記上部電極を前記処理容器の側壁から離して上下方向に移動可能に支持する上部電極支持機構と、
前記下部電極側から見て前記上部電極の裏側で前記上部電極と前記処理容器の天井壁とを接続する伸縮自在な導電性の隔壁と
を具備し、
前記上部電極が、前記下部電極と対向する電極本体と、前記処理容器の天井壁と対向する導電性の背板と、前記電極本体と前記背板の間に空隙が形成されるように前記電極本体の周辺部と前記背板の周辺部とを結合するリング状の誘電体とを有する、
プラズマ処理装置。
Generating plasma by high-frequency discharge of a processing gas in a processing space between an upper electrode and a lower electrode provided opposite to each other in a cylindrical processing vessel capable of being evacuated to accommodate a substrate to be taken in and out; A plasma processing apparatus for performing a desired process on the substrate held on the lower electrode under plasma,
An upper electrode support mechanism for supporting the upper electrode so as to be movable in the vertical direction away from the side wall of the processing vessel;
A stretchable conductive partition wall connecting the upper electrode and the ceiling wall of the processing vessel on the back side of the upper electrode as viewed from the lower electrode side;
The upper electrode has an electrode body facing the lower electrode, a conductive back plate facing the ceiling wall of the processing vessel, and a gap formed between the electrode body and the back plate. A ring-shaped dielectric that connects the peripheral portion and the peripheral portion of the back plate;
Plasma processing equipment.
前記下部電極に主としてプラズマを生成するための第1の高周波を印加する第1の高周波電源を有する、請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, further comprising a first high-frequency power source that applies a first high-frequency power for mainly generating plasma to the lower electrode. 前記下部電極に主としてプラズマから前記第1の電極上の基板にイオンを引き込むための第2の高周波を印加する第2の高周波電源を有する、請求項2に記載のプラズマ処理装置。   3. The plasma processing apparatus according to claim 2, wherein the lower electrode has a second high-frequency power source for applying a second high-frequency power mainly for drawing ions from the plasma to the substrate on the first electrode. 前記上部電極支持機構の下で前記電極間ギャップを最小にする前記上部電極の高さ位置において、前記処理空間と前記上部電極との境界面から前記上部電極を介して接地電位に至るまでの高周波伝送路を見込んだときの周波数−インピーダンス特性に存在する直列共振周波数が前記第1の高周波の周波数よりも高い、請求項2または請求項3に記載のプラズマ処理装置。   A high frequency from the boundary surface between the processing space and the upper electrode to the ground potential via the upper electrode at a height position of the upper electrode that minimizes the gap between the electrodes under the upper electrode support mechanism. 4. The plasma processing apparatus according to claim 2, wherein a series resonance frequency existing in a frequency-impedance characteristic when a transmission path is expected is higher than a frequency of the first high frequency. 前記上部電極支持機構の下で前記電極間ギャップを最小にする前記上部電極の高さ位置において、前記処理空間と前記上部電極との境界面から前記上部電極を介して接地電位に至るまでの高周波伝送路を見込んだときの周波数−インピーダンス特性に存在する直列共振周波数が前記第1の高周波の第2高調波の周波数よりも高い、請求項2または請求項3に記載のプラズマ処理装置。   A high frequency from the boundary surface between the processing space and the upper electrode to the ground potential via the upper electrode at a height position of the upper electrode that minimizes the gap between the electrodes under the upper electrode support mechanism. The plasma processing apparatus according to claim 2 or 3, wherein a series resonance frequency existing in a frequency-impedance characteristic when a transmission path is expected is higher than a frequency of a second harmonic of the first high frequency. 被処理基板を出し入れ可能に収容する真空排気可能な筒状の処理容器内に相対向して設けられた上部電極および下部電極の間の処理空間で処理ガスの高周波放電によるプラズマを生成し、前記プラズマの下で前記下部電極上に保持される前記基板に所望の処理を施すプラズマ処理装置であって、
前記上部電極を前記処理容器の側壁から離して上下方向に移動可能に支持する上部電極支持機構と、
前記下部電極側から見て前記上部電極の裏側で前記上部電極と前記処理容器の天井壁とを接続する伸縮自在な導電性の隔壁と
を具備し、
前記上部電極が、前記下部電極と対向する電極本体と、前記処理容器の天井壁と対向する導電性の背板と、前記電極本体と前記背板の間に挟まって介在する誘電体とを有する、
プラズマ処理装置。
Generating plasma by high-frequency discharge of a processing gas in a processing space between an upper electrode and a lower electrode provided opposite to each other in a cylindrical processing vessel capable of being evacuated to accommodate a substrate to be taken in and out; A plasma processing apparatus for performing a desired process on the substrate held on the lower electrode under plasma,
An upper electrode support mechanism for supporting the upper electrode so as to be movable in the vertical direction away from the side wall of the processing vessel;
A stretchable conductive partition wall connecting the upper electrode and the ceiling wall of the processing vessel on the back side of the upper electrode as viewed from the lower electrode side;
The upper electrode includes an electrode body facing the lower electrode, a conductive back plate facing the ceiling wall of the processing container, and a dielectric interposed between the electrode body and the back plate.
Plasma processing equipment.
前記下部電極に主としてプラズマを生成するための第1の高周波を印加する第1の高周波電源を有する、請求項6に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 6, further comprising a first high-frequency power source that applies a first high-frequency power for mainly generating plasma to the lower electrode. 前記下部電極に主としてプラズマから前記第1の電極上の基板にイオンを引き込むための第2の高周波を印加する第2の高周波電源を有する、請求項7に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 7, wherein the lower electrode has a second high-frequency power source for applying a second high-frequency power for mainly drawing ions from the plasma to the substrate on the first electrode. 前記電極間ギャップが最小になる前記上部電極の高さ位置において、前記処理空間と前記上部電極との境界面から前記上部電極を介して接地電位に至るまでの高周波伝送路を見込んだときの周波数−インピーダンス特性に存在する直列共振周波数が前記第1の高周波の周波数よりも高い、請求項6または請求項7に記載のプラズマ処理装置。   A frequency when a high-frequency transmission path from the boundary surface between the processing space and the upper electrode to the ground potential through the upper electrode is expected at the height position of the upper electrode where the gap between the electrodes is minimized. The plasma processing apparatus according to claim 6, wherein a series resonance frequency existing in the impedance characteristic is higher than a frequency of the first high frequency. 前記上部電極の前記電極本体にフィルタ回路を介して直流電圧を印加する直流電源を有する、請求項1〜9のいずれか一項に記載のプラズマ処理装置。   The plasma processing apparatus according to any one of claims 1 to 9, further comprising a DC power source that applies a DC voltage to the electrode body of the upper electrode via a filter circuit.
JP2012009114A 2012-01-19 2012-01-19 Plasma processing device Pending JP2013149790A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012009114A JP2013149790A (en) 2012-01-19 2012-01-19 Plasma processing device
TW102101894A TWI582842B (en) 2012-01-19 2013-01-18 Plasma processing device
KR1020130006094A KR102009369B1 (en) 2012-01-19 2013-01-18 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009114A JP2013149790A (en) 2012-01-19 2012-01-19 Plasma processing device

Publications (1)

Publication Number Publication Date
JP2013149790A true JP2013149790A (en) 2013-08-01

Family

ID=48995610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009114A Pending JP2013149790A (en) 2012-01-19 2012-01-19 Plasma processing device

Country Status (3)

Country Link
JP (1) JP2013149790A (en)
KR (1) KR102009369B1 (en)
TW (1) TWI582842B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092032A (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2021166251A (en) * 2020-04-07 2021-10-14 東京エレクトロン株式会社 Board processing device
WO2024243145A1 (en) * 2023-05-22 2024-11-28 Lam Research Corporation Showerhead optimization for reducing showerhead impedance in semiconductor fabrication equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711061B (en) * 2015-11-18 2019-11-29 北京北方华创微电子装备有限公司 Bogey and reaction chamber
CN108597990B (en) * 2018-05-29 2020-10-27 苏州因知成新能源有限公司 Semiconductor wafer pretreatment process
CN111326387B (en) 2018-12-17 2023-04-21 中微半导体设备(上海)股份有限公司 Capacitively coupled plasma etching equipment
KR102749000B1 (en) * 2019-05-22 2025-01-02 삼성전자주식회사 Plasma control apparatus and plasma processing system comprising the same apparatus
KR102470143B1 (en) * 2021-02-23 2022-11-23 김세현 Catalyst Composites Synthetic apparatus Using Plasma

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343787A (en) * 2001-05-17 2002-11-29 Research Institute Of Innovative Technology For The Earth Plasma processing apparatus and cleaning method thereof
JP5404984B2 (en) * 2003-04-24 2014-02-05 東京エレクトロン株式会社 Plasma monitoring method, plasma monitoring apparatus, and plasma processing apparatus
JP4961948B2 (en) * 2006-10-27 2012-06-27 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium
JP5231038B2 (en) * 2008-02-18 2013-07-10 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium
JP5643062B2 (en) * 2009-11-24 2014-12-17 東京エレクトロン株式会社 Plasma processing equipment
WO2011102083A1 (en) * 2010-02-19 2011-08-25 株式会社アルバック Plasma processing device and plasma processing method
JP5782226B2 (en) 2010-03-24 2015-09-24 東京エレクトロン株式会社 Substrate processing equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092032A (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
WO2020116257A1 (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Plasma processing device and plasma processing method
KR20210091335A (en) * 2018-12-06 2021-07-21 도쿄엘렉트론가부시키가이샤 Plasma treatment apparatus and plasma treatment method
JP7141061B2 (en) 2018-12-06 2022-09-22 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
KR102604062B1 (en) 2018-12-06 2023-11-22 도쿄엘렉트론가부시키가이샤 Plasma processing device and plasma processing method
JP2021166251A (en) * 2020-04-07 2021-10-14 東京エレクトロン株式会社 Board processing device
JP7446145B2 (en) 2020-04-07 2024-03-08 東京エレクトロン株式会社 Substrate processing equipment
WO2024243145A1 (en) * 2023-05-22 2024-11-28 Lam Research Corporation Showerhead optimization for reducing showerhead impedance in semiconductor fabrication equipment

Also Published As

Publication number Publication date
TWI582842B (en) 2017-05-11
KR20130085387A (en) 2013-07-29
KR102009369B1 (en) 2019-08-09
TW201344771A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
KR102009369B1 (en) Plasma processing apparatus
US10109462B2 (en) Dual radio-frequency tuner for process control of a plasma process
JP5231308B2 (en) Plasma processing equipment
KR101061673B1 (en) Plasma processing apparatus, plasma processing method and storage medium
KR100938635B1 (en) Plasma-limited baffle and flow ratio equalizers for improved magnetic control of radial plasma distribution
KR101676875B1 (en) Plasma processing apparatus
CN101661863B (en) Plasma processing apparatus and plasma processing method
KR102033180B1 (en) Plasma processing apparatus
US20060219363A1 (en) Capacitive coupling plasma processing apparatus and method for using the same
JP5492070B2 (en) Method and plasma processing apparatus for inducing a DC voltage on an electrode facing a wafer
JP5347868B2 (en) Mounting table structure and plasma deposition apparatus
WO2000068985A1 (en) Apparatus for plasma processing
JP2003229410A (en) Inductive coupling plasma processing device
TW201337034A (en) High-frequency antenna circuit and inductively coupled plasma processing apparatus
JP2018037281A (en) Plasma processing device
JP2012004160A (en) Substrate processing method and substrate processing apparatus
JP4137419B2 (en) Plasma processing equipment
US20190304754A1 (en) Plasma processing equipment
TW202031099A (en) Capacitively Coupled Plasma Etching Apparatus
TWI658488B (en) Plasma processing device
TW202139786A (en) Apparatus and methods for manipulating power at an edge ring in a plasma processing device
TW201447963A (en) Inductively coupled plasma processing apparatus
JP2003234338A (en) Inductively coupled plasma treatment apparatus
JP2013077715A (en) Antenna unit for inductive coupling plasma, and inductive coupling plasma processing device
US20230207266A1 (en) Substrate processing apparatus, harmonic control unit and harmonic control method