JP2013134095A - 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 - Google Patents
共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 Download PDFInfo
- Publication number
- JP2013134095A JP2013134095A JP2011283246A JP2011283246A JP2013134095A JP 2013134095 A JP2013134095 A JP 2013134095A JP 2011283246 A JP2011283246 A JP 2011283246A JP 2011283246 A JP2011283246 A JP 2011283246A JP 2013134095 A JP2013134095 A JP 2013134095A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light detection
- mirror
- light
- detection region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 124
- 238000006073 displacement reaction Methods 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 84
- 230000005284 excitation Effects 0.000 claims description 14
- 239000013307 optical fiber Substances 0.000 claims description 8
- 239000012488 sample solution Substances 0.000 abstract description 19
- 239000002245 particle Substances 0.000 description 32
- 238000004458 analytical method Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000002060 fluorescence correlation spectroscopy Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000004204 optical analysis method Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009739 binding Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000007557 optical granulometry Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
【課題】共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置に於いて、光検出領域の位置の移動速度を、対物レンズの後方の光路のミラー又はレンズ等の光学要素の回転により得られる速度よりも速くできるようにすること。
【解決手段】本発明の光分析装置1では、回転運動することにより対物レンズ8の後方から入出射する光路の向きを変更して試料溶液内に於ける光検出領域の位置を移動する光路偏向用光学要素と、光路偏向用光学要素の回転によって形成される光検出領域の位置の経路から光検出領域の位置を振動的に変位させる光検出領域移動経路変位手段とが設けられる。光検出領域の位置は、前記の経路に沿った移動の際、振動的に変位するので、単位時間当たりの走査距離が長くなる。
【選択図】図1
【解決手段】本発明の光分析装置1では、回転運動することにより対物レンズ8の後方から入出射する光路の向きを変更して試料溶液内に於ける光検出領域の位置を移動する光路偏向用光学要素と、光路偏向用光学要素の回転によって形成される光検出領域の位置の経路から光検出領域の位置を振動的に変位させる光検出領域移動経路変位手段とが設けられる。光検出領域の位置は、前記の経路に沿った移動の際、振動的に変位するので、単位時間当たりの走査距離が長くなる。
【選択図】図1
Description
本発明は、共焦点顕微鏡又は多光子顕微鏡の光学系などの溶液中の微小領域からの光が検出可能な光学系を用いて、溶液中に分散又は溶解した原子、分子又はこれらの凝集体(以下、これらを「粒子」と称する。)、例えば、タンパク質、ペプチド、核酸、脂質、糖鎖、アミノ酸若しくはこれらの凝集体などの生体分子、ウイルス、細胞などの粒子状の対象物、或いは、非生物学的な粒子からの光を検出して、それらの状態(相互作用、結合・解離状態など)の分析又は解析に於いて有用な情報を取得することが可能な光分析技術に係り、より詳細には、上記の如き光学系を用いて発光する粒子からの光を検出して種々の光分析を可能にする光分析装置に係る。なお、本明細書に於いて、光を発する粒子(以下、「発光粒子」と称する。)は、それ自身が光を発する粒子、又は、任意の発光標識若しくは発光プローブが付加された粒子のいずれであってもよく、発光粒子から発せられる光は、蛍光、りん光、化学発光、生物発光、散乱光等であってよい。
近年の光計測技術の発展により、共焦点顕微鏡の光学系とフォトンカウンティング(1光子検出)も可能な超高感度の光検出技術とを用いて、一光子又は蛍光一分子レベルの微弱光の検出・測定が可能となっている。そこで、そのような微弱光の計測技術を用いて、生体分子等の特性、分子間相互作用又は結合・解離反応の検出を行う光分析技術が種々提案されている。そのような光分析技術としては、例えば、蛍光相関分光分析(Fluorescence Correlation Spectroscopy:FCS。例えば、特許文献1−3参照)、蛍光強度分布分析(Fluorescence-Intensity Distribution Analysis:FIDA。例えば、特許文献4)やフォトンカウンティングヒストグラム(Photon Counting Histogram:PCH。例えば、特許文献5)などが知られている。
更に、本願出願人は、特許文献6〜8に於いて、共焦点顕微鏡又は多光子顕微鏡の光学系などの溶液中の微小領域からの光が検出可能な光学系を用いた光分析技術であって、FCS、FIDA等の光分析技術とは異なる原理による新規な光分析技術を提案した。かかる新規な光分析技術(以下、「走査分子計数法」と称する。)では、試料溶液内に於いて光の検出領域である微小領域(以下、「光検出領域」と称する。励起光が使用される場合には、励起光の集光領域に概ね一致する。)の位置を移動させながら、即ち、光検出領域により試料溶液内を走査しながら、光検出領域が試料溶液中に分散してランダムに運動する発光粒子を包含したときに、その発光粒子から発せられる光を個別に検出し、これにより、試料溶液中の発光粒子を一つずつ検出して、発光粒子のカウンティングや試料溶液中の発光粒子の濃度又は数密度に関する情報の取得が可能となる。
上記の如き走査分子計数法、FCS、FIDA、PCH等の光分析技術を実行する共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置のいくつかに於いては、試料溶液内を光検出領域により走査する構成、即ち、対物レンズの光検出領域の位置を移動するための構成が装備される(特許文献9)。かかる光検出領域の位置の移動のための構成に於いては、典型的には、対物レンズの後方の光路(励起光源及び/又は光検出器と対物レンズとの間の光路に配置されるミラー又はレンズ等の光学要素を回転させて、対物レンズ後方に出入りする光の向きを偏向し、これにより、対物レンズ前方の試料溶液内に形成される光検出領域の位置が移動される。この対物レンズの後方の光路の光学要素の回転による光検出領域の位置の移動の場合、その移動速度は、光学要素の回転速度により決定されるところ、光学要素の回転を無制限に速くすることはできないため、光検出領域の位置の移動速度には限界がある。
しかしながら、上記の光分析技術の実施の際、光学要素の回転速度を許容可能な最大速度に設定して得られる光検出領域の位置の移動速度よりも速い速度にて、光検出領域の位置の移動を実行したい場合がある。例えば、走査分子計数法やFIDAに於いて、良好な計測結果を得るためには、或る程度の数の観測対象となる発光粒子を検出する必要があるので、試料溶液中の観測対象となる発光粒子の濃度が低い場合、より長い距離に亘る試料溶液内の走査が実行されることとなる。そのような場合、光検出領域の位置の移動速度が速いほど、測定時間が短縮されて有利である。
かくして、本発明の一つの目的は、上記の如き走査分子計数法、FCS、FIDA、PCH等の光分析技術のための共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置に於いて、光検出領域の位置の移動速度を、単に対物レンズの後方の光路の光学要素を回転することにより得られる速度よりも速くできる新規な構成を提供することである。
本発明によれば、上記の課題は、共焦点顕微鏡又は多光子顕微鏡の光学系を用いて試料内の光検出領域からの光を検出し分析する光分析装置であって、回転運動することにより対物レンズの後方(像空間側)から入出射する光路の向きを変更して光検出領域の位置を移動する光路偏向用光学要素と、光路偏向用光学要素の回転によって形成される光検出領域の位置の経路から光検出領域の位置を振動的に変位させる光検出領域移動経路変位手段とを含むことを特徴とする装置によって達成される。かかる構成に於いて、共焦点顕微鏡又は多光子顕微鏡の光学系の「光検出領域」とは、コンフォーカル・ボリューム、即ち、顕微鏡に於いて光が検出される微小領域であり、対物レンズから励起光が与えられる場合には、その励起光が集光された領域に相当する。「光路偏向用光学要素」とは、典型的には、反射ミラーであるが、レンズ等を適宜回転させることにより、入射又は出射する光線の方向を変更可能な光学要素であってよい。また、試料は、典型的には、原子、分子又はそれらの凝集体などの、光を発する粒子(発光粒子)であって、基板などに固定されず、溶液中を自由にブラウン運動している粒子が分散又は溶解された溶液であってよい。発光粒子は、典型的には、蛍光性粒子であるが、その他の発光する粒子(りん光性粒子など)であってもよい。
上記の本発明の装置は、基本的には、上記の特許文献等に記載されている装置と同様に、光路偏向用光学要素を回転運動させることにより、対物レンズの後方に入出する光線の向きを変更し、これにより、前方(物空間側)の焦点領域に相当する光検出領域の位置が移動可能な構成を有する装置であってよい。しかしながら、本発明の装置の場合には、光路偏向用光学要素の回転運動によって形成される光検出領域の位置の経路に対して、更に、光検出領域の位置を振動的に変位させる機構(光検出領域移動経路変位手段)が設けられる。かかる構成によれば、光検出領域は、光路偏向用光学要素の回転中に、その回転運動より決定される経路に沿って振動的に変位しながら移動することとなるので、単位時間当たりに光検出領域の通過する距離は、光路偏向用光学要素の回転運動より決定される経路の長さよりも長くなる。即ち、光検出領域の実際の移動速度は、光路偏向用光学要素の回転運動より決定される経路を辿る速度よりも速くなるので、光路偏向用光学要素の回転運動を最大限にすれば、単に光路偏向用光学要素の回転運動より決定される経路に沿って光検出領域を移動させる場合の最大速度を越える走査速度が達成できることとなる。
上記の構成の実施の態様に於いて、光路偏向用光学要素が、典型的には、回転軸と該回転軸に垂直な面に対して傾いた方向に延在する鏡面とを有し回転軸周りに回転駆動される偏向ミラーであってよい。その場合、光検出領域移動経路変位手段は、偏向ミラーの回転中に鏡面の向きを振動的に変位し、光路偏向用光学要素の回転運動より決定される経路から光検出領域の位置が振動的に変位するよう構成されていてよい。鏡面の向きを振動的に変位させる機構としては、一つの態様に於いては、まず、偏向ミラーの外周に沿って回転軸に垂直な面内に延在し該偏向ミラーと一体的に回転する環状部材が設けられ、その環状部材の内周から直径方向に延在する棒状部材が偏向ミラーに連結される。そして、棒状部材の延在方向を軸として該棒状部材にねじれ振動を発生させる手段が設けられ、偏向ミラーの回転中に棒状部材のねじれ振動によって偏向ミラーの鏡面が棒状部材の延在方向の軸周りに振動的に回転又は揺動する態様にて鏡面の向きが振動的に変位されるようになっていてよい。棒状部材にねじれ振動を発生させる手段としては、例えば、偏向ミラーの裏面に接触して棒状部材の延在方向の軸周りに振動的な回転力を与える圧電素子を設ける構成、或いは、環状部材の外周又は裏面に形成されたローレット形状溝を形成し、環状部材と一体的には回転せずにローレット形状溝に接触する突起部材を設け、偏向ミラーと環状部材の回転中に突起部材がローレット形状の連続する凸部に順々に衝突することにより機械的な振動を発生し、これにより、棒状部材のねじれ振動が発生する構成などが採用されてよい。また、棒状部材ついては、任意の弾性を有するよう部材及び形状が選択されてよい。
上記の鏡面の向きを振動的に変位させる態様によれば、光検出領域は、偏向ミラーの回転によって画定される軌道に沿って該軌道の概ね半径方向に振動的に変位しながら移動することとなる。
また、光検出領域移動経路変位手段の別の態様に於いては、光学系に於けるレンズ又は励起光を出射する光ファイバーの先端若しくはピンホールのうちの少なくとも一つの位置を光軸方向に振動的に変位する手段が採用されてよい。その場合、光検出領域の位置は、光路偏向用光学要素の回転によって形成される光検出領域の位置の経路から光軸方向に振動的に変位することとなる。
本発明の装置により実行される光分析技術は、走査分子計数法(特許文献6−8)、FIDA(特許文献4)、FCS(特許文献1−3)等の処理に従って、典型的には、タンパク質、ペプチド、核酸、脂質、糖鎖、アミノ酸若しくはこれらの凝集体などの生体分子、ウイルス、細胞などの粒子状の生物学的な対象物の溶液中の状態の分析又は解析の用途に用いられるが、非生物学的な粒子(例えば、原子、分子、ミセル、金属コロイドなど)の溶液中の状態の分析又は解析に用いられてもよく、そのような場合も本発明の範囲に属することは理解されるべきである。
かくして、上記の本発明の構成によれば、光検出領域の位置は、光路偏向用光学要素の回転によって形成される経路を辿って移動する際に、かかる経路の進行方向に対して概ね垂直方向(経路面に於ける経路の放射方向又は経路面に対する垂直方向)に振動的に変位するので、光路偏向用光学要素の一回転当たりの走査距離が増大することとなる。換言すれば、光検出領域が閉じた軌道を周回する場合には、一周期当たりの光検出領域の位置の移動距離が長くなり、従って、光検出領域の位置の移動速度を、単に光路偏向用光学要素の回転による場合の速度よりも速くすることが可能となる。そして、かかる構成によれば、より短い時間により長い距離の走査が達成され、光測定に要する時間の低減が図られることとなる。
本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。
1…光分析装置(共焦点顕微鏡)
2…光源
3…シングルモードオプティカルファイバー
3a…ファイバー出射端
4…コリメータレンズ
4a…ピンホール
5…ダイクロイックミラー
6、7、11…反射ミラー
7a…ミラー偏向器
8…対物レンズ
8a…対物レンズ内のレンズ要素
8b…対物レンズ鏡筒
9…マイクロプレート
10…ウェル(試料溶液容器)
12…コンデンサーレンズ
13…ピンホール
14…バリアフィルター
15…マルチモードオプティカルファイバー
16…光検出器
17…ミラー偏向器モーター
17a…ステージ位置変更装置
18…コンピュータ
20…環状部材
22…棒状部材
24…ミラー台座
30…圧電素子
30a…駆動部材
32…舌部
34…端子電極
34a…端子
40…ローレット形状凸部
42…突起部材
2…光源
3…シングルモードオプティカルファイバー
3a…ファイバー出射端
4…コリメータレンズ
4a…ピンホール
5…ダイクロイックミラー
6、7、11…反射ミラー
7a…ミラー偏向器
8…対物レンズ
8a…対物レンズ内のレンズ要素
8b…対物レンズ鏡筒
9…マイクロプレート
10…ウェル(試料溶液容器)
12…コンデンサーレンズ
13…ピンホール
14…バリアフィルター
15…マルチモードオプティカルファイバー
16…光検出器
17…ミラー偏向器モーター
17a…ステージ位置変更装置
18…コンピュータ
20…環状部材
22…棒状部材
24…ミラー台座
30…圧電素子
30a…駆動部材
32…舌部
34…端子電極
34a…端子
40…ローレット形状凸部
42…突起部材
以下、本発明の好ましい実施形態について詳細に説明する。
光分析装置の構成
本発明は、図1(A)に模式的に例示されている如き、走査分子計数法、FCS、FIDA、PCH等が実行可能な共焦点顕微鏡の光学系と光検出器とを組み合わせてなる光分析装置に適用される。図1(A)を参照して、光分析装置1は、光学系2〜17と、光学系の各部の作動を制御すると共にデータを取得し解析するためのコンピュータ18とから構成される。光分析装置1の光学系は、通常の共焦点顕微鏡の光学系と同様であってよく、そこに於いて、光源2から放射されシングルモードファイバー3内を伝播したレーザー光(Ex)が、ファイバーの出射端に於いて固有のNAにて決まった角度にて発散する光となって放射され、コリメーター(コリメートレンズ)4によって平行光となり、ダイクロイックミラー5、反射ミラー6、7にて反射され、対物レンズ8へ入射される。対物レンズ8の上方には、典型的には、1〜数十μLの試料溶液が分注される試料容器又はウェル10が配列されたマイクロプレート9が配置されており、対物レンズ8から出射したレーザー光は、試料容器又はウェル10内の試料溶液中で焦点を結び、図1(B)に模式的に示されている如き光強度の強い領域(焦点領域)が形成される。焦点領域は、通常、1〜10fL程度の実効体積を有する本光分析装置に於ける光検出領域であり、コンフォーカル・ボリュームと称される。コンフォーカル・ボリュームに於いては、典型的には、光強度が領域の中心を頂点とするガウス型分布又はローレンツ型分布となり、その実効体積は、光強度が1/e2となる面を境界とする略楕円球体の体積である。そして、試料溶液中には、観測対象物である発光粒子、典型的には、蛍光色素等の発光標識が付加された分子が分散又は溶解されており、発光粒子が焦点領域に進入すると、その間、発光粒子が励起され光が放出される。放出された光(Em)は、対物レンズ8、ダイクロイックミラー5を通過し、ミラー11にて反射してコンデンサーレンズ12にて集光され、ピンホール13にて焦点領域の像が形成される。ピンホール13は、対物レンズ8の焦点位置と共役の位置に配置されており、これにより、図1(B)に例示の如き焦点領域内から発せられた光のみがピンホール13を通過し、焦点面以外からの光は遮断される。
本発明は、図1(A)に模式的に例示されている如き、走査分子計数法、FCS、FIDA、PCH等が実行可能な共焦点顕微鏡の光学系と光検出器とを組み合わせてなる光分析装置に適用される。図1(A)を参照して、光分析装置1は、光学系2〜17と、光学系の各部の作動を制御すると共にデータを取得し解析するためのコンピュータ18とから構成される。光分析装置1の光学系は、通常の共焦点顕微鏡の光学系と同様であってよく、そこに於いて、光源2から放射されシングルモードファイバー3内を伝播したレーザー光(Ex)が、ファイバーの出射端に於いて固有のNAにて決まった角度にて発散する光となって放射され、コリメーター(コリメートレンズ)4によって平行光となり、ダイクロイックミラー5、反射ミラー6、7にて反射され、対物レンズ8へ入射される。対物レンズ8の上方には、典型的には、1〜数十μLの試料溶液が分注される試料容器又はウェル10が配列されたマイクロプレート9が配置されており、対物レンズ8から出射したレーザー光は、試料容器又はウェル10内の試料溶液中で焦点を結び、図1(B)に模式的に示されている如き光強度の強い領域(焦点領域)が形成される。焦点領域は、通常、1〜10fL程度の実効体積を有する本光分析装置に於ける光検出領域であり、コンフォーカル・ボリュームと称される。コンフォーカル・ボリュームに於いては、典型的には、光強度が領域の中心を頂点とするガウス型分布又はローレンツ型分布となり、その実効体積は、光強度が1/e2となる面を境界とする略楕円球体の体積である。そして、試料溶液中には、観測対象物である発光粒子、典型的には、蛍光色素等の発光標識が付加された分子が分散又は溶解されており、発光粒子が焦点領域に進入すると、その間、発光粒子が励起され光が放出される。放出された光(Em)は、対物レンズ8、ダイクロイックミラー5を通過し、ミラー11にて反射してコンデンサーレンズ12にて集光され、ピンホール13にて焦点領域の像が形成される。ピンホール13は、対物レンズ8の焦点位置と共役の位置に配置されており、これにより、図1(B)に例示の如き焦点領域内から発せられた光のみがピンホール13を通過し、焦点面以外からの光は遮断される。
かくして、ピンホール13を通過した光は、バリアフィルター14を透過して(ここで、特定の波長帯域の光成分のみが選択される。)、マルチモード光ファイバー15に導入され、対応する光検出器16に到達する。光検出器16では、逐次的に到来する光が時系列の電気信号に変換されて、コンピュータ18へ入力され、後に説明される態様にて光分析のための処理が為される。光検出器16としては、好適には、フォトンカウンティングに使用可能な超高感度の光検出器が用いられ、これにより、1つの発光粒子からの光、例えば、一個又は数個の蛍光色素分子からの微弱光が検出可能となる。光検出器16には、典型的には、フォトダイオード、より好適には、APD(アバランシェフォトダイオード)が採用される。かくして、上記の構成により、発光粒子からの光の強度が計測されることとなる。
また、上記の光分析装置の光学系に於いて、走査分子計数法の実行の際、或いは、FCS、FIDA、PCH等の実行の態様によって、光検出領域により試料溶液内を光検出領域により走査する、即ち、試料溶液内に於いて焦点領域(即ち、光検出領域)の位置が移動される。かかる光検出領域の位置を移動するための機構としては、図1(C)に模式的に例示されている如く、反射ミラー7の向きを変更するミラー偏向器7aが採用されてよい。ミラー偏向器7aに於いては、反射ミラー7の裏面に該反射ミラー7を回転(自転)するモーター17が備えられる。その際、反射ミラー7の鏡面は、その回転軸(即ち、モーター17の回転軸)に垂直な面に対して傾いた方向を向いており、従って、反射ミラー7が回転することにより、対物レンズ内を通過する光路が変更され、光検出領域の位置が移動することとなる。(励起光が照射される場合、反射ミラー7の回転と共に、励起光の進行方向が変更され、集光位置が移動することとなる。また、試料溶液側から対物レンズに入射する光について、反射ミラー7の回転と共に、ピンホール13と共役の位置が移動するため、光の検出される領域、即ち、ピンホール13に結像する物空間内の領域、が移動することとなる。)反射ミラー7を回転することにより得られる光検出領域の位置の移動経路は、円形又は楕円形となる。なお、後に詳細に述べる如く、本発明に於いては、上記の如く反射ミラー7の回転により達成される光検出領域の位置の移動速度よりも速い速度を達成するべく、反射ミラー7の回転中に、上記の反射ミラー7の回転により達成される移動経路から振動的に変位しながら光検出領域の位置が移動される機構が更に設けられる。
更に、追加的な構成として、顕微鏡のステージ(図示せず)には、観察するウェル10を変更するべく、マイクロプレート9の水平方向位置を移動するためのステージ位置変更装置17aが設けられていてよい。ステージ位置変更装置17aの作動は、コンピュータ18により制御されてよい。
発光粒子が多光子吸収により発光する場合には、上記の光学系は、多光子顕微鏡として使用される。その場合には、励起光の焦点領域(光検出領域)のみで光の放出があるので、ピンホール13は、除去されてよい。発光粒子がりん光により発光する場合には、上記の共焦点顕微鏡の光学系がそのまま用いられる。更に、光分析装置1に於いては、図示の如く、複数の励起光源2が設けられていてよく、発光粒子を励起する光の波長によって適宜、励起光の波長が選択できるようになっていてよい。
ミラー偏向器の改良
「発明の概要」に於いて触れたように、走査分子計数法等の光分析技術の実施の際、ミラー偏向器のモーターの回転速度を許容可能な最大速度に設定して得られる光検出領域の位置の移動速度よりも速い速度にて、光検出領域の位置の移動を実行したい場合がある。例えば、走査分子計数法やFIDAに於いて、試料溶液中の観測対象となる発光粒子の濃度が低い場合、良好な計測結果を得るのに十分な走査距離が長くなるので、光検出領域の位置の移動速度は、ミラー偏向器のモーターの回転速度を許容可能な最大速度に設定して得られる光検出領域の位置の移動速度よりも速くできれば、測定時間が短縮されて有利である。そこで、本発明では、一つの実施形態として、反射ミラー7とそれを回転するミラー偏向器の構造の改良が為される。
「発明の概要」に於いて触れたように、走査分子計数法等の光分析技術の実施の際、ミラー偏向器のモーターの回転速度を許容可能な最大速度に設定して得られる光検出領域の位置の移動速度よりも速い速度にて、光検出領域の位置の移動を実行したい場合がある。例えば、走査分子計数法やFIDAに於いて、試料溶液中の観測対象となる発光粒子の濃度が低い場合、良好な計測結果を得るのに十分な走査距離が長くなるので、光検出領域の位置の移動速度は、ミラー偏向器のモーターの回転速度を許容可能な最大速度に設定して得られる光検出領域の位置の移動速度よりも速くできれば、測定時間が短縮されて有利である。そこで、本発明では、一つの実施形態として、反射ミラー7とそれを回転するミラー偏向器の構造の改良が為される。
反射ミラー7とミラー偏向器の改良の第一の実施形態に於いては、図2(A)に模式的に描かれている如く、反射ミラー7は、環状部材20上にて、その内周から直径方向に延在する棒状部材22のミラー台座24の上に配置され、環状部材20の底部に、ミラー7と環状部材20とを一体的に回転するモーター17が連結される。また、図2(B)、(C)に模式的に描かれている如く、ミラー台座24の裏面には、棒状部材の長手方向に沿った舌部32が下方に延在し、舌部32に対して、環状部材20の内周に取り付けられた圧電素子30が連結される。そして、環状部材20の外周には、環状部材20の回転中に於いても圧電素子30への電力の供給を可能にする端子電極34が囲繞され、端子電極34には、電力源(図示せず)からの電力を供給する端子34aが接触する。
上記の反射ミラー7を担持したミラー偏向器の作動に於いては、まず、従前の装置と同様に、モーター17の回転により、環状部材20とミラー7とが一体的に回転する(矢印a)。そうすると、光検出領域は、図2(D)中で点線にて示されている円形又は楕円形の軌道αに沿って移動することとなる。しかしながら、図示の実施形態に於いては、更に、端子電極34を介して圧電素子30へ振動電圧が印加され、これにより、圧電素子30がその長手方向(図2(C)の矢印c)に伸縮運動せしめられ、舌部32とミラー台座24とが揺動させられる。そして、舌部32とミラー台座24が揺動すると、ミラー台座24を支持する棒状部材22がその長手方向の軸線周りに振動的にねじれ運動を生ずることとなる。そうすると、ミラー7は、矢印aの方向に回転しつつ、更に、矢印bの方向に振動的に揺動することとなるので、ミラー7にて反射される光の方向も変位し、図2(D)中で実線にて示されている如く、軌道αから振動的に半径方向に変位した軌道βを辿ることとなる。ここに於いて、光検出領域が軌道βを辿る場合も移動周期は、モーター17の一回転の周期と同じである一方、軌道βの走査距離は、明らかに軌道αよりも長いので、かくして、上記の如くミラー7が振動的に揺動することにより、光検出領域の位置の移動速度を、単にミラー7を回転させるだけの場合よりも速くすることが可能となる。なお、圧電素子に与えられる電圧及びその振動数は、実験的に又は理論的に適宜設定されてよい。
図3は、図2(D)の軌道βと同様の軌道を実現する別のミラー偏向器の構成の実施形態を示している。まず、図3(A)に示されている例に於いては、環状部材20、棒状部材22等の構成は、図2の場合と同様であるが圧電素子30が、ミラー台座24の裏面に於ける棒状部材22の長手方向の軸線に対して横方向にずれた部位に縦向きに取り付けられ、モーター17の回転中、圧電素子30は、矢印cの方向に伸縮運動させられる。そうすると、ミラー台座24を支持する棒状部材22がその長手方向の軸線周りに振動的にねじれ運動を生じ、これにより、ミラー7は、矢印aの方向に回転しつつ、更に、矢印bの方向に振動的に揺動することとなるので、ミラー7にて反射される光の方向も変位し、光検出領域が図2(D)中で実線にて示されている如く、軌道αから振動的に半径方向に変位した軌道βを辿ることとなる。
図3(B)に示されている実施形態に於いては、環状部材20の外周の全周に亘ってローレット形状の凸部、或いは、鋸歯状の凸部が設けられ、環状部材20の外部より、任意の弾性材料から形成された突起部材42がローレット形状の溝に接触させられる(圧電素子30及びその駆動のための構成は設けられなくてよい。)。かかる構成の作動に於いては、モーター17が回転すると、突起部材42の先端がローレット形状の連続する凸部に順々に衝突することにより(矢印d)、環状部材20に機械的な振動が発生する。そうすると、機械的な振動によって、棒状部材22とミラー台座24とに於いて、棒状部材22の長手方向の軸周りにねじれ振動が生じ、ミラー7を担持するミラー台座24が振動的に矢印bの方向に揺動することとなり、これにより、ミラー7にて反射される光の方向も変位し、光検出領域が図2(D)中で実線にて示されている如く、軌道αから振動的に半径方向に変位した軌道βを辿ることとなる。なお、ローレット形状の凸部の数、大きさ、突起部材42の弾性は、所望の光検出領域の振動的変位が得られるよう実験的に又は理論的に選択されてよい。光検出領域の振動的変位が必要ない場合には、突起部材42がローレット形状の凸部から隔置される。また、ローレット形状の凸部は、環状部材20の外周の任意の高さ位置(中間、底部など)に設けられてもよい。
光学系に於ける改良
光検出領域の位置を、軌道α、即ち、単にミラー7を回転した場合に得られる経路から振動的に変位させることにより、光検出領域の位置の移動速度を増大することは、別の態様として、光学系内のレンズ要素、ピンホール及び光ファイバーの出射端の光軸方向の位置を前後に振動的に移動することによっても達成される。例えば、その第一の例としては、対物レンズ8内のレンズ要素が前後に振動的に変位される。具体的には、図4(A)に描かれている如く、対物レンズ8レンズ要素の一つ8aに対して、鏡筒8bの外側から駆動部材30aが取り付けられる。駆動部材30aには、光軸方向(矢印c)に伸縮するよう配置された圧電素子30が接着し、これにより、圧電素子30が伸縮すると、レンズ要素8aが前後に振動的に変位される。かかる構成によれば、モーター17の回転中、光検出領域は、図4(E)に描かれている如く、軌道αに沿って移動する際に、軌道αから光軸方向に変位し、軌道γを辿ることとなる。この場合も、図2、3の例と同様に、光検出領域の移動周期は、モーター17の一回転の周期と同じである一方、軌道γの走査距離は、明らかに軌道αよりも長いので、光検出領域の位置の移動速度は、単にミラー7を回転させるだけの場合よりも速くなる。
光検出領域の位置を、軌道α、即ち、単にミラー7を回転した場合に得られる経路から振動的に変位させることにより、光検出領域の位置の移動速度を増大することは、別の態様として、光学系内のレンズ要素、ピンホール及び光ファイバーの出射端の光軸方向の位置を前後に振動的に移動することによっても達成される。例えば、その第一の例としては、対物レンズ8内のレンズ要素が前後に振動的に変位される。具体的には、図4(A)に描かれている如く、対物レンズ8レンズ要素の一つ8aに対して、鏡筒8bの外側から駆動部材30aが取り付けられる。駆動部材30aには、光軸方向(矢印c)に伸縮するよう配置された圧電素子30が接着し、これにより、圧電素子30が伸縮すると、レンズ要素8aが前後に振動的に変位される。かかる構成によれば、モーター17の回転中、光検出領域は、図4(E)に描かれている如く、軌道αに沿って移動する際に、軌道αから光軸方向に変位し、軌道γを辿ることとなる。この場合も、図2、3の例と同様に、光検出領域の移動周期は、モーター17の一回転の周期と同じである一方、軌道γの走査距離は、明らかに軌道αよりも長いので、光検出領域の位置の移動速度は、単にミラー7を回転させるだけの場合よりも速くなる。
また、図4(E)の軌道γは、励起光の顕微鏡の光学系への導入部位に於いて、一部の光学要素の光軸方向の位置を振動的に変位することによっても達成可能である。具体的には、コリメートレンズ4(図4(B))、励起光を点光源にするためのピンホール4a(図4(C))、或いは、励起光を光学系に導入するための光ファイバー3の先端3a(図4(D))を、光軸方向に伸縮するよう配置された圧電素子30に(駆動部材30aを介して)連結し、モーター17によるミラー7の回転と共に、圧電素子30を伸縮運動させると、励起光の集光領域、即ち、光検出領域は、図4(E)の軌道γを辿るように移動することとなる。なお、その場合、受光側のピンホール13の位置も同調して変位させることが好ましい。更に、図4に於ける光学系の改良された構成は、図2又は3のミラー偏向器に於ける改良と組み合わされてよい。その場合、更に移動速度を速くすることが可能となる。
かくして、上記の本発明によれば、モーター17によってミラー7が回転される際に、光検出領域の位置は、ミラー7の回転によって形成される経路の進行方向に対して概ね垂直方向(経路面に於ける経路の放射方向又は光軸に対する垂直方向)に振動的に変位するので、一周期当たりの走査距離が増大する、即ち、移動速度が増大することとなり、より短い時間により長い距離の走査が達成され、光測定に要する時間の低減が図られることとなる。
Claims (6)
- 共焦点顕微鏡又は多光子顕微鏡の光学系を用いて試料内の光検出領域からの光を検出し分析する光分析装置であって、回転運動することにより対物レンズの後方から入出射する光路の向きを変更して前記光検出領域の位置を移動する光路偏向用光学要素と、前記光路偏向用光学要素の回転によって形成される前記光検出領域の位置の経路から前記光検出領域の位置を振動的に変位させる光検出領域移動経路変位手段とを含むことを特徴とする装置。
- 請求項1の装置であって、前記光路偏向用光学要素が、回転軸と該回転軸に垂直な面に対して傾いた方向に延在する鏡面とを有し前記回転軸周りに回転駆動される偏向ミラーであり、前記光検出領域移動経路変位手段が、前記偏向ミラーの回転中に前記鏡面の向きを振動的に変位し、前記経路から前記光検出領域の位置が振動的に変位することを特徴とする装置。
- 請求項2の装置であって、前記光検出領域移動経路変位手段が、前記偏向ミラーの外周に沿って前記回転軸に垂直な面内に延在し該偏向ミラーと一体的に回転する環状部材と、前記環状部材の内周から直径方向に延在して前記偏向ミラーに連結した棒状部材と、前記棒状部材の延在方向を軸として該棒状部材にねじれ振動を発生させる手段とを含み、前記偏向ミラーの回転中に前記棒状部材のねじれ振動によって前記偏向ミラーの鏡面が前記棒状部材の延在方向の軸周りに振動的に回転することを特徴とする装置。
- 請求項3の装置であって、前記棒状部材にねじれ振動を発生させる手段が、前記偏向ミラーの裏面に接触して前記棒状部材の延在方向の軸周りに振動的な回転力を与える圧電素子であることを特徴とする装置。
- 請求項3の装置であって、前記環状部材の外周又は裏面に形成されたローレット形状の溝が形成され、前記棒状部材にねじれ運動を発生させる手段が、前記環状部材と一体的には回転せずに前記ローレット形状の溝に接触する突起部材であり、前記偏向ミラーと前記環状部材の回転中に前記突起部材が前記ローレット形状の連続する凸部に順々に衝突することにより機械的な振動を発生し、これにより、前記棒状部材のねじれ振動が発生することを特徴とする装置。
- 請求項1の装置であって、前記光検出領域移動経路変位手段が、前記光学系に於けるレンズ又は励起光を出射する光ファイバーの先端若しくはピンホールのうちの少なくとも一つの位置を光軸方向に振動的に変位する手段であり、これにより、前記光検出領域の位置が前記経路から前記光軸方向に振動的に変位することを特徴とする装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283246A JP2013134095A (ja) | 2011-12-26 | 2011-12-26 | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283246A JP2013134095A (ja) | 2011-12-26 | 2011-12-26 | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013134095A true JP2013134095A (ja) | 2013-07-08 |
Family
ID=48910896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011283246A Pending JP2013134095A (ja) | 2011-12-26 | 2011-12-26 | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013134095A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10788467B2 (en) | 2014-10-27 | 2020-09-29 | Genentech, Inc. | Systems and methods for two-dimensional chromatography |
-
2011
- 2011-12-26 JP JP2011283246A patent/JP2013134095A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10788467B2 (en) | 2014-10-27 | 2020-09-29 | Genentech, Inc. | Systems and methods for two-dimensional chromatography |
US11340199B2 (en) | 2014-10-27 | 2022-05-24 | Genentech, Inc. | Systems and methods for two-dimensional chromatography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dupont et al. | Nanoscale three-dimensional single particle tracking | |
JP5250152B2 (ja) | 光分析装置、光分析方法並びに光分析用コンピュータプログラム | |
JP5904996B2 (ja) | 単一発光粒子検出を用いた光分析装置、光分析方法並びに光分析用コンピュータプログラム | |
EP1906172A1 (en) | Light measuring instrument | |
JP5904947B2 (ja) | 単一発光粒子検出を用いた粒子の拡散特性値の測定方法 | |
JP6013338B2 (ja) | 単一発光粒子検出を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム | |
JP5856983B2 (ja) | 単一発光粒子からの光の検出を用いた光分析方法及び光分析装置 | |
JP6120858B2 (ja) | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム | |
JP2002062261A (ja) | 光学装置および顕微鏡 | |
US7556968B2 (en) | Scanning probe microscope and molecular structure change observation method | |
JP2014044265A (ja) | 光走査装置 | |
TW201702574A (zh) | 即時空間與時間光譜量測系統及其量測模組 | |
JP2012132742A (ja) | 時間分解蛍光測定装置、及び方法 | |
US10908073B2 (en) | High throughput biochemical screening | |
US7227126B2 (en) | Light detection device | |
JP2013134095A (ja) | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置 | |
WO2005124321A1 (ja) | 測定装置 | |
JP2001194303A (ja) | 蛍光分子拡散運動解析装置 | |
JP4188351B2 (ja) | 多チャネル試料分析用の光学系及びこれを採用した多チャネル試料分析器 | |
WO2008010120A2 (en) | Employing beam scanning for optical detection | |
JP2004144839A (ja) | 光走査装置 | |
CN114280017B (zh) | 微机械界面纳米级缺陷检测装置 | |
JP2000314839A (ja) | レーザ走査型顕微鏡 | |
JP2007017561A (ja) | 3次元位置観測方法及び装置 | |
US20050259258A1 (en) | Light detection device |