[go: up one dir, main page]

JP2013135600A - Contactless power supply method - Google Patents

Contactless power supply method Download PDF

Info

Publication number
JP2013135600A
JP2013135600A JP2011286888A JP2011286888A JP2013135600A JP 2013135600 A JP2013135600 A JP 2013135600A JP 2011286888 A JP2011286888 A JP 2011286888A JP 2011286888 A JP2011286888 A JP 2011286888A JP 2013135600 A JP2013135600 A JP 2013135600A
Authority
JP
Japan
Prior art keywords
power
power supply
coil
portable device
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011286888A
Other languages
Japanese (ja)
Inventor
Kenji Yagi
建史 八木
Masahiro Tomiki
正博 冨來
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011286888A priority Critical patent/JP2013135600A/en
Publication of JP2013135600A publication Critical patent/JP2013135600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly and surely detect a foreign object set on a power supply stand, which is implemented with a simple circuit configuration while reducing component costs.SOLUTION: A contactless power supply method comprises the steps of: setting a mobile apparatus 50 including a power reception coil 51 to a power supply stand 10 including a power transmission coil 11; performing electromagnetic coupling between the power transmission coil 11 in the power supply stand 10 and the power reception coil 51 in the mobile apparatus 50; performing power transmission from the power transmission coil 11 to the power reception coil 51 by using electromagnetic induction action; and supplying power induced in the power reception coil 51 to the mobile apparatus 50. The contactless power supply method makes it possible to detect a foreign object on the power supply stand 10 by: detecting transmission efficiency in the power transmission from the power supply stand 10 to the mobile apparatus 50; and detecting difference in the transmission efficiency, after the mobile apparatus 50 has been set on the power supply stand 10 and power supply has been started.

Description

本発明は、送電コイルと受電コイルとを電磁結合するように互いに接近して配置し、送電コイルから受電コイルに電磁誘導作用で電力搬送する無接点給電方法に関し、とくに給電台に異物がセットされたことを検出する無接点給電方法に関する。   The present invention relates to a contactless power feeding method in which a power transmitting coil and a power receiving coil are arranged close to each other so as to be electromagnetically coupled, and power is transferred from the power transmitting coil to the power receiving coil by electromagnetic induction. The present invention relates to a non-contact power feeding method for detecting the above.

送電コイルを内蔵する給電台に、受電コイルを内蔵する携帯機器をセットして、送電コイルから受電コイルに電力搬送する無接点給電方法は開発されている。(特許文献1参照)   A contactless power feeding method has been developed in which a portable device with a built-in power receiving coil is set on a power feeding base with a built-in power transmitting coil, and power is transferred from the power transmitting coil to the power receiving coil. (See Patent Document 1)

この無接点給電方法は、給電台を充電台とし、携帯機器を電池内蔵機器として、充電台から電池内蔵機器に電力搬送して、電池内蔵機器の電池を充電する。無接点充電するために、給電台の送電コイルに、携帯機器の受電コイルを接近させて、送電コイルから受電コイルに給電する。受電コイルに誘導される電力で内蔵電池が充電される。この給電方法は、コネクタを介して携帯機器を給電台に接続する必要がなく、無接点方式で携帯機器に電力搬送できる。   In this non-contact power supply method, a power supply stand is used as a charging stand, a portable device is used as a battery built-in device, power is transferred from the charging stand to the battery built-in device, and the battery of the battery built-in device is charged. In order to perform contactless charging, the power receiving coil of the portable device is brought close to the power transmitting coil of the power supply stand, and power is supplied from the power transmitting coil to the power receiving coil. The built-in battery is charged by the power induced in the power receiving coil. In this power feeding method, it is not necessary to connect the portable device to a power feeding base via a connector, and power can be transferred to the portable device in a contactless manner.

この給電方法は、給電台から給電している状態で、給電台にクリップなどの金属片からなる異物が載せられると、異物に誘電電流が流れてジュール熱で発熱する弊害がある。また、異物に誘導電流が流れて無駄に電力を消費するので、給電台から携帯機器に効率よく給電できない欠点もある。この欠点を解消するために、特許文献1の充電台は、異物を検出するために、上面に縦横に並べて多数の温度センサを配置している。温度センサは、充電台に載せられて異物が発熱するのを検出する。この充電台は、上に金属製の異物を載せる状態で、送電コイルに交流電力を供給すると、異物に誘電電流が流れて発熱するので、この異物の発熱を、近くに配置している温度センサで検出する。   This power supply method has a problem that when a foreign object made of a metal piece such as a clip is placed on the power supply base in a state where power is supplied from the power supply base, a dielectric current flows through the foreign object and heat is generated by Joule heat. In addition, since an inductive current flows through the foreign matter and consumes power wastefully, there is a disadvantage that power cannot be efficiently supplied from the power supply stand to the portable device. In order to eliminate this drawback, the charging base of Patent Document 1 has a large number of temperature sensors arranged vertically and horizontally on the upper surface in order to detect foreign matter. The temperature sensor is placed on the charging stand and detects that the foreign matter generates heat. In this charging stand, when AC power is supplied to the power transmission coil with a metal foreign object placed thereon, a dielectric current flows through the foreign object to generate heat, so the heat generated by this foreign object is placed nearby. Detect with.

特開2008−17562号公報JP 2008-17562 A

以上の充電台は、異物の発熱を検出して異物がセットされたことを速やかに検出できない欠点がある。異物が発熱して検出されるからである。また、この方式は、異物と温度センサとが離れると異物を確実に検出できなかったり、検出時間が相当に遅くなる欠点もある。この欠点を解消するには、多数の温度センサを設ける必要があって、異物検出するための回路構成や処理が複雑になって部品コストが高くなる欠点がある。   The charging stand described above has a drawback in that it cannot quickly detect that a foreign object has been set by detecting the heat generation of the foreign object. This is because the foreign matter is detected by heat generation. In addition, this method has a drawback that the foreign object cannot be reliably detected when the foreign object is separated from the temperature sensor, or the detection time is considerably delayed. In order to eliminate this drawback, it is necessary to provide a large number of temperature sensors, and there is a disadvantage that the circuit configuration and processing for detecting a foreign substance become complicated and the cost of parts becomes high.

本発明は、さらに以上の弊害を解消することを目的に開発されたもので、本発明の大切な目的は、給電台にセットされる異物を速やかに、かつ確実に検出できる無接点給電方法を提供することにある。
また、本発明の他の大切な目的は、確実かつ速やかに異物を検出しながら、簡単な回路構成で部品コストを低減しながら実現できる無接点給電方法を提供することにある。
The present invention was developed for the purpose of eliminating the above-described adverse effects, and an important object of the present invention is to provide a contactless power supply method capable of quickly and reliably detecting a foreign object set on a power supply stand. It is to provide.
Another important object of the present invention is to provide a non-contact power feeding method that can be realized with a simple circuit configuration while reducing the cost of components while detecting foreign matter reliably and promptly.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の無接点給電方法は、送電コイル11を備える給電台10に、受電コイル51を内蔵する携帯機器50をセットし、給電台10の送電コイル11に携帯機器50の受電コイル51を電磁結合して、送電コイル11から受電コイル51に電磁誘導作用で電力搬送して、受電コイル51に誘導される電力で携帯機器50に給電する無接点給電方法であって、給電台10から携帯機器50に電力搬送される伝送効率を検出し、携帯機器50が給電台10にセットされて、給電開始後からの伝送効率の相違を検出して、給電台10の異物を検出している。   In the contactless power feeding method of the present invention, a portable device 50 including a power receiving coil 51 is set on a power feeding base 10 including a power transmitting coil 11, and the power receiving coil 51 of the portable device 50 is electromagnetically coupled to the power transmitting coil 11 of the power feeding base 10. Then, a non-contact power feeding method in which power is transferred from the power transmission coil 11 to the power receiving coil 51 by electromagnetic induction and power is supplied to the portable device 50 by the power induced in the power receiving coil 51. The mobile device 50 is set on the power supply base 10 to detect the difference in transmission efficiency after the start of power supply, and the foreign matter on the power supply base 10 is detected.

以上の無接点給電方法は、給電台にセットされる異物を速やかに、しかも確実に検出できる特徴がある。それは、以上の無接点給電方法が、携帯機器が給電台にセットされて給電開始後からの伝送効率の相違を検出し、伝送効率の違いで異物検出するからである。図1は、給電開始後に伝送効率が変化する特性を示している。この図の曲線Aは、異物がセットされない状態の伝送効率の変化を示し、曲線Bは異物がセットされる状態における伝送効率の変化を示している。この図に示すように、異物がセットされる状態とされない状態で伝送効率が変化する割合が著しく変化する。したがって、給電開始後における伝送効率の相違によって、異物がセットされたかどうかを確実に検出できる。また、給電開始後の極めて短時間に異物検出できるので、異物がセットされると速やかに検出できる特徴もある。   The non-contact power supply method described above has a feature that can quickly and reliably detect a foreign object set on the power supply stand. This is because the contactless power supply method described above detects a difference in transmission efficiency after the portable device is set on the power supply stand and starts power supply, and detects a foreign object based on the difference in transmission efficiency. FIG. 1 shows the characteristic that the transmission efficiency changes after the start of power feeding. Curve A in this figure shows a change in transmission efficiency when no foreign object is set, and curve B shows a change in transmission efficiency when a foreign object is set. As shown in this figure, the rate at which the transmission efficiency changes significantly when the foreign object is not set or not. Therefore, it is possible to reliably detect whether or not a foreign object has been set based on the difference in transmission efficiency after the start of power feeding. In addition, since foreign matter can be detected in a very short time after the start of power supply, there is a feature that can be quickly detected when foreign matter is set.

さらに、以上の無接点給電方法は、従来のように温度センサで異物の温度上昇を検出するのでなく、異物がセットされたかどうかを給電開始後の伝送効率の変化で検出するので、異物を確実に速やかに検出しながら、多数の温度センサなどを使用することなく、簡単な回路構成で部品コストを低減しながら異物検出できる特徴がある。   Furthermore, the contactless power supply method described above does not detect the temperature rise of a foreign object with a temperature sensor as in the past, but detects whether a foreign object has been set based on a change in transmission efficiency after the start of power supply. It is possible to detect foreign matter while reducing the cost of parts with a simple circuit configuration without using a large number of temperature sensors or the like, while detecting quickly.

本発明の無接点給電方法は、給電台10を充電台10Aとし、携帯機器50を電池内蔵機器50Aとして、充電台10Aから電池内蔵機器50Aに給電される電力で電池内蔵機器50Aの電池52を充電することができる。
以上の無接点給電方法は、電池内蔵機器を充電台にセットすることで、電池内蔵機器の電池を簡単に充電すると共に、異物がセットされたことも確実に検出できる。
The non-contact power supply method of the present invention uses the power supply base 10 as a charging base 10A, the portable device 50 as a battery built-in device 50A, and the battery 52 of the battery built-in device 50A with power supplied from the charging base 10A to the battery built-in device 50A. Can be charged.
In the above non-contact power feeding method, by setting the battery built-in device on the charging stand, it is possible to easily charge the battery of the battery built-in device and to reliably detect the foreign matter being set.

本発明の無接点給電方法は、給電台10に携帯機器50をセットして、給電開始後に所定のサンプリング周期で伝送効率を検出して異物検出することができる。
以上の無接点給電方法は、所定のサンプリング周期で伝送効率を複数回検出することで、異物がセットされたかどうかを正確に検出できる。それは、異物がセットされない状態では速やかに伝送効率が向上し、異物がセットされる状態では、伝送効率がゆっくりと向上するからである。
The contactless power supply method of the present invention can detect foreign objects by setting the portable device 50 on the power supply base 10 and detecting the transmission efficiency at a predetermined sampling period after the start of power supply.
The above non-contact power feeding method can accurately detect whether or not a foreign object has been set by detecting the transmission efficiency multiple times at a predetermined sampling period. This is because the transmission efficiency is quickly improved when no foreign object is set, and the transmission efficiency is slowly improved when the foreign object is set.

本発明の無接点給電方法は、給電開始後から0.1secないし10sec経過するまで、所定のサンプリング周期で伝送効率を検出して異物検出することができる。   The contactless power supply method of the present invention can detect foreign matters by detecting transmission efficiency at a predetermined sampling period until 0.1 to 10 seconds have elapsed since the start of power supply.

本発明の無接点給電方法は、給電台10に携帯機器50をセットして、給電開始後の所定のタイミングで伝送効率を検出して異物検出することができる。
以上の無接点給電方法は、簡単な方法で異物検出できる特徴がある。それは、給電開始から所定の時間経過するタイミングで伝送効率を検出することで、異物がセットされた状態と、セットされない状態とで伝送効率が異なるからである。
The contactless power supply method of the present invention can detect foreign objects by setting the portable device 50 on the power supply base 10 and detecting the transmission efficiency at a predetermined timing after the start of power supply.
The above contactless power feeding method has a feature that foreign matter can be detected by a simple method. This is because the transmission efficiency is different between a state in which a foreign object is set and a state in which it is not set by detecting the transmission efficiency at a timing when a predetermined time elapses from the start of power feeding.

本発明の無接点給電方法は、給電台10に携帯機器50をセットして、給電開始後から10msecないし10sec経過したタイミングで伝送効率を検出して異物検出することができる。   The contactless power supply method of the present invention can detect foreign objects by setting the portable device 50 on the power supply base 10 and detecting the transmission efficiency at a timing 10 msec to 10 sec after the start of power supply.

本発明の無接点給電方法は、給電台10が、送電コイル11を携帯機器50の受電コイル51に接近させるように移動させる移動機構16を有することができる。
以上の無接点給電方法は、携帯機器を自由な位置セットして、送電コイルを受電コイルに接近でき、しかも送電コイルを受電コイルに接近して給電を開始した後、速やかに異物検出できる特徴がある。
The contactless power feeding method of the present invention can include the moving mechanism 16 that moves the power feeding base 10 so that the power transmitting coil 11 approaches the power receiving coil 51 of the portable device 50.
The above non-contact power feeding method has a feature that the mobile device can be set in any position, the power transmission coil can be brought close to the power receiving coil, and the foreign matter can be quickly detected after the power feeding coil is brought close to the power receiving coil to start power feeding. is there.

本発明の無接点給電方法は、給電台10と携帯機器50が、携帯機器50を給電台10の定位置にセットする位置決め部機構22を有することができる。
以上の無接点給電方法は、送電コイルを受電コイルの位置に移動させる機構を設けることなく、送電コイルと受電コイルとを電磁結合して送電コイルから受電コイルに給電できる。
In the non-contact power feeding method of the present invention, the power feeding base 10 and the portable device 50 can include the positioning unit mechanism 22 that sets the portable device 50 at a fixed position of the power feeding base 10.
The above non-contact power feeding method can feed power from the power transmission coil to the power receiving coil by electromagnetically coupling the power transmitting coil and the power receiving coil without providing a mechanism for moving the power transmitting coil to the position of the power receiving coil.

本発明の無接点給電方法は、位置決め部機構22を、給電台10に携帯機器50を定位置にセットする嵌合構造とすることができる。   In the contactless power feeding method of the present invention, the positioning unit mechanism 22 can have a fitting structure in which the portable device 50 is set at a fixed position on the power feeding base 10.

本発明の無接点給電方法は、異物を検出する状態で、送電コイル11への供給電力を制御することができる。
以上の無接点給電方法は、異物を検出する状態で送電コイルへの供給電力を小さくし、あるいは送電コイルに電力を供給しないように制御して、異物の発熱などの弊害を確実に防止できる。
The contactless power feeding method of the present invention can control the power supplied to the power transmission coil 11 in a state where foreign matter is detected.
The non-contact power feeding method described above can reliably prevent adverse effects such as heat generation of a foreign object by reducing the power supplied to the power transmission coil in a state where the foreign object is detected or by not controlling the power transmission coil.

本発明の無接点給電方法は、異物検出する状態において、供給電力が設定値よりも大きい状態では、送電コイル11の給電電力を小さく制限することができる。
以上の無接点給電方法は、異物が検出される状態で、給電台から携帯機器に給電しながら、異物の発熱による弊害も防止できる。
The non-contact power feeding method of the present invention can limit the power feeding power of the power transmission coil 11 to be small in a state where foreign matter is detected and the power supplied is larger than a set value.
The above non-contact power feeding method can prevent the harmful effects caused by the heat generated by the foreign matter while feeding the portable device from the power feeding stand in a state where the foreign matter is detected.

給電開始後に伝送効率が変化する特性を示すグラフである。It is a graph which shows the characteristic which transmission efficiency changes after the electric power feeding start. 本発明の一実施例にかかる無接点給電方法に使用する給電台と携帯機器の一例を示すブロック図である。It is a block diagram which shows an example of the electric power feeding stand and portable apparatus which are used for the non-contact electric power feeding method concerning one Example of this invention. 本発明の一実施例にかかる無接点給電方法に使用する給電台と携帯機器の他の一例を示すブロック図である。It is a block diagram which shows another example of the electric power feeding stand and portable apparatus which are used for the non-contact electric power feeding method concerning one Example of this invention. 給電台である充電台に携帯機器である電池内蔵機器をセットして電池を充電するフローチャートである。It is a flowchart which sets the battery built-in apparatus which is a portable apparatus in the charging stand which is a feed stand, and charges a battery.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための無接点給電方法を例示するものであって、本発明は無接点給電方法を以下の方法や回路構成に特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a contactless power feeding method for embodying the technical idea of the present invention, and the present invention does not specify the contactless power feeding method as the following method or circuit configuration. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図2は、本発明の無接点給電方法で、給電台10の上に携帯機器50を載せて、給電台10から携帯機器50に給電する状態を示している。とくに、以下の実施例は、給電台10を充電台10Aとし、携帯機器50を電池内蔵機器50Aとして、充電台10Aから電池内蔵機器50Aに給電して、電池内蔵機器50Aの電池52を充電する状態を示している。   FIG. 2 shows a state in which the portable device 50 is placed on the power supply table 10 and power is supplied from the power supply table 10 to the portable device 50 in the contactless power supply method of the present invention. In particular, in the following embodiment, the power supply base 10 is the charging base 10A, the portable device 50 is the battery built-in device 50A, and the battery 52 is charged from the charging base 10A to the battery built-in device 50A. Indicates the state.

ただし、本発明は、給電台を充電台として、携帯機器を電池内蔵機器に特定するものではない。携帯機器を、照明器具や充電アダプタとして、給電台から携帯機器に給電して、携帯機器に電力供給することができる。照明の携帯機器は、給電台から給電される電力で光源を点灯し、充電アダプタの携帯機器は、給電台から給電される電力でもって、充電アダプタに接続される電池内蔵機器に電池の充電電力を供給して、電池内蔵機器の電池を充電する。また、携帯機器は、パック電池であっても良い。   However, the present invention does not specify the portable device as a battery built-in device using the power supply stand as a charging stand. The portable device can be used as a lighting fixture or a charging adapter to supply power to the portable device by supplying power to the portable device from the power supply stand. The lighting portable device turns on the light source with the power supplied from the power supply base, and the charging adapter mobile device uses the power supplied from the power supply stand to charge the battery charging power to the battery built-in device connected to the charging adapter. To charge the battery of the battery built-in device. The portable device may be a battery pack.

図2の携帯機器50は電池内蔵機器50Aで、この携帯機器50は、給電台10の送電コイル11に電磁結合される受電コイル51を内蔵している。受電コイル51に誘導される電力が電池52を充電する。したがって、図2の携帯機器50は、電池52と、受電コイル51と、この受電コイル51に誘導される交流を直流に変換する整流回路56と、整流回路56から出力される直流で電池52を充電する充電制御回路53と、電池52の充電電流を検出する電流検出回路57と、電流検出回路57で検出される検出電流を給電台10に伝送する伝送回路54とを備える。   The portable device 50 in FIG. 2 is a battery built-in device 50 </ b> A, and the portable device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmission coil 11 of the power supply base 10. The power induced in the power receiving coil 51 charges the battery 52. Therefore, the portable device 50 of FIG. 2 uses the battery 52, the power receiving coil 51, the rectifier circuit 56 that converts alternating current induced in the power receiving coil 51 into direct current, and the direct current output from the rectifier circuit 56. The charging control circuit 53 for charging, the current detection circuit 57 for detecting the charging current of the battery 52, and the transmission circuit 54 for transmitting the detection current detected by the current detection circuit 57 to the power supply base 10 are provided.

電池52は、リチウムイオン電池又はリチウムポリマー電池である。ただし、電池は、ニッケル水素電池やニッケルカドミウム電池などの充電できる全ての電池とすることができる。携帯機器50は、1個ないし複数の電池52を内蔵している。複数の電池52は、直列又は並列に接続され、あるいは直列と並列に接続される。   The battery 52 is a lithium ion battery or a lithium polymer battery. However, the battery can be any rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery. The portable device 50 has one or more batteries 52 built therein. The plurality of batteries 52 are connected in series or in parallel, or connected in series and in parallel.

整流回路56は、図示しないが、受電コイル51に誘導される交流をダイオードブリッジで全波整流して脈流を平滑コンデンサーで平滑化する。整流回路は、ダイオードブリッジで交流を整流するが、整流回路には、FETをブリッジに接続して、交流に同期してFETをオンオフに切り換えて整流する同期整流回路も使用できる。FETの同期整流回路はオン抵抗が小さく、整流回路の発熱を少なくして、携帯機器のケース内温度の上昇を少なくできる。また、平滑コンデンサーは必ずしも必要でなく、ダイオードブリッジや同期整流回路の出力で電池を充電することもできる。   Although not shown, the rectifier circuit 56 full-wave rectifies the alternating current induced in the power receiving coil 51 with a diode bridge and smoothes the pulsating current with a smoothing capacitor. The rectifier circuit rectifies alternating current with a diode bridge, but a synchronous rectifier circuit can be used for the rectifier circuit in which an FET is connected to the bridge and the FET is switched on and off in synchronization with the alternating current. The FET synchronous rectifier circuit has a low on-resistance, reduces the heat generation of the rectifier circuit, and can reduce the temperature rise in the case of the portable device. Further, the smoothing capacitor is not always necessary, and the battery can be charged by the output of the diode bridge or the synchronous rectifier circuit.

充電制御回路53は、リチウムイオン電池やリチウムポリマー電池等を定電圧・定電流充電し、ニッケル水素電池やニッケルカドミウム電池を定電流充電する。さらに、充電制御回路53は、電池52の満充電を検出して、満充電信号を伝送回路54を介して給電台10に伝送する。給電台10は、伝送回路54から伝送される満充電信号を受信回路14で検出する。満充電信号を検出すると、コントロール回路13は交流電源12を制御して、送電コイル11への電力供給を停止させる。   The charge control circuit 53 performs constant voltage / constant current charging of a lithium ion battery, a lithium polymer battery, or the like, and constant current charging of a nickel metal hydride battery or a nickel cadmium battery. Further, the charge control circuit 53 detects the full charge of the battery 52 and transmits a full charge signal to the power supply base 10 via the transmission circuit 54. The power supply base 10 detects the full charge signal transmitted from the transmission circuit 54 by the reception circuit 14. When detecting the full charge signal, the control circuit 13 controls the AC power supply 12 to stop the power supply to the power transmission coil 11.

伝送回路54は、携帯機器50から給電台10に、電池52の充電電流、電池52の満充電信号、ID信号などの種々の伝送信号を伝送する。伝送回路54は、受電コイル51の負荷インピーダンスを変化させて、送電コイル11に種々の伝送信号を伝送する。この伝送回路54は、図示しないが、受電コイル51に変調回路を接続している。変調回路は、コンデンサーや抵抗等の負荷とスイッチング素子とを直列に接続して、スイッチング素子のオンオフを制御して種々の伝送信号を給電台10に伝送する。   The transmission circuit 54 transmits various transmission signals such as a charging current of the battery 52, a full charge signal of the battery 52, and an ID signal from the portable device 50 to the power supply base 10. The transmission circuit 54 changes various load impedances of the power reception coil 51 and transmits various transmission signals to the power transmission coil 11. Although not shown, the transmission circuit 54 has a modulation circuit connected to the power receiving coil 51. The modulation circuit connects a load such as a capacitor or a resistor and a switching element in series, and controls on / off of the switching element to transmit various transmission signals to the power supply base 10.

給電台10の受信回路14は、送電コイル11のインピーダンス変化、電圧変化、電流変化等を検出して、伝送回路54から伝送される伝送信号を検出する。受電コイル51の負荷インピーダンスが変化すると、これに電磁結合している送電コイル11のインピーダンスや電圧や電流が変化するので、受信回路14は、これ等の変化を検出して、携帯機器50の伝送信号を検出することができる。   The receiving circuit 14 of the power supply base 10 detects a transmission signal transmitted from the transmission circuit 54 by detecting an impedance change, a voltage change, a current change and the like of the power transmission coil 11. When the load impedance of the power receiving coil 51 changes, the impedance, voltage, or current of the power transmitting coil 11 that is electromagnetically coupled to the power receiving coil 51 changes. Therefore, the receiving circuit 14 detects these changes and transmits the portable device 50. A signal can be detected.

ただし、伝送回路は、搬送波を変調して伝送する回路、すなわち送信機とすることもできる。この伝送回路から伝送される伝送信号の受信回路は、搬送波を受信して、伝送信号を検出する受信器である。伝送回路と受信回路とは、携帯機器から給電台に伝送信号を伝送できる全ての回路構成とすることができる。   However, the transmission circuit may be a circuit that modulates and transmits a carrier wave, that is, a transmitter. The reception circuit for the transmission signal transmitted from the transmission circuit is a receiver that receives a carrier wave and detects the transmission signal. The transmission circuit and the reception circuit can have all circuit configurations capable of transmitting a transmission signal from the portable device to the power supply base.

電流検出回路57は、電池52の充電電流を検出する。図2の電流検出回路57は、電池52と直列に接続している電流検出抵抗57Aと、この電流検出抵抗57Aの両端の電圧を増幅する差動アンプ57Bとを備えており、差動アンプ57Bの出力から電池52の充電電流を検出する。電池52の充電電流は整流回路56の出力、すなわち受電コイル51に誘導される電力の出力となる。したがって、電池52の充電電流は、整流回路56の出力電流を検出して検出することができ、また、受電コイル51の出力を検出して検出することもできる。   The current detection circuit 57 detects the charging current of the battery 52. The current detection circuit 57 shown in FIG. 2 includes a current detection resistor 57A connected in series with the battery 52, and a differential amplifier 57B that amplifies the voltage at both ends of the current detection resistor 57A. From the output, the charging current of the battery 52 is detected. The charging current of the battery 52 becomes an output of the rectifier circuit 56, that is, an output of power induced in the power receiving coil 51. Therefore, the charging current of the battery 52 can be detected by detecting the output current of the rectifier circuit 56, and can also be detected by detecting the output of the power receiving coil 51.

給電台10は、ケース20の上面に、携帯機器50を一定の位置にセットして載せる上面プレート21を設けて、この上面プレート21の内側に送電コイル11を配置している。送電コイル11は、交流電源12を接続して、交流電源12をコントロール回路13で制御している。コントロール回路13は、送電コイル11に供給する電力をコントロールする。さらに、給電台10は、給電開始後の伝送効率(=送電効率)を検出して、伝送効率の変化から異物検出する異物検出回路15を備えている。   In the power supply base 10, an upper surface plate 21 on which the portable device 50 is set and placed at a certain position is provided on the upper surface of the case 20, and the power transmission coil 11 is disposed inside the upper surface plate 21. The power transmission coil 11 is connected to an AC power supply 12 and controls the AC power supply 12 with a control circuit 13. The control circuit 13 controls the power supplied to the power transmission coil 11. Furthermore, the power supply base 10 includes a foreign object detection circuit 15 that detects a transmission efficiency (= power transmission efficiency) after the start of power supply and detects a foreign object from a change in the transmission efficiency.

給電台10は、送電コイル11を受電コイル51に電磁結合して、送電コイル11から受電コイル51に電力搬送、すなわち給電する。携帯機器50を上面プレート21の自由な位置にセットして、電池52を充電する給電台10は、送電コイル11を受電コイル51に接近するように移動させる移動機構16を内蔵している。この給電台10は、送電コイル11をケース20の上面プレート21の下に配設して、上面プレート21に沿って移動させて受電コイル51に接近させる。   The power supply base 10 electromagnetically couples the power transmission coil 11 to the power reception coil 51, and carries power, that is, supplies power from the power transmission coil 11 to the power reception coil 51. The power supply base 10 that charges the battery 52 by setting the portable device 50 at a free position on the top plate 21 incorporates a moving mechanism 16 that moves the power transmission coil 11 so as to approach the power reception coil 51. In the power supply stand 10, the power transmission coil 11 is disposed below the upper surface plate 21 of the case 20 and moved along the upper surface plate 21 to approach the power reception coil 51.

給電台10と携帯機器50は、携帯機器50を給電台10の定位置にセットする位置決め部機構を設けて、携帯機器50を給電台10の定位置にセットすることができる。位置決め部機構は、受電コイル51を送電コイル11に接近させるように、携帯機器50を給電台10の定位置にセットする。送電コイル11に接近する受電コイル51は、電磁誘導作用で送電コイル11から受電コイル51に電力搬送して給電する。   The power supply stand 10 and the portable device 50 can be provided with a positioning unit mechanism that sets the portable device 50 at a fixed position of the power supply stand 10, so that the portable device 50 can be set at a fixed position of the power supply stand 10. The positioning unit mechanism sets the portable device 50 at a fixed position of the power supply base 10 so that the power receiving coil 51 approaches the power transmitting coil 11. The power receiving coil 51 that approaches the power transmitting coil 11 carries power from the power transmitting coil 11 to the power receiving coil 51 by electromagnetic induction to supply power.

図3の位置決め部機構22は、給電台10の定位置に携帯機器50をセットする嵌合構造である。図3の嵌合構造は、給電台10の上面に携帯機器50を嵌入する嵌入凹部23を設けて、嵌入凹部23に携帯機器50を入れて定位置にセットしている。図示しないが、位置決め部機構は、給電台と携帯機器との対向面に嵌合構造の凹凸を設けて、携帯機器を給電台の定位置にセットすることもできる。   The positioning unit mechanism 22 in FIG. 3 is a fitting structure in which the portable device 50 is set at a fixed position on the power supply base 10. In the fitting structure of FIG. 3, an insertion recess 23 into which the portable device 50 is inserted is provided on the upper surface of the power supply base 10, and the portable device 50 is inserted into the insertion recess 23 and set at a fixed position. Although not shown, the positioning unit mechanism can also set the portable device at a fixed position of the power supply table by providing concavity and convexity of the fitting structure on the facing surface between the power supply table and the portable device.

送電コイル11は、上面プレート21と平行な面で渦巻き状に巻いてなる平面コイルで、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、磁性材からなるコア(図示せず)に線材を巻いてインダクタンスを大きくできる。コアのある送電コイルは、磁束を特定部分に集束して、効率よく電力を受電コイルに伝送できる。ただ、送電コイルは、必ずしもコアを設ける必要はなく、空芯コイルとすることもできる。空芯コイルは軽いので、送電コイルを上面プレートの内面で移動させる構造にあっては、移動機構を簡単にできる。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。   The power transmission coil 11 is a planar coil wound in a spiral shape on a surface parallel to the upper surface plate 21, and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 can increase the inductance by winding a wire around a core (not shown) made of a magnetic material. The power transmission coil with the core can concentrate the magnetic flux to a specific part and efficiently transmit power to the power reception coil. However, the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, the moving mechanism can be simplified in the structure in which the power transmission coil is moved on the inner surface of the top plate. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.

交流電源12は、たとえば、20kHz〜1MHzの高周波電力を送電コイル11に供給する。送電コイル11を受電コイル51に接近するように移動させる給電台10は、交流電源12を、可撓性のリード線を介して送電コイル11に接続している。交流電源12は、発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプと備える。   For example, the AC power supply 12 supplies high-frequency power of 20 kHz to 1 MHz to the power transmission coil 11. The power supply stand 10 that moves the power transmission coil 11 so as to approach the power reception coil 51 connects the AC power supply 12 to the power transmission coil 11 via a flexible lead wire. The AC power supply 12 includes an oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit.

給電台10は、送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は、受電コイル51に電力搬送されて、電池52を充電する。給電台10は、電池52が満充電されると、携帯機器50から伝送される満充電信号で送電コイル11への電力供給を停止して、電池52の充電を停止する。   The power supply base 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the power transmission coil 11 is brought close to the power reception coil 51. The AC power of the power transmission coil 11 is transferred to the power reception coil 51 and charges the battery 52. When the battery 52 is fully charged, the power supply base 10 stops the power supply to the power transmission coil 11 with the full charge signal transmitted from the portable device 50 and stops the charging of the battery 52.

異物検出回路15は、給電台10から携帯機器50に電力搬送される伝送効率(=送電効率)を検出して、携帯機器50が給電台10にセットされて給電が開始された後からの伝送効率を検出して、給電台10に異物がセットされたかどうかを判定する。伝送効率は、給電台10から携帯機器50に電力搬送される効率であって、以下の式で演算される。
伝送効率=携帯機器側に給電される電力/給電台側の消費電力
The foreign object detection circuit 15 detects transmission efficiency (= power transmission efficiency) in which power is transferred from the power supply base 10 to the portable device 50, and transmission after the portable device 50 is set on the power supply base 10 and power supply is started. The efficiency is detected and it is determined whether or not a foreign object has been set on the power supply base 10. The transmission efficiency is an efficiency of power transfer from the power supply base 10 to the portable device 50, and is calculated by the following equation.
Transmission efficiency = Power supplied to the mobile device side / Power consumption on the power supply stand side

携帯機器50側に給電される電力は、整流回路56の出力電圧と電流の積、あるいは受電コイル51に誘導される電力として検出される。伝送効率は、給電台10側の異物検出回路15で検出される。伝送効率を検出するために、整流回路56の出力電流、すなわち電池52の充電電流を電流検出回路57で検出して、伝送回路54から受信回路14に伝送される。伝送効率を検出するには、整流回路56の出力電圧も検出する必要がある。ただ、整流回路56の出力電圧は、一定の電圧範囲にあるので、検出することなく、一定の電圧と想定して、携帯機器50側に供給される電力を検出することができる。ただ、整流回路56の出力電圧、すなわち電池52の充電電圧を電圧検出回路(図示せず)で検出して、検出電圧を伝送回路54から受信回路14に伝送して、給電台10側で携帯機器50側に供給される電力をより正確に検出することもできる。   The power supplied to the portable device 50 is detected as the product of the output voltage and current of the rectifier circuit 56 or the power induced in the power receiving coil 51. The transmission efficiency is detected by the foreign object detection circuit 15 on the power supply base 10 side. In order to detect the transmission efficiency, the output current of the rectifier circuit 56, that is, the charging current of the battery 52 is detected by the current detection circuit 57 and transmitted from the transmission circuit 54 to the reception circuit 14. In order to detect the transmission efficiency, it is also necessary to detect the output voltage of the rectifier circuit 56. However, since the output voltage of the rectifier circuit 56 is in a certain voltage range, it is possible to detect the electric power supplied to the portable device 50 side, assuming that the voltage is constant without detection. However, the output voltage of the rectifier circuit 56, that is, the charging voltage of the battery 52 is detected by a voltage detection circuit (not shown), and the detection voltage is transmitted from the transmission circuit 54 to the reception circuit 14 and carried on the power supply base 10 side. It is also possible to detect the power supplied to the device 50 side more accurately.

給電台10側の消費電力は、給電台10側で消費するトータル電力(消費する電流値、電圧値を掛け算した値)として検出し、あるいは送電コイル11に供給する交流の入力電力として検出することもできる。伝送効率は、携帯機器50側と給電台10側の電力を検出方法で異なる値となるが、本発明は、給電開始後に伝送効率が変化する割合を検出して異物検出するので、伝送効率を演算する方法によって異なる値となっても、同じ演算方法で伝送効率を演算するかぎり、異物検出できる。それは、演算方法が違っても、異物をセットする状態と、セットしない状態では、給電開始後に伝送効率が同じ割合で変化して、確実に異物検出できるからである。したがって、異物検出回路15は、簡単な方法で伝送効率を検出して、確実に異物検出できる。   The power consumption on the power supply stand 10 side is detected as total power consumed on the power supply stand 10 side (a value obtained by multiplying the consumed current value and the voltage value) or detected as AC input power supplied to the power transmission coil 11. You can also. The transmission efficiency varies depending on the detection method of the power on the portable device 50 side and the power supply base 10 side. However, the present invention detects the foreign matter by detecting the rate at which the transmission efficiency changes after the start of power supply. Even if the value varies depending on the calculation method, foreign matter can be detected as long as the transmission efficiency is calculated by the same calculation method. This is because, even if the calculation method is different, the transmission efficiency changes at the same rate after the start of power supply in a state where foreign matter is set and a state where no foreign matter is set, and foreign matter can be reliably detected. Therefore, the foreign matter detection circuit 15 can detect the foreign matter reliably by detecting the transmission efficiency by a simple method.

図1は、異物がセットされない(介在することなく)携帯機器50が給電台10にセットされた状態(曲線A)と、異物がセットされた状態(曲線B)とで、給電開始後に伝送効率が変化する状態を示している。異物がセットされない状態は、曲線Aで示すように、給電を開始した直後に速やかに伝送効率が上昇する。これに対して異物がセットされた状態は、曲線Bで示すように、給電開始後にゆっくりと伝送効率が向上する。   FIG. 1 shows a state in which the portable device 50 is not set (without intervening) and the portable device 50 is set on the power supply base 10 (curve A) and in a state where the foreign object is set (curve B). Indicates a state of change. In the state in which no foreign matter is set, as indicated by the curve A, the transmission efficiency immediately increases immediately after the start of power feeding. On the other hand, when the foreign object is set, as indicated by a curve B, the transmission efficiency is slowly improved after the start of power feeding.

異物検出回路15は、携帯機器50が給電台10にセットされた後、送電コイル11に交流電力を供給して給電を開始した直後から、たとえば0.1secの所定のサンプリング周期で1sec間伝送効率を検出して異物検出する。1sec間に10回伝送効率を検出して、伝送効率が設定値の例えば30%以下の回数をカウントして、異物検出する。たとえば、異物がセットされた状態にあっては、曲線Bで示すように、伝送効率が上昇するのに時間がかかるので、異物がセットされない状態(曲線A)よりも伝送効率が設定値よりも低くなる回数が多くなる。したがって、伝送効率が設定値よりも低い回数をカウントして、異物がセットされたかどうかを判定する。異物の有無によって、伝送効率が図1の曲線Aと曲線Bで示すように変化する状態においては、10回伝送効率を検出して、伝送効率が設定値の30%よりも低い状態が、3回以上カウントされると、異物がセットされたと判定し、2回以下であると、異物がセットされないと判定する。   The foreign object detection circuit 15 has a transmission efficiency for 1 sec at a predetermined sampling period of 0.1 sec, for example, immediately after the portable device 50 is set on the power supply base 10 and then the AC power is supplied to the power transmission coil 11 to start power supply. To detect foreign matter. The transmission efficiency is detected 10 times during 1 sec, and the foreign object is detected by counting the number of times when the transmission efficiency is, for example, 30% or less of the set value. For example, in the state where foreign matter is set, as shown by the curve B, it takes time for the transmission efficiency to increase. Therefore, the transmission efficiency is higher than the set value than the state where the foreign matter is not set (curve A). The number of times of lowering increases. Therefore, the number of times the transmission efficiency is lower than the set value is counted to determine whether or not a foreign object has been set. In the state where the transmission efficiency changes as indicated by the curves A and B in FIG. 1 depending on the presence or absence of foreign matter, the transmission efficiency is detected 10 times and the transmission efficiency is lower than 30% of the set value. If it is counted more than once, it is determined that a foreign object has been set, and if it has been counted twice or less, it is determined that no foreign object has been set.

以上の方法で異物検出する異物検出回路15は、たとえば、サンプリング周期を10msec〜1secとし、伝送効率を検出する時間を給電開始から0.1sec〜10secとして、異物検出することができる。   The foreign object detection circuit 15 that detects foreign objects by the above method can detect foreign objects, for example, by setting the sampling period to 10 msec to 1 sec and setting the transmission efficiency detection time to 0.1 sec to 10 sec from the start of power supply.

異物検出回路15は、給電台10に携帯機器50をセットして、給電が開始された後、0.1sec後の伝送効率を検出して、検出する伝送効率の値から異物検出することができる。異物がセットされた状態と、セットされない状態で、伝送効率が相違するので、検出する伝送効率があらかじめ設定している閾値よりも大きいか小さいかで、異物がセットされたかどうかを判別できるからである。この異物検出回路15は、伝送効率を検出するタイミングを、給電開始後から例えば10msec〜10sec後、好ましくは30msec〜5sec後、さらに好ましくは50msec〜1sec後とすることができる。   The foreign object detection circuit 15 can detect the foreign object from the detected transmission efficiency value by setting the portable device 50 on the power supply base 10 and detecting the transmission efficiency after 0.1 sec after the power supply is started. . Because the transmission efficiency differs between a foreign object set state and a non-set state, it is possible to determine whether a foreign object has been set depending on whether the detected transmission efficiency is larger or smaller than a preset threshold. is there. The foreign object detection circuit 15 can detect the transmission efficiency after 10 msec to 10 sec, preferably 30 msec to 5 sec, more preferably 50 msec to 1 sec after the start of power feeding.

給電台10は、異物検出すると、送電コイル11の電力供給を遮断し、あるいは送電コイル11への供給電力を小さく制限し、あるいは異物検出する状態で、給電する電力が小さくて、異物の発熱などの弊害を無視できる場合は、そのままの状態で給電状態を継続する。   When the power supply base 10 detects a foreign object, the power supply to the power transmission coil 11 is cut off, or the power supplied to the power transmission coil 11 is limited to a small value. In the case where the adverse effects of can be ignored, the power supply state is continued as it is.

給電台10である充電台10Aは、携帯機器50である電池内蔵機器50Aをセットして、図4に示すフローチャートで、以下のステップで異物検出しながら、電池52を充電する。
[n=1のステップ]
給電開始してから10sec以下かどうかを判定する。
[n=2のステップ]
給電開始から10sec経過するまでは、このステップで伝送効率が30%以下であるかどうかを判定し、伝送効率が30%以下であると、n=3のステップに、伝送効率が30%以下でないと、n=4のステップにジャンプする。
[n=3のステップ]
伝送効率が30%以下であると、このステップでフラグを立てる。
[n=4のステップ]
n=4のステップでフラグが立っているかどうかを判定し、フラグが立っていると、n=5のステップに進み、フラグが立っていないと、n=1のステップに戻る。
[n=5のステップ]
n=4のステップでフラグが立っていると、異物がセットされたと判定して、このステップで電池52の充電電流が0.5Aよりも大きいかどうかを判定する。充電電流が0.5Aを越えていると、n=6のステップに進み、異物がセットされたとして異常表示する。
異物がセットされる状態であっても、充電電流が0.5A以下であると、電池52を充電して異物による発熱も少ないと判定して、n=1のステップに戻って充電を継続する。
The charging stand 10A that is the power supply stand 10 sets the battery built-in device 50A that is the portable device 50, and charges the battery 52 while detecting foreign matter in the following steps in the flowchart shown in FIG.
[Step of n = 1]
It is determined whether it is 10 sec or less after the start of power feeding.
[Step of n = 2]
It is determined whether or not the transmission efficiency is 30% or less in this step until 10 seconds have elapsed since the start of power supply. If the transmission efficiency is 30% or less, the transmission efficiency is not 30% or less in the step of n = 3. And jump to the step of n = 4.
[Step n = 3]
If the transmission efficiency is 30% or less, a flag is set in this step.
[Step n = 4]
It is determined whether or not a flag is set in step n = 4. If the flag is set, the process proceeds to step n = 5. If the flag is not set, the process returns to step n = 1.
[Step n = 5]
If the flag is set in step n = 4, it is determined that a foreign object has been set, and it is determined in this step whether the charging current of the battery 52 is greater than 0.5A. If the charging current exceeds 0.5 A, the process proceeds to the step of n = 6, and an abnormality is displayed as a foreign object is set.
Even when a foreign object is set, if the charging current is 0.5 A or less, it is determined that the battery 52 is charged and little heat is generated by the foreign object, and the process returns to the step of n = 1 to continue charging. .

10…給電台 10A…充電台
11…送電コイル
12…交流電源
13…コントロール回路
14…受信回路
15…異物検出回路
16…移動機構
20…ケース
21…上面プレート
22…位置決め部機構
23…凹部
50…携帯機器 50A…電池内蔵機器
51…受電コイル
52…電池
53…充電制御回路
54…伝送回路
56…整流回路
57…電流検出回路 57A…電流検出抵抗
57B…差動アンプ
DESCRIPTION OF SYMBOLS 10 ... Feed stand 10A ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 13 ... Control circuit 14 ... Reception circuit 15 ... Foreign substance detection circuit 16 ... Moving mechanism 20 ... Case 21 ... Top plate 22 ... Positioning part mechanism 23 ... Concave part 50 ... Portable device 50A ... Battery built-in device 51 ... Receiving coil 52 ... Battery 53 ... Charge control circuit 54 ... Transmission circuit 56 ... Rectifier circuit 57 ... Current detection circuit 57A ... Current detection resistor
57B ... Differential amplifier

Claims (11)

送電コイル(11)を備える給電台(10)に、受電コイル(51)を内蔵する携帯機器(50)をセットし、給電台(10)の送電コイル(11)に携帯機器(50)の受電コイル(51)を電磁結合して、送電コイル(11)から受電コイル(51)に電磁誘導作用で電力搬送して、受電コイル(51)に誘導される電力で携帯機器(50)に給電する無接点給電方法であって、
給電台(10)から携帯機器(50)に電力搬送される伝送効率を検出し、携帯機器(50)が給電台(10)にセットされて給電開始後からの伝送効率の相違を検出して、給電台(10)の異物検出する無接点給電方法。
Set the mobile device (50) with a built-in power receiving coil (51) in the power supply base (10) including the power transmission coil (11), and receive power from the mobile device (50) in the power transmission coil (11) of the power supply base (10). The coil (51) is electromagnetically coupled, and power is transferred from the power transmission coil (11) to the power reception coil (51) by electromagnetic induction, and power is supplied to the portable device (50) by the power induced by the power reception coil (51). A contactless power supply method,
Detects the transmission efficiency of power transfer from the power supply base (10) to the mobile device (50), detects the difference in transmission efficiency after the mobile device (50) is set on the power supply base (10) and starts power supply A contactless power supply method for detecting foreign matter on the power supply stand (10).
前記給電台(10)が充電台(10A)で、前記携帯機器(50)が電池内蔵機器(50A)で、充電台(10A)から電池内蔵機器(50A)に給電される電力で電池内蔵機器(50A)の電池(52)を充電する請求項1に記載される無接点給電方法。   The power supply stand (10) is a charging stand (10A), the portable device (50) is a battery built-in device (50A), and the battery built-in device is powered by power supplied from the charging stand (10A) to the battery built-in device (50A). The non-contact power feeding method according to claim 1, wherein the battery (52) of (50A) is charged. 前記給電台(10)に前記携帯機器(50)をセットして、給電開始後に所定のサンプリング周期で伝送効率を検出して異物検出する請求項1又は2に記載される無接点給電方法。   The non-contact power feeding method according to claim 1 or 2, wherein the portable device (50) is set on the power feeding base (10), and the foreign matter is detected by detecting the transmission efficiency at a predetermined sampling period after the power feeding is started. 給電開始後から0.1secないし10sec経過するまで、所定のサンプリング周期で伝送効率を検出して異物検出する請求項3に記載される無接点給電方法。   4. The non-contact power feeding method according to claim 3, wherein the foreign matter is detected by detecting the transmission efficiency at a predetermined sampling period until 0.1 sec to 10 sec elapse after the start of power feeding. 前記給電台(10)に前記携帯機器(50)をセットして、給電開始後の所定のタイミングで伝送効率を検出して異物検出する請求項1又は2に記載される無接点給電方法。   The non-contact power feeding method according to claim 1 or 2, wherein the portable device (50) is set on the power feeding base (10), and the transmission efficiency is detected at a predetermined timing after the power feeding is started to detect foreign matter. 前記給電台(10)に前記携帯機器(50)をセットして、給電開始後から10msecないし10sec経過したタイミングで伝送効率を検出して異物検出する請求項1又は2に記載される無接点給電方法。   3. The non-contact power supply according to claim 1 or 2, wherein the portable device (50) is set on the power supply base (10), and a foreign object is detected by detecting transmission efficiency at a timing 10 msec to 10 sec after the start of power supply. Method. 前記給電台(10)が、前記送電コイル(11)を携帯機器(50)の受電コイル(51)に接近させるように移動させる移動機構(16)を有する請求項1ないし6のいずれかに記載される無接点給電方法。   The said feeding stand (10) has a moving mechanism (16) which moves the said power transmission coil (11) so that it may approach the power receiving coil (51) of a portable apparatus (50). Contactless power supply method. 前記給電台(10)と前記携帯機器(50)が、前記携帯機器(50)を前記給電台(10)の定位置にセットする位置決め部機構(22)を有する請求項1ないし7のいずれかに記載される無接点給電方法。   The power feeding base (10) and the portable device (50) have a positioning part mechanism (22) for setting the portable device (50) at a fixed position of the power feeding base (10). The contactless power supply method described in 1. 前記位置決め部機構(22)が、前記給電台(10)に前記携帯機器(50)を定位置にセットする嵌合構造である請求項8に記載される無接点給電方法。   The contactless power feeding method according to claim 8, wherein the positioning unit mechanism (22) has a fitting structure in which the portable device (50) is set at a fixed position on the power feeding base (10). 異物を検出する状態で、前記送電コイル(11)への供給電力を制御する請求項1ないし9のいずれかに記載される無接点給電方法。   The non-contact power feeding method according to any one of claims 1 to 9, wherein power supplied to the power transmission coil (11) is controlled in a state in which a foreign object is detected. 異物検出する状態で、供給電力が設定値よりも大きい状態で、送電コイル(11)の給電電力を小さく制限する請求項10に記載される無接点給電方法。   The contactless power feeding method according to claim 10, wherein the power feeding power of the power transmission coil (11) is limited to a small value in a state where the foreign power is detected and the power supply is larger than a set value.
JP2011286888A 2011-12-27 2011-12-27 Contactless power supply method Pending JP2013135600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286888A JP2013135600A (en) 2011-12-27 2011-12-27 Contactless power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286888A JP2013135600A (en) 2011-12-27 2011-12-27 Contactless power supply method

Publications (1)

Publication Number Publication Date
JP2013135600A true JP2013135600A (en) 2013-07-08

Family

ID=48911938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286888A Pending JP2013135600A (en) 2011-12-27 2011-12-27 Contactless power supply method

Country Status (1)

Country Link
JP (1) JP2013135600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214023A (en) * 2015-05-13 2016-12-15 セイコーエプソン株式会社 Control device, electronic device and non-contact power transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214023A (en) * 2015-05-13 2016-12-15 セイコーエプソン株式会社 Control device, electronic device and non-contact power transmission system

Similar Documents

Publication Publication Date Title
JP5872374B2 (en) Contactless power supply method
JP5872373B2 (en) Contactless power supply method
US9007019B2 (en) Non-contact charging method
JP6090172B2 (en) Contactless charging method
EP2845290B1 (en) System and method for triggering power transfer across an inductive power coupling and non resonant transmission
JP5932743B2 (en) Non-contact power charging station having a planar spiral core structure, non-contact power receiver, and control method thereof
JP5362330B2 (en) Charging stand
WO2013047260A1 (en) Apparatus having built-in battery with charging stand, and apparatus having built-in battery
JP2009273327A (en) Battery built-in apparatus and charging cradle
EP3396807A1 (en) Energy receiver, detection method, power transmission system, detection device, and energy transmitter
WO2013011905A1 (en) Charging stand, battery pack and charging stand, and battery pack
JP2015195728A (en) Device and system for power transmission
JP2010183706A (en) Charging cradle
JP2013115978A (en) Portable device and electric power feeding base, and power feeding method for portable device
WO2013031589A1 (en) Battery charger, and charging station
JP2015006068A (en) Noncontact power supply method
JP2013240276A (en) Battery charger cradle
JP6081207B2 (en) Contactless power supply system, power receiving device, power supply stand, contactless power supply method
JP2014195334A (en) Battery built-in apparatus and charging stand, and battery built-in apparatus
WO2012173128A1 (en) Charging station
JP2015008554A (en) Non-contact power supply method
JP2015095905A (en) Contactless power transfer method
KR20120005886U (en) detachable wireless charging device
JP2015080337A (en) Non-contact power supply method
JP2013135600A (en) Contactless power supply method