JP2013115909A - Contactless power supply device - Google Patents
Contactless power supply device Download PDFInfo
- Publication number
- JP2013115909A JP2013115909A JP2011259356A JP2011259356A JP2013115909A JP 2013115909 A JP2013115909 A JP 2013115909A JP 2011259356 A JP2011259356 A JP 2011259356A JP 2011259356 A JP2011259356 A JP 2011259356A JP 2013115909 A JP2013115909 A JP 2013115909A
- Authority
- JP
- Japan
- Prior art keywords
- resonator
- power
- vehicle
- state
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/67—Controlling two or more charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/10—Driver interactions by alarm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、非接触給電装置に係り、詳しくはコイル間の磁気的結合により非接触で給電側から受電側に電力を供給する非接触給電装置に関する。 The present invention relates to a contactless power supply device, and more particularly to a contactless power supply device that supplies power from a power supply side to a power reception side in a contactless manner by magnetic coupling between coils.
非接触給電装置として、給電側の一次コイルと受電側の二次コイルとの間の電磁誘導を利用して給電側から受電側に電力を供給する非接触給電装置が知られている。この種の非接触給電装置は、電気自動車やハイブリッド車に搭載されたバッテリ(二次電池)を充電するための給電装置(充電装置)として、利用の拡大が見込まれている。 As a non-contact power feeding device, a non-contact power feeding device that supplies power from the power feeding side to the power receiving side using electromagnetic induction between the primary coil on the power feeding side and the secondary coil on the power receiving side is known. This type of non-contact power feeding device is expected to expand its use as a power feeding device (charging device) for charging a battery (secondary battery) mounted on an electric vehicle or a hybrid vehicle.
非接触給電装置を用いる車両の非接触充電システムは、給電側の一次コイルは地上に設置されており、車両側の二次コイルは車体の床面の外側に設置されている。非接触給電装置を用いる車両の非接触充電システムにおいて充電を効率良く行うためには、給電部と受電部との位置ずれやギャップ長の変化の許容範囲を厳しく制限する必要がある。しかし、車両を決められた位置に正確に止めることは困難であり、それを強いるシステムは、一般人が利用し難い。 In a non-contact charging system for a vehicle using a non-contact power supply device, a primary coil on the power supply side is installed on the ground, and a secondary coil on the vehicle side is installed outside the floor surface of the vehicle body. In order to perform charging efficiently in a vehicle non-contact charging system using a non-contact power feeding device, it is necessary to strictly limit the allowable range of positional deviation and gap length change between the power feeding unit and the power receiving unit. However, it is difficult to accurately stop the vehicle at a predetermined position, and the system forcing it is difficult for ordinary people to use.
従来、送電装置(給電装置)を、支軸を中心に駆動装置により充電可能位置と待機位置との間を回動させるように構成し、車両が所定の停止位置に停止した状態で、送電装置を待機位置から充電可能位置に回動させて、充電を行うようにした充電システムが提案されている(特許文献1参照)。 2. Description of the Related Art Conventionally, a power transmission device (power feeding device) is configured to rotate between a chargeable position and a standby position by a drive device around a support shaft, and the power transmission device is in a state where the vehicle is stopped at a predetermined stop position. Has been proposed in which charging is performed by rotating the battery from a standby position to a chargeable position (see Patent Document 1).
特許文献1の充電システムは、車両が予め設定された経路を走行し、走行経路に沿った充電場所で停止した状態で送電装置が待機位置から充電可能位置に回動される。したがって、送電装置を目標にして車両を所定の停止位置に停止させるのに比べて、車両を所定の停止位置に精度良く停止させ易くなる。しかし、充電が効率良く行われるためには、車両が所定の停止位置に精度良く停止することが前提になる。 In the charging system of Patent Literature 1, the power transmission device is rotated from the standby position to the chargeable position while the vehicle travels on a preset route and stops at a charging place along the traveling route. Therefore, compared to stopping the vehicle at a predetermined stop position with the power transmission device as a target, the vehicle can be easily stopped at the predetermined stop position with high accuracy. However, in order for charging to be performed efficiently, it is premised on that the vehicle is accurately stopped at a predetermined stop position.
車両の停止位置を検出して、給電装置を充電が効率良く行われ位置に移動させるには、給電装置をX,Y方向に移動可能とするか、直線移動と回動との組み合わせで目的位置まで移動させる必要があり、移動のための駆動装置が複雑になる。 In order to detect the stop position of the vehicle and move the power feeding device to the position where charging is performed efficiently, the power feeding device can be moved in the X and Y directions, or a combination of linear movement and rotation can be used. It is necessary to move up to the distance, which complicates the drive device for movement.
本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、駆動機構に簡単な移動手段を用いても、移動体の停止位置の精度を緩和した状態で効率良く給電側から受電側へ電力伝送を行うことができる非接触給電装置を提供することにある。 The present invention has been made in view of the above-described conventional problems. The object of the present invention is to efficiently supply power in a state where the accuracy of the stop position of the moving body is relaxed even if simple moving means is used for the driving mechanism. An object of the present invention is to provide a non-contact power feeding device that can transmit power from the power source to the power receiving side.
前記の目的を達成するため、請求項1に記載の発明は、給電側設備から移動体に搭載された受電側設備に対して前記移動体が停止した状態で非接触給電を行う非接触給電装置である。そして、前記給電側設備は、第1の共振器と、前記第1の共振器に交流を供給する電源部とを備え、前記受電側設備は第2の共振器と、前記第2の共振器が受電した電力が供給される負荷とを備えている。前記第1の共振器及び前記第2の共振器は、前記非接触電力伝送を行う状態において、両共振器が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されている。非接触給電装置は、前記非接触電力伝送を行う状態において、前記第1の共振器及び前記第2の共振器のいずれか一方を、前記移動体の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させることが可能な移動手段を備えている。 In order to achieve the above object, the invention according to claim 1 is a non-contact power feeding device that performs non-contact power feeding in a state in which the moving body is stopped from a power feeding side facility to a power receiving side facility mounted on the moving body. It is. And the said electric power feeding side installation is provided with the 1st resonator and the power supply part which supplies alternating current to the said 1st resonator, The said electric power receiving side installation is the 2nd resonator, and the said 2nd resonator And a load to which the power received is supplied. The first resonator and the second resonator have a maximum efficiency in a positional relationship in which the two resonators are not closest to each other but in a predetermined distance from the state in the state in which the non-contact power transmission is performed. The matching is adjusted so that power transmission is performed in The non-contact power feeding apparatus transmits power at a maximum efficiency corresponding to a stop position of the moving body, in a state where the non-contact power transmission is performed, with respect to one of the first resonator and the second resonator. A moving means that can be moved to a possible position by a single-axis drive mechanism is provided.
従来、非接触給電装置においては、一次側のコイルと二次側のコイルとが最も近づいた状態で、最大効率で電力伝送が行われるように一次側と二次側の整合調整を行っていたため、二次側を移動体に搭載した場合、目的の伝送効率で電力伝送を行うためには、移動体の停止位置の精度を厳しくする必要がある。しかし、この発明では、第1の共振器及び第2の共振器は、非接触電力伝送を行う状態において、両共振器が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されている。そして、第1の共振器及び第2の共振器のいずれか一方を、移動体の停止位置に対応して移動手段により移動させる。移動させる位置は最大効率で電力伝送可能な位置でなくても、目的とする伝送効率以上で電力伝送が可能な位置であればよい。したがって、駆動機構が簡単な移動手段を用いても、移動体の停止位置の精度を緩和した状態で効率良く給電側から受電側へ電力伝送を行うことができる。 Conventionally, in the non-contact power feeding device, the primary side and the secondary side have been adjusted so that power is transferred with maximum efficiency in a state where the primary side coil and the secondary side coil are closest to each other. When the secondary side is mounted on the mobile body, it is necessary to tighten the accuracy of the stop position of the mobile body in order to perform power transmission with the target transmission efficiency. However, according to the present invention, the first resonator and the second resonator are not in a state in which both resonators are closest to each other in a state in which contactless power transmission is performed, but in a positional relationship that is deviated by a preset distance from that state. Is adjusted so that power transmission is performed with maximum efficiency. Then, one of the first resonator and the second resonator is moved by the moving means corresponding to the stop position of the moving body. The position to be moved is not limited to a position where the power can be transmitted with the maximum efficiency, but may be a position where the power can be transmitted with the target transmission efficiency or higher. Therefore, even if a moving means with a simple driving mechanism is used, it is possible to efficiently transmit power from the power feeding side to the power receiving side while reducing the accuracy of the stop position of the moving body.
請求項2に記載の発明は、請求項1に記載の発明において、前記移動手段は、前記第1の共振器又は前記第2の共振器を、両共振器のコイルの中心以外の位置にある軸の周囲に公転させる。この発明では、第1の共振器又は第2の共振器が公転することにより目的とする伝送効率以上で電力伝送が可能な位置に移動される。したがって、直線移動の場合に比べて、移動体の停止許容範囲が広くなる。 According to a second aspect of the present invention, in the first aspect of the present invention, the moving means has the first resonator or the second resonator at a position other than the center of the coils of the two resonators. Revolve around the axis. In the present invention, the first resonator or the second resonator is revolved so as to be moved to a position where electric power can be transmitted at or above the intended transmission efficiency. Therefore, the stop allowable range of the moving body is wider than in the case of linear movement.
請求項3に記載の発明は、請求項2に記載の発明において、前記移動手段は、前記給電側設備に設けられている。移動手段を受電側設備に設けると、移動体の大型化を招いたり、移動体を構成する他の機器等の設置スペースの自由度が小さくなったりする。また、受電側設備に移動手段を設ける場合は、受電側設備を搭載した移動体全てに設ける必要があるが、給電側設備に設ける場合は給電側設備を利用する移動体の数に拘らず、移動手段の数を1個とすることができる。 According to a third aspect of the present invention, in the second aspect of the present invention, the moving means is provided in the power supply side facility. When the moving means is provided in the power receiving side facility, the moving body is increased in size, or the degree of freedom of the installation space for other devices constituting the moving body is reduced. In addition, when the moving means is provided in the power receiving side equipment, it is necessary to provide all the moving bodies equipped with the power receiving side equipment, but when provided in the power feeding side equipment, regardless of the number of moving bodies using the power feeding side equipment, The number of moving means can be one.
本発明によれば、駆動機構が簡単な移動手段を用いても、移動体の停止位置の精度を緩和した状態で効率良く給電側から受電側へ電力伝送を行うことができる。 According to the present invention, even when a moving unit with a simple driving mechanism is used, it is possible to efficiently transmit power from the power feeding side to the power receiving side while reducing the accuracy of the stop position of the moving body.
以下、本発明を車載バッテリを充電するための非接触充電システムに具体化した一実施形態を図1〜図4にしたがって説明する。図1(a)に示すように、非接触給電装置としての非接触充電システムは、地上側に設けられる給電側設備10と、移動体としての車両20に搭載された受電側設備21とで構成されている。 Hereinafter, an embodiment in which the present invention is embodied in a non-contact charging system for charging an in-vehicle battery will be described with reference to FIGS. As shown in FIG. 1 (a), a non-contact charging system as a non-contact power feeding device includes a power feeding side equipment 10 provided on the ground side and a power receiving side equipment 21 mounted on a vehicle 20 as a moving body. Has been.
給電側設備10は、第1の共振器11と、第1の共振器11に交流を供給する電源部12と、第1の共振器11を移動させる移動手段13と、電源側コントローラ14とを備えている。第1の共振器11は、一次側コイル15と、一次側コイル15に接続されたコンデンサC1と、磁性体コア16とを備えている。一次側コイル15は磁性体コア16に複数回巻回されて多層巻のコイルを形成している。磁性体コア16はその両端が一次側コイル15の両端から突出する長さに形成されている。 The power supply side equipment 10 includes a first resonator 11, a power supply unit 12 that supplies alternating current to the first resonator 11, a moving means 13 that moves the first resonator 11, and a power supply side controller 14. I have. The first resonator 11 includes a primary side coil 15, a capacitor C <b> 1 connected to the primary side coil 15, and a magnetic core 16. The primary coil 15 is wound around the magnetic core 16 a plurality of times to form a multilayer coil. Both ends of the magnetic core 16 are formed so as to protrude from both ends of the primary coil 15.
電源部12は、電源側コントローラ14からの指令により第1の共振器11に所定周波数の交流を出力する。移動手段13は、非接触電力伝送を行う状態において、第1の共振器11を車両20の停止位置に対応して最大効率で電力伝送可能な位置に移動させる。 The power supply unit 12 outputs an alternating current with a predetermined frequency to the first resonator 11 according to a command from the power supply side controller 14. The moving means 13 moves the first resonator 11 to a position where power can be transmitted with maximum efficiency corresponding to the stop position of the vehicle 20 in a state where non-contact power transmission is performed.
移動手段13は、モータ17と、モータ17により回動される支持アーム18とを備え、支持アーム18の一端に磁性体コア16を非磁性体製の部材を介して支持している。即ち、移動手段13は、第1の共振器11を車両20の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させる。モータ17は、電源側コントローラ14からの指令により、第1の共振器11のコイル即ち一次側コイル15の中心以外の位置にある軸、この実施形態ではモータ17の出力軸17aの周囲に公転させる。 The moving means 13 includes a motor 17 and a support arm 18 that is rotated by the motor 17, and supports the magnetic core 16 at one end of the support arm 18 via a non-magnetic member. That is, the moving means 13 moves the first resonator 11 to a position where power can be transmitted with maximum efficiency corresponding to the stop position of the vehicle 20 by a single-axis drive mechanism. The motor 17 revolves around a shaft other than the center of the coil of the first resonator 11, that is, the primary side coil 15, in this embodiment, around the output shaft 17 a of the motor 17, according to a command from the power supply side controller 14. .
受電側設備21は車両20の後部に搭載されており、例えば、図示しないナンバープレートの下のあたりに配設される。受電側設備21は、第2の共振器22と、整流器23と、充電器24と、充電器24に接続されたバッテリ(二次電池)25と、車両側コントローラ26とを備えている。整流器23、充電器24及びバッテリ25は負荷を構成する。充電器24は、整流器23で整流された直流をバッテリ25に充電するのに適した電圧に変換するDC/DCコンバータ(図示せず)を備えている。車両側コントローラ26は、充電時に充電器24のDC/DCコンバータのスイッチング素子を制御する。電源側コントローラ14と、車両側コントローラ26とは図示しない無線通信装置を介して通信できるようになっている。 The power receiving side equipment 21 is mounted on the rear part of the vehicle 20, and is disposed, for example, under a license plate (not shown). The power receiving side equipment 21 includes a second resonator 22, a rectifier 23, a charger 24, a battery (secondary battery) 25 connected to the charger 24, and a vehicle side controller 26. The rectifier 23, the charger 24, and the battery 25 constitute a load. The charger 24 includes a DC / DC converter (not shown) that converts the direct current rectified by the rectifier 23 into a voltage suitable for charging the battery 25. The vehicle-side controller 26 controls the switching element of the DC / DC converter of the charger 24 during charging. The power supply side controller 14 and the vehicle side controller 26 can communicate with each other via a wireless communication device (not shown).
第2の共振器22は、二次側コイル27と、二次側コイル27に接続されたコンデンサC2と、磁性体コア28とを備えている。二次側コイル27は磁性体コア28に複数回巻回されて多層巻のコイルを形成している。磁性体コア28はその両端が二次側コイル27の両端から突出する長さに形成されている。 The second resonator 22 includes a secondary side coil 27, a capacitor C <b> 2 connected to the secondary side coil 27, and a magnetic core 28. The secondary coil 27 is wound around the magnetic core 28 a plurality of times to form a multi-layer coil. Both ends of the magnetic core 28 are formed so as to protrude from both ends of the secondary coil 27.
図1(a),(b)に示すように、第1の共振器11及び第2の共振器22は、一次側コイル15及び磁性体コア16の中心軸と、二次側コイル27及び磁性体コア28の中心軸とが上下方向に延びるとともに、同じ高さとなるように設けられている。 As shown in FIGS. 1 (a) and 1 (b), the first resonator 11 and the second resonator 22 are composed of a central axis of the primary coil 15 and the magnetic core 16, a secondary coil 27, and a magnetic core. The central axis of the body core 28 extends in the vertical direction and is provided so as to have the same height.
第1の共振器11及び第2の共振器22は、非接触電力伝送を行う状態において、両共振器が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されている。予め設定された距離は、例えば、給電側設備10が設けられる箇所と車両20の停止位置スペース、第1の共振器11及び第2の共振器22の能力、大きさ、目的とする伝送効率等を考慮して設定される。そして、電源側コントローラ14は、非接触電力伝送を行う状態、即ち車両20が充電位置に停止して、車両側コントローラ26から充電要求信号を受信すると、移動手段13により第1の共振器11を車両20の停止位置に対応して最大効率で電力伝送可能な位置に移動させる。 The first resonator 11 and the second resonator 22 do not have the maximum efficiency in the position relationship where the two resonators are not closest to each other but in a predetermined distance from the state in the state in which contactless power transmission is performed. The matching is adjusted so that power transmission is performed. The preset distance is, for example, the location where the power supply side equipment 10 is provided and the stop position space of the vehicle 20, the capabilities and sizes of the first resonator 11 and the second resonator 22, the target transmission efficiency, and the like. Is set in consideration of Then, when the power supply side controller 14 performs the non-contact power transmission, that is, when the vehicle 20 stops at the charging position and receives the charge request signal from the vehicle side controller 26, the moving means 13 causes the first resonator 11 to move. The vehicle 20 is moved to a position where power can be transmitted with maximum efficiency corresponding to the stop position of the vehicle 20.
電源側コントローラ14は、第1の共振器11が最大効率で電力伝送可能な位置に移動したか否かの判断を、反射電力や力率に基づいて行うようになっている。この実施形態では、電源部12は、一次側コイル15からの反射電力を検出する図示しない反射電力検出手段を備えている。電源側コントローラ14は、反射電力検出手段を介して反射電力をモニタ可能になっており、第1の共振器11を給電位置へ移動させる際、反射電力が最小となる位置に第1の共振器11を移動させる。 The power supply side controller 14 determines whether or not the first resonator 11 has moved to a position where power can be transmitted with maximum efficiency based on the reflected power and the power factor. In this embodiment, the power supply unit 12 includes reflected power detection means (not shown) that detects the reflected power from the primary coil 15. The power supply side controller 14 can monitor the reflected power via the reflected power detection means, and when the first resonator 11 is moved to the feeding position, the first resonator is placed at a position where the reflected power is minimized. 11 is moved.
次に前記のように構成された非接触充電システムの作用を説明する。
運転者はバッテリ25の充電が必要と判断した場合は、車両20を給電側設備10の所定位置にバックで停止させる。そして、電源側コントローラ14に図示しない通信装置を用いて充電要求(給電要求)を通信(報知)する。
Next, the operation of the non-contact charging system configured as described above will be described.
When the driver determines that the battery 25 needs to be charged, the driver 20 stops the vehicle 20 at a predetermined position of the power supply side equipment 10. Then, a charging request (power supply request) is communicated (notified) to the power supply controller 14 using a communication device (not shown).
電源側コントローラ14は、車両20から充電要求を受信すると、非接触電力伝送を開始する前に、モータ17に駆動指令を出力して、第1の共振器11を予め設定された伝送効率以上の効率で電力伝送が可能な位置まで移動させる。電源側コントローラ14は、電源部12の反射電力検出手段をモニタして、反射電力が最小となる位置に第1の共振器11を移動させる。 When the power supply side controller 14 receives the charge request from the vehicle 20, before starting the non-contact power transmission, the power source side controller 14 outputs a drive command to the motor 17 so that the first resonator 11 exceeds the preset transmission efficiency. Move to a position where power can be transmitted efficiently. The power supply side controller 14 monitors the reflected power detection means of the power supply unit 12 and moves the first resonator 11 to a position where the reflected power is minimized.
そして、第1の共振器11が電力伝送に適した位置に移動された状態で、電源側コントローラ14は電源部12に、第1の共振器11に対して所定周波数の交流を出力するように指令を行い、電源部12から一次側コイル15に所定周波数の交流が出力される。一次側コイル15に交流が供給されると、一次側コイル15に流れる電流によって生じた磁界により磁性体コア16が磁化されてその両端に磁極が生じる。一次側コイル15に流れる電流の方向によって、磁性体コア16に生じる磁極のN極とS極とが決まり、電流の方向が変化するたびに、図3(a)に示すように、磁性体コア16の下端にN極が、上端にS極が生じる状態と、図3(b)に示すように、磁性体コア16の上端にN極が、下端にS極が生じる状態とが繰り返される。また、磁性体コア16の下端にN極が、上端にS極が生じる状態では、磁性体コア28の下端にS極が、上端にN極が生じ、磁性体コア16の上端にN極が、下端にS極が生じる状態では、磁性体コア28の上端にS極が生じ、下端にN極が生じる状態となる。そして、共振サイクルで図3(a)の状態と図3(b)の状態とが繰り返され、受電側設備21の二次側コイル27に非接触で電力伝送が行われる。二次側コイル27が受電した電力は、整流器23で整流された後、充電器24に供給され、充電器24でバッテリ25の充電に適した電圧に昇圧されてバッテリ25に供給されてバッテリ25が充電される。 Then, in a state where the first resonator 11 is moved to a position suitable for power transmission, the power supply controller 14 outputs an alternating current with a predetermined frequency to the first resonator 11 to the power supply unit 12. The power supply unit 12 outputs an alternating current with a predetermined frequency to the primary side coil 15. When alternating current is supplied to the primary coil 15, the magnetic core 16 is magnetized by the magnetic field generated by the current flowing through the primary coil 15, and magnetic poles are generated at both ends thereof. Depending on the direction of the current flowing through the primary coil 15, the N pole and S pole of the magnetic pole generated in the magnetic core 16 are determined, and each time the current direction changes, the magnetic core as shown in FIG. The state in which the N pole is generated at the lower end of S16 and the S pole is generated in the upper end and the state in which the N pole is generated at the upper end of the magnetic core 16 and the S pole is generated at the lower end are repeated as shown in FIG. In a state where the N pole is generated at the lower end of the magnetic core 16 and the S pole is generated at the upper end, the S pole is generated at the lower end of the magnetic core 28, the N pole is generated at the upper end, and the N pole is formed at the upper end of the magnetic core 16. In the state where the S pole is generated at the lower end, the S pole is generated at the upper end of the magnetic core 28 and the N pole is generated at the lower end. And the state of Fig.3 (a) and the state of FIG.3 (b) are repeated by a resonance cycle, and electric power transmission is performed non-contactingly with the secondary side coil 27 of the receiving side installation 21. FIG. The electric power received by the secondary coil 27 is rectified by the rectifier 23 and then supplied to the charger 24, which is boosted to a voltage suitable for charging the battery 25 by the charger 24 and supplied to the battery 25. Is charged.
磁性体コア16が存在する状態では、一次側コイル15の巻き数や一次側コイル15が巻回されている部分の磁性体コア16の長さに拘らず、磁極は磁性体コア16の両端に生じ、理想的には磁性体コア16の中間部には磁極は生じない。また、磁性体コア28においても磁極は磁性体コア28の端部に生じ、中間部には生じない。そして、磁性体コア16と磁性体コア28の磁極同士の磁気的結合で電力伝送が行われる。 In the state where the magnetic core 16 is present, the magnetic poles are at both ends of the magnetic core 16 regardless of the number of turns of the primary coil 15 and the length of the magnetic core 16 where the primary coil 15 is wound. Ideally, no magnetic pole is generated in the intermediate portion of the magnetic core 16. In the magnetic core 28, the magnetic pole is generated at the end of the magnetic core 28 and not at the intermediate portion. Then, power transmission is performed by magnetic coupling between the magnetic poles of the magnetic core 16 and the magnetic core 28.
車両側コントローラ26は、例えば、バッテリ25の電圧が所定電圧になった時点からの経過時間により充電完了を判断し、充電が完了すると、電源側コントローラ14に充電完了信号を送信する。電源側コントローラ14は、充電完了信号を受信すると電力伝送を終了する。なお、満充電になる前に、運転者が充電終了を要求した場合も、電源側コントローラ14に給電終了要求が送信され、電源側コントローラ14は電力伝送を終了する。 For example, the vehicle-side controller 26 determines the completion of charging based on the elapsed time from when the voltage of the battery 25 reaches a predetermined voltage, and transmits a charging completion signal to the power-side controller 14 when the charging is completed. The power supply side controller 14 will complete | finish electric power transmission, if a charge completion signal is received. Even when the driver requests the end of charging before the battery is fully charged, a power supply end request is transmitted to the power supply side controller 14, and the power supply side controller 14 ends the power transmission.
非接触電力伝送を共振で行う従来技術では、第1の共振器11及び第2の共振器22が最も近づいた状態で、即ち図2において磁性体コア16と磁性体コア28との中心軸間の距離Lが最小の状態で、電力伝送が最大効率となるように第1の共振器11と第2の共振器22との整合調整を行い、その状態を基準にしてずれの許容範囲を設定する。そのため、車両20の停止位置のずれの許容範囲が狭くなる。 In the prior art in which contactless power transmission is performed by resonance, the first resonator 11 and the second resonator 22 are closest to each other, that is, between the central axes of the magnetic core 16 and the magnetic core 28 in FIG. The first resonator 11 and the second resonator 22 are adjusted so that the power transmission becomes maximum efficiency when the distance L is minimum, and an allowable range of deviation is set based on that state. To do. Therefore, the allowable range of deviation of the stop position of the vehicle 20 is narrowed.
これに対して、この実施形態では、第1の共振器11及び第2の共振器22が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されている。そのため、車両20の停止位置のずれの許容範囲を広くすることができる。詳述すると、図4(a)において、第1の共振器11の一次側コイル15及び磁性体コア16の中心は、出力軸17aを中心とした二点鎖線で示す円40の円周上を移動可能である。そして、太い破線で示す半径rの円41の円周上に第2の共振器22の二次側コイル27及び磁性体コア28の中心が位置する状態、例えば、図4(b)に示す状態、即ち磁性体コア16と磁性体コア28との距離dが円41の半径rと同じ状態で、電力伝送が最大効率となる状態になる。そのため、破線で示す円42内に二次側コイル27及び磁性体コア28の中心が位置する状態であれば、どの位置であってもモータ17の駆動により一次側コイル15及び磁性体コア16を電力伝送が最大効率となる状態に移動させることができる。図4(b)は図4(a)の状態で車両20が停止した場合に、一次側コイル15及び磁性体コア16が、電力伝送が最大効率となる位置に移動した状態を示し、一次側コイル15及び磁性体コア16は矢印45で示す経路で、電力伝送位置まで移動する。 On the other hand, in this embodiment, the first resonator 11 and the second resonator 22 are not closest to each other, but transmit power with maximum efficiency in a positional relationship shifted from that state by a preset distance. Are adjusted to match. Therefore, the allowable range of deviation of the stop position of the vehicle 20 can be widened. More specifically, in FIG. 4A, the center of the primary coil 15 and the magnetic core 16 of the first resonator 11 is on the circumference of a circle 40 indicated by a two-dot chain line centering on the output shaft 17a. It is movable. A state where the centers of the secondary coil 27 and the magnetic core 28 of the second resonator 22 are located on the circumference of a circle 41 having a radius r indicated by a thick broken line, for example, a state shown in FIG. That is, when the distance d between the magnetic core 16 and the magnetic core 28 is the same as the radius r of the circle 41, the power transmission is in the maximum efficiency. Therefore, as long as the center of the secondary coil 27 and the magnetic core 28 is located within a circle 42 indicated by a broken line, the primary coil 15 and the magnetic core 16 are driven by driving the motor 17 at any position. It can be moved to a state where power transmission is at maximum efficiency. FIG. 4B shows a state where the primary coil 15 and the magnetic core 16 have moved to a position where the power transmission becomes maximum efficiency when the vehicle 20 stops in the state of FIG. The coil 15 and the magnetic core 16 move to the power transmission position along the path indicated by the arrow 45.
この実施形態によれば、以下に示す効果を得ることができる。
(1)非接触給電装置としての非接触充電システムは、給電側設備10から車両20に搭載された受電側設備21に対して車両20が停止した状態で非接触給電を行う。給電側設備10は、第1の共振器11と、第1の共振器11に交流を供給する電源部12とを備え、受電側設備21は第2の共振器22と、第2の共振器22が受電した電力が供給される負荷とを備えている。第1の共振器11及び第2の共振器22は、非接触電力伝送を行う状態において、両共振器11,22が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されている。給電側設備10は、非接触電力伝送を行う状態において、第1の共振器11を車両20の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させる移動手段13を備えている。したがって、駆動機構が簡単な移動手段を用いても、車両20の停止位置の精度を緩和した状態で効率良く給電側から受電側へ電力伝送を行うことができる。
According to this embodiment, the following effects can be obtained.
(1) The non-contact charging system as the non-contact power feeding device performs non-contact power feeding in a state where the vehicle 20 is stopped from the power feeding side facility 10 to the power receiving side facility 21 mounted on the vehicle 20. The power supply side equipment 10 includes a first resonator 11 and a power supply unit 12 that supplies an alternating current to the first resonator 11, and the power receiving side equipment 21 includes a second resonator 22 and a second resonator. And a load to which power received by the power supply 22 is supplied. The first resonator 11 and the second resonator 22 are not in a state in which both resonators 11 and 22 are closest to each other in a state in which contactless power transmission is performed, but in a positional relationship that is deviated by a preset distance from that state. The matching is adjusted so that power transmission is performed with maximum efficiency. In the state where non-contact power transmission is performed, the power supply side equipment 10 moves the first resonator 11 to a position where power can be transmitted with maximum efficiency corresponding to the stop position of the vehicle 20 by a single-axis drive mechanism. Means 13 are provided. Therefore, even if a moving means with a simple drive mechanism is used, it is possible to efficiently transmit power from the power feeding side to the power receiving side while reducing the accuracy of the stop position of the vehicle 20.
(2)移動手段13は、第1の共振器11を第1の共振器11及び第2の共振器22のコイルの中心以外の位置にある軸の周囲に公転させる。したがって、第1の共振器11を目的とする伝送効率以上で電力伝送が可能な位置に直線移動で移動される場合に比べて、車両20の停止許容範囲が広くなる。 (2) The moving means 13 revolves the first resonator 11 around an axis at a position other than the centers of the coils of the first resonator 11 and the second resonator 22. Therefore, compared with the case where the first resonator 11 is moved by linear movement to a position where electric power can be transmitted with a transmission efficiency equal to or higher than the intended transmission efficiency, the stop allowable range of the vehicle 20 is widened.
(3)移動手段13は、給電側設備10に設けられている。移動手段13を受電側設備21に設けると、車両20の大型化を招いたり、車両20を構成する他の機器等の設置スペースの自由度が小さくなったりする。また、受電側設備21に移動手段13を設ける場合は、受電側設備21を搭載した車両20全てに設ける必要があるが、給電側設備10に設ける場合は給電側設備10を利用する車両20の数に拘らず、移動手段13の数を1個とすることができる。 (3) The moving means 13 is provided in the power supply side equipment 10. If the moving means 13 is provided in the power receiving side equipment 21, the size of the vehicle 20 is increased, or the degree of freedom of the installation space for other devices constituting the vehicle 20 is reduced. Moreover, when providing the moving means 13 in the power receiving side equipment 21, it is necessary to provide in all the vehicles 20 carrying the power receiving side equipment 21, but when providing in the power feeding side equipment 10, the vehicle 20 using the power feeding side equipment 10 is used. Regardless of the number, the number of moving means 13 can be one.
(4)第1の共振器11及び第2の共振器22はそれぞれ磁性体コア16,28を備えている。したがって、磁性体コア16,28を備えていない場合に比べて、強い磁界が発生し、安定して電力伝送を行うことができる。 (4) The first resonator 11 and the second resonator 22 include magnetic cores 16 and 28, respectively. Therefore, compared with the case where the magnetic cores 16 and 28 are not provided, a strong magnetic field is generated and power transmission can be performed stably.
(5)受電側設備21は車両20に搭載され、車両20は負荷として整流器23及びバッテリ25を備えている。バッテリ25を充電するために受電側設備21が搭載された車両20を、非接触給電が効率良く行われる位置に正確に停止させることは運転者にとって難しい。しかし、受電側設備21は非接触給電が効率良く行われる停止位置の許容範囲が広いため、運転者の車両停止操作の負担が少なくなる。 (5) The power receiving side equipment 21 is mounted on the vehicle 20, and the vehicle 20 includes a rectifier 23 and a battery 25 as loads. It is difficult for the driver to accurately stop the vehicle 20 on which the power receiving side equipment 21 is mounted to charge the battery 25 at a position where the non-contact power feeding is performed efficiently. However, since the power receiving side equipment 21 has a wide allowable range of the stop position where the non-contact power feeding is efficiently performed, the burden on the vehicle stop operation by the driver is reduced.
(6)受電側設備21は車両20の後部に搭載されている。したがって、受電側設備21を車両20の他の部分、例えば、車体の側面や車両20の床下等に搭載する場合に比べて、搭載スペースの確保が容易になるとともに、充電のための所定停止位置に車両20を停止させる際に停止操作が容易になる。また、給電側設備10の設置も簡単になる。 (6) The power receiving side equipment 21 is mounted on the rear part of the vehicle 20. Therefore, as compared with the case where the power receiving side equipment 21 is mounted on another part of the vehicle 20, for example, a side surface of the vehicle body or under the floor of the vehicle 20, it is easy to secure a mounting space and a predetermined stop position for charging. When the vehicle 20 is stopped, the stop operation becomes easy. Moreover, installation of the power supply side equipment 10 is also simplified.
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第1の共振器11の磁性体コア16と第2の共振器22の磁性体コア28との位置ずれ許容範囲は円とは限らず、図5(a),(b)に示すように四角形としてもよい。図5(a),(b)は、出力軸17aが四角形の位置ずれ許容範囲A1の中心に位置する状態の場合を示している。この場合は、円41の半径rが円40の外周と許容範囲A1の角との最短距離以上であれば、磁性体コア28が許容範囲A1どの位置に存在しても、磁性体コア16を電力伝送が最大効率となる位置に移動させることができる。図5(b)は図5(a)の状態で車両20が停止した場合に、一次側コイル15及び磁性体コア16が、電力伝送が最大効率となる位置に矢印45の経路で移動した状態を示している。
The embodiment is not limited to the above, and may be embodied as follows, for example.
○ The allowable range of misalignment between the magnetic core 16 of the first resonator 11 and the magnetic core 28 of the second resonator 22 is not limited to a circle, as shown in FIGS. 5 (a) and 5 (b). It may be a rectangle. FIGS. 5A and 5B show a case where the output shaft 17a is positioned at the center of the rectangular positional deviation allowable range A1. In this case, if the radius r of the circle 41 is equal to or greater than the shortest distance between the outer periphery of the circle 40 and the corner of the allowable range A1, the magnetic core 16 can be moved regardless of the position of the magnetic core 28 in the allowable range A1. It can be moved to a position where power transmission is at maximum efficiency. FIG. 5B shows a state in which the primary coil 15 and the magnetic core 16 have moved along the path indicated by the arrow 45 to a position where the power transmission becomes maximum efficiency when the vehicle 20 stops in the state of FIG. Is shown.
○ 図6(a),(b)は、車輪止めを用いて車両20の前後方向への位置ずれが小さく、左右方向へのずれが大きな場合に対応して、位置ずれ許容範囲A2を車両20の左右方向に長い四角形の領域とした場合の一形態を示している。なお、図6(a),(b)において上下方向が車両20の左右方向となる。この実施形態においても、出力軸17aは四角形の位置ずれ許容範囲A2の中心に位置する状態に配置されている。この場合も、円41の半径rが円40の外周と許容範囲A2の角との最短距離以上であれば、磁性体コア28が許容範囲A2どの位置に存在しても、磁性体コア16を電力伝送が最大効率となる位置に移動させることができる。図6(b)は図6(a)の状態で車両20が停止した場合に、一次側コイル15及び磁性体コア16が、電力伝送が最大効率となる位置に矢印45の経路で移動した状態を示している。 6 (a) and 6 (b) show the allowable misalignment range A2 for the vehicle 20 when the wheel stopper is used and the displacement of the vehicle 20 in the front-rear direction is small and the displacement in the left-right direction is large. One form when it is set as the square area | region long in the left-right direction is shown. 6A and 6B, the vertical direction is the horizontal direction of the vehicle 20. Also in this embodiment, the output shaft 17a is arranged in a state of being positioned at the center of the rectangular positional deviation allowable range A2. Also in this case, as long as the radius r of the circle 41 is equal to or greater than the shortest distance between the outer periphery of the circle 40 and the corner of the allowable range A2, the magnetic core 16 can be moved regardless of the position of the magnetic core 28 in the allowable range A2. It can be moved to a position where power transmission is at maximum efficiency. FIG. 6B shows a state where the primary coil 15 and the magnetic core 16 have moved along the path indicated by the arrow 45 to a position where the power transmission becomes maximum efficiency when the vehicle 20 stops in the state of FIG. Is shown.
○ 図7(a),(b)は、車輪止めを用いて車両20の前後方向への位置ずれが小さく、左右方向へのずれが大きな場合に対応して、位置ずれ許容範囲A2を車両20の左右方向に長い四角形の領域とした場合の変更例を示している。なお、図7(a),(b)において上下方向が車両20の左右方向となる。この実施形態においては、出力軸17aは四角形の位置ずれ許容範囲A2の中心ではなく、中心より前方寄り(図7(a),(b)の左寄り)に位置する状態に配置されている。図7(b)は図7(a)の状態で車両20が停止した場合に、一次側コイル15及び磁性体コア16が、電力伝送が最大効率となる位置に矢印45の経路で移動した状態を示している。 FIGS. 7A and 7B show the positional deviation allowable range A2 corresponding to the case where the positional deviation in the front-rear direction of the vehicle 20 is small and the lateral deviation is large by using the wheel stopper. The example of a change at the time of setting it as the square area | region long in the left-right direction is shown. 7A and 7B, the vertical direction is the horizontal direction of the vehicle 20. In this embodiment, the output shaft 17a is disposed not in the center of the rectangular positional deviation allowable range A2, but in a state of being closer to the front than the center (leftward in FIGS. 7A and 7B). FIG. 7B shows a state where the primary coil 15 and the magnetic core 16 have moved along the path indicated by the arrow 45 to a position where the power transmission becomes maximum efficiency when the vehicle 20 stops in the state shown in FIG. Is shown.
○ 図8(a),(b)は、出力軸17aの位置が、図7(a),(b)の場合より四角形の位置ずれ許容範囲A2の中心よりさらに前方寄り(図8(a),(b)の左寄り)に位置する状態に配置されている変更例を示す。図8(b)は図8(a)の状態で車両20が停止した場合に、一次側コイル15及び磁性体コア16が、電力伝送が最大効率となる位置に矢印45の経路で移動した状態を示している。この場合は、図7(a),(b)に示す場合に比べて、一次側コイル15及び磁性体コア16の移動量を少なくすることができる。 8 (a) and 8 (b), the position of the output shaft 17a is closer to the front than the center of the rectangular displacement allowable range A2 than in the case of FIGS. 7 (a) and 7 (b) (FIG. 8 (a)). The example of a change arrange | positioned in the state located to the left of (b) is shown. FIG. 8B shows a state in which the primary coil 15 and the magnetic core 16 have moved along the path indicated by the arrow 45 to a position where the power transmission becomes maximum efficiency when the vehicle 20 stops in the state shown in FIG. Is shown. In this case, the amount of movement of the primary coil 15 and the magnetic core 16 can be reduced compared to the case shown in FIGS. 7 (a) and 7 (b).
○ 図9に示すように、受電側設備21を第2の共振器22の二次側コイル27及び磁性体コア28の中心軸が車両20の前後方向に延びる状態で車両20に搭載してもよい。この場合、給電側設備10の第1の共振器11は、地上に形成された穴31の中に配設される。モータ17は出力軸17aが充電位置に停止した車両20の前後方向と平行に延びる状態で設置されおり、一次側コイル15及び磁性体コア16は二次側コイル27及び磁性体コア28と平行な状態で待機位置と給電位置とに移動される。なお、穴31の開口は車両20の移動に支障がないように図示しないカバーで覆われている。 As shown in FIG. 9, even if the power receiving side equipment 21 is mounted on the vehicle 20 with the central axis of the secondary coil 27 and the magnetic core 28 of the second resonator 22 extending in the front-rear direction of the vehicle 20. Good. In this case, the first resonator 11 of the power supply side equipment 10 is disposed in a hole 31 formed on the ground. The motor 17 is installed in a state where the output shaft 17a extends in parallel with the longitudinal direction of the vehicle 20 stopped at the charging position, and the primary side coil 15 and the magnetic core 16 are parallel to the secondary side coil 27 and the magnetic core 28. The state is moved to the standby position and the power feeding position. The opening of the hole 31 is covered with a cover (not shown) so as not to hinder the movement of the vehicle 20.
○ 非接触充電システムは、非接触電力伝送を行う状態において、第1の共振器11及び第2の共振器22のいずれか一方を、移動体(車両20)の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させることが可能な移動手段を備えていればよい。また、1軸の駆動機構で移動させることが可能な移動手段は、軸の回動のみで移動させる構成に限らず、直線移動のみで移動させることが可能な構成であってもよい。例えば、図10(a)に示すように、受電側設備21を第2の共振器22の二次側コイル27及び磁性体コア28の中心軸が車両20の前後方向に延びる状態で車両20に搭載し、二次側コイル27及び磁性体コア28が前後方向に延びる状態を維持した状態で車両20の左右方向(車幅方向)に水平に移動可能に構成してもよい。磁性体コア28は図示しない駆動機構により車幅方向に直線移動可能な支持体19に、非磁性体製の部材19aを介して支持されている。駆動機構としては、例えば、シリンダやボールねじ機構が使用される。この場合、第1の共振器11の磁性体コア16と第2の共振器22の磁性体コア28との関係を示すと、車両20が充電位置に停止した状態では、磁性体コア28が直線移動する経路は、図10(b)に示すように、一次側コイル15及び磁性体コア16の中心を中心とした半径rの円41の円周と交差する状態になる。そして、磁性体コア28の中心が円41の円周上に位置する状態では、電力伝送が最大効率となる状態になる。 ○ In the state where contactless power transmission is performed, the contactless charging system has a maximum efficiency corresponding to one of the first resonator 11 and the second resonator 22 corresponding to the stop position of the moving body (vehicle 20). It is only necessary to provide a moving means that can be moved by a single-axis drive mechanism at a position where power can be transmitted. Further, the moving means that can be moved by the single-axis drive mechanism is not limited to the structure that is moved only by rotating the shaft, but may be the structure that can be moved only by linear movement. For example, as shown in FIG. 10A, the power receiving side equipment 21 is connected to the vehicle 20 in a state where the central axes of the secondary coil 27 and the magnetic core 28 of the second resonator 22 extend in the front-rear direction of the vehicle 20. It may be configured to be mounted and horizontally movable in the left-right direction (vehicle width direction) of the vehicle 20 in a state where the secondary coil 27 and the magnetic core 28 are maintained in the state of extending in the front-rear direction. The magnetic core 28 is supported by a support body 19 that can be linearly moved in the vehicle width direction by a drive mechanism (not shown) via a non-magnetic member 19a. As the drive mechanism, for example, a cylinder or a ball screw mechanism is used. In this case, when the relationship between the magnetic core 16 of the first resonator 11 and the magnetic core 28 of the second resonator 22 is shown, the magnetic core 28 is straight when the vehicle 20 is stopped at the charging position. As shown in FIG. 10B, the moving path is in a state of intersecting the circumference of a circle 41 having a radius r centering on the centers of the primary coil 15 and the magnetic core 16. In a state where the center of the magnetic core 28 is located on the circumference of the circle 41, the power transmission is in a maximum efficiency state.
○ 受電側設備21の車両20に対する搭載位置は車両20の後部に限らず、例えば、車両20の前部や中間部に搭載してもよい。前部に搭載する場合は、後部に搭載する場合と同様に搭載されるが、中間部に搭載する場合は、例えば、図11に示すように、第2の共振器22は、二次側コイル27及び磁性体コア28の中心軸が地上面に対して平行にかつ車幅方向に延びるように搭載される。また、給電側設備10の第1の共振器11は、地上に形成された穴31の中に配設される。モータ17は出力軸17aが充電位置に停止した車両20の車幅方向と平行に延びる状態で設置されおり、一次側コイル15及び磁性体コア16は二次側コイル27及び磁性体コア28と平行な状態で待機位置と給電位置とに移動される。また、図11に示す実施形態では、二次側コイル27は充電器24接続され、充電器24は整流器を内蔵している。 The mounting position of the power receiving side equipment 21 with respect to the vehicle 20 is not limited to the rear portion of the vehicle 20, and may be mounted, for example, on the front portion or the middle portion of the vehicle 20. When mounted on the front part, it is mounted in the same manner as when mounted on the rear part. However, when mounted on the intermediate part, for example, as shown in FIG. 27 and the magnetic material core 28 are mounted so that the central axes thereof extend in parallel to the ground surface and in the vehicle width direction. Further, the first resonator 11 of the power supply side equipment 10 is disposed in a hole 31 formed on the ground. The motor 17 is installed in a state where the output shaft 17 a extends in parallel with the vehicle width direction of the vehicle 20 stopped at the charging position, and the primary side coil 15 and the magnetic body core 16 are parallel to the secondary side coil 27 and the magnetic body core 28. In this state, it is moved to the standby position and the power feeding position. In the embodiment shown in FIG. 11, the secondary coil 27 is connected to the charger 24, and the charger 24 has a built-in rectifier.
○ 受電側設備21を第2の共振器22の二次側コイル27及び磁性体コア28の中心軸が車両20の前後方向に延びる状態で車両20に搭載する場合においても、第2の共振器22を車両20の中間部に配置してもよい。また、給電側設備10の第1の共振器11の一次側コイル15及び磁性体コア16の中心軸を、給電側設備10の所定位置に停止した車両20の中間部と対応する位置で車両20の前後方向に延びる状態に配置してもよい。 Even when the power receiving side equipment 21 is mounted on the vehicle 20 with the secondary coil 27 of the second resonator 22 and the central axis of the magnetic core 28 extending in the front-rear direction of the vehicle 20, the second resonator 22 may be arranged in the middle part of the vehicle 20. Further, the vehicle 20 is positioned at a position corresponding to the intermediate portion of the vehicle 20 stopped at a predetermined position of the power supply side equipment 10 with respect to the primary coil 15 and the magnetic core 16 of the first resonator 11 of the power supply side equipment 10. You may arrange | position in the state extended in the front-back direction.
○ 第2の共振器22を車両20の側部に設けてもよい。
○ 一次側コイル15及び二次側コイル27は複層巻に限らず単層巻であってもよい。
○ 磁性体コア16,28は一次側コイル15あるいは二次側コイル27を貫通する長さを有する必要は無く、一次側コイル15及び二次側コイル27の長さ以下の長さであってもよい。
The second resonator 22 may be provided on the side portion of the vehicle 20.
The primary side coil 15 and the secondary side coil 27 are not limited to the multi-layer winding but may be a single layer winding.
The magnetic cores 16 and 28 do not need to have a length penetrating the primary side coil 15 or the secondary side coil 27, and may be shorter than the lengths of the primary side coil 15 and the secondary side coil 27. Good.
○ 第1の共振器11及び第2の共振器22として、一次側コイル15に接続されたコンデンサC1や二次側コイル27に接続されたコンデンサC2に代えて、一次側コイル15や二次側コイル27の寄生容量をコンデンサの代用としてもよい。 ○ Instead of the capacitor C1 connected to the primary coil 15 and the capacitor C2 connected to the secondary coil 27 as the first resonator 11 and the second resonator 22, the primary coil 15 and the secondary side The parasitic capacitance of the coil 27 may be substituted for the capacitor.
○ 非接触電力伝送を行うときに、第1の共振器11の一次側コイル15及び磁性体コア16の中心軸と、第2の共振器22の二次側コイル27及び磁性体コア28の中心軸とが互いに平行に配置される構成に限らず、平行状態から多少ずれていてもよい。 When performing non-contact power transmission, the central axis of the primary side coil 15 and the magnetic core 16 of the first resonator 11 and the center of the secondary side coil 27 and the magnetic core 28 of the second resonator 22 The configuration is not limited to the configuration in which the shafts are arranged in parallel to each other, and may be slightly deviated from the parallel state.
○ 磁性体コア16及び磁性体コア28を省略してもよい。しかし、磁性体コア16及び磁性体コア28が存在する方が好ましい。
○ 給電側設備10及び受電側設備21は、一次側コイル15及び磁性体コア16の中心と、二次側コイル27及び磁性体コア28の中心とが同じ高さでなくてもよい。
The magnetic core 16 and the magnetic core 28 may be omitted. However, it is preferable that the magnetic core 16 and the magnetic core 28 exist.
In the power supply side facility 10 and the power reception side facility 21, the centers of the primary side coil 15 and the magnetic core 16 and the centers of the secondary side coil 27 and the magnetic core 28 may not be the same height.
○ 受電側設備21を車両20の後部に搭載する場合、搭載位置はナンバープレートの下でなく上側にしてもよい。
○ 電源側コントローラ14は、反射電力検出手段を介して反射電力をモニタして、第1の共振器11を給電位置へ移動させる際、反射電力が最小となる位置ではなく、反射電力が予め設定された閾値以下になる位置に第1の共振器11を移動させるようにしてもよい。
O When the power receiving side equipment 21 is mounted on the rear part of the vehicle 20, the mounting position may be on the upper side instead of the lower side of the license plate.
○ When the power controller 14 monitors the reflected power via the reflected power detection means and moves the first resonator 11 to the feeding position, the reflected power is set in advance instead of the position where the reflected power is minimized. The first resonator 11 may be moved to a position that is less than or equal to the threshold value.
○ 車両20は運転者を必要とする車両に限らず、例えば、無人搬送車であってもよい。
○ 非接触給電装置は、車両に搭載されたバッテリ25の充電に使用するものに限らず、バッテリを備えた移動体、例えば、自走式のロボットであってもよい。
The vehicle 20 is not limited to a vehicle that requires a driver, and may be an automatic guided vehicle, for example.
The non-contact power feeding device is not limited to the one used for charging the battery 25 mounted on the vehicle, and may be a mobile body including a battery, for example, a self-propelled robot.
○ バッテリ25への充電位置が屋内の場合、給電側設備10の第1の共振器11等を充電時における移動体の停止位置の上方、例えば天井に設けてもよい。
○ 充電器24を設けずに、二次側コイル27から出力される交流電流を整流器23で整流した後、バッテリ25に直接充電するようにしてもよい。
When the charging position to the battery 25 is indoors, the first resonator 11 of the power supply side equipment 10 may be provided above the stop position of the moving body during charging, for example, on the ceiling.
The battery 25 may be directly charged after the AC current output from the secondary coil 27 is rectified by the rectifier 23 without providing the charger 24.
○ 電源部12は、交流出力の周波数が変更可能でも変更不能でもよい。
○ 非接触電力伝送を行う状態において、第1の共振器11及び第2の共振器22のいずれか一方を、移動体の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させることが可能な移動手段13を用いて移動させる代わりに、最大効率より多少効率が悪い位置、例えば、最大効率の90%以上となる位置に移動させてもよい。
The power supply unit 12 may be capable of changing the frequency of the AC output or not.
○ In a state where non-contact power transmission is performed, one of the first resonator 11 and the second resonator 22 is placed in a position where power can be transmitted with maximum efficiency corresponding to the stop position of the moving body. Instead of using the moving means 13 that can be moved by this driving mechanism, the moving mechanism 13 may be moved to a position that is slightly less efficient than the maximum efficiency, for example, a position that is 90% or more of the maximum efficiency.
○ 移動体(例えば車両20)が、ある閾値以上の効率が得られない場所に停車した場合でも、第1の共振器11及び第2の共振器22のいずれか一方を駆動機構で移動させて、閾値以上の効率が得られるようにしてもよい。 ○ Even when the moving body (for example, the vehicle 20) stops at a place where an efficiency equal to or higher than a certain threshold cannot be obtained, either the first resonator 11 or the second resonator 22 is moved by the drive mechanism. An efficiency equal to or higher than a threshold value may be obtained.
○ 図1(a),(b)に示す構成のように、第1の共振器11及び第2の共振器22が、一次側コイル15及び磁性体コア16の中心軸と、二次側コイル27及び磁性体コア28の中心軸とが上下方向に延びる構成において、受電側設備21に移動手段13を設けて、第2の共振器22を移動させる構成にしてもよい。 ○ As shown in FIGS. 1A and 1B, the first resonator 11 and the second resonator 22 are composed of the central axis of the primary side coil 15 and the magnetic core 16, and the secondary side coil. 27 and the central axis of the magnetic core 28 may extend in the vertical direction, and the moving unit 13 may be provided in the power receiving side equipment 21 to move the second resonator 22.
○ 図10(a)に示す構成のように、第2の共振器22の二次側コイル27及び磁性体コア28の中心軸が車両20の前後方向に延びる状態を維持した状態で車両20の左右方向に水平に移動可能とする代わりに、第1の共振器11の一次側コイル15及び磁性体コア16を車両20の左右方向に水平に移動可能に構成してもよい。 ○ As in the configuration shown in FIG. 10A, the vehicle 20 is kept in a state where the central axes of the secondary coil 27 and the magnetic core 28 of the second resonator 22 extend in the front-rear direction of the vehicle 20. Instead of being horizontally movable in the left-right direction, the primary coil 15 and the magnetic core 16 of the first resonator 11 may be configured to be horizontally movable in the left-right direction of the vehicle 20.
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項3のいずれか1項に記載の発明において、前記第1の共振器及び前記第2の共振器は、コイルと、前記コイルに接続されたコンデンサと、磁性体コアとを備えている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 3, the first resonator and the second resonator include a coil, a capacitor connected to the coil, and a magnetic body. With a core.
(2)請求項1〜請求項3及び前記技術的思想(1)のいずれか1項に記載の発明において、前記移動体は車両である。
(3)前記技術的思想(2)に記載の発明において、前記車両は前記負荷として整流器及びバッテリを備えている。
(2) In the invention according to any one of claims 1 to 3 and the technical idea (1), the moving body is a vehicle.
(3) In the invention described in the technical idea (2), the vehicle includes a rectifier and a battery as the load.
(4)前記技術的思想(2)又は(3)に記載の発明において、前記移動手段は、前記第2の共振器を直線移動させる。 (4) In the invention described in the technical idea (2) or (3), the moving means linearly moves the second resonator.
d,L…距離、10…給電側設備、11…第1の共振器、12…電源部、13…移動手段、21…受電側設備、22…第2の共振器。 d, L ... distance, 10 ... power supply side equipment, 11 ... first resonator, 12 ... power source, 13 ... moving means, 21 ... power receiving side equipment, 22 ... second resonator.
Claims (3)
前記給電側設備は、第1の共振器と、前記第1の共振器に交流を供給する電源部とを備え、
前記受電側設備は第2の共振器と、前記第2の共振器が受電した電力が供給される負荷とを備え、
前記第1の共振器及び前記第2の共振器は、前記非接触電力伝送を行う状態において、両共振器が最も近づいた状態ではなくその状態から予め設定された距離ずれた位置関係において最大効率で電力伝送が行われるように整合調整されており、
前記非接触電力伝送を行う状態において、前記第1の共振器及び前記第2の共振器のいずれか一方を、前記移動体の停止位置に対応して最大効率で電力伝送可能な位置に、1軸の駆動機構で移動させることが可能な移動手段を備えていることを特徴とする非接触給電装置。 A non-contact power feeding device that performs non-contact power transmission in a state where the moving body is stopped with respect to a power receiving side facility mounted on the moving body from a power feeding side facility,
The power supply side facility includes a first resonator, and a power supply unit that supplies alternating current to the first resonator,
The power receiving side facility includes a second resonator, and a load to which the power received by the second resonator is supplied,
The first resonator and the second resonator have a maximum efficiency in a positional relationship in which the two resonators are not closest to each other but in a predetermined distance from the state in the state in which the non-contact power transmission is performed. Is adjusted so that power can be transmitted at
In the state in which the non-contact power transmission is performed, one of the first resonator and the second resonator is placed at a position where power can be transmitted with maximum efficiency corresponding to the stop position of the moving body. A non-contact power feeding device comprising a moving means that can be moved by a shaft drive mechanism.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011259356A JP2013115909A (en) | 2011-11-28 | 2011-11-28 | Contactless power supply device |
PCT/JP2012/080207 WO2013080861A1 (en) | 2011-11-28 | 2012-11-21 | Non-contact power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011259356A JP2013115909A (en) | 2011-11-28 | 2011-11-28 | Contactless power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013115909A true JP2013115909A (en) | 2013-06-10 |
Family
ID=48535321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011259356A Pending JP2013115909A (en) | 2011-11-28 | 2011-11-28 | Contactless power supply device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013115909A (en) |
WO (1) | WO2013080861A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015002422A1 (en) * | 2013-07-01 | 2015-01-08 | Lg Electronics Inc. | Wireless power transmitting apparatus |
WO2015088108A1 (en) * | 2013-12-13 | 2015-06-18 | Lg Electronics Inc. | Wireless charger for a mobile terminal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW493312B (en) * | 1997-02-03 | 2002-07-01 | Sony Corp | Power transmission apparatus and power transmission method |
JP5173901B2 (en) * | 2009-03-13 | 2013-04-03 | 三菱電機株式会社 | Contactless power supply / reception device |
JP2010259136A (en) * | 2009-04-21 | 2010-11-11 | Taihei Seisakusho:Kk | Contactless charging system |
JP2011142763A (en) * | 2010-01-08 | 2011-07-21 | Panasonic Corp | Radio power transfer device |
JP2011193619A (en) * | 2010-03-15 | 2011-09-29 | Panasonic Corp | Transceiver for radio power transmission |
-
2011
- 2011-11-28 JP JP2011259356A patent/JP2013115909A/en active Pending
-
2012
- 2012-11-21 WO PCT/JP2012/080207 patent/WO2013080861A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015002422A1 (en) * | 2013-07-01 | 2015-01-08 | Lg Electronics Inc. | Wireless power transmitting apparatus |
US9979236B2 (en) | 2013-07-01 | 2018-05-22 | Lg Electronics Inc. | Wireless power transmitting apparatus |
WO2015088108A1 (en) * | 2013-12-13 | 2015-06-18 | Lg Electronics Inc. | Wireless charger for a mobile terminal |
CN104981965A (en) * | 2013-12-13 | 2015-10-14 | Lg电子株式会社 | Wireless charger for a mobile terminal |
US9819214B2 (en) | 2013-12-13 | 2017-11-14 | Lg Electronics Inc. | Wireless charger for mobile terminal |
Also Published As
Publication number | Publication date |
---|---|
WO2013080861A1 (en) | 2013-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5506327B2 (en) | Non-contact power supply device | |
WO2013039143A1 (en) | Moving-vehicle electric power feeding system | |
JP5950028B2 (en) | Contactless power supply system | |
JP5979308B2 (en) | Contactless power supply system | |
JP5950027B2 (en) | Non-contact power supply system and power supply device | |
KR101586133B1 (en) | Vehicle and power transmission/reception system | |
JP5211103B2 (en) | Resonant contactless power supply system for vehicles | |
JP5979309B2 (en) | Contactless power supply system | |
WO2012090613A1 (en) | Non-contact charging device | |
JP2010022183A (en) | Electric vehicle and inductive power-transmission device suitable therefor | |
JP2013133659A (en) | Transfer device and moving vehicle | |
JP2012034468A (en) | Resonance type non-contact power feeding system for vehicle | |
JP5966407B2 (en) | Mobile vehicle and non-contact power transmission device | |
JP5839039B2 (en) | Mobile vehicle power supply system | |
CN103038089A (en) | Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle,non-contact power supply system | |
JP2013539333A (en) | Resonant contactless power supply system | |
US20180236889A1 (en) | Vehicle and power transmission system | |
WO2011114942A1 (en) | Mobile body power supply | |
CN104821636A (en) | Non-contact electric power transmission system for vehicle | |
JP5488724B2 (en) | Resonant contactless power supply system | |
CN111619374A (en) | Wireless charging device and system for electric automobile | |
JP5966332B2 (en) | Mobile vehicle and non-contact power transmission device | |
JP2013115909A (en) | Contactless power supply device | |
JP2016211210A (en) | Parking facility system | |
JP2013169109A (en) | Mobile vehicle and non contact power transmission apparatus |