[go: up one dir, main page]

JP2013120824A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2013120824A
JP2013120824A JP2011267666A JP2011267666A JP2013120824A JP 2013120824 A JP2013120824 A JP 2013120824A JP 2011267666 A JP2011267666 A JP 2011267666A JP 2011267666 A JP2011267666 A JP 2011267666A JP 2013120824 A JP2013120824 A JP 2013120824A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
light
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011267666A
Other languages
Japanese (ja)
Inventor
Juri Takatsuka
珠里 高塚
Sachiko Kawada
祥子 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011267666A priority Critical patent/JP2013120824A/en
Publication of JP2013120824A publication Critical patent/JP2013120824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device capable of always exerting target heat dissipation properties even when mounted at a position deviated from a targetted mounting position of a light-emitting element.SOLUTION: The light-emitting device comprises: a light-emitting element having a semiconductor layer on one surface of a substrate; and a mounting substrate which fixes the other surface of the substrate to a surface via an insulating adhesive. Recesses and protrusions are provided on the other surface of the substrate. An insulating adhesive is filled in a plurality of recesses of the recesses and protrusions. The light-emitting element is mounted on the mounting substrate with the plurality of protrusions contacting with the mounting substrate.

Description

本発明は、発光デバイスに関する。   The present invention relates to a light emitting device.

絶縁性接着剤を用いて、実装基板に発光素子が実装された発光デバイスが知られている(例えば、特許文献1参照のこと)。   A light-emitting device in which a light-emitting element is mounted on a mounting substrate using an insulating adhesive is known (for example, see Patent Document 1).

図9に示す、従来の発光デバイス101は、実装面に凹凸部105(凹部105a、凸部105b)を有する実装基板(リードフレーム)111aに、発光素子102を実装して構成される。   A conventional light emitting device 101 shown in FIG. 9 is configured by mounting the light emitting element 102 on a mounting substrate (lead frame) 111a having a concavo-convex portion 105 (concave portion 105a, convex portion 105b) on a mounting surface.

発光素子102は、平板状のサファイア基板103の一方の面に半導体層104を有した構成となっており、実装基板111aの凸部105bが、基板103の他方の面と接触した状態で、絶縁性接着剤113によって実装基板111aに固定される。このとき絶縁性接着剤113は、凹部105a内部だけでなく、基板103の外周部にまで回り込んで、発光素子102を実装基板111aに固定する。   The light-emitting element 102 has a structure in which a semiconductor layer 104 is provided on one surface of a flat sapphire substrate 103, and the projection 105 b of the mounting substrate 111 a is in contact with the other surface of the substrate 103. It is fixed to the mounting substrate 111a by the adhesive 113. At this time, the insulating adhesive 113 not only enters the recess 105a but also reaches the outer periphery of the substrate 103, and fixes the light emitting element 102 to the mounting substrate 111a.

また、半導体層104と実装基板111a、111bとは、2本のボンディングワイヤー121で電気的に接続されており、実装基板111a、111b、ボンディングワイヤー121を介して半導体層104に電流を供給したときに、その半導体層104を発光させて、図中矢印方向に向けて、光を出射する。   In addition, the semiconductor layer 104 and the mounting substrates 111a and 111b are electrically connected by two bonding wires 121, and current is supplied to the semiconductor layer 104 through the mounting substrates 111a and 111b and the bonding wires 121. Then, the semiconductor layer 104 is caused to emit light, and light is emitted in the direction of the arrow in the figure.

特開平11−26811号公報(第3−4頁、図1)JP 11-26811 A (page 3-4, FIG. 1)

しかしながら、発光素子102の外形サイズが、例えば200μm×200μm程度の小型の素子を用いて、従来構成を実現しようとしたときに、下記の問題が発生する。その問題について、図10を用いて説明する。   However, the following problems occur when an attempt is made to realize a conventional configuration using a small element having an outer size of the light emitting element 102 of, for example, about 200 μm × 200 μm. The problem will be described with reference to FIG.

この従来の発光デバイス101は、図10(a)に示すように、発光素子102を実装する実装基板111aの表面エリア(実装位置A)のみに、例えばピッチ40μmの凹凸部105を形成し、ポッティングにより絶縁性接着剤113を、その実装位置Aを覆って基板表面に塗布した後、チップマウンター装置を用いて目的の実装位置Aに発光素子102をフェイスアップ実装する。   In this conventional light emitting device 101, as shown in FIG. 10 (a), a concave and convex portion 105 having a pitch of 40 μm, for example, is formed only on the surface area (mounting position A) of the mounting substrate 111a on which the light emitting element 102 is mounted. Then, the insulating adhesive 113 is applied to the surface of the substrate so as to cover the mounting position A, and then the light-emitting element 102 is mounted face-up on the target mounting position A using a chip mounter device.

ところが、一般的なチップマウンター装置を用いたときに実装される位置は、図10(b)に示すように、目的の位置(実装位置A)から、図面のずれ量B(数10μm程度)だけ左側にずれて実装されてしまう場合がある。この様に、目的の位置からずれて発光素子102が実装されると、サファイア基板103と接触しない凸部(図中右端の凸部105b)が存在することになる。つまり、本図面に示す場合、正常に実装されたときに比べ、凸部105bと実装基板111aとの接触面積が約3/4程度となり、発光素子102で発生した熱の、実装基板111aへの熱伝導性を低下させる。この熱伝導性の低下により、発光素子102のジャンクション温度を増加させ、発光素子102の放熱特性の低下を引き起こすという問題を有していた。   However, as shown in FIG. 10B, the mounting position when using a general chip mounter device is only a deviation amount B (several tens of μm) from the target position (mounting position A). In some cases, it will be shifted to the left. As described above, when the light emitting element 102 is mounted out of the target position, there is a convex portion (the convex portion 105b at the right end in the drawing) that does not contact the sapphire substrate 103. That is, in the case shown in this drawing, the contact area between the convex portion 105b and the mounting substrate 111a is about ¾ compared to when it is normally mounted, and the heat generated in the light emitting element 102 is applied to the mounting substrate 111a. Reduces thermal conductivity. Due to this decrease in thermal conductivity, the junction temperature of the light emitting element 102 is increased, which causes a problem that the heat dissipation characteristics of the light emitting element 102 are deteriorated.

そこで本発明の目的は上記課題を解決し、例え、発光素子の目的の実装位置からずれて実装されたとしても、目的の放熱性を常に発揮することができる発光デバイスを提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and to provide a light-emitting device that can always exhibit the desired heat dissipation even when the light-emitting element is mounted out of the target mounting position.

本発明の発光デバイスは、基本的には下記構成を採用する。   The light emitting device of the present invention basically adopts the following configuration.

本発明の発光デバイスは、基板の一方の面に半導体層を有する発光素子と、この基板の他方の面を、絶縁性接着剤を介して表面に固定する実装基板とを備え、基板の他方の面に凹凸部を有し、凹凸部における複数の凹部に絶縁性接着剤が充填され、複数の凸部が実装基板に接触した状態で、発光素子が実装基板に実装されたことを特徴とするものである。   A light-emitting device of the present invention includes a light-emitting element having a semiconductor layer on one surface of a substrate, and a mounting substrate that fixes the other surface of the substrate to the surface via an insulating adhesive. The light-emitting element is mounted on the mounting substrate in a state where the surface has an uneven portion, a plurality of concave portions in the uneven portion are filled with an insulating adhesive, and the plurality of convex portions are in contact with the mounting substrate. Is.

また、本発明の発光デバイスにおける、上記複数の凹部が、基板の他方の面の中心から外周に向けて放射状に配列した溝、所定の間隔で配列された複数本の線状溝、または複数個の突起を残して形成された溝とするのが望ましい。   Further, in the light emitting device of the present invention, the plurality of recesses are grooves arranged radially from the center of the other surface of the substrate toward the outer periphery, a plurality of linear grooves arranged at a predetermined interval, or a plurality of grooves. Desirably, the grooves are formed with the protrusions left behind.

また、本発明の発光デバイスにおける、複数の線状溝または複数個の突起を、不等間隔で配列しても良い。   In the light emitting device of the present invention, a plurality of linear grooves or a plurality of protrusions may be arranged at unequal intervals.

また、本発明の発光デバイスにおける、凹部の深さを、基板中央部で浅く、基板外周部で深く形成しても良い。   In the light emitting device of the present invention, the depth of the recess may be shallow at the center of the substrate and deep at the outer periphery of the substrate.

上述した本発明の発光デバイスの構成とすることで、実装基板に発光素子をチップマウンター装置で実装する際に、実装位置が目的の位置から大きくずれてしまったとしても、当初目的の放熱性能を常に発揮することができる発光デバイスを提供することができる。   By adopting the configuration of the light emitting device of the present invention described above, even when the mounting position is greatly deviated from the target position when mounting the light emitting element on the mounting substrate with the chip mounter, the initial target heat dissipation performance is achieved. A light-emitting device that can always be exhibited can be provided.

本発明の実施形態1における発光デバイスの構成例を示す図面であり、図(a)に断面図、図(b)に発光素子の下部平面図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows the structural example of the light-emitting device in Embodiment 1 of this invention, A sectional view is shown to Fig. (A), and the lower top view of a light emitting element is shown to Fig. (B). 本発明の実施形態1における発光デバイスを発光させたときの、熱伝導性を説明するための図面である。It is drawing for demonstrating thermal conductivity when the light-emitting device in Embodiment 1 of this invention is light-emitted. 本発明の実施形態1における発光デバイスの特徴を説明するための図面である。It is drawing for demonstrating the characteristic of the light-emitting device in Embodiment 1 of this invention. 本発明の実施形態1における発光デバイスの製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the light emitting device in Embodiment 1 of this invention. 図4Aの続きの製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of a continuation of FIG. 4A. 図4Bの続きの製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the continuation of FIG. 4B. 本発明の実施形態1における、発光素子の変形例1の(a)正面図、(b)左側面図、(c)下面図である。It is (a) front view of the modification 1 of the light emitting element in Embodiment 1 of this invention, (b) The left view, (c) It is a bottom view. 本発明の実施形態1における変形例2および変形例3を示す断面図である。It is sectional drawing which shows the modification 2 and the modification 3 in Embodiment 1 of this invention. 本発明の実施形態2における構成例を示す断面図である。It is sectional drawing which shows the structural example in Embodiment 2 of this invention. 本発明の実施形態3における構成例を示す、発光素子の下面図である。It is a bottom view of the light emitting element which shows the structural example in Embodiment 3 of this invention. 従来の発光デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light-emitting device. 従来の発光デバイスの問題点を示す断面である。It is a cross section which shows the problem of the conventional light-emitting device.

[実施形態1の構成例の説明]
本発明の実施形態1における構成例について、図1を用いて説明する。
[Description of Configuration Example of Embodiment 1]
A configuration example according to the first embodiment of the present invention will be described with reference to FIG.

図1(a)に示すように、発光デバイス1は、平板状の実装基板11の表面の実装位置に、絶縁性接着剤13を塗布した後、発光素子2をフェイスアップ実装して構成される。   As shown in FIG. 1A, the light emitting device 1 is configured by applying an insulating adhesive 13 to a mounting position on the surface of a flat mounting substrate 11 and then mounting the light emitting element 2 face up. .

上記発光素子2は、サファイアやGaNからなる基板3の一方の面に、例えばGaN系半導体材料の、n型半導体層、発光層、p型半導体層を順次積層した半導体層4を配した、青色発光ダイオードまたは近紫外発光ダイオードである。   The light-emitting element 2 has a blue surface in which a semiconductor layer 4 in which an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are sequentially stacked, for example, of a GaN-based semiconductor material is disposed on one surface of a substrate 3 made of sapphire or GaN. Light emitting diode or near ultraviolet light emitting diode.

また、この発光素子2は、図1(a)(b)に示すように、基板3の他方の面に、所定の間隔(本図では、等間隔)で複数本の、凹部5a(溝)と凸部5bからなる凹凸部5を有している。この凹凸部5における複数本の凹部5aには、発光素子2を実装基板11に固着するための絶縁性接着剤13が充填されて、複数個の凸部5bが実装基板11の表面に直に接触した状態で、発光素子2の基板3と実装基板11とが接着固定される。なおこのとき、絶縁性接着剤13は、凹部5a内部への充填だけでなく、素子外周部に回り込んで接触面積を増やしている。この様に、凹凸部5の凹部5aと凸部5bは、本図では等間隔で繰り返し形成され、基板両側の縁部で凹部5aとなるようにしている。この凹部5aに充填された絶縁性接着剤13と、凹凸部5の作用と配列形態については、後述する。   In addition, as shown in FIGS. 1A and 1B, the light-emitting element 2 has a plurality of recesses 5a (grooves) formed on the other surface of the substrate 3 at a predetermined interval (equal intervals in this figure). And the concavo-convex portion 5 including the convex portion 5b. An insulating adhesive 13 for fixing the light emitting element 2 to the mounting substrate 11 is filled in the plurality of concave portions 5 a in the concave and convex portion 5, and the plurality of convex portions 5 b are directly on the surface of the mounting substrate 11. In the state of contact, the substrate 3 of the light emitting element 2 and the mounting substrate 11 are bonded and fixed. At this time, the insulating adhesive 13 not only fills the recess 5a but also wraps around the outer periphery of the element to increase the contact area. In this way, the concave portions 5a and the convex portions 5b of the concavo-convex portion 5 are repeatedly formed at equal intervals in the drawing, and are formed into the concave portions 5a at the edge portions on both sides of the substrate. The insulating adhesive 13 filled in the recess 5a and the operation and arrangement of the uneven portion 5 will be described later.

ここで用いられる絶縁性接着剤13には、シリコーン系熱硬化型樹脂である、フォトデバイス用ダイボンド材(信越化学工業製:商品名KER−3000−M2)を用いる。なおここでは、発光素子2の実装基板11への実装時に、高い流動性の絶縁性接着剤13として、例えば接着剤の粘度を10[Pa・s]に低下させたものを用いている。   As the insulating adhesive 13 used here, a die bond material for photo devices (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name KER-3000-M2), which is a silicone-based thermosetting resin, is used. Here, when the light emitting element 2 is mounted on the mounting substrate 11, as the highly fluid insulating adhesive 13, for example, an adhesive whose viscosity is reduced to 10 [Pa · s] is used.

実装基板11は、銅、アルミニウムなどの金属板の表面に、部分的にアルマイトやシリコン酸化物などの絶縁層を形成し、その上層に配線パターン12を配した基板や、窒化アルミニウムやアルミナからなるセラミックスや、ガラスエポキシ基板などの絶縁基板に、銅からなる配線パターン12を形成した基板を用いることができる。さらに、この実装基板11の表面の発光素子2と電気的接続を取る配線パターン12表面を除く全域には、図示しない白色の有機または無機絶縁物などが設けても良い。   The mounting substrate 11 is made of a substrate in which an insulating layer such as alumite or silicon oxide is partially formed on the surface of a metal plate such as copper or aluminum, and a wiring pattern 12 is disposed thereon, or aluminum nitride or alumina. A substrate in which a wiring pattern 12 made of copper is formed on an insulating substrate such as ceramics or a glass epoxy substrate can be used. Furthermore, a white organic or inorganic insulator (not shown) may be provided in the entire area except the surface of the wiring pattern 12 that is electrically connected to the light emitting element 2 on the surface of the mounting substrate 11.

また、発光素子2の半導体層4の表面の、図示しないp電極とn電極と、実装基板11表面に形成された配線パターン12とは、金または銀からなるボンディングワイヤー21で電気的に接続され、さらにその全体が、蛍光体22を含む、熱硬化性シリコーン樹脂からなる封止樹脂23で被覆される。ここで使用される蛍光体22は、例えばイットリウムアルミニウムガーネット(YAG)蛍光体であり、青色発光ダイオードから出射される青色光(一次光)と励起光(二次光)の混色でもって、発光デバイス1から白色光が出射する。
[実施形態1の作用の説明]
次に、基板3の他方の面に形成された凹凸部5の作用について、図2を用いて説明する。
Further, a p electrode and an n electrode (not shown) on the surface of the semiconductor layer 4 of the light emitting element 2 and the wiring pattern 12 formed on the surface of the mounting substrate 11 are electrically connected by a bonding wire 21 made of gold or silver. Further, the whole is covered with a sealing resin 23 including a phosphor 22 and made of a thermosetting silicone resin. The phosphor 22 used here is, for example, an yttrium aluminum garnet (YAG) phosphor, which is a light emitting device with a mixture of blue light (primary light) and excitation light (secondary light) emitted from a blue light emitting diode. 1 emits white light.
[Description of Operation of Embodiment 1]
Next, the operation of the uneven portion 5 formed on the other surface of the substrate 3 will be described with reference to FIG.

図2に示すように、発光素子2は、配線パターン12、ボンディングワイヤー21を介して半導体層4に電流を供給することで、半導体層4が発光して主に矢印の方向に光を出射する。   As shown in FIG. 2, the light emitting element 2 supplies current to the semiconductor layer 4 through the wiring pattern 12 and the bonding wire 21, so that the semiconductor layer 4 emits light and emits light mainly in the direction of the arrow. .

このとき半導体層4で発生する熱は、主に基板3の他方の面に形成された凸部5bを経由して、その凸部5bと直に接する実装基板11に熱伝導し、外部に放熱される。ここで、基板3に「サファイア」、実装基板11に「銅板」、絶縁性接着剤に上記「(商品名)KER−3000−M2」を用いた場合、サファイアの熱伝導率が25[W/m・K]、
実装基板の銅の熱伝導率が398[W/m・K]、絶縁性接着剤の熱伝導率が0.26[W/m・K]である。つまり、接着剤に比べ、サファイアは約1000倍も熱伝導率が高いので、本実施形態の構成によれば、半導体層4で発生した熱の殆どは、絶縁性接着剤13のルートLよりも、サファイアからなる凸部5bのルートHを介して、実装基板11に伝わり、外部に放熱される。
At this time, the heat generated in the semiconductor layer 4 is mainly conducted through the convex portion 5b formed on the other surface of the substrate 3 to the mounting substrate 11 in direct contact with the convex portion 5b, and is radiated to the outside. Is done. Here, when “sapphire” is used for the substrate 3, “copper plate” is used for the mounting substrate 11, and the above “(trade name) KER-3000-M2” is used for the insulating adhesive, the thermal conductivity of sapphire is 25 [W / m · K],
The heat conductivity of copper of the mounting substrate is 398 [W / m · K], and the heat conductivity of the insulating adhesive is 0.26 [W / m · K]. That is, since sapphire has a thermal conductivity about 1000 times higher than that of the adhesive, according to the configuration of the present embodiment, most of the heat generated in the semiconductor layer 4 is higher than the route L of the insulating adhesive 13. The heat is transmitted to the mounting substrate 11 via the route H of the convex portion 5b made of sapphire and is radiated to the outside.

この様に、高い放熱性能を有する本実施形態1の発光デバイス1は、発光素子2の温度が過度に高くなるのを防止して、発光素子2への投入電力を大きくして、高出力化を図ることができる。また、本手段を用いて、発光素子2と実装基板11間の熱抵抗を下げることにより、発光素子2のジャンクション温度を下げることができる。その結果として、封止樹脂23の熱劣化を極力抑え、発光デバイス1の寿命を延ばすという効果を得る。   As described above, the light emitting device 1 of the first embodiment having high heat dissipation performance prevents the temperature of the light emitting element 2 from becoming excessively high, increases the input power to the light emitting element 2, and increases the output. Can be achieved. Moreover, the junction temperature of the light emitting element 2 can be lowered by lowering the thermal resistance between the light emitting element 2 and the mounting substrate 11 using this means. As a result, the thermal deterioration of the sealing resin 23 is suppressed as much as possible, and the effect of extending the life of the light emitting device 1 is obtained.

ここで、従来構成で発生していた問題が、本実施形態1の発光デバイス1では解消している理由について、図3を用いて説明する。なお、図3(a)は、目的の実装位置Aに正常に発光素子2が実装された状態を示し、図3(b)は、目的の実装位置Aからずれ量Bだけずれて発光素子2が実装された状態を示している。また、下記説明では、発光素子2は、外形サイズを200μm×200μm程度の小型の素子で、凹凸ピッチを40μm(凹部幅20μm、凸部幅20μm)とした場合を示している。   Here, the reason why the problem occurring in the conventional configuration is solved in the light emitting device 1 of the first embodiment will be described with reference to FIG. 3A shows a state in which the light emitting element 2 is normally mounted at the target mounting position A, and FIG. 3B shows a state in which the light emitting element 2 is shifted from the target mounting position A by a shift amount B. Indicates the state of being implemented. In the following description, the light-emitting element 2 is a small element having an outer size of about 200 μm × 200 μm, and the uneven pitch is 40 μm (recess width 20 μm, protrusion width 20 μm).

図3(a)に示すように、実装位置Aに絶縁性接着剤13を塗布した実装基板11に、基板3の他方の面に凹凸部5を有する発光素子2を、チップマウンター装置を用いて、実装位置Aを狙ってフェイスアップ実装する。このとき、凹凸部5は、基板3両縁部が凹部5aとなるように、凹部5aと凸部5bとを交互に配列しているので、凹部5a内部に絶縁性接着剤13が充填されて、基板3の外周部にまでその絶縁性接着剤13が回り込み、確実に発光素子2と実装基板11を固定することができる。   As shown in FIG. 3A, the light-emitting element 2 having the concavo-convex portion 5 on the other surface of the substrate 3 is mounted on the mounting substrate 11 coated with the insulating adhesive 13 at the mounting position A using a chip mounter device. Then, face up to the mounting position A. At this time, since the concave and convex portion 5 has the concave portions 5a and the convex portions 5b alternately arranged so that both edges of the substrate 3 become the concave portions 5a, the insulating adhesive 13 is filled in the concave portion 5a. The insulating adhesive 13 wraps around the outer periphery of the substrate 3, and the light emitting element 2 and the mounting substrate 11 can be reliably fixed.

ここで、図3(b)に示すように、発光素子2が、目的の実装位置Aから左方向にずれ量B(数10μm)だけずれてしまったとしても、絶縁性接着剤13と基板3との接触面積は若干低下するものの、4つの凸部5bは全て実装基板11と直に接するので、上述した図3(a)のときと熱伝導性は変わらないことが判る。   Here, as shown in FIG. 3B, even if the light emitting element 2 is shifted from the target mounting position A in the left direction by a shift amount B (several tens of μm), the insulating adhesive 13 and the substrate 3 Although the contact area between the four protrusions 5b is all in direct contact with the mounting substrate 11, it can be seen that the thermal conductivity is not different from that in FIG.

この様に、従来の構成では、チップマウンター装置の実装位置ずれに起因して、個々の発光デバイスによって放熱性能にばらつきが出てしまったのに対して、本実施形態1の発光デバイス1によれば、その従来構成で起きていた問題を解消し、常に安定した放熱性能を有する発光デバイス1を提供することができる。
[実施形態1の製造方法の説明]
次に、本実施形態1の発光デバイス1の製造方法について図4A〜図4Cを用いて説明する。
As described above, in the conventional configuration, the heat radiation performance varies depending on the individual light emitting devices due to the mounting position shift of the chip mounter device. Thus, it is possible to solve the problem that has occurred in the conventional configuration and to provide the light emitting device 1 that always has stable heat dissipation performance.
[Description of Manufacturing Method of Embodiment 1]
Next, the manufacturing method of the light-emitting device 1 of Embodiment 1 will be described with reference to FIGS. 4A to 4C.

まず、図4A(1)に示す大判のサファイア製の基板3aに、図4A(2)に示すように、基板裏面側に凹凸部5を形成する。ここでの基板加工は、レーザー加工、ブラスト処理、エッチング等の周知の方法を用いて、目的の凹凸ピッチ(40μmピッチ)を形成し、基板3bを得る。   First, as shown in FIG. 4A (2), the uneven portion 5 is formed on the back surface side of the large sapphire substrate 3a shown in FIG. 4A (1). The substrate processing here uses a well-known method such as laser processing, blast processing, etching, or the like to form a target uneven pitch (40 μm pitch) to obtain the substrate 3b.

次に、図4A(3)に示すように、MOCVD法により、バッファー層、n型半導体層、発光層、p型半導体層からなる半導体層4を、順に基板3bの表面に成膜する。続けて、図示していないが、p層の一部を削ってn層表面を露出させた後、p電極、n電極、および各電極を露出させた保護膜を形成する。そして、位置6で素子単位で個片化し、図4A(4)に示す単個の発光素子2を得る。   Next, as shown in FIG. 4A (3), a semiconductor layer 4 including a buffer layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer is sequentially formed on the surface of the substrate 3b by MOCVD. Subsequently, although not shown, after part of the p layer is scraped to expose the surface of the n layer, a p electrode, an n electrode, and a protective film exposing each electrode are formed. And it isolate | separates into an element unit in the position 6, and obtains the single light emitting element 2 shown to FIG. 4A (4).

次に、図4B(5)に示すように、予め用意しておいた、配線パターン12を有する実装基板11の中央部に、ポッティング装置のノズル31から、シリコーン系熱硬化型樹脂(商品名)KER−3000−M2(粘度10[Pa・s])である絶縁性接着剤13を塗布する。   Next, as shown in FIG. 4B (5), a silicone-based thermosetting resin (trade name) is prepared from a nozzle 31 of a potting device at a central portion of the mounting substrate 11 having the wiring pattern 12 prepared in advance. The insulating adhesive 13 having a KER-3000-M2 (viscosity of 10 [Pa · s]) is applied.

次に、図4B(6)(7)に示すように、チップマウンター装置を用いて、発光素子2を実装基板11の目的の実装位置に合わせて、フェイスアップ実装する。このとき、発光素子2の位置がずれないように、素子上部から押圧したまま100℃で1時間、更に150℃まで温度を上昇させた後、2時間掛けて絶縁性接着剤13を硬化させる。そして、発光素子2の実装基板11への固定が完了してから、素子への押圧を解除する。この素子への押圧により、凹部5a内部への絶縁性接着剤13の充填、基板3の側面にまで絶縁性接着剤13を回り込ませ、樹脂と基板との接触面積を極力増やした状態で、確実に固着させる。   Next, as shown in FIGS. 4B (6) and 7 (7), the light-emitting element 2 is mounted face-up in accordance with the target mounting position of the mounting substrate 11 using a chip mounter device. At this time, in order not to shift the position of the light emitting element 2, the temperature is increased at 100 ° C. for 1 hour and further to 150 ° C. while being pressed from the upper part of the element, and then the insulating adhesive 13 is cured for 2 hours. Then, after the fixing of the light emitting element 2 to the mounting substrate 11 is completed, the pressure on the element is released. By pressing the element, the insulating adhesive 13 is filled into the concave portion 5a, and the insulating adhesive 13 is passed to the side surface of the substrate 3, so that the contact area between the resin and the substrate is increased as much as possible. Secure to.

次に、図4C(8)に示すように、ボンディング装置を用いて半導体層4の電極と、配線パターン12とをボンディングワイヤー21で電気的に接続し、最後に、図4C(9)に示すように、実装基板11の全体表面を、蛍光体22を含む、熱硬化性シリコーン樹脂からなる封止樹脂23で被覆することで、本実施形態1の発光デバイス1が完成する。
[変形例1の構成と作用の説明]
次に、実施形態1における、発光素子2の変形例1の構成および作用について、図5を用いて説明する。なお、図5(a)は発光素子2の正面図を、図(b)図が左側面図を、図(c)が下面図を示している。
Next, as shown in FIG. 4C (8), the electrode of the semiconductor layer 4 and the wiring pattern 12 are electrically connected by the bonding wire 21 using a bonding apparatus, and finally, as shown in FIG. 4C (9). Thus, the light emitting device 1 of Embodiment 1 is completed by covering the entire surface of the mounting substrate 11 with the sealing resin 23 made of a thermosetting silicone resin including the phosphor 22.
[Description of Configuration and Action of Modification 1]
Next, the configuration and operation of Modification 1 of the light-emitting element 2 in Embodiment 1 will be described with reference to FIG. 5A is a front view of the light emitting element 2, FIG. 5B is a left side view, and FIG. 5C is a bottom view.

図5に示すように、本変形例1の発光素子2は、基板3の他方の面に形成した複数本の凹部5aの溝深さを、基板中央で浅く、外側に向けて徐々に深くなるようにしている。他の形態は、上述した構成と同じである。   As shown in FIG. 5, in the light emitting element 2 of the first modification, the groove depth of the plurality of recesses 5a formed on the other surface of the substrate 3 is shallow at the center of the substrate and gradually becomes deeper toward the outside. I am doing so. Other forms are the same as those described above.

このように、中央よりも外側の溝深さを深い凹部形状とすることで、先に示した図4B(6)(7)工程(発光素子実装工程)における、絶縁性接着剤13の素子外側への押し出しを確実に行い、凸部5bと実装基板11間の低い熱抵抗を因り確実に確保する。
[変形例2、変形例3の構成と作用の説明]
次に、変形例2および変形例3における発光素子2の構成と作用について、図6を用いて説明する。図6(a)は、変形例2の構成を、図6(b)で変形例3の構成を示している。
As described above, by forming the groove depth outside the center into a deep concave shape, the element outer side of the insulating adhesive 13 in the steps shown in FIGS. 4B (6) and (7) (light emitting element mounting step) described above. Is surely secured due to the low thermal resistance between the convex portion 5b and the mounting substrate 11.
[Description of Configuration and Action of Modification 2 and Modification 3]
Next, the configuration and operation of the light-emitting element 2 in Modification 2 and Modification 3 will be described with reference to FIG. FIG. 6A shows the configuration of the second modification, and FIG. 6B shows the configuration of the third modification.

図1(b)では、凹部5aと凸部5bの配列を等間隔とした例を示したが、本変形例2(図6(a))では、中央部の凹部5a−1の間隔を広く、その外側に位置する凹部5a−2、更に外側の凹部5a−3と徐々に幅が狭くなるようにしている。また、変形例3(図6(b))では、中央部の凹部5a−1の深さが最も浅く、凹部5a−2、更には凹部5a−3の凹部深さを、徐々に深くなるようにしている。   Although FIG. 1B shows an example in which the arrangement of the concave portions 5a and the convex portions 5b is equally spaced, in the second modification (FIG. 6A), the interval between the concave portions 5a-1 at the center is increased. The width of the concave portion 5a-2 located on the outer side and the outer concave portion 5a-3 are gradually reduced. In Modification 3 (FIG. 6B), the depth of the concave portion 5a-1 at the center is the shallowest, and the concave portion 5a-2 and further the concave portion 5a-3 are gradually deepened. I have to.

この変形例2、変形例3の構成によれば、上述した放熱性能の本発明の特徴に加え、図4B(5)工程(実装基板11への絶縁性接着剤13のポッティング工程)で、実装基板11の中央部に多くの絶縁性接着剤13がポッティングされても、図4B(6)工程で、発光素子2が実装基板11に押圧されたときに、より効率よく素子外周に押し出しができる。   According to the configurations of Modification 2 and Modification 3, in addition to the above-described characteristics of the heat dissipation performance of the present invention, mounting is performed in the process of FIG. 4B (5) (potting process of the insulating adhesive 13 on the mounting substrate 11). Even if many insulating adhesives 13 are potted in the center of the substrate 11, when the light emitting element 2 is pressed against the mounting substrate 11 in the step of FIG. .

[実施形態2の構成例の説明]
次に、実施形態2の発光素子2の構成例と作用について、図7を用いて説明する。
[Description of Configuration Example of Embodiment 2]
Next, a configuration example and operation of the light-emitting element 2 of Embodiment 2 will be described with reference to FIG.

図7に示すように、実施形態2の発光素子2は、基板3の他方の面の凹凸部5の断面形状を楔型としている。他は、先の実施形態で示した構成例と同じである。   As shown in FIG. 7, in the light-emitting element 2 of Embodiment 2, the cross-sectional shape of the concavo-convex portion 5 on the other surface of the substrate 3 is a wedge shape. Others are the same as the configuration example shown in the previous embodiment.

本実施形態2の構成とすることで、実施形態1で示した構成例に比べ、発光素子2と実装基板11との接触面積が低下するが、図4B(6)(7)工程(発光素子実装工程)における、絶縁性接着剤13の素子外側への押し出しが、より容易となる。つまり、先の実施形態の構成例では、絶縁性接着剤13に低い粘度の材料を使う必要があったが、本変形例の場合は、比較的高めの粘度の材料であっても、確実に素子と実装基板11とのコンタクトを取ることができるという利点を有する。さらに、上記変形例1、変形例2のように凹部5aの溝深さや幅の工夫を適用することで、より絶縁性接着剤13の更に押し出しが容易となる。   By adopting the configuration of the second embodiment, the contact area between the light-emitting element 2 and the mounting substrate 11 is lower than that of the configuration example shown in the first embodiment. However, FIG. 4B (6) (7) steps (light-emitting element) In the mounting process), the insulating adhesive 13 can be more easily pushed to the outside of the element. That is, in the configuration example of the previous embodiment, it was necessary to use a low-viscosity material for the insulating adhesive 13, but in the case of this modification, even a relatively high-viscosity material is reliably used. There is an advantage that the element and the mounting substrate 11 can be contacted. Furthermore, by applying a device for the groove depth and width of the recess 5a as in the first and second modifications, the insulating adhesive 13 can be further pushed out more easily.

[実施形態3の構成例1〜構成例4の構成の説明]
次に、実施形態3の発光素子2の構成例1〜4について、図8を用いて説明する。
[Description of Configuration of Configuration Example 1 to Configuration Example 4 of Embodiment 3]
Next, structural examples 1 to 4 of the light-emitting element 2 of Embodiment 3 will be described with reference to FIG.

図8(a)に示す構成例1では、等間隔で並べた複数個の凸部5b(突起)を有し、その突起を残すその他の領域を凹部5aとしている。この複数個の突起は、必ずしも等間隔で配列する必要はなく、必要に応じて配列形態を変えることもできる。   In the configuration example 1 shown in FIG. 8A, a plurality of convex portions 5b (protrusions) arranged at equal intervals are provided, and another region where the protrusions are left is defined as a concave portion 5a. The plurality of protrusions are not necessarily arranged at regular intervals, and the arrangement form can be changed as necessary.

また、図8(b)では、複数本の溝からなる凹部5aが、基板3の中央から外周に向けて放射状に配置し、図8(c)では、その放射状の溝からなる凹部5aの幅が、中央から外周に向けて、徐々に広くなるようにしている。さらに、図8(d)では、図8(b)の溝パターンを、複数配置した構成としている。   Further, in FIG. 8B, the recesses 5a composed of a plurality of grooves are arranged radially from the center to the outer periphery of the substrate 3, and in FIG. 8C, the width of the recesses 5a composed of the radial grooves. However, it gradually widens from the center toward the outer periphery. Further, in FIG. 8D, a plurality of the groove patterns in FIG. 8B are arranged.

上記構成とすることで、先に示したと同様に、図4B(6)(7)工程(発光素子実装工程)における、凹部5a内部への絶縁性接着剤13に充填させるとともに、素子周りへ回り込ませて確実に実装基板11と発光素子2とを固着させるだけでなく、凸部5bと実装基板11とが直に接触して、発光素子2で発生する熱を効率よく、実装基板11に伝えることができる。なお、実施形態1の変形例1〜3の構成を更に組み合わせ、図4B(6)(7)工程における、絶縁性樹脂13の素子外周への押し出しをより容易とする構成とすることもできる。   With the above configuration, as described above, the insulating adhesive 13 inside the recess 5a is filled in the process of FIG. 4B (6) and (7) (light emitting element mounting process), and the element is wrapped around the element. Thus, not only the mounting substrate 11 and the light emitting element 2 are securely fixed, but also the projection 5b and the mounting substrate 11 are in direct contact with each other, and heat generated in the light emitting element 2 is efficiently transmitted to the mounting substrate 11. be able to. Note that the configurations of the first to third modifications of the first embodiment can be further combined to make it easier to push the insulating resin 13 to the outer periphery of the element in the steps of FIGS. 4B (6) and (7).

1 発光デバイス
2 発光素子
3 基板
4 半導体層
5 凹凸部
5a、5a−1〜5a−3 凹部
5b 凸部
6 位置
11 実装基板
12 配線パターン
13 絶縁性接着剤
21 ボンディングワイヤー
22 蛍光体
23 封止樹脂
31 ノズル
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Light emitting element 3 Substrate 4 Semiconductor layer 5 Concave part 5a, 5a-1 to 5a-3 Concave part 5b Convex part 6 Position 11 Mounting board 12 Wiring pattern 13 Insulating adhesive 21 Bonding wire 22 Phosphor 23 Sealing resin 31 nozzles

Claims (5)

基板の一方の面に、半導体層を有する発光素子と、
前記基板の他方の面を、絶縁性接着剤を介して表面に固定する実装基板と、を備え、
前記基板の他方の面は、凹凸部を有し、
前記凹凸部における複数の凹部に前記絶縁性接着剤が充填され、複数の凸部が前記実装基板に接触した状態で、前記発光素子が前記実装基板に実装される
ことを特徴とする発光デバイス。
A light-emitting element having a semiconductor layer on one surface of the substrate;
A mounting substrate for fixing the other surface of the substrate to the surface via an insulating adhesive; and
The other surface of the substrate has an uneven portion,
The light emitting device is mounted on the mounting substrate in a state where the insulating adhesive is filled in a plurality of concave portions in the concave and convex portions, and the plurality of convex portions are in contact with the mounting substrate.
前記複数の凹部は、前記基板の他方の面の中心から外周に向けて放射状に配列した溝である
ことを特徴とする請求項1に記載の発光デバイス。
The light emitting device according to claim 1, wherein the plurality of recesses are grooves arranged radially from the center of the other surface of the substrate toward the outer periphery.
前記複数の凹部は、所定の間隔で配列された複数本の線状溝、または複数個の突起を残して形成された溝である
ことを特徴とする請求項1に記載の発光デバイス。
2. The light emitting device according to claim 1, wherein the plurality of recesses are a plurality of linear grooves arranged at a predetermined interval or a groove formed by leaving a plurality of protrusions.
前記複数の線状溝、または複数個の突起が、不等間隔で配列される
ことを特徴とする請求項3に記載の発光デバイス。
The light emitting device according to claim 3, wherein the plurality of linear grooves or the plurality of protrusions are arranged at unequal intervals.
前記凹部の深さは、基板中央部で浅く、基板外周部で深く形成される
ことを特徴とする請求項2から4のいずれか一項に記載の発光デバイス。
5. The light emitting device according to claim 2, wherein a depth of the concave portion is shallow at a central portion of the substrate and deep at an outer peripheral portion of the substrate.
JP2011267666A 2011-12-07 2011-12-07 Light-emitting device Pending JP2013120824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267666A JP2013120824A (en) 2011-12-07 2011-12-07 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267666A JP2013120824A (en) 2011-12-07 2011-12-07 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2013120824A true JP2013120824A (en) 2013-06-17

Family

ID=48773339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267666A Pending JP2013120824A (en) 2011-12-07 2011-12-07 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2013120824A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185810A (en) * 2014-03-26 2015-10-22 豊田合成株式会社 Light emitting device and manufacturing method of the same
CN108461534A (en) * 2017-02-20 2018-08-28 株式会社村田制作所 Compound semiconductor substrate and power amplifier module
CN109642133A (en) * 2016-09-07 2019-04-16 琳得科株式会社 Adhesive composition, diaphragm seal and seal
EP4177971A4 (en) * 2020-07-03 2024-10-16 Shin-Etsu Handotai Co., Ltd. BONDED SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD FOR BONDED SEMICONDUCTOR ELEMENT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123441A (en) * 1990-09-14 1992-04-23 Hitachi Ltd Semiconductor integrated circuit device
JPH1126811A (en) * 1997-07-02 1999-01-29 Toshiba Corp Semiconductor light emitting device
JP2002353507A (en) * 2001-05-23 2002-12-06 Citizen Electronics Co Ltd Light emitting diode and method of manufacturing the same
JP2003174190A (en) * 2001-11-30 2003-06-20 Osram Opto Semiconductors Gmbh Light emitting semiconductor device
JP2005012155A (en) * 2003-05-26 2005-01-13 Matsushita Electric Works Ltd Light emitting device
JP2006024928A (en) * 2004-07-07 2006-01-26 Shogen Koden Kofun Yugenkoshi Light emitting diode having an adhesive layer with a heat path
JP2007095855A (en) * 2005-09-28 2007-04-12 Hitachi Lighting Ltd Led light source module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123441A (en) * 1990-09-14 1992-04-23 Hitachi Ltd Semiconductor integrated circuit device
JPH1126811A (en) * 1997-07-02 1999-01-29 Toshiba Corp Semiconductor light emitting device
JP2002353507A (en) * 2001-05-23 2002-12-06 Citizen Electronics Co Ltd Light emitting diode and method of manufacturing the same
JP2003174190A (en) * 2001-11-30 2003-06-20 Osram Opto Semiconductors Gmbh Light emitting semiconductor device
JP2005012155A (en) * 2003-05-26 2005-01-13 Matsushita Electric Works Ltd Light emitting device
JP2006024928A (en) * 2004-07-07 2006-01-26 Shogen Koden Kofun Yugenkoshi Light emitting diode having an adhesive layer with a heat path
JP2007095855A (en) * 2005-09-28 2007-04-12 Hitachi Lighting Ltd Led light source module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185810A (en) * 2014-03-26 2015-10-22 豊田合成株式会社 Light emitting device and manufacturing method of the same
CN109642133A (en) * 2016-09-07 2019-04-16 琳得科株式会社 Adhesive composition, diaphragm seal and seal
CN108461534A (en) * 2017-02-20 2018-08-28 株式会社村田制作所 Compound semiconductor substrate and power amplifier module
US10163829B2 (en) 2017-02-20 2018-12-25 Murata Manufacturing Co., Ltd. Compound semiconductor substrate and power amplifier module
CN108461534B (en) * 2017-02-20 2021-06-22 株式会社村田制作所 Compound semiconductor substrate and power amplifier module
EP4177971A4 (en) * 2020-07-03 2024-10-16 Shin-Etsu Handotai Co., Ltd. BONDED SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD FOR BONDED SEMICONDUCTOR ELEMENT

Similar Documents

Publication Publication Date Title
JP5720496B2 (en) Light emitting device and manufacturing method thereof
JP5337105B2 (en) Semiconductor light emitting device
JP6398222B2 (en) Light emitting device and manufacturing method thereof
TWI502773B (en) Semiconductor light emitting device and method for manufacturing same
TWI513065B (en) Semiconductor light emitting device and light emitting device
CN102637784B (en) Light-emitting diode packaging substrate and manufacturing method thereof
CN107689408B (en) Light emitting diode flip chip die and display
JP2015173142A (en) Semiconductor light emitting device
CN105409017B (en) Surface-mountable optoelectronic semiconductor component and the method for manufacturing at least one surface-mountable optoelectronic semiconductor component
CN103560127A (en) Optical device and method for manufacturing same
JP2015191910A (en) Semiconductor light emitting device
JP2015176963A (en) Semiconductor light emitting device
JP2018518039A (en) Optoelectronic component array and method for manufacturing a plurality of optoelectronic component arrays
JP2013120824A (en) Light-emitting device
JP2011159812A (en) Light emitting device
US9429305B2 (en) Light emitting device
JP2010103149A (en) Light emitting member, light emitting device, electronic device, mechanical device, method of manufacturing the light emitting member, and method of manufacturing the light emitting device
JP2015185685A (en) Light emitting device manufacturing method and light device
US10276766B2 (en) Light-emitting device
TWI467808B (en) Light-emitting diode element, manufacturing method thereof and light-emitting device
KR20150042954A (en) Side-view light emitting device and method of making the same
JP2015041722A (en) Semiconductor light-emitting device
JP6543391B2 (en) Semiconductor device
CN103887418B (en) Luminescence chip is combined
JP7432846B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20130603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104