[go: up one dir, main page]

JP2013113691A - Insulation diagnosis apparatus - Google Patents

Insulation diagnosis apparatus Download PDF

Info

Publication number
JP2013113691A
JP2013113691A JP2011259637A JP2011259637A JP2013113691A JP 2013113691 A JP2013113691 A JP 2013113691A JP 2011259637 A JP2011259637 A JP 2011259637A JP 2011259637 A JP2011259637 A JP 2011259637A JP 2013113691 A JP2013113691 A JP 2013113691A
Authority
JP
Japan
Prior art keywords
insulation
unit
detection
diagnostic apparatus
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011259637A
Other languages
Japanese (ja)
Inventor
Junichi Sato
純一 佐藤
Tatsuya Kimura
達也 木村
Masao Takahashi
正雄 高橋
Osamu Tagaya
治 多賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011259637A priority Critical patent/JP2013113691A/en
Publication of JP2013113691A publication Critical patent/JP2013113691A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation diagnosis apparatus in which partial discharge occurring from a solid insulation device can be detected with high sensitivity.SOLUTION: In an insulation diagnosis apparatus, partial discharge of a solid insulation device provided with a ground layer in its outer periphery is detected. In the insulation diagnosis apparatus, a surface potential is detected by a plurality of detection electrodes in contact with a surface of the ground layer. A differential section is disposed in proximity with the detection electrodes and calculates a potential difference of the surface potentials detected from the detection electrodes. A transmission section transmits a signal outputted from the differential section, and a detection processing section detects partial discharge on the basis of the signal transmitted by the transmission section.

Description

本発明の実施形態は、絶縁診断装置に関する。 Embodiments described herein relate generally to an insulation diagnostic apparatus.

固体絶縁機器の絶縁状態の監視方法としては、接地母線に貫通形変流器を接続して部分放電によるパルス電流を測定するものが知られている。これは、固体絶縁機器内に収納された遮断器などが絶縁劣化すると、微弱な高周波のパルス電流が接地母線に流れるため、これを検出するものである。   As a method for monitoring the insulation state of a solid insulation device, there is known a method of measuring a pulse current due to partial discharge by connecting a through-type current transformer to a ground bus. This is because a weak high-frequency pulse current flows to the ground bus when a circuit breaker or the like housed in a solid-insulated device is deteriorated in insulation, and this is detected.

また、表面に接地層が設けられた固体絶縁機器においては、その表面に検出電極を配置することによって、部分放電が検出されることが知られている。   Moreover, in the solid insulation apparatus provided with the grounding layer on the surface, it is known that partial discharge is detected by arranging a detection electrode on the surface.

しかし、接地母線に貫通形変流器を接続して測定するものでは、部分放電によるパルス電流は極めて微弱なため、外部環境から重畳されるノイズに埋もれ易く、検出が困難である。具体的には、遮断器などの主回路部に他の電気機器からの電磁波などのノイズが重畳し、これが接地母線にも流れ、部分放電の検出が困難となっている。このため、ノイズ除去回路などを設け、検出感度を向上させようとする対策も行われているが、部分放電の検出回路が複雑になってしまう。   However, in the case of measuring by connecting a through-type current transformer to the ground bus, the pulse current due to the partial discharge is very weak, so that it is easily buried in noise superimposed from the external environment and difficult to detect. Specifically, noise such as electromagnetic waves from other electric devices is superimposed on a main circuit section such as a circuit breaker, and this also flows to the ground bus, making it difficult to detect partial discharge. For this reason, measures are taken to improve the detection sensitivity by providing a noise removal circuit or the like, but the partial discharge detection circuit becomes complicated.

また、接地層表面に検出電極を配置して測定するものでは、上述の貫通形変流器を用いた測定よりも高感度な検出が可能となるが、検出電極から検出器までの信号線に外部からの電磁波の影響を受けたり、絶縁物表面の接地層に重畳されたノイズの影響を受けたりすることがある。   In addition, the measurement with the detection electrode arranged on the surface of the ground layer enables detection with higher sensitivity than the measurement using the above-described through-type current transformer, but the signal line from the detection electrode to the detector is used. It may be affected by external electromagnetic waves or may be affected by noise superimposed on the ground layer on the surface of the insulator.

特開2009−168489号公報JP 2009-168489 A

本発明が解決しようとする課題は、固体絶縁機器から発生する部分放電を感度良く検出することのできる絶縁診断装置を提供することである。   The problem to be solved by the present invention is to provide an insulation diagnostic apparatus that can detect a partial discharge generated from a solid insulation device with high sensitivity.

実施形態の絶縁診断装置では、外周に接地層が設けられた固体絶縁機器の部分放電を検出する絶縁診断装置において、前記接地層の表面に接触させた複数の検出電極が表面電位を検出する。差動部は前記検出電極と近接させるように配置され、前記検出電極から検出された表面電位の電位差を算出する。伝送部は前記差動部から出力される信号を伝送し、検出処理部が前記伝送部によって伝送された信号に基づいて部分放電を検知する。   In the insulation diagnostic apparatus according to the embodiment, in the insulation diagnosis apparatus that detects partial discharge of a solid insulation device having a ground layer on the outer periphery, a plurality of detection electrodes brought into contact with the surface of the ground layer detect a surface potential. The differential unit is arranged so as to be close to the detection electrode, and calculates a potential difference between the surface potentials detected from the detection electrode. The transmission unit transmits a signal output from the differential unit, and the detection processing unit detects partial discharge based on the signal transmitted by the transmission unit.

第1の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 1st Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied. 2つの検出電極と差動部の配置の一例を示す(a)側面図、(b)上面図。The (a) side view and (b) top view which show an example of arrangement | positioning of two detection electrodes and a differential part. 第2の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 2nd Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied. 第3の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 3rd Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied. 第4の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 4th Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied. 第5の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 5th Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied. 一直線上に並べた3つの検出電極と差動部の配置の一例を示す(a)側面図、(b)上面図。(A) Side view and (b) Top view showing an example of the arrangement of three detection electrodes and a differential part arranged in a straight line. 三角形状に並べた3つの検出電極と差動部の配置の一例を示す(a)側面図、(b)上面図。The (a) side view and (b) top view which show an example of arrangement | positioning of the three detection electrodes and the differential part which were arranged in a triangle shape. 第6の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図。The block diagram of the insulation diagnostic apparatus of 6th Embodiment, and the schematic diagram of the solid insulation apparatus to which this is applied.

以下、実施形態を図面に基づき説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1の実施形態)
図1は第1の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(First embodiment)
FIG. 1 is a configuration diagram of an insulation diagnostic apparatus according to the first embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

固体絶縁機器1は、高圧導体2、絶縁層3、接地層4を有する。   The solid insulating device 1 includes a high voltage conductor 2, an insulating layer 3, and a ground layer 4.

固体絶縁機器1は、主回路部材である高圧導体2を絶縁層3でモールドし、絶縁層3の外周表面に接地層4が設けられる。高圧導体2は、銅やアルミニウムなどの金属部材から構成される。絶縁層3はエポキシ樹脂、ポリエチレン樹脂、シリコンゴムなどで形成され、接地層4はカーボン塗料や銀塗料といった導電性塗料を塗布することで形成される。 In the solid insulating device 1, a high-voltage conductor 2 that is a main circuit member is molded with an insulating layer 3, and a ground layer 4 is provided on the outer peripheral surface of the insulating layer 3. The high voltage conductor 2 is made of a metal member such as copper or aluminum. The insulating layer 3 is formed of epoxy resin, polyethylene resin, silicon rubber, or the like, and the ground layer 4 is formed by applying a conductive paint such as carbon paint or silver paint.

一方、絶縁診断装置5は、第1検出電極6、第2検出電極7、差動部8、増幅部9、伝送部10、検出処理部11を有する構成であり、伝送部10は、絶縁パイプ12、同軸ケーブル13を有する。   On the other hand, the insulation diagnostic device 5 includes a first detection electrode 6, a second detection electrode 7, a differential unit 8, an amplification unit 9, a transmission unit 10, and a detection processing unit 11. The transmission unit 10 includes an insulation pipe. 12. A coaxial cable 13 is provided.

第1検出電極6及び第2検出電極7は、接地層4の表面に接触させ電位を検出し、差動部8は、検出された表面電位の電位差を算出する。増幅部9は、差動部8からの信号を増幅し、伝送部10は、増幅された信号を伝送する。そして検出処理部11は、
部分放電の有無を検知する。この第1の実施形態の絶縁診断装置では伝送部10として、絶縁パイプ12に収納された同軸ケーブル13を用いる。
The first detection electrode 6 and the second detection electrode 7 are brought into contact with the surface of the ground layer 4 to detect a potential, and the differential unit 8 calculates a potential difference between the detected surface potentials. The amplification unit 9 amplifies the signal from the differential unit 8, and the transmission unit 10 transmits the amplified signal. And the detection processing unit 11
Detects the presence or absence of partial discharge. In the insulation diagnostic apparatus of the first embodiment, a coaxial cable 13 housed in an insulation pipe 12 is used as the transmission unit 10.

ここで、固体絶縁機器1の絶縁層3で部分放電が発生した場合、この部分放電による電流が接地層4に流れる。この電流が接地層4のインピーダンスにより、接地層4に高周波で微弱な電位上昇を発生させる。この電位上昇を検知することで部分放電の検出が可能となる。   Here, when a partial discharge occurs in the insulating layer 3 of the solid insulating device 1, a current due to this partial discharge flows to the ground layer 4. This current causes a slight potential increase at a high frequency in the ground layer 4 due to the impedance of the ground layer 4. By detecting this potential increase, partial discharge can be detected.

具体的には、接地層4の表面に第1検出電極6と第2検出電極7を接触させ、それぞれの位置における表面電位を検出する。第1検出電極6と第2検出電極7によって検出された電位は差動部8にそれぞれ入力され、互いの電位差が算出される。第1検出電極6から出力された信号に含まれているノイズと第2検出電極7から出力された信号に含まれているノイズはほぼ等しいと推定されるため、差動部8で互いの信号の差分を取ることで、ノイズが相殺され、感度良く部分放電による信号を検出することができる。 Specifically, the first detection electrode 6 and the second detection electrode 7 are brought into contact with the surface of the ground layer 4, and the surface potential at each position is detected. The potentials detected by the first detection electrode 6 and the second detection electrode 7 are respectively input to the differential unit 8, and the potential difference between them is calculated. Since it is estimated that the noise included in the signal output from the first detection electrode 6 and the noise included in the signal output from the second detection electrode 7 are substantially equal, the differential unit 8 uses the mutual signal. By taking the difference, noise is canceled out, and a signal due to partial discharge can be detected with high sensitivity.

差動部8から出力された信号は増幅部9で増幅された後、絶縁パイプ12内に収納された同軸ケーブル13で検出処理部11へ伝送される。そして、伝送された信号に基づいて検出処理部11で部分放電の有無が検知される。 The signal output from the differential unit 8 is amplified by the amplification unit 9 and then transmitted to the detection processing unit 11 through the coaxial cable 13 accommodated in the insulating pipe 12. Based on the transmitted signal, the detection processor 11 detects the presence or absence of partial discharge.

ところで、検出電極6,7と差動部8、差動部8と増幅部9はそれぞれ配線で接続されるが、検出電極6と差動部8との配線路、検出電極7と差動部8との配線路、検出電極6と検出電極7とを接地層4を介して結ぶ線路の3つでいわゆるループ回路が形成される。 By the way, the detection electrodes 6 and 7 are connected to the differential unit 8, and the differential unit 8 and the amplification unit 9 are connected to each other by wiring. The wiring path between the detection electrode 6 and the differential unit 8, the detection electrode 7 and the differential unit A so-called loop circuit is formed by three wiring lines connecting the detection electrode 6 and the detection electrode 7 via the ground layer 4.

外部からの電磁波によるノイズが侵入しないようにするためには、前記のループ回路の面積を小さくすること、すなわち前記3つの線路を短くすることが効果的である。   In order to prevent noise due to electromagnetic waves from the outside from entering, it is effective to reduce the area of the loop circuit, that is, to shorten the three lines.

しかし、検出電極6,7間は検出精度の関係から予め決められた距離が必要であるため、第1検出電極6及び第2検出電極7と差動部8とを接続する配線の長さを変更した方が設計の自由度は高い。そこで、検出電極6,7と差動部8とを接続する配線を最短となるように配置する(以下、このことを「近接させるように配置する」という)。   However, since a predetermined distance is required between the detection electrodes 6 and 7 in terms of detection accuracy, the length of the wiring connecting the first detection electrode 6 and the second detection electrode 7 to the differential unit 8 is set to be long. The degree of freedom of design is higher when it is changed. Therefore, the wirings connecting the detection electrodes 6 and 7 and the differential unit 8 are arranged so as to be the shortest (hereinafter, this is referred to as “disposing so as to be close”).

例えば図2(a)(b)に示すように、基板14の下側に検出電極6,7を配置し、上側に差動部8を配置する場合では、検出電極6,7を結ぶ線上で、かつ第1検出電極6からの距離と第2検出電極7からの距離が等しい位置に差動部8を配置し、基板14を貫通するように配線15を接続することで配線15が最短となる。なお、図2(a)(b)に示した配置は配線15を最短にするための一例であり、この配置に限定されるものではない。 For example, as shown in FIGS. 2A and 2B, in the case where the detection electrodes 6 and 7 are arranged on the lower side of the substrate 14 and the differential portion 8 is arranged on the upper side, on the line connecting the detection electrodes 6 and 7. In addition, the differential portion 8 is arranged at a position where the distance from the first detection electrode 6 and the distance from the second detection electrode 7 are equal, and the wiring 15 is connected so as to penetrate through the substrate 14. Become. The arrangement shown in FIGS. 2A and 2B is an example for making the wiring 15 the shortest, and is not limited to this arrangement.

このように配置することによって、接地層4、検出電極6,7、差動部8、配線15で形成されるループ回路の面積が小さくなるため、このループ回路に侵入する電磁波によるノイズを低減することができる。 By arranging in this way, the area of the loop circuit formed by the ground layer 4, the detection electrodes 6, 7, the differential unit 8, and the wiring 15 is reduced, so that noise caused by electromagnetic waves entering the loop circuit is reduced. be able to.

また、差動部8と増幅部9間の配線についても短くすることで電磁波によるノイズを低減することができる。 Further, by shortening the wiring between the differential unit 8 and the amplification unit 9, noise due to electromagnetic waves can be reduced.

このように、検出電極6,7と差動部8間の配線及び、差動部8と増幅部9間の配線を短くすることによって、検出電極6,7から増幅部9までは固体絶縁機器1に近接することになる。   Thus, by shortening the wiring between the detection electrodes 6 and 7 and the differential unit 8 and the wiring between the differential unit 8 and the amplification unit 9, the detection electrodes 6 and 7 to the amplification unit 9 are solid-insulated. Will be close to 1.

一方、離れた場所で診断する場合には、増幅部9と検出処理部11間の距離が長くなってしまい、通常の被覆電線では、この増幅部9と検出処理部11間で電磁波の影響を受けやすくなってしまう。 On the other hand, when diagnosing at a remote location, the distance between the amplifying unit 9 and the detection processing unit 11 becomes long. With a normal coated wire, the influence of electromagnetic waves between the amplifying unit 9 and the detection processing unit 11 is reduced. It becomes easy to receive.

そこで、増幅部9と検出処理部11とを絶縁パイプ12内に収納された同軸ケーブル13で繋ぐことにより、電磁波による影響を大きく低減することができ、固体絶縁機器1から離れた場所からでも容易に部分放電の検出が可能となる。 Therefore, by connecting the amplifying unit 9 and the detection processing unit 11 with the coaxial cable 13 housed in the insulating pipe 12, the influence of electromagnetic waves can be greatly reduced, and it can be easily performed from a location away from the solid insulating device 1. In addition, partial discharge can be detected.

また、検出電極6,7を接触させる場所を変えて測定することで、部分放電の発生箇所を特定することができる。 Moreover, the location where the partial discharge occurs can be specified by changing the location where the detection electrodes 6 and 7 are brought into contact with each other.

具体的には、検出電極6,7の電位差が大きい場合には放電箇所が検出電極6,7から近く、電位差が小さい場合には放電箇所が検出電極6,7から遠いということがわかる。また、検出電極6,7の電位の大小により、どちらの検出電極側に放電箇所があるのかがわかる。 Specifically, it can be seen that when the potential difference between the detection electrodes 6 and 7 is large, the discharge location is close to the detection electrodes 6 and 7, and when the potential difference is small, the discharge location is far from the detection electrodes 6 and 7. Further, it can be seen from which detection electrode side the discharge portion is present, depending on the magnitude of the potential of the detection electrodes 6 and 7.

(第2の実施形態)
第2の実施形態について、図3を用いて説明する。なお、図1に示した第1の実施形態の絶縁診断装置の各部と同一部分は同一符号で示す。図3は第2の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(Second Embodiment)
A second embodiment will be described with reference to FIG. In addition, the same part as each part of the insulation diagnostic apparatus of 1st Embodiment shown in FIG. 1 is shown with the same code | symbol. FIG. 3 is a configuration diagram of an insulation diagnostic apparatus according to the second embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

この第2の実施形態が、第1の実施形態と異なる点は図3に示すように、伝送部16として光ファイバ17及び電気光変換部18,19を用いることにある。   The second embodiment differs from the first embodiment in that an optical fiber 17 and electro-optic converters 18 and 19 are used as the transmission unit 16 as shown in FIG.

具体的には、増幅部9から出力された信号は第1電気光変換部18で光信号に変換され、光ファイバ17によって伝送される。そして、第2電気光変換部19を介して検出処理部11で部分放電が検知される。 Specifically, the signal output from the amplification unit 9 is converted into an optical signal by the first electro-optical conversion unit 18 and transmitted through the optical fiber 17. The partial discharge is detected by the detection processing unit 11 via the second electro-optical conversion unit 19.

なお、検出電極6,7と差動部8、差動部8と増幅部9、増幅部9と第1電気光変換部18はそれぞれ配線で接続され、検出電極6,7と差動部8は近接させるように配置する。 The detection electrodes 6 and 7 and the differential unit 8, the differential unit 8 and the amplification unit 9, and the amplification unit 9 and the first electro-optical conversion unit 18 are connected by wiring, respectively, and the detection electrodes 6 and 7 and the differential unit 8 are connected. Are placed close to each other.

このように、光ファイバ17を用いて伝送することで同軸ケーブル13を用いた場合よりも、さらに電磁波の影響を低減することができ、耐ノイズ性に優れた高感度な部分放電検出が可能となる。   In this way, by using the optical fiber 17 for transmission, the influence of electromagnetic waves can be further reduced than when the coaxial cable 13 is used, and highly sensitive partial discharge detection with excellent noise resistance is possible. Become.

(第3の実施形態)
第3の実施形態について、図4を用いて説明する。なお、第1の実施形態及び第2の実施形態における絶縁診断装置の各部と同一部分は同一符号で示す。図4は第3の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(Third embodiment)
A third embodiment will be described with reference to FIG. In addition, the same part as each part of the insulation diagnostic apparatus in 1st Embodiment and 2nd Embodiment is shown with the same code | symbol. FIG. 4 is a configuration diagram of an insulation diagnostic apparatus according to the third embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

この第3の実施形態が、第1の実施形態及び第2の実施形態と異なる点は図4に示すように、伝送部20として送信機21及び受信機22を用いることにある。   The third embodiment differs from the first embodiment and the second embodiment in that a transmitter 21 and a receiver 22 are used as the transmission unit 20 as shown in FIG.

具体的には、増幅部9から出力された信号を送信機21によって無線送信し、受信機22によって受信する。そして、受信機22からの信号に基づいて検出処理部11が部分放電を検知する。 Specifically, the signal output from the amplifying unit 9 is wirelessly transmitted by the transmitter 21 and received by the receiver 22. Based on the signal from the receiver 22, the detection processing unit 11 detects partial discharge.

なお、検出電極6,7と差動部8、差動部8と増幅部9、増幅部9と送信機21はそれぞれ配線で接続され、検出電極6,7と差動部8は近接させるように配置する。 The detection electrodes 6, 7 and the differential unit 8, the differential unit 8 and the amplifying unit 9, the amplifying unit 9 and the transmitter 21 are connected by wiring, respectively, so that the detection electrodes 6, 7 and the differential unit 8 are close to each other. To place.

部分放電の周波数帯域は数百kHz〜数百MHzであるため、この領域を避けるような周波数帯の無線を用いることで、電磁波による影響を低減することができる。例えば、無線LANなどで使用される周波数帯域である2.4GHz帯などが挙げられる。 Since the frequency band of partial discharge is several hundred kHz to several hundred MHz, the influence of electromagnetic waves can be reduced by using radio waves in a frequency band that avoids this region. For example, a 2.4 GHz band that is a frequency band used in a wireless LAN or the like can be given.

(第4の実施形態)
第4の実施形態について、図5を用いて説明する。なお、第1の実施形態乃至第3の実施形態における絶縁診断装置の各部と同一部分は同一符号で示す。図5は第4の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. In addition, the same part as each part of the insulation diagnostic apparatus in 1st Embodiment thru | or 3rd Embodiment is shown with the same code | symbol. FIG. 5 is a configuration diagram of an insulation diagnostic apparatus according to the fourth embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

図5に示すように、この第4の実施形態では第2の実施形態の絶縁診断装置において、差動部8、増幅部9、第1電気光変換部18を金属容器23に収納している。このように構成することで電磁波によるノイズの影響を低減することができ、高感度な部分放電検出が可能となる。   As shown in FIG. 5, in the fourth embodiment, in the insulation diagnostic apparatus of the second embodiment, the differential unit 8, the amplification unit 9, and the first electro-optical conversion unit 18 are housed in a metal container 23. . With such a configuration, the influence of noise due to electromagnetic waves can be reduced, and highly sensitive partial discharge detection can be performed.

また、図5は、第2の実施形態の絶縁診断装置に適用した場合であるが、第1の実施形態及び第3の実施形態の絶縁診断装置にも適用可能であり、同様の効果を得ることができる。具体的に、第1の実施形態や第3の実施形態の絶縁診断装置に適用する場合には、差動部8及び増幅部9を金属容器23に収納することになる。   FIG. 5 shows a case where the present invention is applied to the insulation diagnostic apparatus of the second embodiment, but it can also be applied to the insulation diagnosis apparatuses of the first embodiment and the third embodiment, and the same effect is obtained. be able to. Specifically, when applied to the insulation diagnostic apparatus of the first embodiment or the third embodiment, the differential unit 8 and the amplification unit 9 are housed in the metal container 23.

(第5の実施形態)
第5の実施形態について、図6を用いて説明する。なお、第1の実施形態乃至第4の実施形態における絶縁診断装置の各部と同一部分は同一符号で示す。図6は第5の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. In addition, the same part as each part of the insulation diagnostic apparatus in 1st Embodiment thru | or 4th Embodiment is shown with the same code | symbol. FIG. 6 is a configuration diagram of an insulation diagnostic apparatus according to the fifth embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

第1の実施形態乃至第4の実施形態では、2つの検出電極6,7を設けているが、この第5の実施形態では、3つ以上の検出電極を設ける。図6では、第1検出電極6、第2検出電極7に加えて、第3検出電極24を設け、検出電極を3つにした場合の例を示している。   In the first to fourth embodiments, the two detection electrodes 6 and 7 are provided, but in the fifth embodiment, three or more detection electrodes are provided. FIG. 6 shows an example in which the third detection electrode 24 is provided in addition to the first detection electrode 6 and the second detection electrode 7 and the number of detection electrodes is three.

接地層4の表面に第1検出電極6、第2検出電極7、第3検出電極24を接触させ、表面電位を検出する。そして、検出電極6,7,24によって検出された電位は差動部8にそれぞれ入力される。差動部8では、第1検出電極6と第2検出電極7との電位差、第1検出電極6と第3検出電極24との電位差、第2検出電極7と第3検出電極24との電位差が算出される。出力された信号は増幅部9で増幅された後、絶縁パイプ12内に収納された同軸ケーブル13で伝送される。そして、伝送された信号に基づいて検出処理部11で部分放電が検知される。このように、検出電極を3つ以上設ける場合は、選択された2つの検出電極の組み合せによって電位差が算出される。   The first detection electrode 6, the second detection electrode 7, and the third detection electrode 24 are brought into contact with the surface of the ground layer 4 to detect the surface potential. The potentials detected by the detection electrodes 6, 7, 24 are input to the differential unit 8, respectively. In the differential unit 8, the potential difference between the first detection electrode 6 and the second detection electrode 7, the potential difference between the first detection electrode 6 and the third detection electrode 24, and the potential difference between the second detection electrode 7 and the third detection electrode 24. Is calculated. The output signal is amplified by the amplifying unit 9 and then transmitted through the coaxial cable 13 accommodated in the insulating pipe 12. Then, the partial discharge is detected by the detection processing unit 11 based on the transmitted signal. Thus, when three or more detection electrodes are provided, the potential difference is calculated by the combination of the two selected detection electrodes.

なお、検出電極6,7,24と差動部8、差動部8と増幅部9はそれぞれ配線で接続され、検出電極6,7,24と差動部8は近接させるように配置する。 The detection electrodes 6, 7, and 24 are connected to the differential unit 8, the differential unit 8 and the amplification unit 9 are connected by wiring, and the detection electrodes 6, 7, and 24 and the differential unit 8 are arranged close to each other.

例えば図7(a)(b)に示すように、基板14の下側に検出電極6,7,24を等間隔で一直線上に配置し、上側に差動部8を配置する場合では、中央の第3検出電極24の真上に差動部8を配置し、基板14を貫通するように配線15を繋ぐことで配線15が最短となる。 For example, as shown in FIGS. 7A and 7B, when the detection electrodes 6, 7, and 24 are arranged on the straight line at equal intervals on the lower side of the substrate 14 and the differential unit 8 is arranged on the upper side, By arranging the differential portion 8 directly above the third detection electrode 24 and connecting the wiring 15 so as to penetrate the substrate 14, the wiring 15 becomes the shortest.

また、検出電極を複数配置する場合では、一直線上に限られず、多角形を形成するように配置することも可能である。図8(a)(b)に示すように、検出電極6,7,24が三角形を形成するように配置した場合では、三角形の重心の真上に差動部8を配置し、基板14を貫通するように配線15を繋ぐことで配線15が最短となる。   Further, when a plurality of detection electrodes are arranged, the detection electrodes are not limited to a straight line, and can be arranged so as to form a polygon. As shown in FIGS. 8 (a) and 8 (b), when the detection electrodes 6, 7, and 24 are arranged so as to form a triangle, the differential portion 8 is arranged immediately above the center of gravity of the triangle, and the substrate 14 is mounted. By connecting the wiring 15 so as to penetrate, the wiring 15 becomes the shortest.

なお、図7及び図8に示した配置は配線15を最短にするための一例であり、これらの配置に限定されるものではない。 The arrangement shown in FIGS. 7 and 8 is an example for shortening the wiring 15 and is not limited to these arrangements.

部分放電箇所から近い検出電極間で得られる電位差ほど、その値は大きくなるため、検出電極の数を2つにした場合よりも部分放電箇所の特定が容易であり、複数の部分放電が同時に発生している場合でも位置が特定しやすくなる。 Since the potential difference between the detection electrodes close to the partial discharge location becomes larger, the value becomes larger, so it is easier to identify the partial discharge location than when two detection electrodes are used, and multiple partial discharges occur simultaneously. This makes it easier to identify the position.

例えば、図6に示す配置において、第1検出電極6の電位>第3検出電極24の電位>第2検出電極7の電位である場合には、部分放電箇所は第1検出電極6の側にあると推定できる。また、第1検出電極6の電位=第3検出電極24の電位>第2検出電極7の電位である場合には、部分放電箇所は第1検出電極6と第3検出電極24の近傍にあると推定できる。これらの推定に関しては、予め実験等によりデータを求めておき、検出処理部11にデータベースとして格納しておくことが望ましい。   For example, in the arrangement shown in FIG. 6, when the potential of the first detection electrode 6> the potential of the third detection electrode 24> the potential of the second detection electrode 7, the partial discharge location is on the first detection electrode 6 side. It can be estimated that there is. When the potential of the first detection electrode 6 = the potential of the third detection electrode 24> the potential of the second detection electrode 7, the partial discharge location is in the vicinity of the first detection electrode 6 and the third detection electrode 24. Can be estimated. Regarding these estimations, it is desirable to obtain data in advance through experiments or the like and store the data in the detection processing unit 11 as a database.

図6は、第1の実施形態の絶縁診断装置に適用した場合を示しているが、第2の実施形態乃至第4の実施形態にも適用可能であり、同様の効果を得ることができる。 FIG. 6 shows a case where the present invention is applied to the insulation diagnostic apparatus of the first embodiment, but it can also be applied to the second to fourth embodiments, and the same effect can be obtained.

(第6の実施形態)
第6の実施形態について、図9を用いて説明する。なお、第1の実施形態乃至第5の実施形態における絶縁診断装置の各部と同一部分は同一符号で示す。図9は第6の実施形態の絶縁診断装置の構成図及びこれを適用した固体絶縁機器の模式図である。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. In addition, the same part as each part of the insulation diagnostic apparatus in 1st Embodiment thru | or 5th Embodiment is shown with the same code | symbol. FIG. 9 is a configuration diagram of an insulation diagnosis apparatus according to the sixth embodiment and a schematic diagram of a solid insulation apparatus to which the insulation diagnosis apparatus is applied.

この第6の実施形態では、第1検出電極6、第2検出電極7、差動部8、増幅部9、伝送部10,16,20で構成される部分(以下、検出回路と呼ぶ)を複数設け、1つの検出処理部11で部分放電を検知する構成である。   In the sixth embodiment, a portion (hereinafter referred to as a detection circuit) constituted by the first detection electrode 6, the second detection electrode 7, the differential unit 8, the amplification unit 9, and the transmission units 10, 16, and 20 is used. A plurality of components are provided, and one detection processing unit 11 detects partial discharge.

このような構成にすることによって、検出回路が1つの場合よりも部分放電箇所の特定が容易であり、第5の実施形態と同様に複数の部分放電が同時に発生している場合でも位置が特定しやすくなる。   By adopting such a configuration, it is easier to specify the partial discharge location than in the case of one detection circuit, and the position can be specified even when a plurality of partial discharges are generated at the same time as in the fifth embodiment. It becomes easy to do.

図9では、第1の実施形態の絶縁診断装置に適用した場合を示しているが、第2の実施形態乃至第4の実施形態にも適用可能であり、同様の効果を得ることができる。   Although FIG. 9 shows a case where the present invention is applied to the insulation diagnostic apparatus of the first embodiment, the present invention can also be applied to the second to fourth embodiments, and similar effects can be obtained.

なお、第4の実施形態の絶縁診断装置に適用する場合には、上述したものに加えて金属容器23も検出回路に含まれる。   In addition, when applying to the insulation diagnostic apparatus of 4th Embodiment, in addition to what was mentioned above, the metal container 23 is also contained in a detection circuit.

また、第5の実施形態の絶縁診断装置と第6の実施形態の絶縁診断装置は組み合せることが可能であり、第6の実施形態の絶縁診断装置において、1つの検出回路に3つ以上の検出電極を設けてもよい。   In addition, the insulation diagnosis device of the fifth embodiment and the insulation diagnosis device of the sixth embodiment can be combined, and in the insulation diagnosis device of the sixth embodiment, three or more in one detection circuit A detection electrode may be provided.

以上説明した少なくとも一つの実施形態によれば、電磁波によるノイズの影響を低減し、固体絶縁機器から発生する部分放電を感度良く検出することのできる絶縁診断装置を提供することができる。 According to at least one embodiment described above, it is possible to provide an insulation diagnosis apparatus that can reduce the influence of noise due to electromagnetic waves and can detect a partial discharge generated from a solid insulation device with high sensitivity.

上記の実施形態においては、差動部8、増幅部9、第1電気光変換部18を別々の回路で構成し、それらを結ぶ構成としているが、前記の各部を一つの回路(モジュール)として構成しても良い。   In the above embodiment, the differential unit 8, the amplification unit 9, and the first electro-optic conversion unit 18 are configured by separate circuits and connected to each other. However, each of the above units is configured as one circuit (module). It may be configured.

本発明のいくつかの実施形態について説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and gist of the invention.

1…固体絶縁機器
2…高圧導体
3…絶縁層
4…接地層
5…絶縁診断装置
6…第1検出電極
7…第2検出電極
8…差動部
9…増幅部
10,16,20…伝送部
11…検出処理部
12…絶縁パイプ
13…同軸ケーブル
14…基板
15…配線
17…光ファイバ
18…第1電気光変換部
19…第2電気光変換部
21…送信機
22…受信機
23…金属容器
24…第3検出電極
DESCRIPTION OF SYMBOLS 1 ... Solid insulation apparatus 2 ... High voltage conductor 3 ... Insulating layer 4 ... Grounding layer 5 ... Insulation diagnostic device 6 ... 1st detection electrode 7 ... 2nd detection electrode 8 ... Differential part 9 ... Amplifying part 10,16,20 ... Transmission Section 11 ... Detection processing section 12 ... Insulating pipe 13 ... Coaxial cable 14 ... Substrate 15 ... Wiring 17 ... Optical fiber 18 ... First electric light conversion section 19 ... Second electric light conversion section 21 ... Transmitter 22 ... Receiver 23 ... Metal container 24 ... third detection electrode

Claims (6)

外周に接地層が設けられた固体絶縁機器の部分放電を検出する絶縁診断装置において、
前記接地層の表面に接触し、表面電位を検出する複数の検出電極と、
前記検出電極と近接させるように配置され、前記検出電極から検出された表面電位の電位差を算出する差動部と、
前記差動部から出力される信号を伝送する伝送部と、
前記伝送部によって伝送された信号に基づいて部分放電を検知する検出処理部と
を有する絶縁診断装置。
In an insulation diagnostic device that detects partial discharge of a solid insulation device provided with a ground layer on the outer periphery,
A plurality of detection electrodes that contact the surface of the ground layer and detect a surface potential;
A differential unit arranged so as to be close to the detection electrode and calculating a potential difference of the surface potential detected from the detection electrode;
A transmission unit for transmitting a signal output from the differential unit;
An insulation diagnostic apparatus comprising: a detection processing unit that detects partial discharge based on a signal transmitted by the transmission unit.
前記伝送部は、絶縁パイプに収納された同軸ケーブルである請求項1に記載の絶縁診断装置。   The insulation diagnostic apparatus according to claim 1, wherein the transmission unit is a coaxial cable housed in an insulation pipe. 前記伝送部は、
前記差動部から出力される信号を光信号に変換する第1電気光変換部と、
一方の端部が前記第1電気光変換部に接続され、この第1電気光変換部からの信号を伝送する光ファイバと、
前記光ファイバのもう一方の端部と接続された第2電気光変換部と
を有する請求項1に記載の絶縁診断装置。
The transmission unit is
A first electro-optical conversion unit that converts a signal output from the differential unit into an optical signal;
An optical fiber having one end connected to the first electro-optic converter and transmitting a signal from the first electro-optic converter;
The insulation diagnostic apparatus according to claim 1, further comprising a second electro-optical conversion unit connected to the other end of the optical fiber.
前記伝送部は、
前記差動部から出力される信号を無線送信する送信機と、
前記送信機からの信号を受信する受信機と、
を有する請求項1に記載の絶縁診断装置。
The transmission unit is
A transmitter for wirelessly transmitting a signal output from the differential unit;
A receiver for receiving a signal from the transmitter;
The insulation diagnostic apparatus according to claim 1, comprising:
前記検出電極、前記差動部、前記伝送部を有する検出回路を複数有する請求項1乃至請求項4のいずれか1項に記載の絶縁診断装置。 The insulation diagnostic apparatus according to claim 1, further comprising a plurality of detection circuits including the detection electrode, the differential unit, and the transmission unit. 少なくとも前記差動部が金属容器に収納される請求項1乃至請求項5のいずれか1項に記載の絶縁診断装置。   The insulation diagnostic apparatus according to claim 1, wherein at least the differential unit is housed in a metal container.
JP2011259637A 2011-11-28 2011-11-28 Insulation diagnosis apparatus Pending JP2013113691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259637A JP2013113691A (en) 2011-11-28 2011-11-28 Insulation diagnosis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259637A JP2013113691A (en) 2011-11-28 2011-11-28 Insulation diagnosis apparatus

Publications (1)

Publication Number Publication Date
JP2013113691A true JP2013113691A (en) 2013-06-10

Family

ID=48709354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259637A Pending JP2013113691A (en) 2011-11-28 2011-11-28 Insulation diagnosis apparatus

Country Status (1)

Country Link
JP (1) JP2013113691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206772A (en) * 2014-04-23 2015-11-19 日新電機株式会社 Partial discharge measurement device and partial discharge measurement method
JP2019184322A (en) * 2018-04-04 2019-10-24 株式会社東芝 Partial discharge detector and partial discharge detection method
JP2021105622A (en) * 2019-09-13 2021-07-26 株式会社東芝 Partial discharge detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104584A (en) * 1978-02-03 1979-08-16 Hitachi Ltd Gas insulated electric device and method of inspecting partial discharge thereof
JPS6198340U (en) * 1984-11-30 1986-06-24
JPS61173175A (en) * 1985-01-28 1986-08-04 Fuji Electric Co Ltd Partial discharge monitor device for high-voltage apparatus
JPH0572255A (en) * 1991-09-18 1993-03-23 Furukawa Electric Co Ltd:The Measurement method of partial discharge for cable
JPH10170594A (en) * 1996-12-06 1998-06-26 Chubu Electric Power Co Inc Partial discharge detection device
JP2000346902A (en) * 1999-06-04 2000-12-15 Nissin Electric Co Ltd Antenna device for diagnosing insulation
JP2005338016A (en) * 2004-05-31 2005-12-08 Haneron:Kk Partial discharge detecting method in high-voltage power transmission distribution facility, and partial discharge detector used therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104584A (en) * 1978-02-03 1979-08-16 Hitachi Ltd Gas insulated electric device and method of inspecting partial discharge thereof
JPS6198340U (en) * 1984-11-30 1986-06-24
JPS61173175A (en) * 1985-01-28 1986-08-04 Fuji Electric Co Ltd Partial discharge monitor device for high-voltage apparatus
JPH0572255A (en) * 1991-09-18 1993-03-23 Furukawa Electric Co Ltd:The Measurement method of partial discharge for cable
JPH10170594A (en) * 1996-12-06 1998-06-26 Chubu Electric Power Co Inc Partial discharge detection device
JP2000346902A (en) * 1999-06-04 2000-12-15 Nissin Electric Co Ltd Antenna device for diagnosing insulation
JP2005338016A (en) * 2004-05-31 2005-12-08 Haneron:Kk Partial discharge detecting method in high-voltage power transmission distribution facility, and partial discharge detector used therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206772A (en) * 2014-04-23 2015-11-19 日新電機株式会社 Partial discharge measurement device and partial discharge measurement method
JP2019184322A (en) * 2018-04-04 2019-10-24 株式会社東芝 Partial discharge detector and partial discharge detection method
JP7068008B2 (en) 2018-04-04 2022-05-16 株式会社東芝 Partial discharge detection device and partial discharge detection method
JP2021105622A (en) * 2019-09-13 2021-07-26 株式会社東芝 Partial discharge detection method
JP7155327B2 (en) 2019-09-13 2022-10-18 株式会社東芝 Partial discharge detection method

Similar Documents

Publication Publication Date Title
US9678115B2 (en) Contactless voltage sensing devices
JP5616152B2 (en) High frequency detection device and coaxial tube provided with the high frequency detection device
CN103261903A (en) Combined measuring and detection system
JP4949314B2 (en) Partial discharge measurement method
JP6058033B2 (en) How to check the connection status of antenna and cable
JP6851785B2 (en) Electromagnetic flow meter
US8659489B2 (en) Radio frequency printed circuit board
US20130033270A1 (en) Electromagnetic interference test sytem with self-checking function and self-checking method
KR20130060442A (en) Non-contact partial discharge measurement device
CN101292169B (en) Device for measuring the loss factor
JP2013113691A (en) Insulation diagnosis apparatus
JP5746527B2 (en) Partial discharge detection device and partial discharge detection method
KR102339496B1 (en) Apparatus for measuring electrical characteristics
JP2007278781A (en) Semiconductor evaluation device
JP2012220208A (en) Partial discharge detection device and partial discharge detection method
JP6207462B2 (en) Partial discharge sensor
CN105301466A (en) Sensor for realizing comprehensive partial discharge detection of transformer
US12322580B2 (en) Electromagnetic field signal acquisition system for high signal-to-noise ratios, and electrical noise immunity
KR101445083B1 (en) Partial Discharge Detection for Setting Inside of Electric Power Devide Box
JP2012220209A (en) Partial discharge detection device and partial discharge detection method
JP2017227552A (en) Insulation voltage probe
JP6364584B2 (en) Atmospheric electric field detector
JP2015206772A (en) Partial discharge measurement device and partial discharge measurement method
JP2015059838A (en) Wiring current detection structure
EP3534163B1 (en) Probe with broadband antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160108