JP2013147414A - Method for recycling carbon-containing neutral/acid refractory and method of manufacturing - Google Patents
Method for recycling carbon-containing neutral/acid refractory and method of manufacturing Download PDFInfo
- Publication number
- JP2013147414A JP2013147414A JP2012270265A JP2012270265A JP2013147414A JP 2013147414 A JP2013147414 A JP 2013147414A JP 2012270265 A JP2012270265 A JP 2012270265A JP 2012270265 A JP2012270265 A JP 2012270265A JP 2013147414 A JP2013147414 A JP 2013147414A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- refractory
- carbon
- containing neutral
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
【課題】有用成分を純度高く再利用すること。
【解決手段】炭素含有中性/酸性耐火物の再利用方法は、使用済みの炭素含有中性/酸性耐火物を粉砕する粉砕工程(ステップS4)と、粉砕工程によって得られた粉砕物をpH3.0以下で40℃以上の酸溶液と共に攪拌する酸処理工程(ステップS6)と、酸処理工程後の酸溶液を残渣と溶液とに固液分離する固液分離工程(ステップS7)と、固液分離工程によって得られた残渣を水洗、乾燥し、得られた回収物を耐火物原料として再利用する再利用工程(ステップS10,S11)と、を含む。
【選択図】図1To recycle useful components with high purity.
SOLUTION: A carbon-containing neutral / acid refractory is reused by pulverizing a used carbon-containing neutral / acid refractory (step S4), and pulverized product obtained by the pulverization process is adjusted to pH 3 An acid treatment step (step S6) of stirring together with an acid solution of not more than 0.0 and not less than 40 ° C., a solid-liquid separation step (step S7) of solid-liquid separation of the acid solution after the acid treatment step into a residue and a solution, A recycle process (steps S10 and S11) in which the residue obtained by the liquid separation process is washed with water and dried, and the collected material is reused as a refractory material.
[Selection] Figure 1
Description
本発明は、定形及び不定形の炭素含有中性/酸性耐火物の再利用方法、及びこの炭素含有中性/酸性耐火物の再利用方法を利用して炭素含有中性/酸性耐火物を製造する炭素含有中性/酸性耐火物の製造方法に関する。 The present invention produces a carbon-containing neutral / acid refractory using a method for reusing regular and amorphous carbon-containing neutral / acid refractories, and a method for reusing the carbon-containing neutral / acid refractories. The present invention relates to a method for producing a carbon-containing neutral / acid refractory.
一般に、製鉄工場等では、転炉や電気炉等の精錬炉及び取鍋や樋等の付帯設備に耐火レンガや不定形耐火物等の耐火物が内張されている。このような耐火物は、溶鋼やスラグ等による溶損によって損耗するために、残存厚みが薄くなった時点で新しい耐火物に張り替えられる。一方、張り替えによって発生する使用済みの耐火物は、その表面に地金が付着したり、内部に地金や酸化鉄、スラグ等が浸潤したりしているために再利用することが困難であることから、従来まではその殆どが廃棄されていた。これに対して、近年、資源の有効利用と原料費の削減とを実現するために、使用済みの耐火物の再利用方法が提案されている。具体的には、特許文献1〜3には、地金やスラグ浸潤層等の不純物を除去することによって、有用成分の純度を向上させて再原料化する方法が記載されている。また、特許文献4には、常温の硫酸を満たした酸洗槽に使用済みの耐火物を浸漬させることによって付着地金を酸洗除去した後、回転容器中で黒鉛を燃焼除去する方法が記載されている。 Generally, in steel factories and the like, refractories such as refractory bricks and irregular refractories are lined in refining furnaces such as converters and electric furnaces, and incidental facilities such as ladle and firewood. Since such a refractory is worn out by melting damage caused by molten steel or slag, it is replaced with a new refractory when the remaining thickness is reduced. On the other hand, used refractories generated by re-covering are difficult to reuse because bullion adheres to the surface or bullion, iron oxide, slag, etc. infiltrate inside. Therefore, until now, most of them have been discarded. On the other hand, in recent years, a method for reusing used refractories has been proposed in order to realize effective use of resources and reduction of raw material costs. Specifically, Patent Documents 1 to 3 describe a method of improving the purity of useful components and removing them from raw materials by removing impurities such as bullion and slag infiltrating layers. Patent Document 4 describes a method in which graphite is burnt and removed in a rotating container after pickling and removing the ingot metal by dipping a used refractory in a pickling tank filled with sulfuric acid at room temperature. Has been.
ところで、従来の使用済みの耐火物の再利用方法では、有用成分の純度を向上させるために、粗粉砕、分級、微粉砕等の処理を行うことによって不純物を除去していた。しかしながら、粉砕や分級等の処理のみでは不純物を完全には除去することができない。また、付着地金を酸洗処理によって除去する方法もとられているが、付着スラグの除去は行われていない。このため、従来の使用済みの耐火物の再利用方法では、有用成分の純度には限界がある。また、この結果、バージン原料への有用成分の添加量が増大すると耐用性に悪影響を及ぼすことから、有用成分の再利用可能な量に制約が生じ、使用済みの耐火物を十分に処理できなくなる。 By the way, in the conventional recycling method of used refractories, in order to improve the purity of useful components, impurities such as coarse pulverization, classification, and fine pulverization are removed. However, impurities cannot be completely removed only by processing such as pulverization and classification. Moreover, although the method of removing an adhering ingot by a pickling process is taken, the removal of adhering slag is not performed. For this reason, there is a limit to the purity of useful components in the conventional method for reusing used refractories. In addition, as a result, if the amount of useful components added to the virgin raw material increases, the durability will be adversely affected. This limits the amount of useful components that can be reused, making it impossible to sufficiently treat used refractories. .
本発明は、上記課題に鑑みてなされたものであって、その目的は、有用成分を純度高く再利用可能な炭素含有中性/酸性耐火物の再利用方法、及びこの炭素含有中性/酸性耐火物の再利用方法を利用して炭素含有中性/酸性耐火物を製造する炭素含有中性/酸性耐火物の製造方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to recycle a carbon-containing neutral / acid refractory that can reuse useful components with high purity, and the carbon-containing neutral / acidic material. An object of the present invention is to provide a method for producing a carbon-containing neutral / acid refractory that produces a carbon-containing neutral / acid refractory using a method for reusing refractories.
上記課題を解決し、目的を達成するために、本発明の第1の態様に係る炭素含有中性/酸性耐火物の再利用方法は、使用済みの炭素含有中性/酸性耐火物を粉砕する粉砕工程と、前記粉砕工程によって得られた粉砕物をpH3.0以下で40℃以上の酸溶液と共に攪拌する酸処理工程と、前記酸処理工程後の酸溶液を残渣と溶液とに固液分離する固液分離工程と、前記固液分離工程によって得られた残渣を水洗、乾燥し、得られた回収物を耐火物原料として再利用する再利用工程と、を含むことを特徴とする。 In order to solve the above problems and achieve the object, the carbon-containing neutral / acid refractory recycling method according to the first aspect of the present invention grinds a used carbon-containing neutral / acid refractory. Solid-liquid separation of the pulverization step, the acid treatment step of stirring the pulverized product obtained in the pulverization step together with an acid solution having a pH of 3.0 or less and a temperature of 40 ° C. or more, and the acid solution after the acid treatment step into a residue and a solution A solid-liquid separation step, and a residue step obtained by washing and drying the residue obtained by the solid-liquid separation step, and reusing the recovered material as a refractory material.
本発明の第1の態様に係る炭素含有中性/酸性耐火物の再利用方法は、上記発明において、前記炭素含有中性/酸性耐火物が、アルミナ−SiC−C系、アルミナ−シリカ−SiC−C系、ジルコニア−C系、及びアルミナ−C系の中から選ばれる1種以上の定形レンガ又は不定形耐火物であることを特徴とする。 The carbon-containing neutral / acid refractory recycling method according to the first aspect of the present invention is the above-described invention, wherein the carbon-containing neutral / acid refractory is alumina-SiC-C, alumina-silica-SiC. It is one or more types of regular bricks or amorphous refractories selected from -C, zirconia-C, and alumina-C.
上記課題を解決し、目的を達成するために、本発明の第2の態様に係る炭素含有中性/酸性耐火物の再利用方法は、使用済みの炭素含有中性/酸性の定形耐火物をpH3.0以下で40℃以上の酸溶液と共に攪拌する酸処理工程と、前記酸処理工程後の耐火物を酸溶液と分離する固液分離工程と、前記固液分離工程によって得られた耐火物を水洗、乾燥、粉砕し、得られた回収物を耐火物原料として再利用する再利用工程と、を含むことを特徴とする。 In order to solve the above problems and achieve the object, the carbon-containing neutral / acid refractory recycling method according to the second aspect of the present invention uses a used carbon-containing neutral / acid refractory. An acid treatment step of stirring together with an acid solution at pH 3.0 or lower and 40 ° C. or higher, a solid-liquid separation step of separating the refractory after the acid treatment step from the acid solution, and a refractory obtained by the solid-liquid separation step And a reuse step of recycling the recovered material obtained as a refractory material.
本発明の第2の態様に係る炭素含有中性/酸性耐火物の再利用方法は、上記発明において、前記炭素含有中性/酸性耐火物が、アルミナ−SiC−C系、アルミナ−シリカ−SiC−C系、ジルコニア−C系、及びアルミナ−C系の中から選ばれる1種以上の定形レンガであることを特徴とする。 The carbon-containing neutral / acid refractory recycling method according to the second aspect of the present invention is the above-described invention, wherein the carbon-containing neutral / acid refractory is alumina-SiC-C, alumina-silica-SiC, It is one or more types of regular bricks selected from -C, zirconia-C, and alumina-C.
本発明に係る炭素含有中性/酸性耐火物の再利用方法は、上記発明において、前記酸処理工程が、pH2.5以下の強酸を前記酸溶液として用いて60℃以上の温度で攪拌する工程を含むことを特徴とする。 The carbon-containing neutral / acid refractory recycling method according to the present invention is the above-described method, wherein the acid treatment step is a step of stirring at a temperature of 60 ° C. or higher using a strong acid having a pH of 2.5 or lower as the acid solution. It is characterized by including.
上記課題を解決し、目的を達成するために、本発明に係る炭素含有中性/酸性耐火物の製造方法は、本発明に係る炭素含有中性/酸性耐火物の再利用方法を利用して炭素含有中性/酸性耐火物を製造することを特徴とする。 In order to solve the above problems and achieve the object, the method for producing a carbon-containing neutral / acid refractory according to the present invention utilizes the method for reusing a carbon-containing neutral / acid refractory according to the present invention. It is characterized by producing carbon-containing neutral / acid refractories.
本発明に係る炭素含有中性/酸性耐火物の再利用方法及び製造方法によれば、有用成分を純度高く再利用することができる。また、この結果、耐火物への有用成分の添加量を増加しても耐火物の耐食性の低下を招くことなく、高品質の耐火物を製造することができる。 According to the recycling method and production method of the carbon-containing neutral / acid refractory according to the present invention, useful components can be reused with high purity. As a result, even if the amount of useful components added to the refractory is increased, a high-quality refractory can be produced without deteriorating the corrosion resistance of the refractory.
以下、図面を参照して、本発明の一実施形態である炭素含有中性/酸性耐火物の再利用方法について説明する。 Hereinafter, a carbon-containing neutral / acid refractory recycling method according to an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の一実施形態である炭素含有中性/酸性耐火物の再利用方法の流れを示すフローチャートである。図1に示すように、本発明の一実施形態である炭素含有中性/酸性耐火物の再利用方法では、始めに、回収した使用済みの炭素含有中性/酸性耐火物を分別して保管する(ステップS1)。炭素含有中性/酸性耐火物は高炉の出銑樋や溶銑搬送容器の内張耐火物等に幅広く使用されているが、設備毎に同系統の炭素含有中性/酸性耐火物が使用される場合が多い。このため、修理時に耐火物を選択的に剥離したものを設備毎に区別して保管する程度でよい。少量の永久張り耐火物や塩基性耐火物が混入したとしても、後述する処理で不純物を溶解させるための酸の消費量が増大する程度で、必ずしも再利用する耐火物の品質に影響を及ぼすわけではなく、選別コストは従来技術と比較して大幅に減少する。また、炭素含有中性/酸性耐火物としては、アルミナ−SiC−C系、アルミナ−シリカ−SiC−C系、ジルコニア−C系、及びアルミナ−C系の中から選ばれる1種以上の定形レンガ又は不定形耐火物を例示することができる。 FIG. 1 is a flowchart showing a flow of a carbon-containing neutral / acid refractory recycling method according to an embodiment of the present invention. As shown in FIG. 1, in the carbon-containing neutral / acid refractory recycling method according to an embodiment of the present invention, first, the collected used carbon-containing neutral / acid refractory is separated and stored. (Step S1). Carbon-containing neutral / acid refractories are widely used for blast furnace tapping, lining refractories for hot metal transfer containers, etc., but the same carbon-containing neutral / acid refractories are used for each facility. There are many cases. For this reason, it is only necessary to distinguish and store the refractory that has been selectively peeled off at the time of repair. Even if a small amount of permanent refractory or basic refractory is mixed, the amount of acid consumed to dissolve impurities in the treatment described later will increase, and this will not necessarily affect the quality of the refractory to be reused. Rather, the sorting cost is significantly reduced compared to the prior art. In addition, as the carbon-containing neutral / acid refractory, one or more types of regular bricks selected from alumina-SiC-C, alumina-silica-SiC-C, zirconia-C, and alumina-C are used. Or an amorphous refractory can be illustrated.
次に、使用済みの炭素含有中性/酸性耐火物を所定の大きさ以下に一次粉砕(粗粉砕)し(ステップS2)、所定の大きさ以下の粉砕物を分級する(ステップS3)。次に、最大粒径が5mm以下、より好ましくは2mm以下になるように粉砕物を二次粉砕(微粉砕)する(ステップS4)。最大粒径が5mmより大きい場合、不純物の除去が十分でなかったり、後述する酸処理に多くの時間を要したりする。一方、最大粒径が1mm以下程度になるまで粉砕してしまうと、後述する固液分離処理によって得られる残渣を耐火物原料として使用する場合、粒度構成の条件から配合可能量が低位に限定されるため好ましくない。 Next, the used carbon-containing neutral / acid refractory is first pulverized (coarse pulverized) to a predetermined size or less (step S2), and pulverized products having a predetermined size or less are classified (step S3). Next, the pulverized product is subjected to secondary pulverization (fine pulverization) so that the maximum particle size is 5 mm or less, more preferably 2 mm or less (step S4). When the maximum particle size is larger than 5 mm, the removal of impurities is not sufficient, or much time is required for the acid treatment described later. On the other hand, if pulverized until the maximum particle size is about 1 mm or less, when using a residue obtained by solid-liquid separation processing described later as a refractory material, the amount that can be blended is limited to a low level from the condition of the particle size configuration. Therefore, it is not preferable.
粉砕処理にはロールクラッシャ、コーンクラッシャー、ジョークラッシャー、ロッドミル、ボールミル等の粉砕機を利用可能だが、ロールクラッシャ、コーンクラッシャーやジョークラッシャーでは1パスでの2mm以下の収率が低く、ボールミルでは過粉砕が懸念される。このため、粉砕処理では、目標とする粒径や生産性などに応じて分級と組み合わせて複数パス粉砕を行ったり、複数種類の粉砕機を組み合わせて使用したりしてもよい。また、使用済みの定形レンガを処理対象物とする場合、不純物の付着や浸潤は表面に留まるため、粉砕処理を省略して後述する酸処理を行っても不純部の除去が可能であり、さらに水洗、乾燥した後に粉砕することによって耐火物原料とすることができる。この場合、酸処理前に機械的な処理によって表面の付着物を除去するようにすれば、酸の消費量を抑制することができる。 Grinding machines such as roll crushers, cone crushers, jaw crushers, rod mills, and ball mills can be used for pulverization, but roll crushers, cone crushers, and jaw crushers have low yields of 2 mm or less per pass, and ball mills are over-pulverized. Is concerned. For this reason, in the pulverization treatment, multiple-pass pulverization may be performed in combination with classification according to the target particle size or productivity, or a plurality of types of pulverizers may be used in combination. In addition, when used shaped bricks are treated objects, the adhesion and infiltration of impurities remain on the surface, so that the impure part can be removed even if the acid treatment described later is performed without pulverization, It can be made into a refractory raw material by pulverizing after washing with water and drying. In this case, if the surface deposits are removed by mechanical treatment before the acid treatment, the acid consumption can be suppressed.
二次粉砕処理が完了すると、次に、磁力選鉱処理によって粉砕物中の地金や酸化鉄を含有するスラグ等の磁着物を除去する(ステップS5)。磁着物の混入量を低減することによって、その後の処理における酸使用量等が低減されるので、コストを削減することができる。磁力選鉱処理が完了すると、次に、反応槽に粉砕物と酸溶液とを入れ、蒸気や電熱器で反応槽を加熱しながら酸溶液を撹拌することにより、粉砕物中に含まれる不純物を酸溶液に溶解させる(ステップS6)。酸溶液としてはpH3.0以下で40℃以上の液温とする。pH2.5以下の強酸(塩酸、硫酸、硝酸)を用い、60℃以上の液温で攪拌することが望ましい。pHが2.5より大きい酸溶液又は60℃未満の液温では、不純物を十分に除去できず、耐火物を再利用した際に十分な耐食性が得られない場合がある。pHをさらに低下させれば液温を若干低くしても不純物を溶解させることはできるが、処理に多くの時間を要するので得策ではない。酸処理の際には、連続的又は間欠的に酸溶液のpHを測定し、pHが2.5以下になるように酸溶液を補給する。 When the secondary pulverization process is completed, magnetic deposits such as slag containing bullion and iron oxide in the pulverized product are then removed by magnetic separation (step S5). Since the amount of acid used in the subsequent processing is reduced by reducing the amount of magnetic deposits mixed in, the cost can be reduced. When the magnetic separation process is completed, the pulverized product and the acid solution are then placed in the reaction vessel, and the acid solution is stirred while heating the reaction vessel with steam or an electric heater to remove impurities contained in the pulverized product. Dissolve in the solution (step S6). The acid solution has a pH of 3.0 or less and a temperature of 40 ° C. or more. It is desirable to use a strong acid (hydrochloric acid, sulfuric acid, nitric acid) having a pH of 2.5 or lower and stir at a liquid temperature of 60 ° C. or higher. In the case of an acid solution having a pH higher than 2.5 or a liquid temperature lower than 60 ° C., impurities cannot be sufficiently removed and sufficient corrosion resistance may not be obtained when the refractory is reused. If the pH is further lowered, the impurities can be dissolved even if the liquid temperature is slightly lowered, but this is not a good idea because it takes a lot of time for the treatment. During the acid treatment, the pH of the acid solution is measured continuously or intermittently, and the acid solution is replenished so that the pH is 2.5 or less.
スラグ成分は、異物や付着物として耐火物に混入するほか、耐火物の表面近傍の無機系骨材に浸潤して組成が変化した状態でも存在する。このため、耐火物をそのまま耐火物原料として再利用した場合、スラグやスラグが浸潤した無機物の組成や量に応じて相当の悪影響が避けられない。一般に、スラグやスラグが浸潤した無機物は、無機化合物の結晶、複数の無機化合物の固溶体、複数の無機化合物からなる複合化合物の鉱物等の複数種類の結晶粒子の複合体である。これらの内、本発明の対象とする炭素含有中性/酸性耐火物に混入した場合に悪影響が大きいのは、塩基性の無機化合物や複合化合物、低融点の複合化合物等の結晶粒子である。しかしながら、上記のような条件で粉砕及び酸処理を施すことによってこれらの大部分は除去され、残渣部分は無害化される。 The slag component is mixed in the refractory as a foreign matter or adhering substance, and also exists in a state where the composition has changed by infiltrating the inorganic aggregate near the surface of the refractory. For this reason, when a refractory is reused as it is as a refractory raw material, a considerable adverse effect is inevitable depending on the composition and amount of the slag and the inorganic material infiltrated with the slag. In general, slag or inorganic matter infiltrated with slag is a composite of a plurality of types of crystal particles such as a crystal of an inorganic compound, a solid solution of a plurality of inorganic compounds, and a mineral of a composite compound composed of a plurality of inorganic compounds. Among these, crystal particles such as basic inorganic compounds, composite compounds, low-melting composite compounds, etc. have a great adverse effect when mixed into the carbon-containing neutral / acid refractories targeted by the present invention. However, most of these are removed by pulverization and acid treatment under the conditions described above, and the residue is rendered harmless.
残渣粒子の一部では酸溶液に溶解した結晶粒子の量に応じて気孔率が増大することになるが、耐火物炭素原料としての利用には問題はない。すなわち、酸処理前のスラグ成分割合が高く、酸処理後の気孔率の増大幅が大きい粒子は耐火物原料の混練やプレスの過程で破壊されて気孔率が大幅に減少する。また、炭素含有中性/酸性耐火物では、スラグの浸潤が表面近傍に限られることから無機系耐火物骨材にスラグが浸潤したようなスラグ成分割合が低い粒子は非常に少なく、スラグ成分起因で酸処理後に少量の気孔が生じたとしても、耐火物製造時に樹脂バインダ等が侵入して気孔を埋めるため、耐火物の品質に対する影響は小さい。 In some of the residual particles, the porosity increases according to the amount of crystal particles dissolved in the acid solution, but there is no problem in use as a refractory carbon raw material. That is, particles having a high slag component ratio before acid treatment and a large increase in porosity after acid treatment are destroyed during the refractory raw material kneading or pressing process, and the porosity is greatly reduced. In addition, in carbon-containing neutral / acid refractories, the infiltration of slag is limited to the vicinity of the surface, so there are very few particles with a low slag component ratio such as slag infiltrating inorganic refractory aggregates. Even if a small amount of pores are formed after acid treatment, a resin binder or the like enters during refractory manufacturing to fill the pores, so that the influence on the quality of the refractory is small.
酸処理が完了すると、次に、不純物が溶解した溶液を固液分離することによって残渣(固体)と溶液(液体)とに分離し(ステップS5)、残渣を水洗し(ステップS6)、水洗後の残渣を沈降させてスラリー(固体)として抽出し(ステップS9)、フィルタープレス等でスラリーを脱水した後に乾燥したものを軽粉砕して解砕し(ステップS10)、得られた回収物を耐火物原料として配合することによって耐火物を製造する(ステップS11)。なお、残渣は、スラリーとして抽出してフィルタープレス等で脱水した後に水洗することが望ましい。酸処理後の残渣を水洗しないで直接耐火物に配合すると、処理条件や配合量に応じて、酸の影響で熱間強度が低下したり、耐食性が低下したりする。また、水洗は溶液のpHが4〜8の範囲となるように実施し、脱水と水洗とを複数回繰り返してもよいし、アルカリ溶液等を添加してpHを調整しても効果的である。 When the acid treatment is completed, the solution in which the impurities are dissolved is separated into a residue (solid) and a solution (liquid) by solid-liquid separation (step S5), and the residue is washed with water (step S6). The residue is allowed to settle and extracted as a slurry (solid) (step S9), the slurry is dehydrated with a filter press or the like, and then dried and lightly pulverized (step S10). A refractory is produced by blending as a raw material (step S11). The residue is preferably extracted as a slurry and dehydrated with a filter press or the like and then washed with water. If the residue after acid treatment is directly blended into a refractory without washing, depending on the treatment conditions and blending amount, the hot strength decreases due to the influence of the acid, and the corrosion resistance decreases. In addition, washing with water is performed so that the pH of the solution is in the range of 4 to 8, and dehydration and washing with water may be repeated a plurality of times, or it is effective to adjust the pH by adding an alkaline solution or the like. .
回収した使用済み耐火物から製造する耐火物の種類は、回収した使用済み耐火物の種類と一致していることが望ましいが、再利用原料以外の各原料の配合比率が正確に一致している必要はない。同系統の耐火物の種類であれば、再利用原料を高い比率で配合しても、実績に基づいてバージン原料を調整することによって、物性や耐用性等を目標の範囲内に調整することができる。一般に、高耐食性グレードの耐火物を製造する場合には、同等以上の耐食性グレードの耐火物から発生した再利用原料を用いることが望ましい。 The type of refractory produced from the collected used refractory is preferably the same as the type of collected used refractory, but the mixing ratio of each raw material other than the reused raw material is exactly the same. There is no need. If the same type of refractory is used, the physical properties and durability can be adjusted within the target range by adjusting the virgin raw materials based on actual results even if the recycled raw materials are blended at a high ratio. it can. In general, when manufacturing a refractory with a high corrosion resistance grade, it is desirable to use a recycled material generated from a refractory with an equivalent or higher corrosion resistance.
異なる系統の耐火物であっても、高耐食性グレードのものから発生した再利用原料を耐食性グレードが比較的低い耐火物製品に使用することは一般的に可能である。例えば、アルミナ−SiC−C系の使用済みレンガを処理した再利用原料をアルミナ−シリカ−SiC−C系レンガやアルミナ−SiC−C系キャスタブル等に使用しても問題ない。この際、物性等への影響が大きい場合には、バージン原料を配合させることによって調整すればよい。但し、スピネル−C系を処理したマグネシア含有量の比較的高い再利用原料をシリカやSiCを配合した耐火物に大量に使用すると耐食性が低下する場合があるので注意が必要である。 It is generally possible to use recycled materials generated from high corrosion resistance grades in refractory products with relatively low corrosion resistance grades, even if they are refractories of different systems. For example, there is no problem even if a reused raw material obtained by treating an alumina-SiC-C-based used brick is used for an alumina-silica-SiC-C brick or an alumina-SiC-C castable. At this time, when the influence on the physical properties or the like is large, it may be adjusted by blending a virgin raw material. However, it should be noted that the corrosion resistance may be reduced if a large amount of a recycled material having a relatively high magnesia content treated with the spinel-C system is used in a refractory compounded with silica or SiC.
一方、ステップS7及びステップS9の固液分離処理によって分離された溶液については、溶液のpHを5〜9の範囲に調整することによって溶解成分の水酸化物を沈降、分離させる(ステップS12)。水酸化物が分離された溶液は、必要に応じて浮遊物の凝集分離、浮上物の除去、酸化剤や還元剤による処理等を行った後、環境基準を満足する状態で海洋等に排出される(ステップS13)。分離された水酸化物は、通常の製鉄工程で発生するダストやスラリーに混合して造粒し、焼結原料として再利用される(ステップS14)。なお、ステップS7の固液分離処理によって分離された溶液をステップS6の酸処理において再利用してもよい。また、塩酸を使用する場合は、廃酸溶液を焙焼し、塩化物から塩酸を再生して再利用するとともに、副生する酸化物を製鉄用原料として再利用するようにしてもよい。 On the other hand, about the solution separated by the solid-liquid separation process of step S7 and step S9, the hydroxide of a dissolved component is settled and separated by adjusting the pH of the solution to the range of 5-9 (step S12). The solution from which the hydroxide has been separated is discharged to the ocean, etc. in a state that satisfies environmental standards, after coagulation and separation of suspended matter, removal of floating matter, treatment with an oxidizing agent or reducing agent, etc., as necessary. (Step S13). The separated hydroxide is mixed with dust and slurry generated in a normal iron making process, granulated, and reused as a sintering raw material (step S14). Note that the solution separated by the solid-liquid separation process in step S7 may be reused in the acid treatment in step S6. Further, when hydrochloric acid is used, the waste acid solution may be roasted to regenerate and reuse hydrochloric acid from chloride, and the by-produced oxide may be reused as a raw material for iron making.
〔実施例〕
混銑車の修理時に発生する使用後の内張り耐火物を専用に保管している場所から、使用済みのアルミナ−SiC−カーボンレンガの試料を回収した。回収した試料は、土木工事材料に使用する目的でコーンクラッシャーによって40mm以下程度の粒径に粉砕して保管していたものである。これを乾燥後、ジョークラッシャーで5mm以下程度の粒径まで粉砕したものを、所定の篩い目で分級した後、篩い上の粒子を所定の篩い目を通る程度にボールミルで軽粉砕して、目標の粒度に調製した。
〔Example〕
A used alumina-SiC-carbon brick sample was collected from a place where the lining refractory after use generated during repair of a chaotic vehicle was stored exclusively. The collected sample was stored after being pulverized to a particle size of about 40 mm or less by a cone crusher for the purpose of use in civil engineering materials. After drying this, pulverized to a particle size of about 5 mm or less with a jaw crusher, after classifying with a predetermined sieve, lightly pulverize the particles on the sieve with a ball mill to pass the predetermined sieve, The particle size was adjusted.
反応容器に1バッチ2kgの粉砕後使用済みレンガと20Lの塩酸溶液とを入れて、電気ヒーターで所定の温度に保持しつつ、撹拌羽根によって溶液中で粉体が運動する程度に撹拌して8時間酸処理を行った。この際、随時溶液のサンプルを採取してpHを測定し、必要に応じて目標のpH範囲とするように濃塩酸を連続的又は間欠的に追加した。酸処理後は静置して固形物を沈降させた後、上澄みの酸溶液を除いてから濾過して固形物と酸溶液とを回収した。 A batch of 2 kg of crushed used bricks and 20 L of hydrochloric acid solution is placed in a reaction vessel, and while stirring at a predetermined temperature with an electric heater, the powder is stirred to such an extent that the powder moves in the solution. Time acid treatment was performed. At this time, a sample of the solution was taken at any time to measure the pH, and concentrated hydrochloric acid was added continuously or intermittently so as to reach the target pH range as necessary. After acid treatment, the solid was settled by allowing to stand, and then the supernatant acid solution was removed, followed by filtration to recover the solid and acid solution.
回収した固形物に20Lの水を加えて撹拌しつつ、水酸化ナトリウム溶液を加えてpHを6〜8の範囲に調節し、1時間洗浄を行った。洗浄後は静置して固形物を沈降させた後、上澄みを除いてから濾過して固形物を回収し、これを乾燥した後に撹拌機で解砕して、耐火物に配合するための原料とした。また同種のレンガ片約2.5kgを粉砕しないで、同様の酸処理及び水洗処理を行ったものを乾燥後、所定の粒度に粉砕して耐火物に配合するための原料とする試験も実施した。 While adding 20 L of water to the collected solid and stirring, a sodium hydroxide solution was added to adjust the pH to a range of 6 to 8 and washing was performed for 1 hour. After washing, let the solids settle down, remove the supernatant, filter to collect the solids, dry them, crush them with a stirrer, and blend into the refractory It was. Also, the same kind of brick pieces of about 2.5 kg were not pulverized, and after the same acid treatment and water washing treatment were dried, a test was carried out as a raw material for pulverization to a predetermined particle size and blending into a refractory. .
表1に示す各種処理条件で作製した再利用原料を配合したアルミナ−ロー石−SiC-カーボンレンガを試作して、耐食性を評価した。レンガの原料配合は焼結アルミナ、ロー石、SiC、及び黒鉛を配合した高炉鍋銑浴用材質をベースとして、各再利用原料の粒度、平均組成、及び配合量に応じて、対応する粒度の各バージン原料を減じるように配合した。各種原料と外掛けで3質量%のフェノール樹脂バインダを混練し、並型(65×114×230mm)にプレス成型した後、200℃で10時間キュアリングして硬化させ、レンガ試料を作製した。耐食性は回転ドラム侵食法によりスラグ侵食指数を求めて評価した。 An alumina-rholite-SiC-carbon brick blended with reusable raw materials prepared under various processing conditions shown in Table 1 was prototyped and evaluated for corrosion resistance. The raw material composition of the brick is based on the material for the blast furnace pan bath containing sintered alumina, rholite, SiC, and graphite, and depending on the particle size, average composition, and blending amount of each reused raw material, Formulated to reduce virgin ingredients. A 3 mass% phenol resin binder was kneaded with various raw materials and an outer shell, press-molded into an ordinary mold (65 × 114 × 230 mm), and then cured by curing at 200 ° C. for 10 hours to prepare a brick sample. Corrosion resistance was evaluated by calculating the slag erosion index by the rotating drum erosion method.
表1に示した各レンガ試料から台形断面の柱状試料を切り出した後、1400℃で3時間コークスブリーズ中において熱処理したものを回転ドラム炉に張り分けた。ドラム炉を回転させながら、プロパンバーナーで酸素:プロパン=4:1の気体体積流量比の火炎を吹き込んで1500℃に加熱し、CaO質量/SiO2質量=1.5、(T.Fe)=10質量%のスラグを侵食剤として用いた。30分毎にスラグを交換して、合計5回のスラグ投入による損耗量を柱状試料の中央縦断面で測定される侵食面積で評価し、バージン原料のみを用いたベース材質における侵食面積を100とする侵食性指数で表した。侵食性指数が大きいほど耐食性が劣ることを示している。 A columnar sample having a trapezoidal cross section was cut out from each brick sample shown in Table 1, and then heat-treated in a coke breeze at 1400 ° C. for 3 hours was stretched over a rotating drum furnace. While rotating the drum furnace, a flame having a gas volume flow ratio of oxygen: propane = 4: 1 was blown with a propane burner and heated to 1500 ° C., CaO mass / SiO 2 mass = 1.5, (T.Fe) = 10% by mass of slag was used as an erodant. The slag was changed every 30 minutes, and the amount of wear caused by the slag injection 5 times in total was evaluated by the erosion area measured in the central longitudinal section of the columnar sample. The erosion area in the base material using only the virgin material was 100 It was expressed as an erodibility index. The larger the erosion index, the lower the corrosion resistance.
表1に示した各試料の試験結果より、本発明の酸処理を実施した本発明例では、比較例と比較して侵食性指数が小さく、バージン原料のみを使用したベース材の特性に近付いていることが確認された。また、本発明例1と本発明例4との比較から、粉砕粒度が小さい方が侵食性指数が小さく耐食性が向上することが確認された。但し、粒度が小さくなると原料の粒度構成上、配合可能な量が制限されることも考慮して粉砕粒度を検討する必要がある。 From the test results of each sample shown in Table 1, the inventive example in which the acid treatment of the present invention was performed has a smaller erosion index than the comparative example, approaching the characteristics of the base material using only the virgin raw material. It was confirmed that Further, from comparison between Invention Example 1 and Invention Example 4, it was confirmed that the smaller the pulverized particle size, the smaller the erosion index and the better the corrosion resistance. However, it is necessary to consider the pulverized particle size in consideration of the fact that when the particle size becomes smaller, the amount of the compoundable material is limited due to the particle size constitution of the raw material.
また、比較例5と本発明例1,2,6との比較及び比較例5と本発明例1,3,7,11との比較から、溶液pHが低いほど、また液温が高いほど、侵食性指数が低く、耐食性が向上することが確認された。さらに、比較例3と比較例4の従来技術の付着地金除去に使用されている常温に近い20℃での酸処理では顕著な改善は得られなかった。 Further, from the comparison between Comparative Example 5 and Invention Examples 1, 2, 6 and the comparison between Comparative Example 5 and Invention Examples 1, 3, 7, and 11, the lower the solution pH and the higher the liquid temperature, It was confirmed that the erosion index was low and the corrosion resistance was improved. Further, the acid treatment at 20 ° C., which is close to normal temperature, which is used for removing the adhered metal in the prior art of Comparative Example 3 and Comparative Example 4, did not give any significant improvement.
また、より好適な条件で処理した本発明例9では、再利用原料の配合を50質量%に増しても良好な耐食性が得られることが確認された。さらに、未粉砕で酸処理した後に粉砕したリサイクル原料を用いた本発明例10でも、50質量%のリサイクル原料配合率において比較的良好な耐食性が得られており、本処理方法により固液分離における装置及び作業の負荷が著しく軽減されると共に、リサイクル原料の粒度を大きくする方向に変更して、耐火物への配合量を増大することも可能であることが確認された。 Further, in Example 9 of the present invention processed under more favorable conditions, it was confirmed that good corrosion resistance could be obtained even when the amount of the recycled material was increased to 50% by mass. Furthermore, even in the present invention example 10 using the recycle raw material pulverized after being acid-treated without being pulverized, relatively good corrosion resistance was obtained at a mixing ratio of 50% by mass of the recycle raw material. It has been confirmed that the load on the apparatus and work can be remarkably reduced, and it is possible to increase the blending amount in the refractory by changing the particle size of the recycled raw material.
Claims (6)
前記粉砕工程によって得られた粉砕物をpH3.0以下で40℃以上の酸溶液と共に攪拌する酸処理工程と、
前記酸処理工程後の酸溶液を残渣と溶液とに固液分離する固液分離工程と、
前記固液分離工程によって得られた残渣を水洗、乾燥し、得られた回収物を耐火物原料として再利用する再利用工程と、
を含むことを特徴とする炭素含有中性/酸性耐火物の再利用方法。 A crushing step of crushing used carbon-containing neutral / acid refractories;
An acid treatment step of stirring the pulverized product obtained by the pulverization step with an acid solution having a pH of 3.0 or less and a temperature of 40 ° C.
A solid-liquid separation step for solid-liquid separation of the acid solution after the acid treatment step into a residue and a solution;
The residue obtained by the solid-liquid separation step is washed with water, dried, and the recovered product is reused as a refractory raw material.
A method for reusing a carbon-containing neutral / acid refractory, comprising:
前記酸処理工程後の耐火物を酸溶液と分離する固液分離工程と、
前記固液分離工程によって得られた耐火物を水洗、乾燥、粉砕し、得られた回収物を耐火物原料として再利用する再利用工程と、
を含むことを特徴とする炭素含有中性/酸性耐火物の再利用方法。 An acid treatment step of stirring the used carbon-containing neutral / acidic refractory with an acid solution having a pH of 3.0 or lower and a temperature of 40 ° C. or higher;
A solid-liquid separation step of separating the refractory after the acid treatment step from the acid solution;
The refractory obtained by the solid-liquid separation step is washed with water, dried, pulverized, and the recovered product is reused as a refractory raw material.
A method for reusing a carbon-containing neutral / acid refractory, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012270265A JP2013147414A (en) | 2011-12-19 | 2012-12-11 | Method for recycling carbon-containing neutral/acid refractory and method of manufacturing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011276589 | 2011-12-19 | ||
JP2011276589 | 2011-12-19 | ||
JP2012270265A JP2013147414A (en) | 2011-12-19 | 2012-12-11 | Method for recycling carbon-containing neutral/acid refractory and method of manufacturing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013147414A true JP2013147414A (en) | 2013-08-01 |
Family
ID=49045310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012270265A Pending JP2013147414A (en) | 2011-12-19 | 2012-12-11 | Method for recycling carbon-containing neutral/acid refractory and method of manufacturing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013147414A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018062459A (en) * | 2016-10-12 | 2018-04-19 | Jfeスチール株式会社 | Refractory brick and method for producing refractory brick |
CN115646979A (en) * | 2022-09-19 | 2023-01-31 | 江苏锦耐新材料科技有限公司 | Metallurgical slag separation and recovery device and method |
JP2024072442A (en) * | 2022-11-16 | 2024-05-28 | Jfeスチール株式会社 | Method for producing refractory raw material and refractory for molten iron container |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02212383A (en) * | 1989-02-13 | 1990-08-23 | Kurosaki Refract Co Ltd | How to reuse refractories |
JPH0375255A (en) * | 1989-08-18 | 1991-03-29 | Nippon Steel Corp | Method and apparatus for extracting refractory composition from graphite-containing refractories |
JPH07187830A (en) * | 1993-12-28 | 1995-07-25 | Nippon Steel Corp | Method for preparing post-use refractory as thermal spray material |
JPH08259311A (en) * | 1995-03-28 | 1996-10-08 | Nippon Steel Corp | Magnesia-Process for producing carbonaceous refractory bricks |
JPH09278548A (en) * | 1996-04-15 | 1997-10-28 | Nippon Steel Corp | Carbon-containing spray repair material containing refractory waste and method for producing the same |
JP2005281039A (en) * | 2004-03-29 | 2005-10-13 | Nisshin Steel Co Ltd | Recycling method to recycle unfired bricks mainly composed of alumina components and refractories after use of alumina / carbonaceous materials to unfired bricks mainly composed of alumina components |
-
2012
- 2012-12-11 JP JP2012270265A patent/JP2013147414A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02212383A (en) * | 1989-02-13 | 1990-08-23 | Kurosaki Refract Co Ltd | How to reuse refractories |
JPH0375255A (en) * | 1989-08-18 | 1991-03-29 | Nippon Steel Corp | Method and apparatus for extracting refractory composition from graphite-containing refractories |
JPH07187830A (en) * | 1993-12-28 | 1995-07-25 | Nippon Steel Corp | Method for preparing post-use refractory as thermal spray material |
JPH08259311A (en) * | 1995-03-28 | 1996-10-08 | Nippon Steel Corp | Magnesia-Process for producing carbonaceous refractory bricks |
JPH09278548A (en) * | 1996-04-15 | 1997-10-28 | Nippon Steel Corp | Carbon-containing spray repair material containing refractory waste and method for producing the same |
JP2005281039A (en) * | 2004-03-29 | 2005-10-13 | Nisshin Steel Co Ltd | Recycling method to recycle unfired bricks mainly composed of alumina components and refractories after use of alumina / carbonaceous materials to unfired bricks mainly composed of alumina components |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018062459A (en) * | 2016-10-12 | 2018-04-19 | Jfeスチール株式会社 | Refractory brick and method for producing refractory brick |
CN115646979A (en) * | 2022-09-19 | 2023-01-31 | 江苏锦耐新材料科技有限公司 | Metallurgical slag separation and recovery device and method |
JP2024072442A (en) * | 2022-11-16 | 2024-05-28 | Jfeスチール株式会社 | Method for producing refractory raw material and refractory for molten iron container |
JP7699570B2 (en) | 2022-11-16 | 2025-06-27 | Jfeスチール株式会社 | Method for producing refractory raw material and method for producing refractory for molten iron container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5842592B2 (en) | Reusing used magnesia carbon bricks | |
CN104193373B (en) | The regeneration method of waste and old aluminium sesquioxide-silicon carbide-carbon fire resistant materials | |
JP2013001606A (en) | Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick | |
JP4077774B2 (en) | Reusing used refractories | |
CN104387094B (en) | Technique recycled by a kind of steel-making refractory materials | |
CN110272292A (en) | A kind of magnesia coating of tundish and preparation method thereof | |
CN109627026A (en) | A kind of regeneration silicon carbide Al2O3- SiC-C iron runner castable and preparation method thereof | |
CN106946549A (en) | A kind of converter cap brick made using the residual brick of magnesium carbon as primary raw material and production method | |
JP2013147414A (en) | Method for recycling carbon-containing neutral/acid refractory and method of manufacturing | |
CN112642580A (en) | Disposal method for gradient utilization of steel slag | |
CN111925189A (en) | Composite magnesia carbon brick and preparation method thereof | |
KR101191743B1 (en) | Method for Leaching Magnesium from Ferronickel Slag | |
CN114163218A (en) | Method for recycling waste magnesia carbon bricks | |
JP5663121B2 (en) | Reusing used carbon-containing unfired brick | |
CN103058672A (en) | Aluminum chromium-mullite refractory material and its production method | |
KR101436523B1 (en) | Method for manufacturing refractory material using waste fire brick | |
JP5760266B2 (en) | Mud material for molten metal | |
JP7699570B2 (en) | Method for producing refractory raw material and method for producing refractory for molten iron container | |
JP3781316B2 (en) | Recycling method of refractory materials after use | |
CN113860314A (en) | Method for producing industrial silicon by using silicon-containing solid waste | |
CN108866634B (en) | A method of magnesia crystal whisker is prepared using waste magnesia carbon brick substrate material as raw material | |
CN107032806A (en) | One kind produces converter body brick and preparation method thereof using black magnesia | |
CN110904333B (en) | Method for discharging serpentine magnesium extraction tailings without solid waste | |
JP2010155764A (en) | Unfired brick refractory | |
JP7446220B2 (en) | Methods for recycling ceramics, the recycled materials obtained thereby and the use of recycled materials to produce ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160809 |