JP2013109228A - Optical member - Google Patents
Optical member Download PDFInfo
- Publication number
- JP2013109228A JP2013109228A JP2011255313A JP2011255313A JP2013109228A JP 2013109228 A JP2013109228 A JP 2013109228A JP 2011255313 A JP2011255313 A JP 2011255313A JP 2011255313 A JP2011255313 A JP 2011255313A JP 2013109228 A JP2013109228 A JP 2013109228A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- optical member
- fine structure
- layer
- columnar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 239000000463 material Substances 0.000 claims description 37
- 230000001788 irregular Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 abstract description 93
- 239000000758 substrate Substances 0.000 abstract description 39
- 230000000694 effects Effects 0.000 abstract description 12
- 239000002356 single layer Substances 0.000 abstract description 8
- 230000014509 gene expression Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 35
- 238000001312 dry etching Methods 0.000 description 26
- 238000002834 transmittance Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 239000004417 polycarbonate Substances 0.000 description 7
- 229920000515 polycarbonate Polymers 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000003667 anti-reflective effect Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001127 nanoimprint lithography Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000135309 Processus Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
本発明は、高さの異なる複数の柱状突起からなる微細構造層を有する光学部材に関する。 The present invention relates to an optical member having a microstructure layer composed of a plurality of columnar protrusions having different heights.
液晶テレビ、スマートフォン、携帯電話、ノートPCや携帯ゲーム機などのディスプレイ装置において、外光や照明光などが反射して視認性が著しく低下するという問題がある。また、デジタルスチルカメラやデジタルビデオカメラなどの撮像素子において、フレアやゴーストなどのノイズが大きな問題となっている。 In a display device such as a liquid crystal television, a smartphone, a mobile phone, a notebook PC, or a portable game machine, there is a problem that external light, illumination light, or the like is reflected and visibility is significantly reduced. In addition, noise such as flare and ghost is a big problem in image pickup devices such as digital still cameras and digital video cameras.
このような問題に対して、単層あるいは複層の反射防止膜の付いた光学部材が提案されている(特許文献1から4参照)。 In order to solve such a problem, an optical member with a single-layer or multi-layer antireflection film has been proposed (see Patent Documents 1 to 4).
特許文献1には、複数の光電変換素子とマイクロレンズとを備えた撮像素子において、マイクロレンズ上に形成された複数の柱状樹脂と柱状樹脂間に形成されたボイド(空隙)とを有するポーラス層が反射防止効果を有することが開示されている。ポーラス層は屈折率が下がり反射防止膜としての機能を有し、カバーガラス内面と撮像素子のマイクロレンズ表面との間での再反射光や散乱光を軽減してノイズが低減される。 Patent Document 1 discloses a porous layer having a plurality of columnar resins formed on a microlens and voids (voids) formed between the columnar resins in an imaging device including a plurality of photoelectric conversion elements and microlenses. Have an antireflection effect. The porous layer has a function as an antireflection film with a reduced refractive index, and reduces noise by reducing re-reflected light and scattered light between the inner surface of the cover glass and the microlens surface of the imaging device.
特許文献2には、反射防止膜として、基材上に設けられた空隙を有する微粒子積層薄膜が開示されている。屈折率が約1.52のガラスやプラスチック基板に対して、単層で十分な反射防止効果が得られる屈折率である1.25〜1.30の薄膜を形成するためには、屈折率が1.48のシリカ微粒子からなる微粒子積層薄膜の空隙率を43〜53%にする必要がある。空隙率ρ0は次式(2)より求められる。
ρ0=1−(n1 2−n0 2)/(n2 2−n0 2) ・・・(2)
ただし、n0は光入射媒体の屈折率、n1は前記微細構造体の屈折率、n2は基材の屈折率である。
Patent Document 2 discloses a fine particle laminated thin film having voids provided on a substrate as an antireflection film. In order to form a thin film with a refractive index of 1.25 to 1.30, which can provide a sufficient antireflection effect with a single layer, on a glass or plastic substrate with a refractive index of about 1.52, the refractive index is It is necessary to make the porosity of the fine particle laminated thin film made of 1.48 silica fine particles 43 to 53%. The porosity ρ 0 is obtained from the following equation (2).
ρ 0 = 1− (n 1 2 −n 0 2 ) / (n 2 2 −n 0 2 ) (2)
However, n 0 is the refractive index of the light incident medium, n 1 is the refractive index of the fine structure, and n 2 is the refractive index of the substrate.
特許文献3には、柱状微小突起群を反射防止膜として適用した例が開示されている。例えばガラス基板の屈折率が1.5、基材に入射する光の波長が1550nmの場合、理想的な反射防止層の屈折率は1.22、厚さは約320nmである。突起群で構成される層内の空気領域を広げることで、ガラス基板の反射防止層に従来用いられているMgF2の連続膜では困難な屈折率1.3以下の低屈折率層を実現できる。 Patent Document 3 discloses an example in which a columnar microprojection group is applied as an antireflection film. For example, when the refractive index of the glass substrate is 1.5 and the wavelength of light incident on the substrate is 1550 nm, the ideal antireflective layer has a refractive index of 1.22 and a thickness of about 320 nm. By expanding the air region in the layer composed of the projection group, it is possible to realize a low refractive index layer having a refractive index of 1.3 or less, which is difficult with the conventional continuous film of MgF 2 used for the antireflection layer of the glass substrate. .
特許文献4には、大気圧下において低コストで作製が可能で量産性に優れ、広い波長範囲をカバーする反射防止体が開示されている。基材側から順に設けられた中間層と低屈折率層とを備える反射防止体において、低屈折率層と中間層の屈折率を、基材の表面に選択的に凹部を形成して得られた凹凸構造によって等価的に規定している。例えば光入射媒体として屈折率が1.0である空気、基材として屈折率が1.5である樹脂材を用い、低屈折率層の屈折率を1.2、中間層の屈折率を1.4に設定する。この場合、低屈折率層における基材の体積密度、すなわち凸部の占有率は約0.35、同様に中間層は約0.77になる。したがって、凹部の体積密度、空隙率は低屈折率層において約0.65、中間層において約0.23となる。
Patent Document 4 discloses an antireflective body that can be manufactured at low cost under atmospheric pressure, has excellent mass productivity, and covers a wide wavelength range. In an antireflective body comprising an intermediate layer and a low refractive index layer provided in this order from the substrate side, the refractive index of the low refractive index layer and the intermediate layer can be obtained by selectively forming recesses on the surface of the substrate. It is equivalently defined by the uneven structure. For example, air having a refractive index of 1.0 is used as the light incident medium, a resin material having a refractive index of 1.5 is used as the base material, the refractive index of the low refractive index layer is 1.2, and the refractive index of the intermediate layer is 1. Set to .4. In this case, the volume density of the base material in the low refractive index layer, that is, the occupation ratio of the convex portion is about 0.35, and the intermediate layer is about 0.77. Therefore, the volume density and porosity of the recesses are about 0.65 in the low refractive index layer and about 0.23 in the intermediate layer.
しかしながら、上記従来の技術においては、次のような不具合があった。 However, the conventional technology has the following problems.
特許文献1によれば、マイクロレンズ上の透明樹脂層表面を酸素プラズマ雰囲気でドライエッチングすることにより、柱状樹脂が並んだ光学的なボイド(空隙)を有するポーラス層を形成している。ボイドは柱状樹脂間のピッチVpで表され、可視光域のおよそλ/4となるようにVp=0.1〜0.2μmになっている。また、ポーラス層の厚みVtも可視光領域の光波長のλ/4(0.1〜0.2μm)になるように設定されている(特許文献1の図4)。ポーラス層ではボイドが存在することで樹脂層の屈折率が下がり反射防止膜としての機能を有する。マイクロレンズの反射率は、ポーラス層を形成しないものと比較して1/4の低反射率を示している。しかし、特許文献1中には、ボイドの体積密度(空隙率)は開示されておらず、具体的な屈折率の開示もない。 According to Patent Document 1, the surface of the transparent resin layer on the microlens is dry-etched in an oxygen plasma atmosphere to form a porous layer having optical voids (voids) in which columnar resins are arranged. The void is represented by a pitch V p between the columnar resins, and V p = 0.1 to 0.2 μm so as to be approximately λ / 4 in the visible light region. Also, the thickness V t of the porous layer is set to be a lambda / 4 (0.1 to 0.2 [mu] m) of the optical wavelength in the visible light region (FIG. 4 of Patent Document 1). In the porous layer, the presence of voids reduces the refractive index of the resin layer and functions as an antireflection film. The reflectance of the microlens is a low reflectance of 1/4 compared with that in which the porous layer is not formed. However, Patent Document 1 does not disclose the volume density (void ratio) of voids, nor does it disclose a specific refractive index.
特許文献2によれば、屈折率が1.48のシリカ微粒子を積層した微粒子積層膜において、空隙率を43〜53%とした場合に屈折率が1.25〜1.30となっている。しかし、微粒子積層膜は、まず基材面に電解質ポリマーまたは微粒子分散液のいずれか一方を塗布する工程A、次に工程Aで用いなかった電解質ポリマーまたは微粒子分散液を塗布する工程B、場合によっては工程Aと工程Bを交互に1回以上行い、さらにアルコール性シリカゾル溶液を塗布する工程Cと少なくとも3工程以上を行って製造するため煩雑である。 According to Patent Document 2, in a fine particle laminated film in which silica fine particles having a refractive index of 1.48 are laminated, the refractive index is 1.25 to 1.30 when the porosity is 43 to 53%. However, in the fine particle laminated film, firstly, a process A in which either the electrolyte polymer or the fine particle dispersion is applied to the substrate surface, and then a process B in which the electrolyte polymer or the fine particle dispersion not used in the process A is applied. The process is complicated because the process A and the process B are alternately performed once or more, and further, the process C and the process of applying the alcoholic silica sol solution and at least three processes are performed.
特許文献3によれば、縦、横方向に整列され、高さの揃った柱状微小突起群を反射防止層に適用している。しかし、成形型を押圧して形成された高さの揃った柱状微小突起群が1層(特許文献3の図13)では、入射光の波長によって反射率が異なるという問題を生じる。また、成形型を使った形成方法は、半導体プロセスのようなフォトリソグラフィやドライエッチングを必要としないが、柱状微小突起群の突起高さに対する突起の相当直径の比(アスペクト比)が4以上の成形型の製造は困難であり、押圧に対する耐久性も問題となる。 According to Patent Document 3, a columnar microprojection group aligned in the vertical and horizontal directions and having the same height is applied to the antireflection layer. However, in the case of a single layered columnar microprojection group formed by pressing the mold (FIG. 13 of Patent Document 3), the reflectance varies depending on the wavelength of incident light. In addition, the forming method using the mold does not require photolithography or dry etching as in the semiconductor process, but the ratio of the equivalent diameter of the protrusion to the protrusion height of the columnar minute protrusion group (aspect ratio) is 4 or more. It is difficult to manufacture a mold, and durability against pressing becomes a problem.
特許文献4によれば、基材側から順に設けられた中間層と低屈折率層とを備えた反射防止体によって400〜750nmの広い波長範囲で0.25%以下の低い反射率を示している(特許文献4の図2)。しかし、低屈折率層と中間層の屈折率を、基材の表面に選択的に凹部を形成して得られた凹凸構造によって等価的に規定する場合、想定される屈折率は低屈折率層で1.2、中間層で1.4である。この場合、低屈折率層の基材の占有面積比率は約0.35となり、具体的な数値の開示はないが凸部の幅(特許文献4図9の符号26)は、反射を防止すべき光の最短波長λminよりも短いピッチx1よりもさらに狭い。このため、凹凸構造をUVナノインプリントまたはフォトリソグラフィとドライエッチングで形成する場合、UVナノインプリント用の型またはフォトリソグラフィ用のマスクの形成が困難であるという問題が生じる。 According to Patent Document 4, an antireflection body including an intermediate layer and a low refractive index layer provided in order from the base material side exhibits a low reflectance of 0.25% or less in a wide wavelength range of 400 to 750 nm. (FIG. 2 of Patent Document 4). However, when the refractive index of the low refractive index layer and the intermediate layer is equivalently defined by the concavo-convex structure obtained by selectively forming concave portions on the surface of the base material, the assumed refractive index is the low refractive index layer. Is 1.2, and the intermediate layer is 1.4. In this case, the occupied area ratio of the base material of the low refractive index layer is about 0.35, and there is no disclosure of specific numerical values, but the width of the convex portion (reference numeral 26 in FIG. 9) prevents reflection. It is narrower than the pitch x 1 shorter than the shortest wavelength λ min of the power . For this reason, when the concavo-convex structure is formed by UV nanoimprint or photolithography and dry etching, there is a problem that it is difficult to form a UV nanoimprint mold or a photolithography mask.
以上のように、従来の技術には、反射防止膜として高さの揃った柱状樹脂と空隙を有するポーラス層、または高さの揃った柱状微小突起群を適用した場合、単層では入射光の波長によって反射率が異なり、広い波長範囲において反射率のバラツキが大きいという課題がある。 As described above, in the conventional technique, when a columnar resin having a uniform height and a porous layer having voids or a group of columnar microprojections having a uniform height are applied as an antireflection film, a single layer does not transmit incident light. The reflectance varies depending on the wavelength, and there is a problem that the variation in reflectance is large in a wide wavelength range.
また、微粒子または基材の体積密度を低く、空隙率を高くすることで低くすることで反射防止膜の屈折率を低くすることができるが、製造が困難である。さらに、空隙率を高くし過ぎると、機械的強度が低下するとう課題がある。 Further, the refractive index of the antireflection film can be lowered by lowering the volume density of the fine particles or the substrate and lowering the porosity, but the production is difficult. Furthermore, if the porosity is too high, there is a problem that the mechanical strength decreases.
本発明者らの鋭意研究によって、前記目的は以下の手段によって達成される。 The above-mentioned object can be achieved by the following means by the inventors' extensive research.
少なくとも基材、および微細構造層を有する光学部材であって、前記微細構造層が高さの異なる複数の柱状突起から成る事を特徴とする光学部材。 An optical member having at least a base material and a fine structure layer, wherein the fine structure layer is composed of a plurality of columnar protrusions having different heights.
前記光学部材に入射する光の最短波長をλmin、最長波長をλmaxとしたとき、前記微細構造層の前記柱状突起の高さDが、式(1)を満たすことを特徴とする。
λmin/4≦D≦λmax/4 ・・・(1)
When the shortest wavelength of light incident on the optical member is λ min and the longest wavelength is λ max , the height D of the columnar protrusions of the microstructure layer satisfies the formula (1).
λ min / 4 ≦ D ≦ λ max / 4 (1)
前記柱状突起の間隔が不規則であることを特徴とする。 The interval between the columnar protrusions is irregular.
前記柱状突起は、高さ方向の断面形状において、柱状突起上部および柱状突起底部から柱状突起中央部に向かって円弧状に徐々に縮径していることを特徴とする。 The columnar protrusions are characterized by being gradually reduced in diameter in an arc shape from the top of the columnar protrusion and the bottom of the columnar protrusion toward the center of the columnar protrusion in the cross-sectional shape in the height direction.
少なくとも基材、および微細構造層を有し、前記微細構造層の空隙率をρ0、光入射媒体の屈折率をn0、前記微細構造層の屈折率をn1、前記基材の屈折率をn2としたとき、式(2)および式(3)を満たすことを特徴とする。
ρ0=1−(n1 2−n0 2)/(n2 2−n0 2) ・・・(2)
n1=a×√n2 (1.11≦a≦1.15) ・・・(3)
It has at least a base material and a fine structure layer, the porosity of the fine structure layer is ρ 0 , the refractive index of the light incident medium is n 0 , the refractive index of the fine structure layer is n 1 , and the refractive index of the base material When n is 2 , it is characterized by satisfying the expressions (2) and (3).
ρ 0 = 1− (n 1 2 −n 0 2 ) / (n 2 2 −n 0 2 ) (2)
n 1 = a × √n 2 (1.11 ≦ a ≦ 1.15) (3)
前記柱状突起は、高さ方向の断面形状において、柱状突起上部より柱状突起先端部に向かって円弧状に徐々に縮径していることを特徴とする。 The columnar protrusions are gradually reduced in diameter in an arc shape from the upper part of the columnar protrusion toward the tip of the columnar protrusion in the cross-sectional shape in the height direction.
本発明によれば、基材表面に形成した高さの異なる複数の柱状突起からなる微細構造層の屈折率は基材の屈折率よりも低くて反射防止の効果があり、単層でありながら基材に入射する光の広い波長範囲において反射率のバラツキを抑えることができる。 According to the present invention, the refractive index of the microstructure layer formed of a plurality of columnar protrusions having different heights formed on the surface of the base material is lower than the refractive index of the base material and has an antireflection effect, while being a single layer. Variation in reflectance can be suppressed in a wide wavelength range of light incident on the substrate.
前記微細構造層をなす柱状突起の間隔は不規則なので、回折による反射光の色むらを抑えることができる。 Since the intervals between the columnar protrusions forming the fine structure layer are irregular, uneven color of reflected light due to diffraction can be suppressed.
前記微細構造層は、空隙率を変えることで屈折率を変化させることができる。微細構造層の最適な屈折率は基材の屈折率により決定される。空隙率をρ0、基材上に存在する光入射媒体の屈折率をn0、微細構造層の屈折率をn1、基材の屈折率をn2とした場合、上記式(2)および式(3)が成り立つ。空隙率が高くなり過ぎると、柱状突起の体積密度が低くなって微細構造層の機械的強度が低下するという問題が発生する。したがって、(3)式において、係数aを1.11以上1.15以下にすることで空隙率が高くなり過ぎず、且つ、反射防止効果が得られる屈折率にすることができる。 The fine structure layer can change the refractive index by changing the porosity. The optimum refractive index of the microstructure layer is determined by the refractive index of the substrate. When the porosity is ρ 0 , the refractive index of the light incident medium existing on the substrate is n 0 , the refractive index of the fine structure layer is n 1 , and the refractive index of the substrate is n 2 , the above formula (2) and Equation (3) holds. If the porosity is too high, the volume density of the columnar protrusions is lowered, which causes a problem that the mechanical strength of the microstructure layer is lowered. Therefore, in the equation (3), by setting the coefficient a to 1.11 or more and 1.15 or less, the porosity can be made to be a refractive index that does not become too high and an antireflection effect can be obtained.
本発明の微細構造層は、基材をドライエッチングすることで形成可能なので、煩雑な工程の繰り返しや、成形型による押圧あるいはUVナノインプリント、またはフォトリソグラフィとドライエッチングにより形成する従来の技術と比較して、製造方法が容易で、安価な光学部材を提供することができる。 Since the microstructure layer of the present invention can be formed by dry etching of the substrate, it is compared with conventional techniques formed by repeating complicated processes, pressing by a mold or UV nanoimprint, or photolithography and dry etching. Thus, it is possible to provide an inexpensive optical member that is easy to manufacture.
以下、本発明の実施の形態について具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.
本実施形態の光学部材1は、図1に示すように、基材2と、基材2上に形成された微細構造層3を有する。微細構造層3は高さの異なる複数の柱状突起4からなり、柱状突起4の間に空隙5を有する。微細構造層の屈折率n1は、基材の屈折率n2よりも低くなっており、基材に入射する光に対して反射防止効果を有する。 As shown in FIG. 1, the optical member 1 of the present embodiment includes a base material 2 and a microstructure layer 3 formed on the base material 2. The microstructure layer 3 is composed of a plurality of columnar protrusions 4 having different heights, and there are gaps 5 between the columnar protrusions 4. The refractive index n 1 of the microstructure layer is lower than the refractive index n 2 of the base material, and has an antireflection effect for light incident on the base material.
前記柱状突起4の形状について、図2を用いて説明する。柱状突起4は、図2(a)に示すように、上部より先端に向かって円弧状に徐々に縮径している。先端部の角は頂面と側面の二方向からエッチングが進行するため、角が丸くなって円弧状になる。また、図2(b)に示すように、柱状突起4は、上部および底部から中央部に向かって円弧状に徐々に縮径した形状とすることもできる。 The shape of the columnar protrusion 4 will be described with reference to FIG. As shown in FIG. 2A, the columnar protrusion 4 is gradually reduced in diameter in an arc shape from the top toward the tip. Etching progresses from the two directions of the top surface and the side surface of the corner of the tip portion, so that the corner becomes round and becomes an arc shape. Moreover, as shown in FIG.2 (b), the columnar processus | protrusion 4 can also be made into the shape which reduced diameter gradually in circular arc shape toward the center part from the upper part and the bottom part.
単層で高い反射防止効果(無反射)が得られる反射防止膜の屈折率narは、基材の屈折率をnsub、光入射媒体(空気)の屈折率nair=1.00としたとき、式(4)から求められる。また、最適な膜厚Darは基材に入射する光の波長をλとしたとき、式(5)から求められる。式(5)のように、反射防止膜の膜厚を光の波長λの1/4倍にすると、膜の表面の反射光と膜/基材境界面の反射光の位相が反転して反射が抑えられる。図4のグラフは、基材(ポリカーボネート)の屈折率nsub=1.59における反射防止膜の屈折率と反射率の関係を示す。図2の横軸は反射防止膜の屈折率nar、縦軸は反射率である。図2からわかるように、基材の屈折率より反射防止膜の屈折率が低い場合に反射防止の効果が得られる。反射率が理論上0%となるのは、式(4)からnar=1.26となる。ただし、このような低屈折率材料は通常は存在せず、特許文献1から4のような反射防止膜あるいは反射防止構造体に関する検討がなされている。図5のグラフは、基材の屈折率nsub=1.59、反射防止膜の屈折率nar=1.26における入射光の波長λと最適な膜厚Darの関係を示す。図5の横軸は入射光の波長λ、縦軸は最適膜厚Darである。図5からわかるように、光の波長によって最適な膜厚が変化する。
nar=√(nair×nsub)=√nsub ・・・(4)
Dar=λ/(4×nar) ・・・(5)
The refractive index nar of the antireflection film that provides a high antireflection effect (non-reflection) with a single layer is such that the refractive index of the substrate is n sub and the refractive index n air of the light incident medium (air) is 1.00. Is obtained from the equation (4). Further, the optimum film thickness Dar is obtained from Equation (5), where λ is the wavelength of light incident on the substrate. As shown in equation (5), when the film thickness of the antireflection film is set to ¼ times the wavelength λ of the light, the phase of the reflected light on the film surface and the reflected light on the film / substrate interface is reversed and reflected. Is suppressed. The graph of FIG. 4 shows the relationship between the refractive index and the reflectance of the antireflection film at the refractive index n sub = 1.59 of the substrate (polycarbonate). In FIG. 2, the horizontal axis represents the refractive index n ar of the antireflection film, and the vertical axis represents the reflectance. As can be seen from FIG. 2, the antireflection effect is obtained when the refractive index of the antireflection film is lower than the refractive index of the substrate. The reason why the reflectance is theoretically 0% is n ar = 1.26 from the equation (4). However, such a low refractive index material does not normally exist, and studies on an antireflection film or an antireflection structure as in Patent Documents 1 to 4 have been made. The graph of FIG. 5 shows the relationship between the wavelength λ of the incident light and the optimum film thickness D ar at the refractive index n sub = 1.59 of the substrate and the refractive index n ar = 1.26 of the antireflection film. The horizontal axis in FIG. 5 is the wavelength λ of the incident light, and the vertical axis is the optimum film thickness Dar . As can be seen from FIG. 5, the optimum film thickness varies depending on the wavelength of light.
n ar = √ (n air × n sub ) = √n sub (4)
D ar = λ / (4 × n ar ) (5)
高さの異なる複数の柱状突起は、フォトリソグラフィやUVナノインプリントによりマスク層を形成せずに、基材を直接ドライエッチングすることで形成する。「高さの異なる」とは、図6のように、微細構造層を走査電子顕微鏡(SEM)で観察した際に、例えば柱状突起の最大高さが200nm、最小高さが50nmで、最大と最小の高さの範囲内で各柱状突起の高さが不規則になっている様子を表す。このように、高さの異なる複数の柱状突起からなる微細構造層は、入射光の波長範囲(例えば、400nmから700nm)の1/4に対応する高さ範囲の柱状突起を備えている。また、ドライエッチングすることで形成された柱状突起同士の間隔(ピッチ)も不規則になっている。ピッチはおよそ100nm以下になっていて、少なくとも入射光(例えば、400nmから700nm)の波長範囲より十分に小さい。柱状突起の高さや太さは、ドライエッチング条件によって変更することが可能である。微細構造層の空隙率もドライエッチング条件によって変化させる。 The plurality of columnar protrusions having different heights are formed by directly dry-etching the substrate without forming a mask layer by photolithography or UV nanoimprint. “Different height” means that when the microstructure layer is observed with a scanning electron microscope (SEM) as shown in FIG. 6, for example, the maximum height of the columnar protrusions is 200 nm, the minimum height is 50 nm, and the maximum The state where the height of each columnar protrusion is irregular within the minimum height range is shown. As described above, the fine structure layer including a plurality of columnar protrusions having different heights includes columnar protrusions having a height range corresponding to ¼ of the wavelength range of incident light (for example, 400 nm to 700 nm). Further, the intervals (pitch) between the columnar protrusions formed by dry etching are also irregular. The pitch is about 100 nm or less, and is sufficiently smaller than at least the wavelength range of incident light (for example, 400 nm to 700 nm). The height and thickness of the columnar protrusions can be changed depending on the dry etching conditions. The porosity of the microstructure layer is also changed depending on the dry etching conditions.
なお、柱状突起の高さDとは、図3に示すように、柱状突起4の凸部周辺の凹部底面と凸部頂点とがなす、基材表面に対して鉛直方向の間隔(符号6の矢印)と定義する。凹部底面が平坦でなく円弧状になっている場合、もっとも間隔が広くなる点で規定する。このように定義することで、凹部底面が面一でない場合および凸部頂点が面一でない場合でも柱状突起の高さを規定することができる。また、ある凸部周辺の凹部底面が面一でない場合には、断面を見た際に凹部底面2面間の高さ方向の中間位置Mと頂面の間隔を高さと定義する。 As shown in FIG. 3, the height D of the columnar protrusion is defined as a vertical interval (reference numeral 6) between the bottom surface of the concave portion around the convex portion of the columnar protrusion 4 and the vertex of the convex portion. Arrow). When the bottom surface of the concave portion is not flat but arcuate, it is defined by the point where the distance is widest. By defining in this way, the height of the columnar protrusion can be defined even when the bottom surface of the recess is not flush and the vertex of the projection is not flush. When the bottom surface of the concave portion around a certain convex portion is not flush with each other, when the cross section is viewed, the intermediate position M in the height direction between the two bottom surface of the concave portion and the top surface is defined as the height.
ドライエッチングに用いる装置は、半導体装置の製造に使用されるドライエッチングが適宜利用可能である。反応性イオンエッチングやイオンビームエッチング装置の他に、スパッタ装置の逆スパッタ機能などを利用できる。また、ドライエッチングに用いる装置のプラズマ発生機構は、平行平板型、ECR型やICP型などを適宜利用すればよい。ドライエッチングに用いるガスは、アルゴン、窒素、酸素あるいはフッ素系ガス、またはそれらのガスの混合ガスである。 As an apparatus used for dry etching, dry etching used for manufacturing a semiconductor device can be used as appropriate. In addition to the reactive ion etching and ion beam etching apparatuses, the reverse sputtering function of the sputtering apparatus can be used. As a plasma generation mechanism of an apparatus used for dry etching, a parallel plate type, an ECR type, an ICP type, or the like may be used as appropriate. A gas used for dry etching is argon, nitrogen, oxygen, a fluorine-based gas, or a mixed gas of these gases.
微細構造層は、基材を直接ドライエッチングして形成するので、基材と同種の材料からなる。また、基材をドライエッチングする際、基材を保持するホルダ、ホルダを載置するステージや、装置チャンバー内の防着板が基材と一緒に削られ、その極一部が微細構造層に付着することがある。微細構造層をX線光電子分光法(XPS、ESCA)にて分析を行うと、例えばホルダの成分であるアルミ、ステージを構成する鉄やクロムなどが検出され、微細構造層に含まれていると考えられる。さらに、フッ素系ガスをドライエッチングに用いた場合にはフッ素が検出され、微細構造層に含まれていると考えられる。その他のガスも微細構造層に含まれている可能性があるが、ESCAでは検出されないか、検出されたとしても基材由来のものと分離が難しい。これらの成分は、基材よりもエッチングレートが遅く、基材がエッチングされる際にマスクとして機能している。また、エッチング初期に形成される凸部の側壁の保護膜として機能し、凸部以外の凹部のエッチングが進むことで柱状突起が高さ(深さ)方向に成長する。 Since the fine structure layer is formed by directly dry-etching the base material, it is made of the same kind of material as the base material. In addition, when dry etching the substrate, the holder for holding the substrate, the stage on which the holder is placed, and the deposition plate in the apparatus chamber are scraped together with the substrate, and a very small part of it becomes a fine structure layer. May adhere. When the microstructure layer is analyzed by X-ray photoelectron spectroscopy (XPS, ESCA), for example, aluminum as a component of the holder, iron or chromium constituting the stage is detected, and is included in the microstructure layer Conceivable. Furthermore, when a fluorine-based gas is used for dry etching, it is considered that fluorine is detected and contained in the fine structure layer. Other gases may also be contained in the fine structure layer, but are not detected by ESCA or are difficult to separate from those derived from the substrate even if detected. These components have a slower etching rate than the base material, and function as a mask when the base material is etched. Moreover, it functions as a protective film for the side wall of the convex portion formed at the initial stage of etching, and the columnar protrusion grows in the height (depth) direction by the etching of the concave portion other than the convex portion.
微細構造層の空隙率は、柱状突起の無い凹部の面積比率から算出した。図7は微細構造層の上面の模式図であり、黒い部分が凹部を表す。黒い部分の面積を、柱状突起を表す白い部分と黒い部分を足した面積(一画像の面積)で除して100を乗じて算出した値を空隙率(単位:%)としている。なお、微細構造層は高さの異なる柱状突起からなるため、高さ方向の位置によって空隙率が変化してしまうことが懸念される。しかし、例えば得られた空隙率ρ0=33.8%の微細構造層の屈折率n1は、式(2)から得られた値と、エリプソメータ(DHA−OLX、(株)溝尻光学工業所製、レーザー波長:632.8nm)で測定した値がほぼ一致しており(算出値:1.41、測定値:1.42)、高さ方向の位置の変化による影響は少ない。 The porosity of the microstructure layer was calculated from the area ratio of the recesses without columnar protrusions. FIG. 7 is a schematic view of the top surface of the microstructure layer, and the black portions represent the recesses. The value calculated by dividing the area of the black part by the area (area of one image) obtained by adding the white part representing the columnar protrusion and the black part (area of one image) and multiplying by 100 is defined as the porosity (unit:%). In addition, since the fine structure layer is composed of columnar protrusions having different heights, there is a concern that the porosity may change depending on the position in the height direction. However, for example, the refractive index n 1 of the fine-structure layer having the obtained void ratio ρ 0 = 33.8% is the value obtained from the equation (2) and the ellipsometer (DHA-OLX, Mizoji Optical Co., Ltd.). Manufactured, laser wavelength: 632.8 nm) are almost the same (calculated value: 1.41, measured value: 1.42), and the influence of the change in the position in the height direction is small.
本実施形態の光学部材に用いる基材としては、透明で、ドライエッチングにより柱状突起が形成されるものが望ましい。例えば、ポリスチレン、ポリプロピレン、ポリウレタン、ポリメチルメタクリレート(アクリル樹脂)、変性アクリル、酢酸セルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリオレフィンなどの樹脂材料を用いることができる。基材は厚さ0.3mm以下のフィルム状であっても、0.3mmを超える板状でもよい。または、レンズ、マイクロレンズや光導波路などの光学素子を基材としてもよい。さらに、スマートフォンなどのディスプレイの保護フィルムに用いられるハードコートや、透明導電性フィルムの裏面(非導電面)側に適用することが可能である。ハードコートに適用した際は、外光の反射を抑えて視認性の向上が期待できる。また、透明導電性フィルムの裏面に適用した際は、入射光の反射を抑えて透過率の向上が期待できる。このように、保護フィルムや透明導電性フィルムなどの機能性フィルム、およびディスプレイなどの筐体ガラスあるいはプラスチックなど、表裏どちらか一方の面にだけ適用することも可能である。 As a base material used for the optical member of the present embodiment, it is desirable that the substrate is transparent and columnar protrusions are formed by dry etching. For example, resin materials such as polystyrene, polypropylene, polyurethane, polymethyl methacrylate (acrylic resin), modified acrylic, cellulose acetate, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and polyolefin can be used. The substrate may be a film having a thickness of 0.3 mm or less, or a plate having a thickness exceeding 0.3 mm. Alternatively, an optical element such as a lens, a microlens, or an optical waveguide may be used as the base material. Furthermore, it is possible to apply to the hard coat used for the protective film of displays, such as a smart phone, and the back surface (non-conductive surface) side of a transparent conductive film. When applied to a hard coat, visibility can be improved by suppressing reflection of external light. Moreover, when it applies to the back surface of a transparent conductive film, reflection of incident light can be suppressed and improvement in transmittance can be expected. Thus, it is also possible to apply to only one of the front and back surfaces, such as a functional film such as a protective film and a transparent conductive film, and a housing glass or a plastic such as a display.
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[実施例1]
基材として厚さ0.8mmのポリカーボネート板(住友ベークライト(株)製ポリカエース)を用いた本発明の第一の実施形態について説明する。ドライエッチングはスパッタ装置C−7960M(旧アネルバ(株)、現キヤノンアネルバ(株)製)の逆スパッタ機能を利用した。まず、基材をアルミ製のホルダに固定し、チャンバー内に搬送した。ガスはアルゴンと酸素の混合ガスで、流量はそれぞれ45sccmと5sccmである。メインバルブの開度を制御して、チャンバー内の圧力を1.4Paにした。印加したRFパワーは400Wである。この条件にて7分間、基材にドライエッチング処理を行った。この処理により、図6に示すような、高さの異なる複数の柱状突起からなる微細構造層が形成され、光学部材が製造された。このとき、空隙率は33.8%であった。また、柱状突起の高さDは、最大が200nm、最小が50nmの間で変化していた。なお、基材のエッチングレートは約30nm/minであった。
[Example 1]
A first embodiment of the present invention using a polycarbonate plate having a thickness of 0.8 mm (Polyca Ace manufactured by Sumitomo Bakelite Co., Ltd.) as a substrate will be described. For dry etching, a reverse sputtering function of a sputtering apparatus C-7960M (former Anelva Co., Ltd., current Canon Anelva Co., Ltd.) was used. First, the substrate was fixed to an aluminum holder and conveyed into the chamber. The gas is a mixed gas of argon and oxygen, and the flow rates are 45 sccm and 5 sccm, respectively. The pressure in the chamber was adjusted to 1.4 Pa by controlling the opening of the main valve. The applied RF power is 400W. Under these conditions, the substrate was dry-etched for 7 minutes. As a result of this treatment, a microstructure layer composed of a plurality of columnar protrusions having different heights as shown in FIG. 6 was formed, and an optical member was manufactured. At this time, the porosity was 33.8%. Further, the height D of the columnar protrusions varied between a maximum of 200 nm and a minimum of 50 nm. The substrate etching rate was about 30 nm / min.
この空隙率ρ0=33.8%の微細構造層の屈折率n1は式(2)から、n1=1.41となる。したがって、係数a=1.12となり、式(3)を満たす(式(3)を満たす微細構造層を有する光学部材の一例)。ここで、光入射媒体は空気であり屈折率n0=1.00、基材はポリカーボネートであって屈折率n2=1.59である。 The refractive index n 1 of the fine structure layer with the porosity ρ 0 = 33.8% is n 1 = 1.41 from the equation (2). Therefore, the coefficient a = 1.12, which satisfies Expression (3) (an example of an optical member having a microstructure layer that satisfies Expression (3)). Here, the light incident medium is air and has a refractive index n 0 = 1.00, and the base material is polycarbonate and has a refractive index n 2 = 1.59.
本実施例1の微細構造層を有する光学部材の透過率を紫外可視分光光度計(V−660、日本分光(株)製)で測定した結果を図8に示す。図8の横軸は光の波長λ(単位:nm)を表し、測定波長は400nmから700nmである(反射を防止すべき入射光の波長範囲の一例)。この際、柱状突起の高さDは、200nmから50nmの間で変化しており、式(1)を満たす(100nm≦D≦175nm、式(1)を満たす微細構造層を有する光学部材の一例。)。縦軸は透過率(単位:%)を表す。微細構造層は基材の一方の面にのみ形成されており、光は微細構造層側から入射させ、もう一方の基材表面から出射した光の強度比から透過率が算出されている。なお、光の入射角度は0°である(基材表面に対して垂直入射)。本実施例1の光学部材の透過率は、基材の透過率より向上しており、その透過率が向上した分を反射率が低減した分と考えられる。 FIG. 8 shows the result of measuring the transmittance of the optical member having the fine structure layer of Example 1 with an ultraviolet-visible spectrophotometer (V-660, manufactured by JASCO Corporation). The horizontal axis of FIG. 8 represents the wavelength λ (unit: nm) of light, and the measurement wavelength is 400 nm to 700 nm (an example of the wavelength range of incident light that should be prevented from being reflected). At this time, the height D of the columnar protrusion changes between 200 nm and 50 nm, and satisfies the formula (1) (100 nm ≦ D ≦ 175 nm, an example of an optical member having a microstructure layer satisfying the formula (1) .) The vertical axis represents the transmittance (unit:%). The fine structure layer is formed only on one surface of the substrate, light is incident from the fine structure layer side, and the transmittance is calculated from the intensity ratio of the light emitted from the other substrate surface. The incident angle of light is 0 ° (perpendicular incidence on the substrate surface). The transmittance of the optical member of Example 1 is higher than the transmittance of the base material, and it can be considered that the improved transmittance is the reduced reflectance.
図9に本実施例1の微細構造層を有する光学部材の反射率を示す。反射率は、微細構造層が形成されたときの反射率である。横軸は光の波長λ(単位:nm)、縦軸は反射率(単位:%)を表している。この反射率は、基材であるポリカーボネートの屈折率n2=1.59から算出される片面の反射率(5.2%)から、図8の各波長の透過率向上分を差し引いた値となっている。図9のように、本実施例1の光学部材は反射防止層として機能する微細構造層は、単層でありながら広い波長範囲における反射率のバラツキが小さい。表1に反射率の平均値、並びに標準偏差σをそれぞれ示す。λ=400nmから50nm毎に700nmまで7点の平均反射率は1.8%、標準偏差σは0.21%であった。 FIG. 9 shows the reflectance of the optical member having the fine structure layer of the first embodiment. The reflectance is the reflectance when the fine structure layer is formed. The horizontal axis represents light wavelength λ (unit: nm), and the vertical axis represents reflectance (unit:%). This reflectance is a value obtained by subtracting the transmittance improvement of each wavelength in FIG. 8 from the reflectance (5.2%) on one side calculated from the refractive index n 2 = 1.59 of the polycarbonate polycarbonate. It has become. As shown in FIG. 9, the fine structure layer that functions as the antireflection layer of the optical member of Example 1 is a single layer, but has a small variation in reflectance in a wide wavelength range. Table 1 shows the average reflectance and the standard deviation σ. The average reflectance at 7 points from λ = 400 nm to 700 nm every 50 nm was 1.8%, and the standard deviation σ was 0.21%.
[実施例2]
本発明の第2の実施形態について説明する。なお、基材やドライエッチングに用いた装置および透過率測定装置ならびに反射率の算出方法などは実施例1と同様なため、説明を省略する。ドライエッチング条件も同様であるが、処理時間を6分40秒とした。柱状突起の高さDは、最大が190nm、最小が40nmの間で変化していた(式(1)を満たす微細構造層を有する光学部材の一例。)。本実施例2において微細構造層の空隙率ρ0=26.3%、屈折率n1=1.45となる。また、係数a=1.15となる(式(3)を満たす微細構造層を有する光学部材の一例)。平均反射率は2.4%、反射率の標準偏差σは0.29%である(図9、表1)。
[Example 2]
A second embodiment of the present invention will be described. In addition, since the apparatus used for the base material and dry etching, the transmittance measuring apparatus, the calculation method of the reflectance, and the like are the same as those in the first embodiment, the description thereof is omitted. The dry etching conditions were the same, but the processing time was 6 minutes and 40 seconds. The height D of the columnar protrusions varied between a maximum of 190 nm and a minimum of 40 nm (an example of an optical member having a microstructure layer satisfying the formula (1)). In Example 2, the porosity of the microstructure layer is ρ 0 = 26.3%, and the refractive index n 1 is 1.45. Further, the coefficient a = 1.15 (an example of an optical member having a fine structure layer satisfying the expression (3)). The average reflectance is 2.4%, and the standard deviation σ of the reflectance is 0.29% (FIG. 9, Table 1).
[実施例3]
本発明の第3の実施形態について説明する。なお、基材やドライエッチングに用いた装置および透過率測定装置ならびに反射率の算出方法などは実施例1および2と同様なため、説明を省略する。ドライエッチング条件はアルゴンと酸素の混合ガスは同様であるが、混合比率を保ったまま流量とメインバルブの開度を調整し、圧力を0.7Paにした。また、処理時間は7分とした。柱状突起の高さDは、最大が200nm、最小が60nmの間で変化していた(式(1)を満たす微細構造層を有する光学部材の一例。)。本実施例3において微細構造層の空隙率ρ0=37.8%、屈折率n1=1.39となる。また、係数a=1.11となる(式(3)を満たす微細構造層を有する光学部材の一例)。平均反射率は1.4%、反射率の標準偏差σは0.30%である(図9、表1)。
[Example 3]
A third embodiment of the present invention will be described. In addition, since the apparatus used for the base material, dry etching, the transmittance measuring apparatus, the reflectance calculation method, and the like are the same as those in the first and second embodiments, the description thereof is omitted. The dry etching conditions were the same for the mixed gas of argon and oxygen, but the flow rate and the opening of the main valve were adjusted to maintain the pressure at 0.7 Pa while maintaining the mixing ratio. The processing time was 7 minutes. The height D of the columnar protrusions varied between a maximum of 200 nm and a minimum of 60 nm (an example of an optical member having a microstructure layer satisfying the formula (1)). In Example 3, the porosity of the microstructure layer is ρ 0 = 37.8%, and the refractive index n 1 = 1.39. Further, the coefficient a = 1.11 (an example of an optical member having a fine structure layer satisfying the formula (3)). The average reflectance is 1.4%, and the standard deviation σ of the reflectance is 0.30% (FIG. 9, Table 1).
このように、実施例1から3によれば、本発明の光学部材は反射率が基材より低く、単層でありながら広い光の波長範囲において反射率のバラツキが小さい(σ≦0.3%)。 Thus, according to Examples 1 to 3, the optical member of the present invention has a reflectance lower than that of the base material and has a small variation in reflectance over a wide light wavelength range even though it is a single layer (σ ≦ 0.3). %).
[比較例1]
比較例1について説明する。なお、基材やドライエッチングに用いた装置および透過率測定装置ならびに反射率の算出方法などは、実施例1から3と同様なため、説明を省略する。ドライエッチング条件も実施例1から3と同様である。処理時間は10分30秒とした。柱状突起の高さDは、最大が300nm、最小が180nmの間で変化していた。本比較例1において、微細構造層の空隙率ρ0=39.5%、屈折率n1=1.38となる。また、係数a=1.10となる。平均反射率は4.3%、反射率の標準偏差σは0.71%である(図9、表1)。本比較例1の柱状突起は、最大高さが300nmであり、柱状突起の倒壊および柱状突起同士の凝集が発生している。そのため、空隙率が高くなっている。したがって、係数aは実施例3よりも低くなっている。しかし、柱状突起の最大高さが200nmを超え、さらに高さ変化の範囲も式(1)を満たしていないため、反射率低減の効果が小さく、光の広い波長範囲において反射率のバラツキが大きい。
[Comparative Example 1]
Comparative Example 1 will be described. In addition, since the apparatus used for the base material, the dry etching, the transmittance measuring apparatus, the calculation method of the reflectance, and the like are the same as those in the first to third embodiments, the description thereof is omitted. The dry etching conditions are the same as in Examples 1 to 3. The processing time was 10 minutes and 30 seconds. The height D of the columnar protrusions varied between a maximum of 300 nm and a minimum of 180 nm. In this comparative example 1, the porosity of the microstructure layer is ρ 0 = 39.5%, and the refractive index n 1 = 1.38. The coefficient a = 1.10. The average reflectance is 4.3%, and the standard deviation σ of the reflectance is 0.71% (FIG. 9, Table 1). The columnar protrusions of Comparative Example 1 have a maximum height of 300 nm, and the columnar protrusions collapse and the columnar protrusions aggregate. Therefore, the porosity is high. Therefore, the coefficient a is lower than that in the third embodiment. However, since the maximum height of the columnar protrusions exceeds 200 nm and the range of height change does not satisfy the formula (1), the effect of reducing the reflectance is small, and the variation in reflectance is large over a wide wavelength range of light. .
[比較例2]
比較例2について説明する。なお、基材やドライエッチングに用いた装置および透過率測定装置ならびに反射率の算出方法などは、実施例1から3、および比較例1と同様なため、説明を省略する。ドライエッチング条件は、アルゴンと酸素の混合ガスは同様であるが、混合比率を保ったまま流量とメインバルブの開度を調整し、圧力を4.0Paにした。処理時間は3分30秒とした。柱状突起の高さDは、最大が90nm、最小が20nmの間で変化していた。本比較例2において、微細構造層の空隙率ρ0=25.0%、屈折率n1=1.46となる。また、係数a=1.16となる。平均反射率は3.9%、反射率の標準偏差σは0.40%である(図9、表1)。空隙率が小さく、屈折率が小さいため、反射率低減の効果は小さい。また、柱状突起の最大高さが100nm未満で、さらに高さ変化の範囲も式(1)を満たしていないため、光の広い波長範囲において反射率のバラツキが大きい。
[Comparative Example 2]
Comparative example 2 will be described. In addition, since the apparatus used for the base material and dry etching, the transmittance measuring apparatus, the calculation method of the reflectance, and the like are the same as those in Examples 1 to 3 and Comparative Example 1, description thereof is omitted. The dry etching conditions were the same for the mixed gas of argon and oxygen, but the pressure was adjusted to 4.0 Pa by adjusting the flow rate and the opening of the main valve while maintaining the mixing ratio. The processing time was 3 minutes 30 seconds. The height D of the columnar protrusions varied between a maximum of 90 nm and a minimum of 20 nm. In Comparative Example 2, the porosity of the microstructure layer is ρ 0 = 25.0%, and the refractive index n 1 = 1.46. Further, the coefficient a = 1.16. The average reflectance is 3.9%, and the standard deviation σ of the reflectance is 0.40% (FIG. 9, Table 1). Since the porosity is small and the refractive index is small, the effect of reducing the reflectance is small. Further, since the maximum height of the columnar protrusion is less than 100 nm and the range of the height change does not satisfy the formula (1), the variation in reflectance is large in a wide wavelength range of light.
以上、実施形態に則して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、柱状突起は、高さ方向の断面形状において、柱状突起上部および柱状突起底部から、柱状突起中央部に向かって円弧状に徐々に縮径させても良い。ドライエッチング条件において、チャンバー内の圧力を変更することで上記形状が得られる。例えば、圧力を1.4Paから2.6Paに変更することで、上記の形状が得られた。この場合、柱状突起底部の太さが細くならないため、柱状突起の倒壊や突起同士が凝集する事態を招くことがない。また、柱状突起上部も細くならないため、不要に空隙率が高まることがない。柱状突起中央部の空隙率が高くなった分だけ、屈折率は低くなり、反射率の低減効果が高くなる。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, the columnar protrusions may be gradually reduced in diameter in a circular arc shape from the top of the columnar protrusion and the bottom of the columnar protrusion toward the center of the columnar protrusion in the cross-sectional shape in the height direction. The above shape can be obtained by changing the pressure in the chamber under dry etching conditions. For example, the above shape was obtained by changing the pressure from 1.4 Pa to 2.6 Pa. In this case, since the thickness of the bottom of the columnar protrusion is not reduced, the columnar protrusion is not collapsed or the protrusions are not aggregated. Further, since the upper part of the columnar protrusion is not thinned, the porosity is not increased unnecessarily. As the porosity of the central part of the columnar protrusion increases, the refractive index decreases and the effect of reducing the reflectance increases.
また、柱状突起は、高さ方向の断面形状において、柱状突起上部より柱状突起先端部に向かって円弧状に徐々に縮径している。先端部の角は頂面と側面の二方向からエッチングが進行するため、角が丸くなって円弧状になる。この場合、柱状突起上部において、光入射媒体(空気)から徐々に屈折率が高くなるため、反射防止の効果が得られる。 In addition, the columnar protrusions are gradually reduced in diameter in an arc shape from the upper part of the columnar protrusion toward the tip of the columnar protrusion in the cross-sectional shape in the height direction. Etching progresses from the two directions of the top surface and the side surface of the corner of the tip portion, so that the corner becomes round and becomes an arc shape. In this case, since the refractive index gradually increases from the light incident medium (air) at the upper part of the columnar protrusion, an antireflection effect is obtained.
1 光学部材
2 基材
3 微細構造層
4 柱状突起
5 空隙
6 凹部底面と凸部頂の間隔(高さ)を表す矢印記号
M ある凸部周辺凹部2面(点)間の中間位置
DESCRIPTION OF SYMBOLS 1 Optical member 2 Base material 3 Fine structure layer 4 Columnar protrusion 5 Space | gap 6 Arrow symbol M which shows the space | interval (height) of a recessed part bottom face and a convex part top The intermediate position between two convex part surrounding recessed parts (point)
Claims (5)
λmin/4≦D≦λmax/4 ・・・(1)
The height D of the columnar protrusions of the microstructure layer satisfies the formula (1) when the shortest wavelength of light incident on the optical member is λ min and the longest wavelength is λ max. The optical member according to 1.
λ min / 4 ≦ D ≦ λ max / 4 (1)
ρ0=1−(n1 2−n0 2)/(n2 2−n0 2) ・・・(2)
n1=a×√n2 (1.11≦a≦1.15) ・・・(3)
It has at least a base material and a fine structure layer, the porosity of the fine structure layer is ρ 0 , the refractive index of the light incident medium is n 0 , the refractive index of the fine structure layer is n 1 , and the refractive index of the base material when was the n 2, the optical member according to claims 1 to 4 or to satisfy the equation (2) and (3).
ρ 0 = 1− (n 1 2 −n 0 2 ) / (n 2 2 −n 0 2 ) (2)
n 1 = a × √n 2 (1.11 ≦ a ≦ 1.15) (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011255313A JP2013109228A (en) | 2011-11-22 | 2011-11-22 | Optical member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011255313A JP2013109228A (en) | 2011-11-22 | 2011-11-22 | Optical member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013109228A true JP2013109228A (en) | 2013-06-06 |
Family
ID=48706022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011255313A Pending JP2013109228A (en) | 2011-11-22 | 2011-11-22 | Optical member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013109228A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064493A (en) * | 2013-09-25 | 2015-04-09 | 大日本印刷株式会社 | Anti-reflection article, image display device, and mold for manufacturing anti-reflection article |
JP2016085397A (en) * | 2014-10-28 | 2016-05-19 | 大日本印刷株式会社 | Anti-reflection articles, manufacturing method therefor, and image display device |
JP2018092059A (en) * | 2016-12-06 | 2018-06-14 | 凸版印刷株式会社 | Optical device and method for manufacturing optical device |
US11307328B2 (en) | 2015-10-30 | 2022-04-19 | Dexerials Corporation | Micro concave-convex structure for optical body and display device |
-
2011
- 2011-11-22 JP JP2011255313A patent/JP2013109228A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064493A (en) * | 2013-09-25 | 2015-04-09 | 大日本印刷株式会社 | Anti-reflection article, image display device, and mold for manufacturing anti-reflection article |
JP2016085397A (en) * | 2014-10-28 | 2016-05-19 | 大日本印刷株式会社 | Anti-reflection articles, manufacturing method therefor, and image display device |
US11307328B2 (en) | 2015-10-30 | 2022-04-19 | Dexerials Corporation | Micro concave-convex structure for optical body and display device |
US11789182B2 (en) | 2015-10-30 | 2023-10-17 | Dexerials Corporation | Micro concave-convex structure for optical body and display device |
JP2018092059A (en) * | 2016-12-06 | 2018-06-14 | 凸版印刷株式会社 | Optical device and method for manufacturing optical device |
JP2021179636A (en) * | 2016-12-06 | 2021-11-18 | 凸版印刷株式会社 | Optical device and method for manufacturing optical device |
JP7190249B2 (en) | 2016-12-06 | 2022-12-15 | 凸版印刷株式会社 | optical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9366785B2 (en) | Mold, method for manufacturing a mold, and antireflective film | |
JP4583506B2 (en) | Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method | |
US9217086B2 (en) | Method of fabricating transparent anti-reflective article | |
JP2003279705A (en) | Antireflection member | |
JP6209190B2 (en) | Non-reflective nano-coating structure and manufacturing method thereof | |
JP2013083871A (en) | Antireflection film and manufacturing method of antireflection film | |
JP2009166502A (en) | Reflection preventing material, stamper, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper | |
JP2012189846A (en) | Antireflection optical element and method for manufacturing antireflection optical element | |
WO2014077399A1 (en) | Optical filter and optical apparatus | |
JP2013109228A (en) | Optical member | |
JP2013257405A (en) | Antireflection film, optical element having the same, optical system, and optical instrument | |
JP6458051B2 (en) | Mold, mold manufacturing method and antireflection film | |
JP2009175729A (en) | Antireflection plate and method for manufacturing the antireflection structure | |
JP2009031610A (en) | Optical device and optical equipment | |
CN110376664A (en) | Shading spacer ring and its manufacturing method, imaging lens group, photographic device | |
JP5105771B2 (en) | Anti-reflection structure and optical device having the same | |
JP5899696B2 (en) | Anti-reflective article | |
JP5780973B2 (en) | Anti-reflection coating | |
WO2019230758A1 (en) | Fine pattern film and head-up display device | |
EP3168656B1 (en) | Optical element and method for producing same | |
JP2010066704A (en) | Optical element, optical system, and optical apparatus | |
CN101487904A (en) | Anti-reflection plate and manufacturing method of anti-reflection structure thereof | |
US10698136B2 (en) | Optical member and method for manufacturing the same | |
JPWO2016038853A1 (en) | Antireflection member and manufacturing method thereof | |
KR20190049277A (en) | Optical antireflection film and manufacturing method of the same |