[go: up one dir, main page]

JP2013118104A - Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode - Google Patents

Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode Download PDF

Info

Publication number
JP2013118104A
JP2013118104A JP2011265105A JP2011265105A JP2013118104A JP 2013118104 A JP2013118104 A JP 2013118104A JP 2011265105 A JP2011265105 A JP 2011265105A JP 2011265105 A JP2011265105 A JP 2011265105A JP 2013118104 A JP2013118104 A JP 2013118104A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011265105A
Other languages
Japanese (ja)
Inventor
Koji Takahata
浩二 高畑
Kaoru Inoue
薫 井上
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011265105A priority Critical patent/JP2013118104A/en
Publication of JP2013118104A publication Critical patent/JP2013118104A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】容量の低下が抑制された非水電解液型二次電池用の負極の製造方法を提供すること。
【解決手段】本発明により提供される非水電解液型二次電池用の負極の製造方法は、電荷担体を挿入/脱離可能な負極活物質を主成分とし、水に溶解または分散可能なポリマーと水系溶媒とを含む負極活物質層形成用組成物を負極集電体上に塗付し、該塗付後、露点温度10℃未満の条件下で乾燥することにより該負極集電体上に負極活物質層を形成すること、および前記形成した負極活物質層を、露点温度17℃〜52℃の環境に少なくとも30分曝すこと、を包含する。
【選択図】図3
The present invention provides a method for producing a negative electrode for a non-aqueous electrolyte secondary battery in which a decrease in capacity is suppressed.
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery provided by the present invention comprises a negative electrode active material capable of inserting / extracting charge carriers as a main component, and can be dissolved or dispersed in water. A composition for forming a negative electrode active material layer containing a polymer and an aqueous solvent is applied onto a negative electrode current collector, and after the application, the composition is dried under conditions with a dew point temperature of less than 10 ° C. Forming a negative electrode active material layer and exposing the formed negative electrode active material layer to an environment having a dew point temperature of 17 ° C. to 52 ° C. for at least 30 minutes.
[Selection] Figure 3

Description

本発明は、非水電解液型二次電池用の負極の製造方法に関し、詳しくは、負極活物質を主成分とし、水に溶解または分散可能なポリマーと水系溶媒とを含む負極活物質層形成用組成物からなる負極活物質層を備える非水電解液型二次電池用の負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, and more specifically, to form a negative electrode active material layer comprising a negative electrode active material as a main component and a polymer that can be dissolved or dispersed in water and an aqueous solvent. The present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery comprising a negative electrode active material layer made of a composition for a battery.

近年、リチウムイオン二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコンおよび携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池等の非水電解液型二次電池は、車両搭載用高出力電源として好ましく用いられることが期待されている。このような非水電解液型二次電池の電極(正極および負極)は、典型的には、電荷担体となる化学種(典型的にはリチウムイオン)を可逆的に吸蔵および放出し得る電極活物質を主成分とする電極活物質層(正極活物質層および負極活物質層)が電極集電体(負極集電体および正極集電体)上に形成された構成を備える。かかる負極活物質層は、負極活物質を結着材や増粘材等(例えばカルボキシメチルセルロース(CMC))とともに適当な溶媒を添加して分散させ、それによって得られたペーストまたはスラリー状組成物を負極集電体に塗付し、乾燥することにより形成される。このようなペーストまたはスラリー状組成物を負極集電体に塗付し、乾燥することにより負極を形成する従来技術として特許文献1〜3が挙げられる。   In recent years, secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries have become increasingly important as power sources mounted on vehicles using electricity as power sources, or power sources mounted on personal computers, portable terminals, and other electrical products. Yes. In particular, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle. The electrodes (positive electrode and negative electrode) of such a non-aqueous electrolyte type secondary battery typically have an electrode activity capable of reversibly occluding and releasing chemical species (typically lithium ions) serving as charge carriers. An electrode active material layer (a positive electrode active material layer and a negative electrode active material layer) containing a substance as a main component is provided on an electrode current collector (a negative electrode current collector and a positive electrode current collector). Such a negative electrode active material layer is prepared by adding a suitable solvent together with a binder, a thickener, etc. (for example, carboxymethyl cellulose (CMC)) to disperse the negative electrode active material, and a paste or slurry composition obtained thereby. It is formed by applying to a negative electrode current collector and drying. Patent Documents 1 to 3 are known as conventional techniques for forming a negative electrode by applying such a paste or slurry-like composition to a negative electrode current collector and drying it.

特開2002−324548号公報JP 2002-324548 A 特開2009−37893号公報JP 2009-37893 A 特開2002−270161号公報JP 2002-270161 A

ところで、上述したような従来の非水電解液型二次電池(典型的にはリチウムイオン二次電池)は、経時的な容量の低下を防ぐため、(ペーストまたはスラリー状等の)負極活物質層形成用組成物の配合材料や配合割合を調整する手法が用いられているが、それ以外の手法で容量の低下を抑制することについては充分に検討されていないのが現状である。   By the way, the conventional non-aqueous electrolyte type secondary battery (typically, a lithium ion secondary battery) as described above has a negative electrode active material (such as paste or slurry) in order to prevent a decrease in capacity over time. Although the technique of adjusting the compounding material and the compounding ratio of the composition for layer formation is used, the present condition is not fully examined about suppressing the fall of a capacity | capacitance by the other method.

そこで、本発明は、上述したような従来の状況に鑑みて創出されたものであり、その目的は、添加材の使用以外の手法によって、容量の低下が抑制された非水電解液型二次電池用の負極の製造方法を提供することである。また、そのような性能を有する非水電解液型二次電池の製造方法を提供することを他の目的とする。   Therefore, the present invention was created in view of the conventional situation as described above, and the purpose thereof is a non-aqueous electrolyte type secondary battery in which a decrease in capacity is suppressed by a method other than the use of an additive. It is providing the manufacturing method of the negative electrode for batteries. Another object of the present invention is to provide a method for producing a non-aqueous electrolyte secondary battery having such performance.

上記目的を実現するべく、本発明により、電荷担体を挿入/脱離可能な負極活物質を主成分とし、水に溶解または分散可能なポリマーと水系溶媒とを含む負極活物質層形成用組成物を負極集電体上に塗付し、該塗付後、露点温度10℃未満の条件下で乾燥することにより該負極集電体上に負極活物質層を形成すること、および前記形成した負極活物質層を、露点温度17℃〜52℃の環境に少なくとも30分曝すこと、を包含する、非水電解液型二次電池用の負極の製造方法が提供される。   In order to achieve the above object, according to the present invention, a negative electrode active material layer forming composition comprising, as a main component, a negative electrode active material in which charge carriers can be inserted / removed, and a polymer that can be dissolved or dispersed in water and an aqueous solvent. Is applied on the negative electrode current collector, and after the application, the negative electrode active material layer is formed on the negative electrode current collector by drying under a dew point temperature of less than 10 ° C., and the formed negative electrode There is provided a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising exposing the active material layer to an environment having a dew point temperature of 17 ° C to 52 ° C for at least 30 minutes.

かかる構成の非水電解液型二次電池用の負極の製造方法によると、負極集電体上に形成した負極活物質層を、露点温度17℃〜52℃の環境に所定時間曝すことで、該負極活物質層が形成された負極を備える非水電解液型二次電池の容量の低下が抑制される。特に、リチウムイオン二次電池は、例えば50℃以上の高温で保存すると容量が低下する傾向があるが、かかる構成の非水電解液型二次電池用の負極の製造方法によると、上記高温で保存した後の容量の低下を抑制することができる。
従って、本発明の製造方法によると、容量の低下が抑制されたリチウムイオン二次電池その他の非水電解液型二次電池用の負極を提供することができる。
なお、本明細書において「露点温度(Dew Point Temperature)」とは、水蒸気を含む空気を冷却したとき、相対湿度が100%となって飽和に達し、水蒸気の一部が凝縮して結露が始まる温度をいう。
また、本明細書において「負極活物質層(形成用組成物)の乾燥」とは、その方法や条件は特に限定されず、例えば、乾燥後の負極活物質層(形成用組成物)の水分含量を質量基準で500ppm以下にすることをいう。従って、乾燥温度や乾燥時間、露点温度は特に限定されず、上記水分含量となるように、例えば温度20℃〜35℃程度の室温にて所定時間乾燥することも含まれ得る。
According to the method for producing a negative electrode for a non-aqueous electrolyte secondary battery having such a configuration, the negative electrode active material layer formed on the negative electrode current collector is exposed to an environment having a dew point temperature of 17 ° C. to 52 ° C. for a predetermined time. A decrease in capacity of a non-aqueous electrolyte secondary battery including a negative electrode on which the negative electrode active material layer is formed is suppressed. In particular, the capacity of lithium ion secondary batteries tends to decrease when stored at a high temperature of, for example, 50 ° C. or higher. However, according to the method of manufacturing a negative electrode for a non-aqueous electrolyte secondary battery having such a configuration, A decrease in capacity after storage can be suppressed.
Therefore, according to the production method of the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery or other nonaqueous electrolyte type secondary battery in which a decrease in capacity is suppressed.
In this specification, “dew point temperature” means that when air containing water vapor is cooled, the relative humidity reaches 100% and saturation is reached, and a part of the water vapor is condensed to start dew condensation. Refers to temperature.
In the present specification, “drying of the negative electrode active material layer (formation composition)” is not particularly limited in terms of the method and conditions. For example, the moisture of the negative electrode active material layer (formation composition) after drying This means that the content is 500 ppm or less on a mass basis. Accordingly, the drying temperature, the drying time, and the dew point temperature are not particularly limited, and it may include drying at a room temperature of, for example, a temperature of about 20 ° C. to 35 ° C. for a predetermined time so as to achieve the above moisture content.

ここで開示される非水電解液型二次電池用の負極の製造方法の好適な一態様では、前記形成した負極活物質層にプレス処理を行い、その後前記環境に曝す。このように、プレス処理を行った後に、負極活物質層を所定の露点温度環境に曝すことにより、容量の低下がより顕著に抑制される。その理由として、次のようなことが推察される。負極活物質層に含まれる水に溶解または分散可能なポリマーは、プレス処理によって変形している(典型的には割れている)場合があると考えられる。この変形したポリマーに対し、プレス処理後に所定量の水分を供給することで、負極活物質層中における該ポリマーの形態が再生し、あるいはさらに変化(例えば軟化することによる変化)し、これが非水電解液型二次電池の容量の低下の抑制に作用すると推察される。   In a preferred embodiment of the method for producing a negative electrode for a non-aqueous electrolyte secondary battery disclosed herein, the formed negative electrode active material layer is subjected to press treatment and then exposed to the environment. As described above, after the press treatment is performed, the negative electrode active material layer is exposed to a predetermined dew point temperature environment, whereby a decrease in capacity is more significantly suppressed. The reason is presumed as follows. It is considered that the polymer that can be dissolved or dispersed in water contained in the negative electrode active material layer may be deformed (typically cracked) by the press treatment. By supplying a predetermined amount of moisture to the deformed polymer after the press treatment, the form of the polymer in the negative electrode active material layer is regenerated or further changed (for example, changed due to softening). It is presumed that this acts to suppress a decrease in capacity of the electrolyte type secondary battery.

ここで開示される非水電解液型二次電池用の負極の製造方法の好適な一態様では、前記水に溶解または分散可能なポリマーがセルロース誘導体(典型的にはカルボキシメチルセルロース(CMC))である。水に溶解または分散可能なポリマーとしてセルロース誘導体を用いることにより、非水電解液型二次電池の容量の低下を好適に抑制することができる。   In a preferred embodiment of the method for producing a negative electrode for a non-aqueous electrolyte secondary battery disclosed herein, the polymer that can be dissolved or dispersed in water is a cellulose derivative (typically carboxymethyl cellulose (CMC)). is there. By using a cellulose derivative as a polymer that can be dissolved or dispersed in water, a decrease in capacity of the non-aqueous electrolyte secondary battery can be suitably suppressed.

また、本発明によると、電荷担体を挿入/脱離可能な正極活物質を主成分として形成された正極活物質層を正極集電体上に備えた正極を構築すること、電荷担体を挿入/脱離可能な負極活物質を主成分として形成された負極活物質層を負極集電体上に備えた負極を構築すること、および前記正極および前記負極を用いて非水電解液型二次電池を構築すること、を包含し、ここで、前記負極として、ここで開示されるいずれかの製造方法によって得られた負極を用いることを特徴とする、非水電解液型二次電池の製造方法が提供される。このように、負極集電体上に形成した負極活物質層を、所定の露点温度環境に曝すことによって、該負極活物質層が形成された負極を備える非水電解液型二次電池は、容量の低下が抑制される。   In addition, according to the present invention, a positive electrode having a positive electrode active material layer formed mainly of a positive electrode active material capable of inserting / desorbing charge carriers on a positive electrode current collector is constructed; Construction of a negative electrode comprising a negative electrode active material layer formed on the negative electrode current collector, the main component of which is a detachable negative electrode active material, and a nonaqueous electrolyte secondary battery using the positive electrode and the negative electrode Wherein a negative electrode obtained by any one of the manufacturing methods disclosed herein is used as the negative electrode, wherein the non-aqueous electrolyte type secondary battery is manufactured Is provided. Thus, the non-aqueous electrolyte secondary battery including the negative electrode on which the negative electrode active material layer is formed by exposing the negative electrode active material layer formed on the negative electrode current collector to a predetermined dew point temperature environment, A decrease in capacity is suppressed.

一実施形態に係るリチウムイオン二次電池用負極を模式的に示す断面図である。It is sectional drawing which shows typically the negative electrode for lithium ion secondary batteries which concerns on one Embodiment. 一実施形態に係るリチウムイオン二次電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lithium ion secondary battery which concerns on one Embodiment. 露点温度と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between dew point temperature and a capacity | capacitance maintenance factor. 曝露時間と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between exposure time and a capacity | capacitance maintenance factor.

以下、図面を参照しながら、本発明による一実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解液の構成および製法、電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, a configuration and a manufacturing method of an electrode body including a positive electrode and a negative electrode, a configuration and a manufacturing method of a separator and an electrolytic solution) , General techniques related to the construction of batteries and other batteries) can be grasped as design matters of those skilled in the art based on the prior art in this field.

ここで開示される非水電解液型二次電池用の負極の製造方法に係る好適な一実施形態として、リチウムイオン二次電池を例にして説明するが、本発明の適用対象をかかる電池に限定することを意図したものではない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする非水電解液型二次電池の構成要素、すなわち該二次電池に内蔵される負極に本発明を適用することも可能である。   As a preferred embodiment related to a method for producing a negative electrode for a non-aqueous electrolyte type secondary battery disclosed herein, a lithium ion secondary battery will be described as an example, but the application target of the present invention is applied to such a battery. It is not intended to be limiting. For example, the present invention can also be applied to a component of a non-aqueous electrolyte secondary battery using a metal ion other than lithium ion (for example, sodium ion) as a charge carrier, that is, a negative electrode built in the secondary battery. is there.

図1に示されるように、リチウムイオン二次電池用の負極10は、従来と同様の構成をとることができ、例えば、負極集電体1上に負極活物質層2が形成された構造を有する。なお、図1では、負極集電体1の片面に負極活物質層2を形成しているが、負極集電体1の両面に負極活物質層2を形成することもできる。以下、リチウムイオン二次電池用の負極10の各構成要素について説明する。   As shown in FIG. 1, the negative electrode 10 for a lithium ion secondary battery can have the same configuration as the conventional one. For example, the negative electrode active material layer 2 is formed on the negative electrode current collector 1. Have. In FIG. 1, the negative electrode active material layer 2 is formed on one surface of the negative electrode current collector 1, but the negative electrode active material layer 2 may be formed on both surfaces of the negative electrode current collector 1. Hereinafter, each component of the negative electrode 10 for a lithium ion secondary battery will be described.

負極を構成する負極集電体としては、従来のリチウムイオン二次電池と同様に、導電性の良好な金属(例えば、アルミニウム、ニッケル、銅、ステンレス等の金属または該金属を主成分とする合金)からなるものを好ましく使用することができる。使用する負極集電体の形状は、得られた負極を用いて構築されるリチウムイオン二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここで開示される技術は、例えばシート状または箔状の負極集電体を用いた負極の製造に好ましく適用することができる。かかる負極集電体の厚みは特に限定されないが、負極集電体として銅製のシートを用いる場合、厚みは、例えば凡そ6μm〜30μmの範囲内に設定することが好ましい。   As the negative electrode current collector constituting the negative electrode, a metal having good conductivity (for example, a metal such as aluminum, nickel, copper, stainless steel, or an alloy containing the metal as a main component, as in the case of a conventional lithium ion secondary battery. ) Can be preferably used. The shape of the negative electrode current collector to be used is not particularly limited because it may vary depending on the shape of the lithium ion secondary battery constructed using the obtained negative electrode, and is in the form of a rod, plate, sheet, foil, It can be in various forms such as a mesh. The technique disclosed here can be preferably applied to the production of a negative electrode using, for example, a sheet-like or foil-like negative electrode current collector. The thickness of the negative electrode current collector is not particularly limited, but when a copper sheet is used as the negative electrode current collector, the thickness is preferably set within a range of about 6 μm to 30 μm, for example.

負極を構成する負極活物質層は、負極活物質を水に溶解または分散可能なポリマーと水系溶媒とともに水系溶媒に分散させてペーストまたはスラリー状の負極活物質層形成用組成物を得た後、かかる負極活物質層形成用組成物を負極集電体の表面に塗付することにより形成することができる。   The negative electrode active material layer constituting the negative electrode is obtained by dispersing the negative electrode active material in an aqueous solvent together with a polymer that can be dissolved or dispersed in water and an aqueous solvent to obtain a paste or slurry-like composition for forming a negative electrode active material layer. It can form by apply | coating this composition for negative electrode active material layer forming to the surface of a negative electrode collector.

負極活物質層形成用組成物に含まれる負極活物質としては、従来のリチウムイオン二次電池に用いられている負極活物質を用いることができ、特に限定されないが、例えば、典型的なリチウムイオン二次電池に用いられる炭素材料が挙げられる。負極活物質として用いられる炭素材料の代表例としては、グラファイトカーボン、アモルファスカーボン等が挙げられる。中でも、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。また、いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。その中でも天然黒鉛(もしくは人造黒鉛)を主成分とする炭素材料の使用が好ましい。かかる天然黒鉛(もしくは人造黒鉛)は鱗片状の黒鉛を球形化したものであり得る。例えば、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(D50:50%体積平均粒径)である平均粒径D50が凡そ5μm〜30μmの範囲内にある球形化天然黒鉛(もしくは球形化人造黒鉛)を負極活物質として好ましく用いることができる。また、該黒鉛の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。その他、負極活物質として、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。 As the negative electrode active material contained in the composition for forming a negative electrode active material layer, a negative electrode active material used in a conventional lithium ion secondary battery can be used, and is not particularly limited. Examples thereof include carbon materials used for secondary batteries. Typical examples of the carbon material used as the negative electrode active material include graphite carbon and amorphous carbon. Among these, a particulate carbon material (carbon particles) including a graphite structure (layered structure) at least partially is preferably used. Also, any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these is suitable. Can be used. Among these, it is preferable to use a carbon material mainly composed of natural graphite (or artificial graphite). Such natural graphite (or artificial graphite) may be obtained by spheroidizing graphite. For example, the median diameter derivable from the particle size distribution measured on the basis of the particle size distribution measuring apparatus based on a laser scattering-diffraction method (D 50: 50% volume average particle diameter) and a mean particle size D 50 in the range of approximately 5μm~30μm Spheroidized natural graphite (or spheroidized artificial graphite) can be preferably used as the negative electrode active material. Further, a carbonaceous powder in which the surface of the graphite is coated with amorphous carbon may be used. In addition, as a negative electrode active material, it is also possible to use a single material such as a silicon material or a tin material, an alloy, a compound, or a composite material using the above materials in combination.

負極活物質層形成用組成物の固形分全体に占める負極活物質の割合は、凡そ50質量%を超え、凡そ90質量%〜99.5質量%(例えば95質量%〜99質量%、典型的には97質量%〜99質量%)であることが好ましい。   The proportion of the negative electrode active material in the total solid content of the composition for forming a negative electrode active material layer exceeds about 50% by mass, and is about 90% to 99.5% by mass (for example, 95% to 99% by mass, typical). Is preferably 97% by mass to 99% by mass).

負極活物質層形成用組成物に含まれる水に溶解または分散可能なポリマーは、その添加目的は特に限定されないが、例えば、結着材または増粘材として用いられるものである。かかる水に溶解または分散可能なポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース誘導体(セルロース系ポリマー)や、ポリビニルアルコール(PVA)等が挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。後述する所定の露点温度環境への曝露において供給される水分を吸収しやすいことや、負極活物質層形成用組成物の混練(調製)の際の作業性および安定性等を考慮すると、セルロース誘導体(典型的にはCMC)が好ましく使用される。   The purpose of addition of the polymer that can be dissolved or dispersed in water contained in the composition for forming a negative electrode active material layer is not particularly limited. For example, the polymer can be used as a binder or a thickener. Examples of such water-soluble or dispersible polymers include cellulose derivatives (cellulose-based polymers) such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethyl cellulose (HPMC), Polyvinyl alcohol (PVA) etc. are mentioned, These can be used individually by 1 type or in combination of 2 or more types. Taking into consideration the ease of absorption of moisture supplied in exposure to a predetermined dew point temperature environment, which will be described later, and workability and stability during kneading (preparation) of the negative electrode active material layer forming composition, cellulose derivatives (Typically CMC) is preferably used.

上記水に溶解または分散可能なポリマーの添加量(含有量)は、使用目的や負極活物質の種類や使用量に応じて適宜選択すればよく特に限定されないが、負極活物質層形成用組成物の固形分全量を100質量%としたときに、0.5質量%〜10質量%(例えば1質量%〜5質量%、典型的には1質量%〜3質量%)の範囲内とすることが好ましい。水に溶解または分散可能なポリマーの添加量が上記範囲内であることにより、リチウムイオン二次電池の容量の低下を好適に抑制することができ、また、結着材または増粘材としての作用を好適に発揮することができる。   The amount (content) of the polymer that can be dissolved or dispersed in water is not particularly limited as long as it is appropriately selected depending on the purpose of use, the type and amount of the negative electrode active material, and the composition for forming a negative electrode active material layer. When the total solid content is 100% by mass, it is within the range of 0.5% to 10% by mass (for example, 1% to 5% by mass, typically 1% to 3% by mass). Is preferred. When the amount of the polymer that can be dissolved or dispersed in water is within the above range, it is possible to suitably suppress the decrease in the capacity of the lithium ion secondary battery, and to act as a binder or thickener. Can be suitably exhibited.

負極活物質層形成用組成物にはさらに、その他の添加材を適宜含有させることができる。その他の添加材としては、例えば、スチレンブタジエンゴム(SBR)、アラビアゴム等のゴム類が挙げられる。ここでSBRとは、スチレンと1,3‐ブタジエンを含む共重合体のことであり、その共重合様式は特に限定されない。上記SBRは、さらに不飽和カルボン酸や不飽和ニトリル化合物を共重合させた、例えばアクリル酸変性SBR樹脂等の変性SBRであってもよい。その他、ポリアクリレート(アクリル酸エステル単独重合体または共重合体)、ポリウレタン、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド−プロピレンオキサイド共重合体(PEO−PPO)、ポリエチレン等のポリマー材料を用いることができる。かかるその他の添加材は、1種を単独でまたは2種以上を組み合わせて用いてもよい。   The negative electrode active material layer forming composition may further contain other additives as appropriate. Examples of other additives include rubbers such as styrene butadiene rubber (SBR) and gum arabic. Here, SBR is a copolymer containing styrene and 1,3-butadiene, and the copolymerization mode is not particularly limited. The SBR may be a modified SBR such as an acrylic acid-modified SBR resin obtained by further copolymerizing an unsaturated carboxylic acid or an unsaturated nitrile compound. In addition, polymer materials such as polyacrylate (acrylic acid ester homopolymer or copolymer), polyurethane, polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-propylene oxide copolymer (PEO-PPO), polyethylene, etc. Can be used. Such other additives may be used alone or in combination of two or more.

上記その他の添加材を含有する場合、その添加量(含有量)は特に限定されないが、負極活物質層形成用組成物の固形分全量を100質量%としたときに、0.25質量%〜5質量%(例えば0.5質量%〜2.5質量%、典型的には0.5質量%〜1.5質量%)の範囲内とすることが好ましい。その場合、上記水に溶解または分散可能なポリマーの添加量(含有量)は、0.25質量%〜5質量%(例えば0.5質量%〜2.5質量%、典型的には0.5質量%〜1.5質量%)の範囲内とすることが好ましい。上記その他の添加材の添加量が上記範囲内であることにより、リチウムイオン二次電池の容量の低下を好適に抑制することができ、また、その他の添加材の所望の添加効果を好適に発揮することができる。   When the other additive is contained, the addition amount (content) is not particularly limited, but when the total solid content of the negative electrode active material layer forming composition is 100% by mass, 0.25% by mass to It is preferable to be within a range of 5% by mass (for example, 0.5% to 2.5% by mass, typically 0.5% to 1.5% by mass). In that case, the addition amount (content) of the polymer that can be dissolved or dispersed in the water is 0.25% by mass to 5% by mass (for example, 0.5% by mass to 2.5% by mass, typically 0.005% by mass). 5 mass% to 1.5 mass%) is preferable. When the addition amount of the other additive is within the above range, the capacity reduction of the lithium ion secondary battery can be suitably suppressed, and the desired addition effect of the other additive can be suitably exhibited. can do.

負極活物質層形成用組成物に含まれる水系溶媒とは、水または水を主体とする混合溶媒を指す概念である。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)の1種または2種以上を適宜選択して用いることができる。例えば、該水系溶媒の凡そ80質量%以上(例えば90質量%以上、典型的には95質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。   The aqueous solvent contained in the negative electrode active material layer forming composition is a concept indicating water or a mixed solvent mainly composed of water. As the solvent other than water constituting the mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used. For example, it is preferable to use an aqueous solvent in which approximately 80% by mass or more (eg, 90% by mass or more, typically 95% by mass or more) of the aqueous solvent is water. A particularly preferred example is an aqueous solvent substantially consisting of water.

負極活物質層形成用組成物の固形分濃度(不揮発分、すなわち活物質層形成材料の割合)は、特に限定されないが、凡そ40質量%以上(例えば凡そ45質量%〜80質量%、典型的には50質量%〜60質量%)とすることが好ましい。固形分濃度が上記範囲内であることにより、負極活物質層の乾燥効率を好適に向上させることができ、負極活物質層を均一な厚みに塗工しやすく、また、負極活物質層形成用組成物の取扱いが容易となる傾向がある。   The solid content concentration (nonvolatile content, that is, the ratio of the active material layer forming material) of the negative electrode active material layer forming composition is not particularly limited, but is approximately 40% by mass or more (for example, approximately 45% by mass to 80% by mass, typically 50 mass% to 60 mass%) is preferable. When the solid content concentration is within the above range, the drying efficiency of the negative electrode active material layer can be suitably improved, the negative electrode active material layer can be easily applied to a uniform thickness, and for forming the negative electrode active material layer The composition tends to be easy to handle.

次に、リチウムイオン二次電池の負極の製造方法について説明する。かかる製造方法では、まず、上述した負極活物質と水に溶解または分散可能なポリマーと必要であればその他の添加材とを水系溶媒中で混ぜ合わせ(混練)、ペースト状(スラリー状ともいう)の負極活物質層形成用組成物を調製する。かかる混練操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。負極活物質層形成用組成物を調製するにあたっては、負極活物質と水に溶解または分散可能なポリマーとその他の添加材とを少量の水系溶媒(例えば水)で固練りし、その後、得られた混練物を適量の溶媒で希釈してもよい。   Next, the manufacturing method of the negative electrode of a lithium ion secondary battery is demonstrated. In such a production method, first, the above-described negative electrode active material, a polymer that can be dissolved or dispersed in water, and, if necessary, other additives are mixed (kneaded) in an aqueous solvent to form a paste (also referred to as a slurry). A negative electrode active material layer forming composition is prepared. Such a kneading operation can be performed using, for example, an appropriate kneader (planetary mixer, homodisper, clear mix, fill mix, etc.). In preparing the negative electrode active material layer forming composition, the negative electrode active material, a polymer that can be dissolved or dispersed in water, and other additives are solidified with a small amount of an aqueous solvent (for example, water), and then obtained. The kneaded product may be diluted with an appropriate amount of solvent.

次いで、負極集電体上に負極活物質層を形成するため、得られた負極活物質層形成用組成物を該負極集電体上に塗付する。負極活物質層形成用組成物を塗付する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、グラビアコーター、コンマコーター、スリットコーター、ダイコーター等の適当な塗付装置を使用することによって、負極集電体の表面に負極活物質層形成用組成物を塗付することができる。   Next, in order to form a negative electrode active material layer on the negative electrode current collector, the obtained composition for forming a negative electrode active material layer is applied onto the negative electrode current collector. As a method of applying the negative electrode active material layer forming composition, a technique similar to a conventionally known method can be appropriately employed. For example, the composition for forming a negative electrode active material layer can be applied to the surface of the negative electrode current collector by using an appropriate application device such as a gravure coater, comma coater, slit coater, or die coater.

かかる塗付を行う環境は特に限定されないが、露点温度21℃未満(例えば露点温度14℃以下、典型的には露点温度0℃以下)の環境で上記塗付を行うことが好ましい。これによって、負極活物質層中の残留水分と電解液中の支持塩とが反応することによる不純物(例えばフッ化水素(HF))の生成を好適に抑制することができ、かかる不純物に起因する容量の低下を好適に防止することができる。また、かかる塗付を行う際の温度は特に限定されず、通常、温度20℃〜35℃で塗付を行うことができる。   The environment in which the application is performed is not particularly limited, but the application is preferably performed in an environment having a dew point temperature of less than 21 ° C. (for example, a dew point temperature of 14 ° C. or less, typically a dew point temperature of 0 ° C. or less). Thereby, it is possible to suitably suppress the generation of impurities (for example, hydrogen fluoride (HF)) due to the reaction between the residual moisture in the negative electrode active material layer and the supporting salt in the electrolytic solution. A decrease in capacity can be suitably prevented. Moreover, the temperature at the time of performing this coating is not specifically limited, Usually, it can apply at the temperature of 20 to 35 degreeC.

塗付する負極活物質層形成用組成物の単位面積当たりの塗付量、すなわち目付量は、十分な導電経路(導電パス)を確保することができる限りにおいて特に限定されるものではないが、好ましくは両面で5mg/cm以上35mg/cm以下(より好ましくは7mg/cm以上25mg/cm以下)である。 The coating amount per unit area of the composition for forming a negative electrode active material layer to be applied, that is, the basis weight is not particularly limited as long as a sufficient conductive path (conductive path) can be secured, Preferably, it is 5 mg / cm 2 or more and 35 mg / cm 2 or less (more preferably 7 mg / cm 2 or more and 25 mg / cm 2 or less) on both sides.

負極活物質層形成用組成物を塗付した後、塗付物を乾燥することによって(このとき、必要に応じて適当な乾燥促進手段(ヒータ等)を用いてもよい。)負極活物質層形成用組成物中の溶媒を除去することが好ましい。上記乾燥の方法および条件は、乾燥後の負極活物質層(形成用組成物)の水分含量が質量基準で500ppm以下となる範囲で適宜設定すればよく特に限定されない。乾燥方法としては、例えば、負極活物質層形成用組成物が塗付された負極集電体を乾燥炉内を通過させることが好ましい。また、乾燥条件としては、例えば露点温度21℃未満(例えば露点温度14℃以下、典型的には露点温度0℃以下)の環境で上記乾燥を行うことが好ましい。乾燥温度は、例えば70℃より高く200℃以下(典型的には120℃〜150℃)とすることが好ましく、乾燥時間は、例えば凡そ10秒〜120秒(典型的には凡そ20秒〜60秒)とすることが好ましい。   After applying the composition for forming a negative electrode active material layer, the applied material is dried (at this time, an appropriate drying accelerating means (a heater or the like may be used if necessary)). It is preferred to remove the solvent in the forming composition. The drying method and conditions are not particularly limited as long as the moisture content of the dried negative electrode active material layer (forming composition) is appropriately set within a range of 500 ppm or less on a mass basis. As a drying method, for example, it is preferable to pass the negative electrode current collector coated with the negative electrode active material layer forming composition through a drying furnace. Moreover, as drying conditions, it is preferable to perform the said drying in the environment of dew point temperature of less than 21 degreeC (for example, dew point temperature of 14 degrees C or less, typically dew point temperature of 0 degrees C or less), for example. The drying temperature is preferably higher than 70 ° C. and not higher than 200 ° C. (typically 120 ° C. to 150 ° C.), and the drying time is, for example, about 10 seconds to 120 seconds (typically about 20 seconds to 60 seconds). Seconds).

このようにして形成された負極活物質層に、所望により厚み方向にプレス処理を行うことで、目的とする厚みの負極を得ることができる。上記プレス処理方法としては、従来公知のロールプレス法、平板プレス法等を適宜採用することができる。プレス処理後の負極(負極シート)の厚み(典型的には、負極集電体およびその両面に形成された負極活物質層の合計厚み)は、特に限定されないが、例えば凡そ30μm〜300μm(典型的には50μm〜100μm)であることが好ましい。負極活物質層が負極集電体の片面に形成される場合は、上記厚みの凡そ半分の厚みとすればよい。かかるプレス処理も、例えば、温度20℃〜35℃で、露点温度21℃未満(例えば露点温度14℃以下、典型的には露点温度0℃以下)の環境で行うことが好ましい。なお、プレス処理は上記乾燥の前に行ってもよい。   A negative electrode having a target thickness can be obtained by subjecting the negative electrode active material layer thus formed to press treatment in the thickness direction as desired. As the press treatment method, a conventionally known roll press method, flat plate press method, or the like can be appropriately employed. The thickness of the negative electrode (negative electrode sheet) after the press treatment (typically, the total thickness of the negative electrode current collector and the negative electrode active material layer formed on both surfaces thereof) is not particularly limited, but is, for example, about 30 μm to 300 μm (typically Specifically, it is preferably 50 μm to 100 μm. When the negative electrode active material layer is formed on one surface of the negative electrode current collector, the thickness may be about half of the above thickness. Such press treatment is also preferably performed in an environment of, for example, a temperature of 20 ° C. to 35 ° C. and a dew point temperature of less than 21 ° C. (for example, a dew point temperature of 14 ° C. or lower, typically a dew point temperature of 0 ° C. or lower). In addition, you may perform a press process before the said drying.

次いで、例えば上述したようにして形成した負極活物質層を、露点温度10℃〜52℃、好ましくは露点温度17℃〜52℃の環境に曝す。かかる環境に負極活物質層を曝すこと(以下、所定の露点温度環境への曝露ともいう)で、該環境中の水分が、負極活物質層を構成する材料(典型的にはCMC等の水に溶解または分散可能なポリマー)に作用し、容量の低下が抑制される。その作用機序は明らかではないが、例えば水に溶解または分散可能なポリマーの負極活物質層中における形態が変化(例えば軟化)し、この変化が、SEI(Solid Electrolyte Interface 固体電解質界面)が形成されにくい物理的あるいは化学的条件を生み出していることが推察される。そのような理由から露点温度は、15℃以上(例えば25℃以上、典型的には35℃以上)であることがより好ましい。また、露点温度が高すぎると、上記作用が得られない傾向があるため、露点温度の上限は52℃である。   Next, for example, the negative electrode active material layer formed as described above is exposed to an environment having a dew point temperature of 10 ° C. to 52 ° C., preferably a dew point temperature of 17 ° C. to 52 ° C. By exposing the negative electrode active material layer to such an environment (hereinafter also referred to as exposure to a predetermined dew point temperature environment), the water in the environment becomes a material constituting the negative electrode active material layer (typically water such as CMC). The polymer is soluble or dispersible in the polymer), and the decrease in capacity is suppressed. Although the mechanism of action is not clear, for example, the shape of a polymer that can be dissolved or dispersed in water in the negative electrode active material layer changes (for example, softens), and this change forms a SEI (Solid Electrolyte Interface solid electrolyte interface). It is inferred that it creates physical or chemical conditions that are difficult to do. For such reasons, the dew point temperature is more preferably 15 ° C. or higher (eg, 25 ° C. or higher, typically 35 ° C. or higher). Moreover, since there exists a tendency for the said effect | action not to be acquired when dew point temperature is too high, the upper limit of dew point temperature is 52 degreeC.

また、上記所定の露点温度環境への曝露における温度は特に限定されないが、温度25℃以上(例えば35℃以上、典型的には45℃以上)、85℃以下(例えば75℃以下、典型的には70℃以下)で上記曝露を行うことが、リチウムイオン二次電池の容量の低下を好適に抑制する観点から好ましい。温度が25℃未満、例えば20℃では、露点温度が19℃のときの相対湿度が95%となり、結露する虞があり、温度が85℃を超えると、極板の剥離強度が弱くなる虞がある。   Further, the temperature in the exposure to the predetermined dew point temperature environment is not particularly limited, but the temperature is 25 ° C. or higher (eg, 35 ° C. or higher, typically 45 ° C. or higher), 85 ° C. or lower (eg, 75 ° C. or lower, typically Is preferably performed at a temperature of 70 ° C. or less from the viewpoint of suitably suppressing a decrease in the capacity of the lithium ion secondary battery. When the temperature is less than 25 ° C., for example, 20 ° C., the relative humidity when the dew point temperature is 19 ° C. is 95%, which may cause condensation, and when the temperature exceeds 85 ° C., the peel strength of the electrode plate may be weakened. is there.

上記所定の露点温度環境への曝露時間は特に限定されないが、シート状の負極をリール状にしたものの場合は、少なくとも30分曝露することがより好ましい。上記曝露は、1時間以上(例えば2時間以上、典型的には3時間以上)行うことが好ましい。30分以上、所定の露点温度環境に曝露することにより、容量の低下が充分に抑制される。また、上記曝露時間の上限について特に制限はないが、24時間以下(例えば8時間以下、典型的には5時間以下)とすることが好ましい。   The exposure time to the predetermined dew point temperature environment is not particularly limited, but in the case of a sheet-like negative electrode in a reel shape, it is more preferable to expose at least 30 minutes. The exposure is preferably performed for 1 hour or longer (for example, 2 hours or longer, typically 3 hours or longer). By exposing to a predetermined dew point temperature environment for 30 minutes or more, the decrease in capacity is sufficiently suppressed. Moreover, although there is no restriction | limiting in particular about the upper limit of the said exposure time, It is preferable to set it as 24 hours or less (for example, 8 hours or less, typically 5 hours or less).

上記曝露を行った後の負極活物質層の水分含量は、特に限定されないが、質量基準で900ppm以上(例えば1000ppm以上)となり、また、2000ppm以下(例えば1800ppm以下、典型的には1600ppm以下)となることが好ましい。負極活物質層の水分含量が上記範囲内となるように上記所定の露点温度環境への曝露を行うことで、この水分が負極活物質層を構成する材料(典型的には水に溶解または分散可能なポリマー)に作用し、容量の低下が好適に抑制される。   The moisture content of the negative electrode active material layer after the exposure is not particularly limited, but is 900 ppm or more (for example, 1000 ppm or more) on a mass basis, and is 2000 ppm or less (for example, 1800 ppm or less, typically 1600 ppm or less). It is preferable to become. By exposing to the predetermined dew point temperature environment so that the water content of the negative electrode active material layer is within the above range, this water is a material constituting the negative electrode active material layer (typically dissolved or dispersed in water) Possible polymer), and a decrease in capacity is suitably suppressed.

なお、上記所定の露点温度環境への曝露は、プレス処理の前に行ってもよく、プレス処理と同時並行的に行う(例えば、上記曝露中にプレス処理を行う)ことも可能であるが、上述したように上記プレス処理の後に行うことがより好ましい。その理由として、負極活物質層中の水に溶解または分散可能なポリマーのなかに、プレス処理によって変形している(典型的には割れている)ものがあり、このプレス処理によって変形したポリマーに対し、所定量の水分を供給することで、負極活物質層中における該ポリマーの形態が再生し、あるいはさらに変化(例えば軟化)し、これがリチウムイオン二次電池の容量の低下を抑制するように作用していると推察されることが挙げられる。   In addition, the exposure to the predetermined dew point temperature environment may be performed before the press process, or can be performed concurrently with the press process (for example, the press process is performed during the exposure). As described above, it is more preferable to carry out after the press treatment. The reason is that some of the polymers that can be dissolved or dispersed in water in the negative electrode active material layer are deformed (typically cracked) by the press treatment. On the other hand, by supplying a predetermined amount of water, the form of the polymer in the negative electrode active material layer is regenerated or further changed (for example, softened), which suppresses the decrease in the capacity of the lithium ion secondary battery. It is mentioned that it is acting.

上記所定の露点温度環境に曝露した後、必要に応じて負極活物質層を乾燥させてもよい。かかる乾燥の方法および条件は、乾燥後の負極活物質層(形成用組成物)の水分含量が質量基準で500ppm以下となる範囲で適宜設定すればよく特に限定されないが、上記負極活物質層形成用組成物の塗付後の乾燥と同じ方法および条件が好ましく採用され得る。このようにしてリチウムイオン二次電池の負極が得られる。   After exposure to the predetermined dew point temperature environment, the negative electrode active material layer may be dried as necessary. The drying method and conditions are not particularly limited as long as the moisture content of the negative electrode active material layer (formation composition) after drying is appropriately set within a range of 500 ppm or less on a mass basis. The same method and conditions as the drying after the application of the composition for application can be preferably employed. Thus, the negative electrode of a lithium ion secondary battery is obtained.

次に、上記の方法により製造された負極(負極シート)を用いて構築される、一実施形態に係るリチウムイオン二次電池について説明する。図2に示されるように、リチウムイオン二次電池100は、金属製(樹脂製またはラミネートフィルム製も好適である。)のケース21を備える。このケース(外容器)21は、上端が開口した扁平な直方体状のケース本体22と、その開口部分を塞ぐ蓋体23とを備える。ケース21の上面(すなわち蓋体23)には、捲回電極体80の正極と電気的に接続する正極端子25および捲回電極体80の負極と電気的に接続する負極端子27が設けられている。また、ケース21の内部には、扁平形状の捲回電極体80が収容されている。この捲回電極体80は、例えば長尺シート状の正極(正極シート)50および長尺シート状の負極(負極シート)10を計二枚の長尺シート状セパレータ(セパレータシート)60とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製されるものである。   Next, a lithium ion secondary battery according to an embodiment constructed using the negative electrode (negative electrode sheet) manufactured by the above method will be described. As shown in FIG. 2, the lithium ion secondary battery 100 includes a case 21 made of metal (a resin or a laminate film is also suitable). The case (outer container) 21 includes a flat rectangular parallelepiped case main body 22 having an open upper end, and a lid 23 that closes the opening. The upper surface of the case 21 (that is, the lid body 23) is provided with a positive electrode terminal 25 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 27 that is electrically connected to the negative electrode of the wound electrode body 80. Yes. Further, a flat wound electrode body 80 is accommodated in the case 21. The wound electrode body 80 is formed by, for example, laminating a long sheet-like positive electrode (positive electrode sheet) 50 and a long sheet-like negative electrode (negative electrode sheet) 10 together with a total of two long sheet-like separators (separator sheets) 60. Then, the wound body is produced by crushing and ablating the obtained wound body from the side surface direction.

正極シート50および負極シート10は、それぞれ、長尺シート状の電極集電体の両面に電極活物質を主成分とする電極活物質層が形成された構成を有する。また、正極シート50の幅方向の一端には、いずれの面にも上記正極活物質層が形成されていない正極活物質層非形成部分51が設けられており、負極シート10の幅方向の一端には、いずれの面にも上記負極活物質層が形成されていない負極活物質層非形成部分11が設けられている。そして、上記積層の際に、正極シート50の正極活物質層非形成部分51と負極シート10の負極活物質層非形成部分11とがセパレータシート60の幅方向の両側からそれぞれはみ出すように、正極シート50と負極シート10とを幅方向にややずらして重ね合わせることで、捲回電極体80の捲回方向に対する横方向において、正負極シート50,10の電極活物質層非形成部分51,11が、それぞれ捲回コア部分(すなわち正極シート50の正極活物質層形成部分と負極シート10の負極活物質層形成部分と二枚のセパレータシート60とが密に捲回された部分)82から外方にはみ出た構成が得られる。かかる正極側はみ出し部分(正極活物質層非形成部分)51および負極側はみ出し部分(負極活物質層非形成部分)11には、正極リード端子26および負極リード端子28がそれぞれ付設されており、上述の正極端子25および負極端子27とそれぞれ電気的に接続される。   Each of the positive electrode sheet 50 and the negative electrode sheet 10 has a configuration in which an electrode active material layer mainly composed of an electrode active material is formed on both surfaces of a long sheet-shaped electrode current collector. Moreover, the positive electrode active material layer non-formation part 51 in which the positive electrode active material layer is not formed on any surface is provided at one end of the positive electrode sheet 50 in the width direction. The negative electrode active material layer non-formation part 11 in which the said negative electrode active material layer is not formed in any surface is provided. The positive electrode active material layer non-formation part 51 of the positive electrode sheet 50 and the negative electrode active material layer non-formation part 11 of the negative electrode sheet 10 are protruded from both sides in the width direction of the separator sheet 60 during the lamination. By overlapping the sheet 50 and the negative electrode sheet 10 with a slight shift in the width direction, the electrode active material layer non-forming portions 51 and 11 of the positive and negative electrode sheets 50 and 10 in the lateral direction with respect to the winding direction of the wound electrode body 80. Are removed from the wound core portion 82 (that is, the portion where the positive electrode active material layer forming portion of the positive electrode sheet 50, the negative electrode active material layer forming portion of the negative electrode sheet 10 and the two separator sheets 60 are closely wound) 82 A configuration that protrudes is obtained. The positive electrode side protruding portion (positive electrode active material layer non-forming portion) 51 and the negative electrode side protruding portion (negative electrode active material layer non-forming portion) 11 are respectively provided with a positive electrode lead terminal 26 and a negative electrode lead terminal 28. The positive electrode terminal 25 and the negative electrode terminal 27 are electrically connected to each other.

かかる捲回電極体80を構成する各構成要素は、従来のリチウムイオン二次電池の電極体の各構成要素と同様でよく、特に制限はない。例えば、正極シート50は、長尺状の正極集電体の上に正極活物質を主成分とする正極活物質層が付与(典型的には塗付および乾燥)されて形成され得る。正極集電体にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。正極活物質層の主成分となる正極活物質は、従来からリチウムイオン二次電池に用いられる物質の1種または2種以上を特に限定することなく使用することができる。好適例として、層状構造やスピネル構造のリチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、オリビン型リン酸リチウム等の、リチウムと1種または2種以上の遷移金属元素とを構成金属元素として含むリチウム遷移金属複合酸化物が挙げられる。正極活物質層には、上記正極活物質の他に、さらに導電材や結着材等の添加材を含有させることができる。導電材としては、例えばカーボン粉末やカーボンファイバー等のカーボン材料が挙げられ、結着材としては、水系溶媒を用いる場合は、例えばセルロース誘導体(典型的にはカルボキシメチルセルロース(CMC))等の水溶性または水分散性ポリマーが挙げられ、非水系溶媒を用いる場合はポリフッ化ビニリデン(PVDF)等が挙げられる。なお、正極シート50および負極シート10のいずれかの表面には、電極活物質層の脱落を防止する目的や耐熱性を向上する目的で保護膜が設けられていてもよい。正極活物質層中における正極活物質の含有量は、固形分全量を100質量%としたときに凡そ50質量%を超えること(典型的には凡そ70質量%〜95質量%の範囲内)が好ましい。   Each component constituting the wound electrode body 80 may be the same as each component of the electrode body of the conventional lithium ion secondary battery, and is not particularly limited. For example, the positive electrode sheet 50 can be formed by applying (typically applying and drying) a positive electrode active material layer containing a positive electrode active material as a main component on a long positive electrode current collector. As the positive electrode current collector, an aluminum foil or other metal foil suitable for the positive electrode is preferably used. As the positive electrode active material which is the main component of the positive electrode active material layer, one or more of materials conventionally used in lithium ion secondary batteries can be used without particular limitation. Preferred examples include lithium and one or more transition metals such as layered or spinel lithium nickel-based composite oxide, lithium cobalt-based composite oxide, lithium manganese-based composite oxide, and olivine-type lithium phosphate. Examples thereof include lithium transition metal composite oxides containing an element as a constituent metal element. In addition to the positive electrode active material, the positive electrode active material layer can further contain additives such as a conductive material and a binder. Examples of the conductive material include carbon materials such as carbon powder and carbon fiber, and examples of the binder include water-soluble substances such as cellulose derivatives (typically carboxymethyl cellulose (CMC)) when an aqueous solvent is used. Or a water dispersible polymer is mentioned, When using a non-aqueous solvent, a polyvinylidene fluoride (PVDF) etc. are mentioned. A protective film may be provided on the surface of either the positive electrode sheet 50 or the negative electrode sheet 10 for the purpose of preventing the electrode active material layer from falling off or improving the heat resistance. The content of the positive electrode active material in the positive electrode active material layer exceeds about 50% by mass (typically within a range of about 70% to 95% by mass) when the total solid content is 100% by mass. preferable.

正負極シート間に使用されるセパレータ(セパレータシート)の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、厚さ5μm〜30μm程度の合成樹脂製(例えばポリエチレン、ポリプロピレン、またはこれらを組み合わせたポリオレフィン製)多孔質セパレータシートを好適に使用し得る。このセパレータシートには耐熱層等が設けられていてもよい。なお、電解液に替えてゲル状電解質を使用する場合には、セパレータが不要になること(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。   Preferable examples of the separator (separator sheet) used between the positive and negative electrode sheets include those made of a porous polyolefin resin. For example, a porous separator sheet made of synthetic resin (for example, made of polyethylene, polypropylene, or a combination of these) having a thickness of about 5 μm to 30 μm can be suitably used. This separator sheet may be provided with a heat-resistant layer or the like. When a gel electrolyte is used instead of the electrolytic solution, a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).

図2を参照し、上述した構造のリチウムイオン二次電池100は、例えば次のような方法で製造される。まず、上述したような手法により、正極活物質を主成分として形成された正極活物質層を正極集電体上に備えた正極(正極シート)50を構築し、上述した方法によって負極を製造することで、負極(負極シート)10を構築する。その後、上述したように、正極シート50と負極シート10とセパレータシート60とを積層して捲回電極体80を構築し、この捲回電極体80をケース本体22の上端開口部分から該ケース本体22内に収容するとともに適当な支持塩を含む電解液をケース本体22内に配置(注液)する。   With reference to FIG. 2, the lithium ion secondary battery 100 having the above-described structure is manufactured, for example, by the following method. First, a positive electrode (positive electrode sheet) 50 provided with a positive electrode active material layer formed mainly of a positive electrode active material on a positive electrode current collector is constructed by the above-described method, and a negative electrode is manufactured by the above-described method. Thus, the negative electrode (negative electrode sheet) 10 is constructed. Thereafter, as described above, the wound electrode body 80 is constructed by laminating the positive electrode sheet 50, the negative electrode sheet 10, and the separator sheet 60, and the wound electrode body 80 is connected to the case body from the upper end opening portion of the case body 22. An electrolytic solution that is accommodated in 22 and contains an appropriate supporting salt is placed (injected) into the case body 22.

電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる電解液は、典型的には適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、N,N−ジメチルホルムアミド(DMF)、エチルメチルカーボネート(EMC)等の1種または2種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、支持塩の濃度は、従来のリチウムイオン二次電池で使用される非水電解液と同様でよく特に限定されないが、例えば上記支持塩を0.1mol/L〜5mol/L程度の濃度で含有させた電解液を好適に使用することができる。 As the electrolytic solution, the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without any particular limitation. Such an electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), N, N-dimethylformamide (DMF), ethyl methyl carbonate (EMC), and the like. 1 type (s) or 2 or more types can be used. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type or 2 types or more of lithium compounds (lithium salt), such as LiI, can be used. The concentration of the supporting salt is not particularly limited and may be the same as that of the non-aqueous electrolyte used in the conventional lithium ion secondary battery. The contained electrolytic solution can be preferably used.

上記電解液を注液した後、上記開口部分を蓋体23との溶接等により封止することで、一実施形態に係るリチウムイオン二次電池100が構築される。ケース21の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。   After injecting the electrolyte, the lithium ion secondary battery 100 according to an embodiment is constructed by sealing the opening by welding or the like with the lid body 23. The sealing process of the case 21 and the placement (injection) process of the electrolytic solution may be the same as the method used in the manufacture of the conventional lithium ion secondary battery, and do not characterize the present invention.

このようにして構築されたリチウムイオン二次電池は、上述したように、容量維持(特に高温保存後の容量維持率)に優れるので、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って本発明は、上記リチウムイオン二次電池(典型的には複数直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供することができる。   As described above, the lithium ion secondary battery constructed in this way is excellent in capacity maintenance (particularly capacity maintenance rate after high-temperature storage), and therefore, a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Can be suitably used. Accordingly, the present invention provides a vehicle (typically an automobile, particularly a hybrid automobile, an electric automobile, a fuel cell automobile, etc.) having the above-described lithium ion secondary battery (typically, a battery pack in which a plurality of batteries are connected in series) as a power source. An automobile equipped with an electric motor) can be provided.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.

<例1〜例8>
(1)負極シートの作製
負極活物質としての天然黒鉛粉末と、結着材としてのスチレン−ブタジエン共重合体(SBR)と、増粘材としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98:1:1となるように水に分散させてペースト状の負極活物質層形成用組成物を調製した。この負極活物質層形成用組成物を、長尺シート状の銅箔(厚さ10μm)の両面に合計塗付量が10mg/cm(固形分基準)となるように均一に塗付した。塗付後、温度100℃で20秒間乾燥させ、該塗付物にプレス処理を行い、負極集電体上に負極活物質層を形成した。この負極集電体とその上に形成された負極活物質層とからなるシート状負極活物質層形成物をリール状に巻いた後、それぞれ表1に示す露点温度環境に3時間曝した。その後、温度100℃、露点温度−30℃の環境で20秒間乾燥させることによって、例1〜例8に係るシート状の負極(負極シート)を作製した。なお、上記塗付、乾燥およびプレス処理における露点温度は−30℃であり、上記塗付およびプレス処理における温度は25℃であった。
<Example 1 to Example 8>
(1) Production of negative electrode sheet Natural graphite powder as a negative electrode active material, styrene-butadiene copolymer (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are made of these materials. A paste-like composition for forming a negative electrode active material layer was prepared by dispersing in water such that the mass ratio was 98: 1: 1. This composition for forming a negative electrode active material layer was uniformly applied to both sides of a long sheet-like copper foil (thickness: 10 μm) so that the total application amount was 10 mg / cm 2 (solid content basis). After coating, the coated material was dried at a temperature of 100 ° C. for 20 seconds, and the coated material was subjected to press treatment to form a negative electrode active material layer on the negative electrode current collector. A sheet-like negative electrode active material layer formation comprising this negative electrode current collector and a negative electrode active material layer formed thereon was wound in a reel shape and then exposed to the dew point temperature environment shown in Table 1 for 3 hours. Then, the sheet-like negative electrode (negative electrode sheet) which concerns on Example 1-Example 8 was produced by making it dry for 20 second in the environment of temperature 100 degreeC and dew point temperature -30 degreeC. In addition, the dew point temperature in the said application | coating, drying, and press processing was -30 degreeC, and the temperature in the said application | coating and press process was 25 degreeC.

(2)正極シートの作製
正極活物質としてのニッケルマンガンコバルト酸リチウム(Li[Ni1/3Mn1/3Co1/3)粉末と、導電材としてのアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVDF)とを、これらの材料の質量比が90:5:5となるようにN−メチル−2−ピロリドン(NMP)中で混合して、ペースト状の正極活物質層形成用組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(正極集電体;厚み15μm)の両面に合計塗付量が20mg/cm(固形分基準)となるように塗付して乾燥させた後、プレス処理を行い、シート状の正極(正極シート)を作製した。
(2) Preparation of positive electrode sheet Lithium nickel manganese cobaltate (Li [Ni 1/3 Mn 1/3 Co 1/3 O 2 ) powder as a positive electrode active material, acetylene black as a conductive material, and binder Of poly (vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) so that the mass ratio of these materials is 90: 5: 5 to form a paste-like positive electrode active material layer A composition was prepared. After this composition was applied on both sides of a long sheet-like aluminum foil (positive electrode current collector; thickness 15 μm) so that the total application amount was 20 mg / cm 2 (solid content basis) and dried. Then, a press treatment was performed to produce a sheet-like positive electrode (positive electrode sheet).

(3)リチウムイオン二次電池の構築
作製した負極シートと正極シートとを二枚の長尺状ポリオレフィン系セパレータ(ここでは厚みが25μmの多孔質ポリエチレンシートを用いた。)とともに積層し、その積層シートを長尺方向に捲回して捲回電極体を作製した。この捲回電極体を電解液とともに円筒型の容器に収容することにより、例1〜例8に係るリチウムイオン二次電池(理論容量223mAh)を構築した。電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(質量比)混合溶媒に支持塩として約1mol/LのLiPFを溶解させたものを用いた。
(3) Construction of lithium ion secondary battery The produced negative electrode sheet and positive electrode sheet were laminated together with two long polyolefin separators (here, a porous polyethylene sheet having a thickness of 25 μm was used), and the lamination was performed. The sheet was wound in the longitudinal direction to produce a wound electrode body. A lithium ion secondary battery (theoretical capacity 223 mAh) according to Examples 1 to 8 was constructed by accommodating the wound electrode body together with an electrolytic solution in a cylindrical container. As an electrolytic solution, about 1 mol / L LiPF 6 was dissolved as a supporting salt in a 3: 3: 4 (mass ratio) mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). Used.

[負極活物質層の水分含量]
上記のようにして作製した各負極シートの負極活物質層の表面の一部を削り取り、削り取った試料に含まれる水分量をカールフィッシャー法により測定した。結果を表1に示す。
[Moisture content of negative electrode active material layer]
A part of the surface of the negative electrode active material layer of each negative electrode sheet produced as described above was scraped, and the amount of water contained in the scraped sample was measured by the Karl Fischer method. The results are shown in Table 1.

[容量維持率]
上記のように作製した各リチウムイオン二次電池につき、SOC(State of Charge)を80%の状態に調整した後、温度60℃の環境に30日間保存した。保存前後の放電容量を、SOC0%となるまで0.2CのレートでCC放電させることにより測定し、保存前の放電容量に対する保存後の放電容量から放電容量維持率(%)を算出した。結果を表1および図3に示す。
[Capacity maintenance rate]
About each lithium ion secondary battery produced as mentioned above, after adjusting SOC (State of Charge) to the state of 80%, it preserve | saved in the environment of the temperature of 60 degreeC for 30 days. The discharge capacity before and after storage was measured by CC discharge at a rate of 0.2 C until SOC reached 0%, and the discharge capacity retention rate (%) was calculated from the discharge capacity after storage with respect to the discharge capacity before storage. The results are shown in Table 1 and FIG.

Figure 2013118104
Figure 2013118104

表1および図3に示されるように、上記露点温度環境への曝露における露点温度が17℃〜52℃の範囲内である例4〜例7に係るリチウムイオン二次電池は、60℃にて30日間保存した後の容量維持率が86.1%以上であった。一方、上記露点温度が−30℃,0℃である例1,例2に係るリチウムイオン二次電池は、前記容量維持率が83.6%以下であり、例4〜例7と比べて低い値であった。また、上記露点温度が55℃である例8に係るリチウムイオン二次電池は、前記容量維持率が81.1%であり、例4〜例7と比べて低い値であった。
このように、露点温度17℃〜52℃の環境に曝すことによって作製された負極活物質層を備える負極シートを用いたリチウムイオン二次電池は、容量維持率の低下がより好適に抑制されたことが判る。
As shown in Table 1 and FIG. 3, the lithium ion secondary batteries according to Examples 4 to 7 in which the dew point temperature in the exposure to the dew point temperature environment is within the range of 17 ° C. to 52 ° C. are 60 ° C. The capacity retention rate after storage for 30 days was 86.1% or more. On the other hand, the lithium ion secondary batteries according to Examples 1 and 2 having the dew point temperatures of −30 ° C. and 0 ° C. have a capacity retention rate of 83.6% or less, which is lower than those of Examples 4 to 7. Value. The lithium ion secondary battery according to Example 8 having a dew point temperature of 55 ° C. had a capacity maintenance rate of 81.1%, which was a lower value than those in Examples 4 to 7.
Thus, the lithium ion secondary battery using the negative electrode sheet provided with the negative electrode active material layer produced by exposing it to an environment with a dew point temperature of 17 ° C. to 52 ° C. was more suitably suppressed from lowering the capacity retention rate. I understand that.

<例9〜例13>
露点温度環境への曝露について、露点温度を35℃で一定とし、曝露時間を表1に示す時間とした他は、例1と同様にして負極シートを作製し、各負極シートを用いて例1と同様にしてリチウムイオン二次電池を構築した。作製した負極シートの負極活物質層の水分含量を例1と同様にして測定し、また、構築したリチウムイオン二次電池の容量維持率を例1と同様にして測定した。結果を表2および図4に示す。なお、参考のため、図4には、例5の結果も示す。
<Example 9 to Example 13>
Regarding the exposure to the dew point temperature environment, a negative electrode sheet was prepared in the same manner as in Example 1 except that the dew point temperature was fixed at 35 ° C. and the exposure time was set to the time shown in Table 1, and Example 1 using each negative electrode sheet. In the same manner, a lithium ion secondary battery was constructed. The water content of the negative electrode active material layer of the produced negative electrode sheet was measured in the same manner as in Example 1, and the capacity retention rate of the constructed lithium ion secondary battery was measured in the same manner as in Example 1. The results are shown in Table 2 and FIG. For reference, FIG. 4 also shows the results of Example 5.

Figure 2013118104
Figure 2013118104

表2および図4に示されるように、所定の露点温度への曝露時間を30分以上とした例10〜例13に係るリチウムイオン二次電池は、60℃にて30日間保存した後の容量維持率が85.9%以上であった。一方、曝露時間が10分であった例9に係るリチウムイオン二次電池は、前記容量維持率が82.9%であり、例10〜例13と比べて低い値であった。
このように、所定の露点温度環境への曝露時間を30分以上にして作製された負極活物質層を備える負極シートを用いたリチウムイオン二次電池は、容量の低下が抑制されたことが判る。
As shown in Table 2 and FIG. 4, the lithium ion secondary batteries according to Examples 10 to 13 in which the exposure time to a predetermined dew point temperature is 30 minutes or more have a capacity after being stored at 60 ° C. for 30 days. The maintenance rate was 85.9% or more. On the other hand, the capacity retention rate of the lithium ion secondary battery according to Example 9 in which the exposure time was 10 minutes was 82.9%, which was a low value compared with Examples 10 to 13.
As described above, it is understood that the lithium ion secondary battery using the negative electrode sheet including the negative electrode active material layer manufactured with the exposure time to the predetermined dew point temperature environment for 30 minutes or more is suppressed in capacity reduction. .

1 負極集電体
2 負極活物質層
10 負極(負極シート)
11 負極側はみ出し部分(負極活物質層非形成部分)
21 ケース
22 ケース本体
23 蓋体
25 正極端子
26 正極リード端子
27 負極端子
28 負極リード端子
50 正極(正極シート)
51 正極側はみ出し部分(正極活物質層非形成部分)
60 セパレータ(シート)
80 捲回電極体
82 捲回コア部分
100 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode active material layer 10 Negative electrode (negative electrode sheet)
11 Negative electrode protruding part (negative electrode active material layer non-formed part)
21 Case 22 Case body 23 Cover body 25 Positive electrode terminal 26 Positive electrode lead terminal 27 Negative electrode terminal 28 Negative electrode lead terminal 50 Positive electrode (positive electrode sheet)
51 Positive electrode protruding part (positive electrode active material layer non-formed part)
60 Separator (sheet)
80 wound electrode body 82 wound core portion 100 lithium ion secondary battery

Claims (5)

電荷担体を挿入/脱離可能な負極活物質を主成分とし、水に溶解または分散可能なポリマーと水系溶媒とを含む負極活物質層形成用組成物を負極集電体上に塗付し、該塗付後、露点温度10℃未満の条件下で乾燥することにより該負極集電体上に負極活物質層を形成すること、および
前記形成した負極活物質層を、露点温度17℃〜52℃の環境に少なくとも30分曝すこと、
を包含する、非水電解液型二次電池用の負極の製造方法。
A negative electrode active material capable of inserting / extracting charge carriers as a main component, and a negative electrode active material layer forming composition comprising a polymer that can be dissolved or dispersed in water and an aqueous solvent, applied onto the negative electrode current collector, After the application, a negative electrode active material layer is formed on the negative electrode current collector by drying under conditions of a dew point temperature of less than 10 ° C., and the formed negative electrode active material layer is formed at a dew point temperature of 17 ° C. to 52 ° C. Exposure to an environment of at least 30 minutes,
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
前記形成した負極活物質層にプレス処理を行い、その後前記環境に曝す、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the formed negative electrode active material layer is subjected to a press treatment and then exposed to the environment. 前記水に溶解または分散可能なポリマーがセルロース誘導体である、請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein the polymer that can be dissolved or dispersed in water is a cellulose derivative. 前記セルロース誘導体がカルボキシメチルセルロース(CMC)である、請求項3に記載の製造方法。   The manufacturing method of Claim 3 whose said cellulose derivative is carboxymethylcellulose (CMC). 電荷担体を挿入/脱離可能な正極活物質を主成分として形成された正極活物質層を正極集電体上に備えた正極を構築すること、
電荷担体を挿入/脱離可能な負極活物質を主成分として形成された負極活物質層を負極集電体上に備えた負極を構築すること、および
前記正極および前記負極を用いて非水電解液型二次電池を構築すること、
を包含し、
ここで、前記負極として、請求項1から4のいずれかに記載の製造方法によって得られた負極を用いることを特徴とする、非水電解液型二次電池の製造方法。
Constructing a positive electrode having a positive electrode active material layer formed on the positive electrode current collector, the main component of which is a positive electrode active material capable of inserting / extracting charge carriers,
Constructing a negative electrode provided on a negative electrode current collector with a negative electrode active material layer formed mainly of a negative electrode active material capable of inserting / extracting charge carriers, and non-aqueous electrolysis using the positive electrode and the negative electrode Building a liquid secondary battery,
Including
Here, the negative electrode obtained by the manufacturing method in any one of Claim 1 to 4 is used as said negative electrode, The manufacturing method of the non-aqueous-electrolyte type | mold secondary battery characterized by the above-mentioned.
JP2011265105A 2011-12-02 2011-12-02 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode Pending JP2013118104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265105A JP2013118104A (en) 2011-12-02 2011-12-02 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265105A JP2013118104A (en) 2011-12-02 2011-12-02 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode

Publications (1)

Publication Number Publication Date
JP2013118104A true JP2013118104A (en) 2013-06-13

Family

ID=48712531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265105A Pending JP2013118104A (en) 2011-12-02 2011-12-02 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode

Country Status (1)

Country Link
JP (1) JP2013118104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015156A (en) * 2013-07-05 2015-01-22 株式会社Gsユアサ Method for manufacturing battery
JP2015225776A (en) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 Method for manufacturing all-solid battery
KR20170076668A (en) * 2014-10-31 2017-07-04 니폰 제온 가부시키가이샤 Method for producing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015156A (en) * 2013-07-05 2015-01-22 株式会社Gsユアサ Method for manufacturing battery
JP2015225776A (en) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 Method for manufacturing all-solid battery
KR20170076668A (en) * 2014-10-31 2017-07-04 니폰 제온 가부시키가이샤 Method for producing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element
KR102646180B1 (en) * 2014-10-31 2024-03-08 니폰 제온 가부시키가이샤 Method for producing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
WO2013080379A1 (en) Lithium secondary battery and method for manufacturing same
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US10199689B2 (en) Nonaqueous electrolyte secondary battery
WO2015001871A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
JP7205717B2 (en) positive electrode
JP2010061913A (en) Method for manufacturing electrode
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN112420980A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
CN103782441A (en) Lithium secondary battery manufacturing method
US20230290955A1 (en) Carbon-based conductive agent, secondary battery, and electrical device
JP2013247009A (en) Manufacturing method of nonaqueous electrolyte secondary battery
CN104011906A (en) lithium secondary battery
JP6902206B2 (en) Lithium ion secondary battery
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2019164960A (en) Method for manufacturing positive electrode for nonaqueous electrolyte lithium secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP2014130729A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2020155319A (en) Lithium ion secondary battery
JP7125655B2 (en) negative electrode