[go: up one dir, main page]

JP2013117838A - Unmanned conveyance system - Google Patents

Unmanned conveyance system Download PDF

Info

Publication number
JP2013117838A
JP2013117838A JP2011264672A JP2011264672A JP2013117838A JP 2013117838 A JP2013117838 A JP 2013117838A JP 2011264672 A JP2011264672 A JP 2011264672A JP 2011264672 A JP2011264672 A JP 2011264672A JP 2013117838 A JP2013117838 A JP 2013117838A
Authority
JP
Japan
Prior art keywords
deviation
vehicle body
guide line
angle
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011264672A
Other languages
Japanese (ja)
Inventor
Hideto Inada
秀人 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP2011264672A priority Critical patent/JP2013117838A/en
Publication of JP2013117838A publication Critical patent/JP2013117838A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve reduction of a construction period, improvement in construction efficiency, and a reduction in construction cost in laying operation of a guide line.SOLUTION: A guide line 2 includes a first linear part 21 and a second linear part 22 bent from an end of the first linear part 21 at a predetermined angle. First detection means 11 outputs a first direction angle and a first deviation of the guide line 2 in a first detection region 11a on a side before a vehicle body, and second detection means 12 outputs a second direction angle and a second deviation of the guide line 2 in a second detection region 12a on a side behind the vehicle body. Control means swivels front wheels 13, 14 by a front-wheel swivel angle obtained by correcting the first direction angle in a direction in which the first deviation approaches zero using a correction value obtained by multiplying the first deviation by a predetermined gain on the basis of output from the first detection means 11, and swivels rear wheels 15, 16 by a rear-wheel swivel angle obtained by correcting the second direction angle in a direction in which the second deviation approaches zero using a correction value obtained by multiplying the second deviation by a predetermined gain on the basis of output from the second detection means 12.

Description

本発明は、走行経路に沿って敷設された誘導ラインと、誘導ラインの位置を検出しながら走行する無人車両とを備えた無人搬送システムに関する。   The present invention relates to an unmanned conveyance system including a guide line laid along a travel route and an unmanned vehicle that travels while detecting the position of the guide line.

従来から、工場や倉庫等においては、路面に敷設された誘導ラインと、誘導ラインに沿って走行する無人車両とを備えた無人搬送システムが活用されている。このような無人搬送システムは種々の方式のものが知られているが、例えば特許文献1及び2には、誘導ラインに沿って走行する無人車両を備えた無人搬送システムが開示されている。   2. Description of the Related Art Conventionally, in factories, warehouses, and the like, an unmanned conveyance system including a guide line laid on a road surface and an unmanned vehicle that travels along the guide line has been used. Various types of such unmanned conveyance systems are known. For example, Patent Documents 1 and 2 disclose an unmanned conveyance system including an unmanned vehicle that travels along a guide line.

従来の無人車両は、車体の前部に誘導ラインを検出する検出手段が設けられており、制御手段が、検出手段の出力に基づいて、車体に設けられた車輪の旋回駆動を制御して、誘導ラインに追従して走行するように構成されている。従来の無人搬送システムでは、無人車両が直角方向に姿勢角度を変更する区間において、誘導ライン2のコーナー部25が、図6(a)のような滑らかな曲線からなる円弧線、或いは、図6(b)のような複数の短直線を十分浅い角度で円弧状に連結させてなる円弧状の線で構成されている。   The conventional unmanned vehicle is provided with detection means for detecting the guide line at the front of the vehicle body, and the control means controls the turning drive of the wheels provided on the vehicle body based on the output of the detection means, It is configured to travel following the guide line. In the conventional unmanned conveyance system, in the section where the unmanned vehicle changes the posture angle in the perpendicular direction, the corner portion 25 of the guide line 2 is an arc line formed of a smooth curve as shown in FIG. It is composed of an arcuate line formed by connecting a plurality of short straight lines as shown in (b) in an arcuate shape at a sufficiently shallow angle.

従来の無人車両は、円弧線又は円弧状の線で構成された誘導ライン2のコーナー部25に沿って走行するように、検出手段及び制御手段が構成されていた。そのため、従来の無人搬送システムでは、誘導ラインを敷設する際に、直線用の計測器の他に曲線用の計測器を使用して、コーナー部に円弧線又は円弧状の線部材を設置する必要があった。その結果、誘導ラインの敷設作業において非常に手間がかかり、工期の長期化、施工効率の低下、施工費用の増大を招いていた。   In the conventional unmanned vehicle, the detection unit and the control unit are configured so as to travel along the corner portion 25 of the guide line 2 configured by an arc line or an arc-shaped line. Therefore, in the conventional unmanned conveyance system, when laying the guide line, it is necessary to use a measuring instrument for a curve in addition to a measuring instrument for a straight line, and to install an arc line or an arc-shaped line member at a corner portion. was there. As a result, the installation work of the induction line is very time-consuming, and the construction period is prolonged, the construction efficiency is lowered, and the construction cost is increased.

特開平11−240446号公報JP-A-11-240446 特開2001−265438号公報JP 2001-265438 A

そこで、本発明が解決しようとする課題は、誘導ラインの敷設作業において、工期の短縮化、施工効率の向上、施工費用の低下を可能とする無人搬送システムを提供することである。   Therefore, the problem to be solved by the present invention is to provide an unmanned conveyance system that can shorten the construction period, improve the construction efficiency, and reduce the construction cost in the laying operation of the induction line.

上記課題を解決するために、本発明に係る無人搬送システムは、
走行経路に沿って敷設された誘導ラインと、誘導ラインの位置を検出しながら走行する無人車両とを備えた無人搬送システムであって、
誘導ラインは、第1直線部と、第1直線部の端部から所定角度で屈曲する第2直線部とを備え、
無人車両は、
車体の前部に設けられた前輪と、
車体の後部に設けられた後輪と、
車体の前部に設けられ、誘導ラインを検出する第1検出手段と、
車体の後部に設けられ、誘導ラインを検出する第2検出手段と、
前輪及び後輪の旋回角度を制御する制御手段とを備え、
第1検出手段は、車体の前部側の第1検出領域における誘導ラインの第1方向角度及び第1偏差を出力し、
第2検出手段は、車体の後部側の第2検出領域における誘導ラインの第2方向角度及び第2偏差を出力し、
制御手段は、
第1検出手段からの出力に基づいて、第1偏差に所定のゲインを乗じた補正値を使って、第1偏差がゼロに近づく方向に第1方向角度を補正することで前輪旋回角度を設定し、前輪旋回角度で前輪を旋回し、
第2検出手段からの出力に基づいて、第2偏差に所定のゲインを乗じた補正値を使って、第2偏差がゼロに近づく方向に第2方向角度を補正することで後輪旋回角度を設定し、後輪旋回角度で後輪を旋回する。
In order to solve the above problems, an unmanned conveyance system according to the present invention includes:
An unmanned transport system comprising a guide line laid along a travel route and an unmanned vehicle that travels while detecting the position of the guide line,
The guide line includes a first straight part and a second straight part bent at a predetermined angle from the end of the first straight part,
Unmanned vehicles
A front wheel provided at the front of the vehicle body;
A rear wheel provided at the rear of the vehicle body;
First detection means provided at a front portion of the vehicle body for detecting a guide line;
A second detection means provided at the rear of the vehicle body for detecting the guide line;
Control means for controlling the turning angle of the front and rear wheels,
The first detection means outputs the first direction angle and the first deviation of the guide line in the first detection region on the front side of the vehicle body,
The second detection means outputs the second direction angle and the second deviation of the guide line in the second detection region on the rear side of the vehicle body,
The control means
Based on the output from the first detection means, the front wheel turning angle is set by correcting the first direction angle in a direction in which the first deviation approaches zero using a correction value obtained by multiplying the first deviation by a predetermined gain. Turn the front wheel at the front wheel turning angle,
Based on the output from the second detection means, the correction value obtained by multiplying the second deviation by a predetermined gain is used to correct the second direction angle in the direction in which the second deviation approaches zero, thereby setting the rear wheel turning angle. Set and turn the rear wheel at the rear wheel turning angle.

好ましくは、
誘導ラインは、第2直線部の端部から所定角度で屈曲する第3直線部を備え、
第3直線部は、第1直線部に対して約90度の方向に設けられている。
Preferably,
The guide line includes a third straight portion that is bent at a predetermined angle from an end of the second straight portion,
The third straight line portion is provided in a direction of about 90 degrees with respect to the first straight line portion.

好ましくは、
第1及び第2偏差は、第1及び第2検出領域の進行方向側の端辺における中央位置を基準とする。
Preferably,
The first and second deviations are based on the center position of the first and second detection regions at the edges on the traveling direction side.

好ましくは、
第1及び第2検出手段は、第1及び第2検出領域を撮像する撮像手段からなる。
Preferably,
The first and second detection means include imaging means for imaging the first and second detection areas.

上記の通り、本発明に係る無人搬送システムでは、無人車両は、2つの検出手段を車体の前後部に備えており、各検出手段によって車体の前部及び後部の検出領域における誘導ラインの方向角度及び偏差を検出する。無人車両は、検出手段の出力に基づいて、前輪を車体の前部側の誘導ラインに沿って旋回し、後輪を車体の後部側の誘導ラインに沿って旋回する。これによって、誘導ラインが、第1直線部と第2直線部とのコーナー部において、円弧線又は円弧状の線を有するものでなく、所定角度で屈曲した直線部であっても、無人車両は、誘導ラインから逸脱することなく走行できる。その結果、本発明に係る無人搬送システムでは、誘導ラインを敷設する際に、曲線用の計測器及び曲線部材を使用する必要がなく、直線用の計測器及び直線部材を使用するだけでよいので、工期の短縮化、施工効率の向上、施工費用の低下を可能とする。   As described above, in the unmanned conveyance system according to the present invention, the unmanned vehicle includes two detection means at the front and rear portions of the vehicle body, and the direction angle of the guide line in the detection area at the front and rear of the vehicle body by each detection device. And detecting deviations. Based on the output of the detection means, the unmanned vehicle turns the front wheel along the guidance line on the front side of the vehicle body, and turns the rear wheel along the guidance line on the rear side of the vehicle body. As a result, the unmanned vehicle does not have an arc line or an arc-shaped line at the corner portion between the first straight line portion and the second straight line portion, but is a straight portion bent at a predetermined angle. Can drive without departing from the guidance line. As a result, in the unmanned conveyance system according to the present invention, it is not necessary to use a measuring instrument for curved lines and a curved member when laying a guide line, and it is only necessary to use a measuring instrument for straight lines and a linear member. Shortening the construction period, improving construction efficiency, and lowering construction costs.

本発明に係る無人車両の概略構成を示す平面図。The top view which shows schematic structure of the unmanned vehicle which concerns on this invention. 本発明に係る無人車両のブロック図。The block diagram of the unmanned vehicle which concerns on this invention. 本発明に係る無人搬送システムの概略構成を示す平面図。The top view which shows schematic structure of the unmanned conveyance system which concerns on this invention. 図3の場合において、図4(a)は、前輪の前輪旋回角度を説明するための平面図、図4(b)は、後輪の後輪旋回角度を説明するための平面図。In the case of FIG. 3, FIG. 4 (a) is a plan view for explaining the front wheel turning angle of the front wheel, and FIG. 4 (b) is a plan view for explaining the rear wheel turning angle of the rear wheel. 図5(a)は、他の実施形態の検出手段を示す平面図、図5(b)は、さらに他の実施形態の検出手段を示す平面図。FIG. 5A is a plan view illustrating a detection unit according to another embodiment, and FIG. 5B is a plan view illustrating a detection unit according to still another embodiment. 従来の誘導ラインを示す平面図。The top view which shows the conventional guidance line.

以下、図面に基づいて、本発明に係る無人搬送システムについて説明する。   Hereinafter, an automatic guided system according to the present invention will be described with reference to the drawings.

図1の通り、無人車両1は、車体10を備えている。無人車両1は、車体10の前部1aに一対の前輪13,14が設けられている。また、無人車両1は、車体10の後部1bに一対の後輪15,16が設けられている。車体10の前部1aの中央位置と車体10の後部1bの中央位置とを結ぶ線上に、車体中心線Cが設定されている。また、車体中心線Cは、各前輪13,14の中央位置と各後輪15,16の中央位置とを結ぶ線上にある。従って、車体中心線Cの方向が、車体10の進行方向(姿勢角度)10aとなる。   As shown in FIG. 1, the unmanned vehicle 1 includes a vehicle body 10. The unmanned vehicle 1 is provided with a pair of front wheels 13 and 14 at a front portion 1 a of a vehicle body 10. In addition, the unmanned vehicle 1 is provided with a pair of rear wheels 15 and 16 on the rear portion 1 b of the vehicle body 10. A vehicle body center line C is set on a line connecting the center position of the front portion 1 a of the vehicle body 10 and the center position of the rear portion 1 b of the vehicle body 10. The vehicle body center line C is on a line connecting the center position of the front wheels 13 and 14 and the center position of the rear wheels 15 and 16. Therefore, the direction of the vehicle body center line C is the traveling direction (posture angle) 10a of the vehicle body 10.

無人車両1は、車体10の前部1aに第1検出手段11を備える。また、無人車両1は、車体10の後部1bに第2検出手段12を備える。第1検出手段11は、前輪13,14の間の車体中心線C上に設けられている。第2検出手段12は、後輪15,16の間の車体中心線C上に設けられている。   The unmanned vehicle 1 includes first detection means 11 at the front portion 1 a of the vehicle body 10. The unmanned vehicle 1 also includes second detection means 12 at the rear portion 1b of the vehicle body 10. The first detection means 11 is provided on the vehicle body center line C between the front wheels 13 and 14. The second detection means 12 is provided on the vehicle body center line C between the rear wheels 15 and 16.

本実施形態では、第1及び第2検出手段11,12は、CCDカメラ等の撮像手段や、二次元配列カラーセンサーで構成されている。第1及び第2検出手段11,12は、検出方向が路面側に向けられており、路面に敷設された誘導ライン2(図3)を検出するようになっている。第1検出手段11は、車体10の前部1a側における第1検出領域11aの画像データを取得して、例えば1秒間に数回〜数十回の頻度で出力する。同様に、第2検出手段12は、車体10の後部1b側における第2検出領域12aの画像データを取得して、例えば1秒間に数回〜数十回の頻度で出力する。   In this embodiment, the 1st and 2nd detection means 11 and 12 are comprised by imaging means, such as a CCD camera, and a two-dimensional arrangement color sensor. The first and second detection means 11 and 12 are configured such that the detection direction is directed toward the road surface, and the guide line 2 (FIG. 3) laid on the road surface is detected. The first detection means 11 acquires the image data of the first detection area 11a on the front portion 1a side of the vehicle body 10, and outputs it at a frequency of several to several tens of times per second, for example. Similarly, the 2nd detection means 12 acquires the image data of the 2nd detection area | region 12a in the rear part 1b side of the vehicle body 10, and outputs it with the frequency of several times-dozens of times per second, for example.

図2の通り、無人車両1は、制御部5を備える。そして、図3の通り、無人車両1は、誘導ライン2に沿って走行するように、制御部5が前輪13,14及び後輪15,16の旋回角度を制御する。制御部5は、第1検出手段11からの出力に基づいて、前輪13,14の前輪旋回角度を制御する。同様に、制御部5は、第2検出手段12からの出力に基づいて、後輪15,16の後輪旋回角度を制御する。   As shown in FIG. 2, the unmanned vehicle 1 includes a control unit 5. As shown in FIG. 3, the control unit 5 controls the turning angles of the front wheels 13 and 14 and the rear wheels 15 and 16 so that the unmanned vehicle 1 travels along the guide line 2. The control unit 5 controls the front wheel turning angle of the front wheels 13 and 14 based on the output from the first detection means 11. Similarly, the control unit 5 controls the rear wheel turning angle of the rear wheels 15 and 16 based on the output from the second detection means 12.

図3の通り、本実施形態では、誘導ライン2は、無人車両1が進行方向10a(姿勢角度)を直角方向に変更する区間において、コーナー部が直線で構成されており、第1直線部21、第2直線部22及び第3直線部23で構成されている。無人車両10は、第1直線部21に沿って走行し、その後、進行方向10aを約90度だけ変えて、第3直線部23に沿って走行する。そのため、第3直線部23は、第1直線部21に対して約90度の角度2aで設けられている。また、コーナー部となる第2直線部22は、第1直線部21及び第3直線部23に対して約45度の角度2b,2cで設けられている。なお、角度2aが90度の場合、角度2b、2cは、30〜60度の範囲でよい。   As shown in FIG. 3, in the present embodiment, the guide line 2 is configured such that the corner portion is a straight line in the section where the unmanned vehicle 1 changes the traveling direction 10 a (posture angle) to a right angle direction, and the first straight portion 21. The second straight portion 22 and the third straight portion 23 are configured. The unmanned vehicle 10 travels along the first straight portion 21, and then travels along the third straight portion 23 while changing the traveling direction 10 a by about 90 degrees. Therefore, the third straight part 23 is provided at an angle 2 a of about 90 degrees with respect to the first straight part 21. Further, the second straight portion 22 serving as a corner portion is provided at angles 2b and 2c of about 45 degrees with respect to the first straight portion 21 and the third straight portion 23. When the angle 2a is 90 degrees, the angles 2b and 2c may be in the range of 30 to 60 degrees.

図4(a)に基づいて、進行方向10aに対する前輪13,14の車輪方向13a,14aの前輪旋回角度θ13,θ14について説明する。第1検出手段11は、車体10の前部側における第1検出領域11aにおける車体中心線Cに対する誘導ライン22の第1方向角度θ及び第1偏差e11を出力する。第1検出領域11aの中心位置に、車体中心線Cが設定されている。第1検出手段11は、第1検出領域11aの進行方向10a側の端辺において、進行方向10aにおける車体中心線Cと誘導ライン22とのずれ量(第1偏差)e11を検出する。さらに、第1検出手段11は、第1検出領域11aの進行方向と反対側の端辺において、進行方向10aにおける車体中心線Cと誘導ライン22とのずれ量e12を検出する。第1検出領域11aは、進行方向10aにおいて長さDを有する。 Based on FIG. 4A, front wheel turning angles θ 13 and θ 14 in the wheel directions 13a and 14a of the front wheels 13 and 14 with respect to the traveling direction 10a will be described. The first detection means 11 outputs the first direction angle θ 1 and the first deviation e 11 of the guide line 22 with respect to the vehicle body center line C in the first detection region 11 a on the front side of the vehicle body 10. A vehicle body center line C is set at the center position of the first detection region 11a. First detection means 11, in the traveling direction 10a of the side end side of the first detection region 11a, detects the shift amount (first deviation) e 11 of the induction line 22 and the vehicle body center line C in the travel direction 10a. Furthermore, the first detection means 11, the end side opposite to the traveling direction of the first detection region 11a, detects the shift amount e 12 of the induction line 22 and the vehicle body center line C in the travel direction 10a. The first detection region 11a has a length D 1 in the traveling direction 10a.

上記のずれ量(第1偏差)e11、ずれ量e12、及び長さDに基づいて、次式(1)によって、第1検出領域11aにおける誘導ライン22の第1方向角度θが算出される。なお、ずれ量e11,e12は、車体中心線Cに対する左右方向に応じて、「+」と「−」の符号が付けられる。また、第1方向角度θは、「+」と「−」の符号に応じて、進行方向10aに対する左右回転方向が決まる。
・θ=tan−1((e11−e12)/D) ・・・(1)
Based on the shift amount (first deviation) e 11 , the shift amount e 12 , and the length D 1 , the first direction angle θ 1 of the guide line 22 in the first detection region 11 a is calculated by the following equation (1). Calculated. The shift amounts e 11 and e 12 are labeled “+” and “−” according to the left-right direction with respect to the vehicle body center line C. Further, the first direction angle θ 1 is determined in the left-right rotation direction with respect to the traveling direction 10a according to the signs of “+” and “−”.
Θ 1 = tan −1 ((e 11 −e 12 ) / D 1 ) (1)

さらに、ずれ量(第1偏差)e11に応じてゲインgが設定されている。このゲインgを使って、第1方向角度θを補正することで、前輪13の前輪旋回角度θ13、前輪14の前輪旋回角度θ14を設定する。即ち、ずれ量(第1偏差)e11がゼロに近づく方向に、第1方向角度θが補正されて、前輪旋回角度θ13,θ14が設定される。そのため、ずれ量(第1偏差)e11がゼロのときは、前輪旋回角度θ13,θ14が、第1方向角度θと同一になる。なお、本実施形態では、車体回転方向における内側の前輪14の前輪旋回角度θ14が、車体10が曲がりやすいように、車体回転方向における外側の前輪13の前輪旋回角度θ13に対して若干大きく設定される。 Further, the gain g 1 is set according to the deviation amount (first deviation) e 11 . By correcting the first direction angle θ 1 using this gain g 1 , the front wheel turning angle θ 13 of the front wheel 13 and the front wheel turning angle θ 14 of the front wheel 14 are set. That is, the first direction angle θ 1 is corrected in the direction in which the deviation amount (first deviation) e 11 approaches zero, and the front wheel turning angles θ 13 and θ 14 are set. Therefore, when the deviation amount (first deviation) e 11 is zero, the front wheel turning angles θ 13 and θ 14 are the same as the first direction angle θ 1 . In the present embodiment, the front wheel turning angle θ 14 of the inner front wheel 14 in the vehicle body rotation direction is slightly larger than the front wheel turning angle θ 13 of the outer front wheel 13 in the vehicle body rotation direction so that the vehicle body 10 is easily bent. Is set.

図4(b)に基づいて、進行方向10aに対する後輪15,16の車輪方向15a,16aの後輪旋回角度θ15、θ16について説明する。第2検出手段12は、車体10の後部側における第2検出領域12aにおける車体中心線Cに対する誘導ライン21の第2方向角度θ及び第2偏差e21を出力する。第2検出領域12aの中心位置に、車体中心線Cが設定されている。第2検出手段12は、第2検出領域12aの進行方向10a側の端辺において、進行方向10aにおける車体中心線Cと誘導ライン21とのずれ量(第2偏差)e21を検出する。さらに、第2検出手段12は、第2検出領域12aの進行方向と反対側の端辺において、進行方向10aにおける車体中心線Cと誘導ライン22とのずれ量e22を検出する。第2検出領域12aは、進行方向10aにおいて長さDを有する。 Based on FIG. 4B, the rear wheel turning angles θ 15 and θ 16 of the rear wheels 15 and 16 with respect to the traveling direction 10a will be described. The second detection means 12 outputs the second direction angle θ 2 and the second deviation e 21 of the guide line 21 with respect to the vehicle body center line C in the second detection region 12 a on the rear side of the vehicle body 10. A vehicle body center line C is set at the center position of the second detection region 12a. The second detection means 12 detects a deviation amount (second deviation) e 21 between the vehicle body center line C and the guide line 21 in the traveling direction 10a at the end of the second detection region 12a on the traveling direction 10a side. Further, the second detection means 12 detects a deviation amount e 22 between the vehicle body center line C and the guide line 22 in the traveling direction 10a at the end opposite to the traveling direction of the second detection region 12a. The second detection region 12a has a length D 2 in the traveling direction 10a.

上記のずれ量(第2偏差)e21、ずれ量e22、及び長さDに基づいて、次式(2)によって、第2検出領域12aにおける誘導ライン21の第2方向角度θが算出される。なお、ずれ量e21,e22は、車体中心線Cに対する左右方向に応じて、「+」と「−」の符号が付けられる。また、第2方向角度θは、「+」と「−」の符号に応じて、進行方向10aに対する左右回転方向が決まる。
・θ=tan−1((e21−e22)/D) ・・・(2)
Based on the above-described deviation amount (second deviation) e 21 , deviation amount e 22 , and length D 2 , the second direction angle θ 2 of the guide line 21 in the second detection region 12a is calculated by the following equation (2). Calculated. The shift amounts e 21 and e 22 are labeled “+” and “−” according to the left-right direction with respect to the vehicle body center line C. Further, the second direction angle θ 2 is determined in the left-right rotation direction with respect to the traveling direction 10a according to the signs “+” and “−”.
Θ 2 = tan −1 ((e 21 −e 22 ) / D 2 ) (2)

さらに、ずれ量(第2偏差)e21に応じてゲインgが設定されている。このゲインgを使って、第2方向角度θを補正することで、後輪15の後輪旋回角度θ15、後輪16の後輪旋回角度θ16を設定する。即ち、ずれ量(第2偏差)e21がゼロに近づく方向に、第2方向角度θが補正されて、後輪旋回角度θ15,θ16が設定される。そのため、ずれ量(第2偏差)e21がゼロのときは、後輪旋回角度θ15,θ16が、第2方向角度θと同一になる。なお、本実施形態では、車体回転方向における内側の後輪16の後輪旋回角度θ16が、車体10が曲がりやすいように、車体回転方向における外側の後輪15の後輪旋回角度θ15に対して若干大きく設定される。 Further, the gain g 2 is set according to the deviation amount (second deviation) e 21 . By correcting the second direction angle θ 2 using the gain g 2 , the rear wheel turning angle θ 15 of the rear wheel 15 and the rear wheel turning angle θ 16 of the rear wheel 16 are set. That is, the second direction angle θ 2 is corrected in the direction in which the deviation amount (second deviation) e 21 approaches zero, and the rear wheel turning angles θ 15 and θ 16 are set. Therefore, when the shift amount (second deviation) e 21 is zero, the rear wheel turning angles θ 15 and θ 16 are the same as the second direction angle θ 2 . In the present embodiment, wheel turning angle theta 16 after the inner rear wheel 16 of the vehicle body rotation direction, so that the vehicle body 10 tends to bend, the wheel turning angle theta 15 after the outer rear wheel 15 of the vehicle body rotational direction On the other hand, it is set slightly larger.

上記の実施形態では、第1及び第2検出領域11a,12aにおけるずれ量e11,e12,e21,e22及び長さD,Dに基づいて、第1及び第2方向角度θ,θを算出したが、例えば、第1直線部21と第2直線部22との折れ曲げ部において、車体中心線Cと誘導ライン2とのずれ量を多数点で検出して、最小二乗法で折れ曲げ部の近似曲線を算出し、検出領域11a,12aの端辺における近似曲線の接線を用いて、第1及び第2方向角度θ,θを算出してもよい。 In the above embodiment, the first and second direction angles θ based on the shift amounts e 11 , e 12 , e 21 , e 22 and the lengths D 1 , D 2 in the first and second detection regions 11a, 12a. 1 and θ 2 are calculated. For example, in the bent portion between the first straight line portion 21 and the second straight line portion 22, the amount of deviation between the vehicle body center line C and the guide line 2 is detected at a number of points, and the minimum The first and second direction angles θ 1 and θ 2 may be calculated by calculating an approximate curve of the bent portion by the square method and using the tangent line of the approximate curve at the end sides of the detection regions 11a and 12a.

また、上記の実施形態では、第1偏差e11及び第2偏差e21は、第1及び第2検出領域11a,12aの進行方向10a側の端辺における車体中心線Cと誘導ライン2とのずれ量を採用したが、第1及び第2検出領域11a,12aの中心位置における車体中心線Cと誘導ライン2との進行方向10aにおけるずれ量(偏差)を採用してもよい。 In the above-described embodiment, the first deviation e 11 and the second deviation e 21 are the difference between the vehicle body center line C and the guide line 2 at the edges on the traveling direction 10a side of the first and second detection regions 11a and 12a. Although the deviation amount is adopted, the deviation amount (deviation) in the traveling direction 10a between the vehicle body center line C and the guide line 2 at the center position of the first and second detection regions 11a and 12a may be adopted.

図5は、上記とは異なる実施形態を示す。図5(a)では、検出手段11,12が、4つの1次元磁気センサー100,101,102,103で構成されている。上記した最小二乗法を用いて第1及び第2方向角度θ,θを算出する場合は、少なくとも4箇所で車体中心線Cと誘導ライン2とのずれ量を検出することが好ましい。また、上記で詳述した実施形態のように、第1及び第2検出領域11a,12aにおけるずれ量e11,e12,e21,e22及び長さD,Dに基づいて、第1及び第2方向角度θ,θを算出する場合は、図5(b)の通り、検出手段11,12は、検出領域11a,12aの進行方向10aの両端側に2つの1次元磁気センサー100,103を配置して構成することもできる。 FIG. 5 shows an embodiment different from the above. In FIG. 5A, the detection means 11, 12 is composed of four one-dimensional magnetic sensors 100, 101, 102, 103. When the first and second direction angles θ 1 and θ 2 are calculated using the least square method described above, it is preferable to detect the amount of deviation between the vehicle body center line C and the guide line 2 at least at four locations. Further, as in the embodiment described in detail above, the first and second detection regions 11a and 12a are shifted based on the shift amounts e 11 , e 12 , e 21 , e 22 and the lengths D 1 , D 2 . When calculating the first and second direction angles θ 1 , θ 2 , as shown in FIG. 5B, the detection means 11, 12 has two one-dimensional magnets at both ends of the traveling direction 10 a of the detection regions 11 a, 12 a. The sensors 100 and 103 can also be arranged.

1 無人車両
2 誘導ライン
5 制御手段
21 第1直線部
22 第2直線部
23 第3直線部
1a 車体の前部
1b 車体の後部
11 第1検出手段
12 第2検出手段
11a 第1検出領域
12a 第2検出領域
13,14 前輪
15,16 後輪
13a,14a 前輪旋回角度
15a,16a 後輪旋回角度
θ 第1方向角度
θ 第2方向角度
11 第1偏差
21 第2偏差
,g ゲイン
DESCRIPTION OF SYMBOLS 1 Unmanned vehicle 2 Guidance line 5 Control means 21 1st linear part 22 2nd linear part 23 3rd linear part 1a Front part 1b of vehicle body Rear part 11 of vehicle body 1st detection means 12 2nd detection means 11a 1st detection area 12a 1st 2 Detection regions 13, 14 Front wheels 15, 16 Rear wheels 13a, 14a Front wheel turning angles 15a, 16a Rear wheel turning angle θ 1 First direction angle θ 2 Second direction angle e 11 First deviation e 21 Second deviation g 1 , g 2 gain

Claims (4)

走行経路に沿って敷設された誘導ラインと、前記誘導ラインの位置を検出しながら走行する無人車両とを備えた無人搬送システムであって、
前記誘導ラインは、第1直線部と、前記第1直線部の端部から所定角度で屈曲する第2直線部とを備え、
前記無人車両は、
車体の前部に設けられた前輪と、
前記車体の後部に設けられた後輪と、
前記車体の前部に設けられ、前記誘導ラインを検出する第1検出手段と、
前記車体の後部に設けられ、前記誘導ラインを検出する第2検出手段と、
前記前輪及び前記後輪の旋回角度を制御する制御手段とを備え、
前記第1検出手段は、前記車体の前部側の第1検出領域における前記誘導ラインの第1方向角度及び第1偏差を出力し、
前記第2検出手段は、前記車体の後部側の第2検出領域における前記誘導ラインの第2方向角度及び第2偏差を出力し、
前記制御手段は、
前記第1検出手段からの出力に基づいて、前記第1偏差に所定のゲインを乗じた補正値を使って、前記第1偏差がゼロに近づく方向に前記第1方向角度を補正することで前輪旋回角度を設定し、前記前輪旋回角度で前記前輪を旋回し、
前記第2検出手段からの出力に基づいて、前記第2偏差に所定のゲインを乗じた補正値を使って、前記第2偏差がゼロに近づく方向に前記第2方向角度を補正することで後輪旋回角度を設定し、前記後輪旋回角度で前記後輪を旋回することを特徴とする無人搬送システム。
An unmanned transport system comprising a guide line laid along a travel route and an unmanned vehicle that travels while detecting the position of the guide line,
The guide line includes a first straight part and a second straight part bent at a predetermined angle from an end of the first straight part,
The unmanned vehicle is
A front wheel provided at the front of the vehicle body;
A rear wheel provided at a rear portion of the vehicle body;
First detection means provided at a front portion of the vehicle body for detecting the guide line;
Second detection means provided at a rear portion of the vehicle body for detecting the guide line;
Control means for controlling the turning angle of the front wheel and the rear wheel,
The first detection means outputs a first direction angle and a first deviation of the guide line in a first detection region on the front side of the vehicle body,
The second detection means outputs a second direction angle and a second deviation of the guide line in a second detection region on the rear side of the vehicle body,
The control means includes
Based on the output from the first detection means, a correction value obtained by multiplying the first deviation by a predetermined gain is used to correct the first direction angle so that the first deviation approaches zero. Set a turning angle, turn the front wheel at the front wheel turning angle,
After correcting the second direction angle in a direction in which the second deviation approaches zero using a correction value obtained by multiplying the second deviation by a predetermined gain based on the output from the second detection means. An unmanned conveyance system that sets a wheel turning angle and turns the rear wheel at the rear wheel turning angle.
前記誘導ラインは、前記第2直線部の端部から所定角度で屈曲する第3直線部を備え、
前記第3直線部は、前記第1直線部に対して約90度の方向に設けられていることを特徴とする請求項1に記載の無人搬送システム。
The guide line includes a third straight portion that is bent at a predetermined angle from an end portion of the second straight portion,
The unmanned conveyance system according to claim 1, wherein the third straight part is provided in a direction of about 90 degrees with respect to the first straight part.
前記第1及び第2偏差は、前記第1及び第2検出領域の進行方向側の端辺における中央位置を基準とすることを特徴とする請求項1又は2に記載の無人搬送システム。   3. The unmanned conveyance system according to claim 1, wherein the first and second deviations are based on a central position at an edge on the traveling direction side of the first and second detection regions. 前記第1及び第2検出手段は、前記第1及び第2検出領域を撮像する撮像手段からなることを特徴とする請求項1〜3のいずれかに記載の無人搬送システム。   The unmanned conveyance system according to any one of claims 1 to 3, wherein the first and second detection means include imaging means for imaging the first and second detection areas.
JP2011264672A 2011-12-02 2011-12-02 Unmanned conveyance system Pending JP2013117838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264672A JP2013117838A (en) 2011-12-02 2011-12-02 Unmanned conveyance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264672A JP2013117838A (en) 2011-12-02 2011-12-02 Unmanned conveyance system

Publications (1)

Publication Number Publication Date
JP2013117838A true JP2013117838A (en) 2013-06-13

Family

ID=48712370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264672A Pending JP2013117838A (en) 2011-12-02 2011-12-02 Unmanned conveyance system

Country Status (1)

Country Link
JP (1) JP2013117838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085063B1 (en) * 2016-12-01 2017-02-22 株式会社ネットプラザ栃木 Sensor arrangement structure for self-propelled transport vehicles
CN109213158A (en) * 2018-08-30 2019-01-15 四川超影科技有限公司 Wheel footpath antidote based on intelligent inspection robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102503A (en) * 1989-09-18 1991-04-26 Sumitomo Heavy Ind Ltd Method and device for guiding self-running truck
JPH0659732A (en) * 1992-01-28 1994-03-04 Shin Caterpillar Mitsubishi Ltd Turning control system of running body
JPH08202449A (en) * 1995-01-30 1996-08-09 Mitsui Eng & Shipbuild Co Ltd Automatic operation control device for carrier vehicles
JPH10268935A (en) * 1997-03-26 1998-10-09 Japan Storage Battery Co Ltd Self-traveling vehicle
JP2000172338A (en) * 1998-12-01 2000-06-23 Kawasaki Heavy Ind Ltd Vehicle travel control device and vehicle using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102503A (en) * 1989-09-18 1991-04-26 Sumitomo Heavy Ind Ltd Method and device for guiding self-running truck
JPH0659732A (en) * 1992-01-28 1994-03-04 Shin Caterpillar Mitsubishi Ltd Turning control system of running body
JPH08202449A (en) * 1995-01-30 1996-08-09 Mitsui Eng & Shipbuild Co Ltd Automatic operation control device for carrier vehicles
JPH10268935A (en) * 1997-03-26 1998-10-09 Japan Storage Battery Co Ltd Self-traveling vehicle
JP2000172338A (en) * 1998-12-01 2000-06-23 Kawasaki Heavy Ind Ltd Vehicle travel control device and vehicle using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085063B1 (en) * 2016-12-01 2017-02-22 株式会社ネットプラザ栃木 Sensor arrangement structure for self-propelled transport vehicles
CN109213158A (en) * 2018-08-30 2019-01-15 四川超影科技有限公司 Wheel footpath antidote based on intelligent inspection robot

Similar Documents

Publication Publication Date Title
JP7082940B2 (en) Travel track determination processing and automatic driving device
TWI395077B (en) Walking trolley and walking trolley system
JP7047659B2 (en) Control device and control method for automatic guided vehicle
JP2010256941A (en) Steering drive method and device for automated guided vehicle
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
JP2007219960A (en) Position deviation detection device
JP2013117838A (en) Unmanned conveyance system
JP2013171368A (en) Unmanned conveyance system
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP4697262B2 (en) Traveling vehicle and traveling vehicle system
JP2009244965A (en) Moving object
JP2010262461A (en) Mobile object
JP2009110187A (en) Control device for mobile truck, mobile truck system and self-location identification method
JP2010204921A (en) Wireless tag sheet and moving carriage system
WO2023054213A1 (en) Control method and control system
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP2001225744A (en) Steering control device for unmanned carrying vehicle
JP2011243129A (en) Transportation vehicle system
JP5077567B2 (en) Route correction system for automated guided vehicles
JP5164126B1 (en) Unmanned vehicle
JP2002073171A (en) Traveling control method for automated guide vehicle
JP2007279936A (en) Carrying vehicle system
JP2010282329A (en) Unmanned carrier
JP5334146B2 (en) Automated transport system
JPH06149369A (en) Stop position detector for moving vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130626