[go: up one dir, main page]

JP2013105927A - Power generating facility utilizing solar energy and operational method thereof - Google Patents

Power generating facility utilizing solar energy and operational method thereof Download PDF

Info

Publication number
JP2013105927A
JP2013105927A JP2011249350A JP2011249350A JP2013105927A JP 2013105927 A JP2013105927 A JP 2013105927A JP 2011249350 A JP2011249350 A JP 2011249350A JP 2011249350 A JP2011249350 A JP 2011249350A JP 2013105927 A JP2013105927 A JP 2013105927A
Authority
JP
Japan
Prior art keywords
solar
heat
power generation
heat medium
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011249350A
Other languages
Japanese (ja)
Inventor
Kazumasa Wakimoto
一政 脇元
Yutaka Suzukawa
豊 鈴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011249350A priority Critical patent/JP2013105927A/en
Publication of JP2013105927A publication Critical patent/JP2013105927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽エネルギーを利用して安価で安定した発電を行う。
【解決手段】集光装置で太陽光線が集光される太陽光レシーバー1を有する集光型太陽光発電装置Aと、熱媒体を循環させる循環流路5に、集光装置で集光された太陽光線で熱媒体を加熱する太陽熱レシーバー2と、熱媒体の通過により蓄熱又は放熱が行なわれる蓄熱装置3と、熱媒体と水との熱交換で蒸気を生成させる熱交換器4が配置されるとともに、熱交換器4で生成した蒸気を用いて発電を行う蒸気タービン発電機6を備えた集光型太陽熱発電装置Bを有し、集光型太陽熱発電装置Bの循環流路5は、太陽熱レシーバー2と蓄熱装置3間で熱媒体を循環させる循環系xと、蓄熱装置3と熱交換器4間で熱媒体を循環させる循環系yを切替可能に形成できるようにした。
【選択図】図1
An object of the present invention is to perform stable power generation at low cost using solar energy.
A concentrating solar power generation apparatus A having a solar receiver 1 on which solar rays are collected by a condensing device and a circulation channel 5 for circulating a heat medium are condensed by the concentrating device. A solar heat receiver 2 that heats the heat medium with sunlight, a heat storage device 3 that stores heat or dissipates heat by passing through the heat medium, and a heat exchanger 4 that generates steam by heat exchange between the heat medium and water are arranged. In addition, it has a concentrating solar thermal power generation device B provided with a steam turbine generator 6 that generates electric power using steam generated by the heat exchanger 4, and the circulation flow path 5 of the concentrating solar thermal power generation device B includes solar heat. The circulation system x for circulating the heat medium between the receiver 2 and the heat storage device 3 and the circulation system y for circulating the heat medium between the heat storage device 3 and the heat exchanger 4 can be formed to be switchable.
[Selection] Figure 1

Description

この発明は、広くは太陽エネルギーを利用した発電技術に関し、詳細には、集光型太陽光発電と集光型太陽熱発電とを組み合わせることで、安価で安定した発電を行うことができる発電設備とその運転方法に関する。   TECHNICAL FIELD The present invention relates generally to power generation technology using solar energy, and more specifically, to a power generation facility capable of performing stable power generation at low cost by combining concentrated solar power generation and concentrated solar power generation. It relates to the driving method.

従来、集光された太陽光線を利用して発電を行う技術として、以下に示すような集光型太陽光発電と集光型太陽熱発電が知られている。
(1)集光型太陽光発電技術
従来の太陽光発電は、太陽電池パネルで直接太陽光を受け、10〜13%程度の発電効率で発電を行ってきた。これに対して、集光型太陽光発電は、ヘリオスタットなどの光学系で集光した太陽光線を多接合型等の高効率太陽電池セルに照射し、より高効率の発電を行うものである。
2. Description of the Related Art Conventionally, concentrating solar power generation and concentrating solar power generation as described below are known as techniques for generating power using concentrated sunlight.
(1) Concentrating solar power generation technology Conventional solar power generation has received direct sunlight from a solar panel and has generated power with a power generation efficiency of about 10 to 13%. On the other hand, concentrating solar power generation irradiates a high-efficiency solar cell such as a multi-junction type with solar rays collected by an optical system such as a heliostat to generate higher-efficiency power generation. .

出願人は2011年8月に新たなタワー集光型太陽光発電システムを発表した(JFEエンジニアリング/ニュースリリース2011年/インターネット〈URL:http://www.jfe-eng.co.jp/release/news11/news_e11021.html〉)。この発電システムでは、二次集光機能を有する多接合型太陽電池セルを備えた太陽光レシーバー(太陽電池モジュール)がソーラータワー上部に設置され、太陽光線がヘリオスタットにより太陽光レシーバーに集光され、多接合型太陽電池セルで高効率発電がなされる。この発電システムによる発電効率は最大26%であり、従来の太陽光発電の2倍に達する。太陽電池モジュールには、冷却機構が付設されており、発電中は水などの冷媒を循環して多接合型太陽電池セルを一定温度以下に冷却する。
この発電システムでは、太陽光が得られる昼間の時間帯のみ発電が可能であるが、このシステムに蓄電池を組み合わせれば、昼間は太陽電池セルで発電と蓄電を行い、夜間は蓄電池から電力を供給することで、昼夜連続して電力供給が可能である。
The applicant announced a new tower concentrating solar power generation system in August 2011 (JFE Engineering / News Release 2011 / Internet <URL: http://www.jfe-eng.co.jp/release/ news11 / news_e11021.html>). In this power generation system, a solar receiver (solar cell module) equipped with a multi-junction solar cell having a secondary condensing function is installed at the top of the solar tower, and solar rays are condensed on the solar receiver by a heliostat. High-efficiency power generation is performed with multi-junction solar cells. The power generation efficiency of this power generation system is up to 26%, which is twice that of conventional solar power generation. The solar cell module is provided with a cooling mechanism, and cools the multi-junction solar cell to a certain temperature or less by circulating a refrigerant such as water during power generation.
In this power generation system, power can be generated only during the daytime when sunlight can be obtained, but if this system is combined with a storage battery, power is generated and stored in solar cells in the daytime, and power is supplied from the storage battery at night. By doing so, it is possible to supply power continuously day and night.

(2)集光型太陽熱発電技術
従来の太陽熱発電システムとしては、例えば特許文献1に示すようなものが知られている。この太陽熱発電システムでは、図5に示すように、太陽光をヘリオスタット群30で反射して、集光タワー32の上部に設置されたレシーバー31に集光し、このレシーバー31に循環する流体33を加熱気化して蒸気とする。この蒸気をタービン34に送り、発電機を駆動して電力を得るものである。タービン34を出た蒸気は、凝縮器35で冷却されて凝縮し、凝縮した流体は循環ポンプにより再びレシーバー31に送られる。このシステムでは、太陽光が得られる昼間の時間帯のみ発電が可能である。
(2) Concentrating solar thermal power generation technology As a conventional solar thermal power generation system, for example, the one shown in Patent Document 1 is known. In this solar thermal power generation system, as shown in FIG. 5, the sunlight 33 is reflected by the heliostat group 30, condensed on the receiver 31 installed on the upper part of the condensing tower 32, and circulated to the receiver 31. Is vaporized by heating. This steam is sent to the turbine 34 to drive the generator to obtain electric power. The steam exiting the turbine 34 is cooled and condensed by the condenser 35, and the condensed fluid is sent to the receiver 31 again by the circulation pump. In this system, power generation is possible only during the daytime when sunlight is available.

また、他の太陽熱発電システムとして、非特許文献1に示されるようなものが知られている。この太陽熱発電システムでは、図6に示すように、昼間は太陽光線をパラボラトラフ21で集光し、溶融塩を循環・加熱して熱回収する。加熱された溶融塩の一部は、2基の蓄熱タンク22に蓄えられる。また、残りの溶融塩は熱交換器23で水と熱交換し、蒸気を発生させて蒸気タービン及び発電機24を駆動して発電を行う。蒸気タービンを通過した蒸気は、凝縮機25で復水し、再び熱交換器23に循環する。一方、夜は、蓄熱タンク22に蓄えた高温の溶融塩を熱交換器23に循環させて蒸気を発生させ、上記と同様に発電を行う。このシステムでは、太陽光が得られる昼間の時間帯のみならず、蓄熱した溶融塩の顕熱を利用して夜間の発電も可能である。
図5や図6に示す太陽熱発電システムでは、20%程度の発電効率が実現できるとされている。
また、同一の電力量(単位:kWh)を、蓄電池から供給する場合と、蓄熱装置を有するタワー型太陽熱発電装置から供給する場合を比較すると、後者の方が安価である。
Another solar thermal power generation system is known as shown in Non-Patent Document 1. In this solar thermal power generation system, as shown in FIG. 6, sunlight is collected by the parabolic trough 21 during the daytime, and the molten salt is circulated and heated to recover heat. A part of the heated molten salt is stored in the two heat storage tanks 22. The remaining molten salt exchanges heat with water in the heat exchanger 23 to generate steam to drive the steam turbine and the generator 24 to generate electricity. The steam that has passed through the steam turbine is condensed by the condenser 25 and circulated to the heat exchanger 23 again. On the other hand, at night, high-temperature molten salt stored in the heat storage tank 22 is circulated through the heat exchanger 23 to generate steam, and power is generated in the same manner as described above. In this system, not only daytime hours when sunlight is obtained, but also nighttime power generation is possible using sensible heat of the stored molten salt.
In the solar thermal power generation system shown in FIG. 5 and FIG. 6, it is said that power generation efficiency of about 20% can be realized.
Moreover, when the case where the same electric energy (unit: kWh) is supplied from a storage battery and the case where it supplies from the tower type solar power generation device which has a heat storage device are compared, the latter is cheaper.

国際公開第2009/105689号International Publication No. 2009/105689

「The parabolic trough power plants Andasol 1 to 3」、Solar Millennium AG、2008年、p.12`` The parabolic trough power plants Andasol 1 to 3 '', Solar Millennium AG, 2008, p.12

電力需要は昼夜を問わず存在するため、太陽光エネルギーを利用する発電システムでは、太陽光が得られない時間帯に、いかに電力を供給するかが課題である。
さきに挙げたような集光型太陽光発電システムでは、従来の太陽光発電に比べ高い発電効率が得られる利点があり、蓄電池と組み合わせれば、昼間は太陽電池セルで発電と蓄電を行い、夜間は蓄電池から電力を供給することで、昼夜連続して電力供給が可能であるが、大容量の蓄電池は極めて高価であるため、安価な電力供給ができない。
Since power demand exists day and night, a problem with power generation systems that use solar energy is how to supply power during times when sunlight cannot be obtained.
In the concentrating solar power generation system as mentioned above, there is an advantage that high power generation efficiency can be obtained compared to conventional solar power generation, and when combined with a storage battery, power generation and storage are performed with solar cells in the daytime, Power can be supplied continuously from day to night by supplying power from the storage battery at night, but a large-capacity storage battery is extremely expensive and cannot be supplied at low cost.

一方、集光型太陽熱発電は、集光型太陽光発電に較べて昼間の時間帯の発電効率が低いという問題がある。また、図6に示すような集光型太陽熱発電システムでは、昼間の時間帯に集熱するエネルギーが発電と蓄熱に分散されるため、集光装置の容量を2倍以上に大きくする必要があるなど、設備コストが増大するという問題がある。
したがって本発明の目的は、太陽エネルギーを利用して安価で安定した発電を行うことができる発電設備とその運転方法を提供することにある。
On the other hand, concentrated solar power generation has a problem that power generation efficiency in the daytime period is lower than that of concentrated solar power generation. Moreover, in the concentrating solar thermal power generation system as shown in FIG. 6, since the energy collected in the daytime is distributed to power generation and heat storage, it is necessary to increase the capacity of the concentrating device more than twice. There is a problem that the equipment cost increases.
Accordingly, an object of the present invention is to provide a power generation facility capable of performing inexpensive and stable power generation using solar energy and an operation method thereof.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]複数の鏡体を備えた集光装置により集光された太陽光線を受光する受光面に太陽電池セルが配置された太陽光レシーバー(1)を有する集光型太陽光発電装置(A)と、熱媒体を循環させる循環流路(5)に、複数の鏡体を備えた集光装置により集光された太陽光線で熱媒体を加熱する太陽熱レシーバー(2)と、熱媒体の通過により蓄熱又は放熱が行なわれる蓄熱装置(3)と、熱媒体と水との熱交換で蒸気を生成させる熱交換器(4)が配置されるとともに、熱交換器(4)で生成した蒸気を用いて発電を行う蒸気タービン発電機(6)を備えた集光型太陽熱発電装置(B)を有し、集光型太陽熱発電装置(B)の循環流路(5)は、太陽熱レシーバー(2)と蓄熱装置(3)間で熱媒体を循環させる循環系(x)と、蓄熱装置(3)と熱交換器(4)間で熱媒体を循環させる循環系(y)を切替可能に形成できるようにしたことを特徴とする太陽エネルギーを利用した発電設備。
[2]上記[1]の発電設備において、太陽光レシーバー(1)に設けられる太陽電池セルは、多接合型太陽電池セルであることを特徴とする太陽エネルギーを利用した発電設備。
The gist of the present invention for solving the above problems is as follows.
[1] A concentrating solar power generation device (A) having a solar receiver (1) in which solar cells are arranged on a light receiving surface that receives sunlight rays collected by a condensing device having a plurality of mirrors ), A solar heat receiver (2) that heats the heat medium with solar rays collected by a light collecting device having a plurality of mirror bodies in a circulation channel (5) that circulates the heat medium, and the passage of the heat medium And a heat storage device (3) that stores or radiates heat and a heat exchanger (4) that generates steam by heat exchange between the heat medium and water, and the steam generated by the heat exchanger (4) It has a concentrating solar thermal power generation device (B) equipped with a steam turbine generator (6) that generates electric power, and the circulation channel (5) of the concentrating solar thermal power generation device (B) is a solar thermal receiver (2 ) And the heat storage device (3), the circulation system (x) for circulating the heat medium, and the heat storage device (3 ) And the heat exchanger (4), a power generation facility using solar energy, wherein the circulation system (y) for circulating the heat medium can be switched.
[2] The power generation facility using solar energy according to [1], wherein the solar cells provided in the solar receiver (1) are multi-junction solar cells.

[3]上記[1]又は[2]の発電設備において、太陽光レシーバー(1)に設けられる太陽電池セルの背面に水冷式の冷却部(12)を有することを特徴とする太陽エネルギーを利用した発電設備。
[4]上記[3]の発電設備において、集光型太陽熱発電装置(B)は、熱交換器(4)と蒸気タービン発電機(6)との間で蒸気及び水を循環させる循環流路(7)を備え、該循環流路(7)の途中には蒸気タービン発電機(6)を出た蒸気を凝縮させる凝縮器(8)と、該凝縮器(8)で生じた水を貯留し、これを熱交換器(4)に供給する水タンク(9)が設けられ、集光型太陽光発電装置(A)は、太陽光レシーバー(1)の冷却部(12)に冷却水を供給するための冷却水流路(10)を備え、該冷却水流路(10)の各端部が、水タンク(9)−熱交換器(4)間の循環流路(7)の流路部分と、凝縮器(8)−水タンク(9)間の循環流路(7)の流路部分に、それぞれ接続され、循環流路(7)とこれに接続された冷却水流路(10)は、熱交換器(4)と蒸気タービン発電機(6)と水タンク(9)間で蒸気及び水を循環させる循環系(z)と、冷却部(12)と水タンク(9)間で水を循環させる循環系(w)を切替可能に形成できるようにしたことを特徴とする太陽エネルギーを利用した発電設備。
[3] In the power generation facility according to [1] or [2], the solar energy characterized by having a water-cooled cooling unit (12) on the back surface of the solar cell provided in the solar receiver (1). Power generation equipment.
[4] In the power generation facility according to [3], the concentrating solar power generation device (B) is configured to circulate steam and water between the heat exchanger (4) and the steam turbine generator (6). (7) is provided, and a condenser (8) for condensing steam exiting the steam turbine generator (6) and water produced by the condenser (8) are stored in the circulation channel (7). A water tank (9) for supplying this to the heat exchanger (4) is provided, and the concentrating solar power generation device (A) supplies cooling water to the cooling unit (12) of the solar receiver (1). A cooling water flow path (10) for supply is provided, and each end of the cooling water flow path (10) is a flow path portion of the circulation flow path (7) between the water tank (9) and the heat exchanger (4). And a circulation channel (7) and a cooling water channel connected to the circulation channel (7) between the condenser (8) and the water tank (9), respectively. 10) is a circulation system (z) for circulating steam and water among the heat exchanger (4), the steam turbine generator (6) and the water tank (9), a cooling part (12) and a water tank (9). A power generation facility using solar energy characterized in that the circulation system (w) for circulating water between them can be switched.

[5]上記[1]〜[4]のいずれかの発電設備において、循環流路(5)のうち、蓄熱装置(3)の一方の熱媒体出入口に接続される流路(50)は2つの分岐流路(500),(501)を有し、このうち分岐流路(500)が太陽熱レシーバー(2)の一方の熱媒体出入口に接続され、分岐流路(501)が熱交換器(4)の一方の熱媒体出入口に接続され、蓄熱装置(3)の他方の熱媒体出入口に接続される流路(51)は2つの分岐流路(510),(511)を有し、このうち分岐流路(510)が太陽熱レシーバー(2)の他方の熱媒体出入口に接続され、分岐流路(511)が熱交換器(4)の他方の熱媒体出入口に接続され、各分岐流路(500),(501),(510),(511)には、それぞれ開閉弁(13)が設けられ、これら開閉弁(13)の開閉操作により、分岐流路(500)と分岐流路(510)を経由して太陽熱レシーバー(2)と蓄熱装置(3)間で熱媒体を循環させる循環系(x)と、分岐流路(501)と分岐流路(511)を経由して蓄熱装置(3)と熱交換器(4)間で熱媒体を循環させる循環系(y)が、切替可能に形成されるようにしたこと特徴とする太陽エネルギーを利用した発電設備。 [5] In the power generation facility according to any one of [1] to [4], the circulation channel (5) includes two channels (50) connected to one heat medium inlet / outlet of the heat storage device (3). There are two branch channels (500), (501), of which the branch channel (500) is connected to one heat medium inlet / outlet of the solar receiver (2), and the branch channel (501) is a heat exchanger ( The flow path (51) connected to one heat medium inlet / outlet of 4) and connected to the other heat medium inlet / outlet of the heat storage device (3) has two branch flow paths (510) and (511). Of these, the branch channel (510) is connected to the other heat medium inlet / outlet of the solar receiver (2), and the branch channel (511) is connected to the other heat medium inlet / outlet of the heat exchanger (4). (500), (501), (510), (511) are each provided with an on-off valve (13). Then, a circulation system that circulates the heat medium between the solar receiver (2) and the heat storage device (3) through the branch flow path (500) and the branch flow path (510) by opening and closing these on-off valves (13). (X) and the circulation system (y) for circulating the heat medium between the heat storage device (3) and the heat exchanger (4) via the branch channel (501) and the branch channel (511) can be switched. A power generation facility using solar energy, characterized by being formed into

[6]上記[1]〜[5]のいずれかの発電設備において、太陽光レシーバー(1)と太陽熱レシーバー(2)を1つのソーラータワーに設置することを特徴とする太陽エネルギーを利用した発電設備。
[7]上記[1]〜[6]のいずれかの発電設備の運転方法であって、太陽光線の強度が所定レベル以上の時間帯には、集光型太陽光発電装置(A)で発電を行なうとともに、集光型太陽熱発電装置(B)において、循環系(x)で熱媒体を循環させることにより、熱媒体による蓄熱装置(3)への蓄熱を行い、太陽光線の強度が所定レベル未満の時間帯には、集光型太陽熱発電装置(B)において、循環系(y)で熱媒体を循環させることにより、蓄熱装置(3)に蓄えられた熱を熱媒体に放熱するとともに、熱交換器(4)において熱媒体と水との熱交換により蒸気を生成させ、その蒸気で蒸気タービン発電機(6)を駆動させ発電を行なうことを特徴とする太陽エネルギーを利用した発電装置の運転方法。
[6] In the power generation facility according to any one of [1] to [5] above, solar power generation using solar energy, wherein the solar receiver (1) and the solar heat receiver (2) are installed in one solar tower Facility.
[7] A method for operating the power generation facility according to any one of [1] to [6] above, wherein power is generated by the concentrating solar power generation device (A) during a time zone in which the intensity of solar rays is equal to or higher than a predetermined level. In the concentrating solar power generation device (B), the heat medium is circulated in the circulation system (x) to store heat in the heat storage device (3) with the heat medium, so that the intensity of the sun rays is at a predetermined level. In the time zone less than, in the concentrating solar power generation device (B), the heat medium is circulated in the circulation system (y) to radiate the heat stored in the heat storage device (3) to the heat medium, A solar power generation device characterized in that steam is generated by heat exchange between a heat medium and water in a heat exchanger (4), and the steam turbine generator (6) is driven by the steam to generate power. how to drive.

本発明によれば、太陽光線の強度が所定レベル以上の時間帯(主に太陽光が得られる昼間の時間帯)では、発電効率の高い集光型太陽光発電を行い、太陽光線の強度が所定レベル未満の時間帯(主に太陽光が得られなくなる夕方乃至夜間の時間帯)では、蓄電池よりも発電電力単価が安い集光型太陽熱発電システムの蓄熱装置を利用した発電を行う、という異なる発電方式の組み合わせで発電を行うため、長時間、安価で安定した発電を行うことができる。   According to the present invention, concentrated solar power generation with high power generation efficiency is performed in a time zone in which the intensity of solar rays is equal to or higher than a predetermined level (mainly a daytime time zone in which sunlight is obtained). It is different that power generation is performed using a heat storage device of a concentrating solar thermal power generation system in which the unit price of generated power is lower than that of a storage battery in a time zone less than a predetermined level (mainly in the evening or night when sunlight cannot be obtained). Since power is generated by a combination of power generation methods, stable power generation can be performed at low cost for a long time.

本発明の発電設備の一実施形態を示す全体フロー図Whole flow figure showing one embodiment of power generation equipment of the present invention 図1の発電設備の集光型太陽光発電装置が備える太陽光発電モジュールの一実施形態を示す斜視図The perspective view which shows one Embodiment of the solar power generation module with which the concentrating solar power generation device of the power generation facility of FIG. 図1の発電設備の運転方法の実施状況を示す説明図Explanatory drawing which shows the implementation status of the operation method of the power generation equipment of FIG. 図1の発電設備の運転方法の実施状況を示す説明図Explanatory drawing which shows the implementation status of the operation method of the power generation equipment of FIG. 従来の集光型太陽熱発電システムの一例を示す説明図Explanatory drawing showing an example of a conventional concentrating solar power generation system 従来の集光型太陽熱発電システムの他の例を示す説明図Explanatory drawing showing another example of a conventional concentrating solar power generation system

図1は、本発明の発電設備の一実施形態を示す全体フロー図である。
図において、Sは複数の鏡体を備えた集光装置、Tは後述する太陽光レシーバー1と太陽熱レシーバー2が設置されるソーラータワーである。
前記集光装置Sは、複数の鏡体に太陽光線を反射させてレシーバー(後述する太陽光レシーバー1と太陽熱レシーバー2)に集光させるものであり、本実施形態では、鏡体と太陽光線をレシーバー方向に導くための鏡角度制御装置とを組み合わせたヘリオスタットで構成されている。通常、このヘリオスタットは数百台〜数万台設置され、太陽の位置が変化しても、常にレシーバーに太陽光線が集まるように鏡角度が制御される。
個々の集光装置S(ヘリオスタットなど)は後述する太陽光レシーバー1、太陽熱レシーバー2のいずれかに向けて太陽光線を反射するように制御される。
前記ソーラータワーTは、通常は鉄骨などで構成される。その高さは任意であるが、通常50m〜100m程度であり、レシーバー(太陽光レシーバー1、太陽熱レシーバー2)が受ける光の量により高さが適切に設計される。ソーラータワーTは複数本設置してもよい。
FIG. 1 is an overall flowchart showing one embodiment of the power generation facility of the present invention.
In the figure, S is a condensing device having a plurality of mirrors, and T is a solar tower in which a solar receiver 1 and a solar heat receiver 2 described later are installed.
The said condensing device S reflects a sunlight ray in a some mirror body, and makes it condense to a receiver (The sunlight receiver 1 and the solar heat receiver 2 which are mentioned later), In this embodiment, a mirror body and a sunlight ray are collected. It is composed of a heliostat combined with a mirror angle control device for guiding it toward the receiver. Usually, several hundred to tens of thousands of heliostats are installed, and the mirror angle is controlled so that the sunlight rays always gather at the receiver even if the position of the sun changes.
Each of the light collecting devices S (such as a heliostat) is controlled so as to reflect sunlight toward one of the solar receiver 1 and the solar heat receiver 2 described later.
The solar tower T is usually composed of a steel frame or the like. Although the height is arbitrary, it is about 50m-100m normally, and height is designed appropriately by the quantity of the light which a receiver (solar light receiver 1, solar heat receiver 2) receives. A plurality of solar towers T may be installed.

本発明の発電設備は、集光型太陽光発電装置Aと集光型太陽熱発電装置Bを有する。
このうち、集光型太陽光発電装置Aは、前記集光装置Sにより集光された太陽光線を受光する太陽光レシーバー1を有する。この太陽光レシーバー1は、その受光面に太陽電池セルが配置され、ソーラータワーTの上部に設置されている。太陽光レシーバー1は、集光装置Sで集光した太陽光線を受光面で受け、太陽電池セルで発電を行う。1基の太陽光レシーバー1の受光面の面積は任意であり、発電容量により異なるが、通常、数十平方メートル〜百平方メートル程度である。
The power generation facility of the present invention includes a concentrating solar power generation device A and a concentrating solar power generation device B.
Among these, the concentrating solar power generation device A has a solar receiver 1 that receives the sunlight rays collected by the condensing device S. The solar receiver 1 has solar cells arranged on the light receiving surface thereof and is installed on the top of the solar tower T. The solar receiver 1 receives the sunlight rays collected by the condensing device S at the light receiving surface, and generates power in the solar battery cell. The area of the light receiving surface of one solar receiver 1 is arbitrary and varies depending on the power generation capacity, but is usually about several tens of square meters to one hundred square meters.

前記太陽電池セルとしては、任意の方式のものを用いることができるが、発電効率を高めるためには、多接合型太陽電池セルが好ましい。この多接合型太陽電池セルとは、利用波長の異なる太陽電池を複数積み重ねたものであり、太陽光エネルギーを広い波長範囲で利用でき、高い変換効率が得られるという特徴がある。
また、太陽レシーバー1の太陽電池セルは、高温になるため強制冷却することが好ましく、このため太陽電池セルの背面に水冷式の冷却部12を備えることが好ましい。後述するように、この冷却部12には冷却水流路10を通じて冷却水が供給され、太陽電池セルが冷却(抜熱)される。
Any solar cell can be used as the solar cell, but a multi-junction solar cell is preferable in order to increase power generation efficiency. This multi-junction solar cell is a stack of a plurality of solar cells having different utilization wavelengths, and is characterized in that solar energy can be used in a wide wavelength range and high conversion efficiency can be obtained.
Moreover, since the photovoltaic cell of the solar receiver 1 becomes high temperature, it is preferable to forcibly cool it. For this reason, it is preferable to equip the back surface of the photovoltaic cell with a water-cooled cooling unit 12. As will be described later, cooling water is supplied to the cooling unit 12 through the cooling water flow path 10 to cool (remove heat) the solar cells.

図2は、太陽光レシーバー1の受光面に設けられる太陽光発電モジュール11の一実施形態を示している。
この太陽光発電モジュール11は、複数の太陽電池セル210(例えば、多接合型太陽電池セル)が集合した太陽電池セル集合体21と、その前面に設けられるプリズム式の集光体22(ガラスなどの透明材料からなる)と、太陽電池セル集合体21の背面に設けられる冷却部12とからなる。この太陽光発電モジュール11は、集光体22による二次集光機能を有しており、集光装置Sで集光体22に集光(一次集光)された太陽光線を、集光体22を通じて太陽電池セル集合体21を構成する個々の太陽電池セル210に対して高倍率で集光することができる。
前記冷却部12の内部には複数の冷却水路(図示せず)が形成され、この冷却水路に後述する冷却水流路10が接続され、冷却水が通過できるようになっている。
FIG. 2 shows an embodiment of the solar power generation module 11 provided on the light receiving surface of the solar receiver 1.
The solar power generation module 11 includes a solar cell assembly 21 in which a plurality of solar cells 210 (for example, multi-junction solar cells) are aggregated, and a prism-type light collector 22 (glass or the like) provided on the front surface thereof. And a cooling unit 12 provided on the back surface of the solar battery cell assembly 21. This solar power generation module 11 has a secondary condensing function by the condensing body 22, and the solar rays condensed (primary condensing) on the condensing body 22 by the condensing device S are converted into the condensing body. 22, the individual solar cells 210 constituting the solar cell assembly 21 can be condensed at a high magnification.
A plurality of cooling water passages (not shown) are formed inside the cooling section 12, and a cooling water passage 10 described later is connected to the cooling water passage so that the cooling water can pass therethrough.

前記集光型太陽熱発電装置Bは、熱媒体を循環させる循環流路5に、前記集光装置Sにより集光された太陽光線で熱媒体を加熱する太陽熱レシーバー2と、熱媒体の通過により蓄熱又は放熱が行なわれる蓄熱装置3と、熱媒体と水との熱交換で蒸気を生成させる熱交換器4が配置されるとともに、熱交換器4で生成した蒸気を用いて発電を行う蒸気タービン発電機6を備えている。前記循環流路5は保温された配管で構成される。
ここで、熱媒体(流体)の種類は任意であり、水や溶融塩などの液体でもよいし、空気などの気体でもよい。
The concentrating solar power generation apparatus B stores heat in the circulation channel 5 that circulates the heat medium, the solar heat receiver 2 that heats the heat medium with solar rays condensed by the condensing apparatus S, and the passage of the heat medium. Alternatively, a heat storage device 3 that dissipates heat and a heat exchanger 4 that generates steam by heat exchange between the heat medium and water, and steam turbine power generation that generates power using the steam generated by the heat exchanger 4 A machine 6 is provided. The circulation channel 5 is constituted by a heated pipe.
Here, the kind of the heat medium (fluid) is arbitrary, and may be a liquid such as water or a molten salt, or may be a gas such as air.

前記太陽熱レシーバー2は、太陽光レシーバー1とともにソーラータワーTの上部に設置される。太陽熱レシーバー2の受光面には、例えば、ボイラーチューブのような伝熱管が密に並べられ、集光された太陽光線を受けて加熱される。伝熱管内は熱媒体が流れており、伝熱管からの伝熱により熱媒体が加熱(熱媒体の種類にもよるが、通常約650℃程度まで加熱)される。1基の太陽熱レシーバー2の受光面の面積は任意であり、発電容量により異なるが、通常、数十平方メートル〜百平方メートル程度である。   The solar heat receiver 2 is installed on the solar tower T together with the solar receiver 1. On the light receiving surface of the solar receiver 2, for example, heat transfer tubes such as boiler tubes are densely arranged and heated by receiving the concentrated sunlight. A heat medium flows in the heat transfer tube, and the heat medium is heated by heat transfer from the heat transfer tube (although depending on the type of the heat medium, it is usually heated to about 650 ° C.). The area of the light receiving surface of one solar receiver 2 is arbitrary and varies depending on the power generation capacity, but is usually about several tens of square meters to one hundred square meters.

前記蓄熱装置3は、通過する熱媒体の温度に応じて、熱媒体の熱が蓄熱され又は装置に蓄えられた熱が熱媒体に放熱されるものであり、例えば、内部に熱媒体(水や溶融塩などの液体、空気などの気体)が通過する多数の穴が開いた蓄熱体が積層された耐圧容器(例えば、内壁断熱材を鋼製の外殻で覆った耐圧容器)などで構成される。このような蓄熱装置の場合には、装置内の蓄熱体を高温の熱媒体が通過することにより、熱媒体の熱が蓄熱体に蓄えられ(蓄熱)、一方、蓄熱された高温の蓄熱体を低温の熱媒体が通過することにより、蓄熱体の熱で熱媒体が加熱される(蓄熱体への放熱)。本実施形態では、蓄熱装置3は1基設けられているが、2基以上を直列に設けてもよい。各蓄熱装置3の大きさは任意であるが、通常、直径が数メートル〜十メートル程度、高さが数十メートル〜百メートル程度である。熱媒体の種類にもよるが、蓄熱装置3の入側における熱媒体温度は、通常650℃程度である。   The heat storage device 3 is a device in which the heat of the heat medium is stored or the heat stored in the device is radiated to the heat medium according to the temperature of the passing heat medium. It is composed of a pressure-resistant container (for example, a pressure-resistant container with an inner wall insulation covered with a steel outer shell) laminated with a heat storage body with a large number of holes through which a liquid such as a molten salt or a gas such as air passes. The In the case of such a heat storage device, when the high-temperature heat medium passes through the heat storage body in the device, the heat of the heat medium is stored in the heat storage body (heat storage), while the stored high-temperature heat storage body is stored. When the low-temperature heat medium passes, the heat medium is heated by the heat of the heat storage body (radiation to the heat storage body). In the present embodiment, one heat storage device 3 is provided, but two or more heat storage devices 3 may be provided in series. The size of each heat storage device 3 is arbitrary, but usually the diameter is about several meters to ten meters and the height is about several tens meters to hundred meters. Although it depends on the type of the heat medium, the heat medium temperature on the entry side of the heat storage device 3 is usually about 650 ° C.

前記熱交換器4は、器内を通過する熱媒体と水を熱交換させ、水から蒸気を生成させるものであり、この熱交換器4には、下記する循環流路7を通じて必要量の水が供給される。熱媒体の種類にもよるが、通常、高温の熱媒体は650〜550℃で熱交換器4に入り、約150℃で熱交換器4を出る。
前記蒸気タービン発電機6と熱交換器4との間では、循環流路7により水及び蒸気を循環する。この循環流路7には、蒸気タービン発電機6を出た蒸気を凝縮させる空冷式又は水冷式の凝縮器8と、この凝縮器8で生じた水を貯留し、これを熱交換器4に供給する水タンク9と、循環用ポンプ14が、水及び蒸気の流れ方向においてこの順に設けられている。前記循環用ポンプ14は、図示しない制御装置により、熱交換器4に対する送水量を調節できるようになっている。
The heat exchanger 4 exchanges heat between the heat medium passing through the inside of the vessel and water, and generates steam from the water. The heat exchanger 4 has a necessary amount of water through a circulation channel 7 described below. Is supplied. Depending on the type of heat medium, the high temperature heat medium normally enters the heat exchanger 4 at 650 to 550 ° C. and exits the heat exchanger 4 at about 150 ° C.
Between the steam turbine generator 6 and the heat exchanger 4, water and steam are circulated by the circulation flow path 7. In this circulation flow path 7, an air-cooled or water-cooled condenser 8 that condenses the steam that has exited the steam turbine generator 6 and water generated by the condenser 8 are stored, and this is stored in the heat exchanger 4. A water tank 9 to be supplied and a circulation pump 14 are provided in this order in the flow direction of water and steam. The circulation pump 14 can adjust the amount of water supplied to the heat exchanger 4 by a control device (not shown).

集光型太陽熱発電装置Bの前記循環流路5は、太陽熱レシーバー2と蓄熱装置3間で熱媒体を循環させる循環系xと、蓄熱装置3と熱交換器4間で熱媒体を循環させる循環系yを、切替可能(選択的に切替可能)に形成できるようになっている。これを可能とするために、循環流路5は複数の開閉弁と循環ポンプ(又はファン)を有する配管機構を有している。
すなわち、循環流路5のうち、蓄熱装置3の一方の熱媒体出入口(本実施形態では熱媒体入口)に接続される流路50は2つの分岐流路500,501を有し、このうち分岐流路500が太陽熱レシーバー2の一方の熱媒体出入口(本実施形態では熱媒体出口)に接続され、分岐流路501が熱交換器4の一方の熱媒体出入口(本実施形態では熱媒体入口)に接続されている。
The circulation flow path 5 of the concentrating solar thermal power generation apparatus B includes a circulation system x that circulates the heat medium between the solar receiver 2 and the heat storage device 3, and circulation that circulates the heat medium between the heat storage device 3 and the heat exchanger 4. The system y can be formed to be switchable (selectively switchable). In order to make this possible, the circulation flow path 5 has a piping mechanism having a plurality of on-off valves and a circulation pump (or fan).
That is, of the circulation flow path 5, the flow path 50 connected to one heat medium inlet / outlet (heat medium inlet in the present embodiment) of the heat storage device 3 has two branch flow paths 500 and 501, of which the branch is branched. The flow path 500 is connected to one heat medium inlet / outlet (in this embodiment, a heat medium outlet) of the solar receiver 2, and the branch flow path 501 is one heat medium inlet / outlet (in the present embodiment, heat medium inlet) of the heat exchanger 4. It is connected to the.

また、蓄熱装置3の他方の熱媒体出入口(本実施形態では熱媒体出口)に接続される流路51は2つの分岐流路510,511を有し、このうち分岐流路510が太陽熱レシーバー2の他方の熱媒体出入口(本実施形態では熱媒体入口)に接続され、分岐流路511が熱交換器4の他方の熱媒体出入口(本実施形態では熱媒体出口)に接続されている。各分岐流路500,501,510,511には、それぞれ開閉弁13a,13b,13c,13dが設けられている。そして、これら開閉弁13a〜13dの開閉操作により、分岐流路500と分岐流路510を経由して太陽熱レシーバー2と蓄熱装置3間で熱媒体を循環させる循環系xと、分岐流路501と分岐流路511を経由して蓄熱装置3と熱交換器4間で熱媒体を循環させる循環系yを、切替可能(選択的に切替可能)に形成できるようになっている。   The flow path 51 connected to the other heat medium inlet / outlet (heat medium outlet in the present embodiment) of the heat storage device 3 has two branch paths 510 and 511, and the branch path 510 is the solar heat receiver 2. The other heat medium inlet / outlet (heat medium inlet in this embodiment) is connected, and the branch flow path 511 is connected to the other heat medium inlet / outlet (heat medium outlet in this embodiment) of the heat exchanger 4. Each branch flow channel 500, 501, 510, 511 is provided with on-off valves 13a, 13b, 13c, 13d, respectively. And by the opening / closing operation | movement of these on-off valves 13a-13d, the circulation system x which circulates a thermal medium between the solar receiver 2 and the thermal storage apparatus 3 via the branch flow path 500 and the branch flow path 510, and the branch flow path 501 The circulation system y that circulates the heat medium between the heat storage device 3 and the heat exchanger 4 via the branch flow path 511 can be switched (selectively switched).

循環系xと循環系yには、それぞれ熱媒体を循環させるための循環用ポンプ20a,20bが設けられている。循環用ポンプ20a,20bを設置する位置は任意であるが、本実施形態では、循環系xを構成する分岐流路510(蓄熱装置3の熱媒体出側の流路)に循環用ポンプ20aが、循環系yを構成する分岐流路511(熱交換器4の熱媒体出側の流路)に循環用ポンプ20bが、それぞれ設けられている。なお、熱媒体が気体の場合には、循環用ポンプ20a,20bに代えて循環用ファンが設けられる。   The circulation system x and the circulation system y are provided with circulation pumps 20a and 20b for circulating the heat medium, respectively. The position where the circulation pumps 20a and 20b are installed is arbitrary, but in this embodiment, the circulation pump 20a is provided in the branch flow path 510 (the flow path on the heat medium outlet side of the heat storage device 3) constituting the circulation system x. The circulation pump 20b is provided in each of the branch flow paths 511 (flow path on the heat medium outlet side of the heat exchanger 4) constituting the circulation system y. When the heat medium is a gas, a circulation fan is provided in place of the circulation pumps 20a and 20b.

集光型太陽光発電装置Aは、太陽光レシーバー1の冷却部12に冷却水を供給するための冷却水流路10を備え、この冷却水流路10の各端部(すなわち、太陽光レシーバー1の冷却水入側の流路100と冷却水出側の流路101の各端部)が、水タンク9−熱交換器4間の循環流路7の流路部分と、凝縮器8−水タンク9間の循環流路7の流路部分に、それぞれ接続されている。そして、循環流路7とこれに接続された冷却水流路10は、熱交換器4と蒸気タービン発電機6と水タンク9間で蒸気及び水を循環させる循環系zと、冷却部12と水タンク9間で水(冷却水)を循環させる循環系wを、切替可能(選択的に切替可能)に形成できるようになっている。これを可能とするために、水タンク9と冷却水流路10(流路100)の接続部との間の循環流路7に循環用ポンプ14が設けられるとともに、冷却水流路10(流路100)の接続部と熱交換器4との間の循環流路7に開閉弁15aが、凝縮器8と冷却水流路10(流路101)の接続部との間の循環流路7に開閉弁15bが、冷却水流路10を構成する流路100,101に開閉弁15c,15dが、それぞれ設けられている。そして、これら開閉弁15a〜15dの開閉操作により、上記循環系zと循環系wを切替可能(選択的に切替可能)に形成できるようになっている。
その他図面において、16は太陽光の日射強度を測定できる日射計、17は集光型太陽光発電装置Aの電力出力用の配線、18は集光型太陽熱発電装置Bの電力出力用の配線であり、電力出力は図示されない制御機器を介して外部電力系統19に繋がる。
The concentrating solar power generation apparatus A includes a cooling water channel 10 for supplying cooling water to the cooling unit 12 of the solar receiver 1, and each end of the cooling water channel 10 (that is, the solar receiver 1 of the solar receiver 1). The end portions of the cooling water inlet side channel 100 and the cooling water outlet side channel 101) are the channel portion of the circulation channel 7 between the water tank 9 and the heat exchanger 4, and the condenser 8-water tank. 9 are respectively connected to the flow path portions of the circulation flow path 7. The circulation channel 7 and the cooling water channel 10 connected to the circulation channel 7 are a circulation system z that circulates steam and water among the heat exchanger 4, the steam turbine generator 6, and the water tank 9, a cooling unit 12, and water. A circulation system w for circulating water (cooling water) between the tanks 9 can be formed to be switchable (selectively switchable). In order to make this possible, a circulation pump 14 is provided in the circulation channel 7 between the water tank 9 and the connection portion of the cooling water channel 10 (channel 100), and the cooling water channel 10 (channel 100). ) Is connected to the circulation channel 7 between the connection portion and the heat exchanger 4, and the on-off valve is connected to the circulation channel 7 between the condenser 8 and the cooling water channel 10 (channel 101). On-off valves 15c and 15d are provided in the flow paths 100 and 101 constituting the cooling water flow path 10 respectively. Further, the circulation system z and the circulation system w can be switched (selectively switched) by opening / closing the opening / closing valves 15a to 15d.
In the other drawings, 16 is a solarimeter that can measure the solar radiation intensity, 17 is a power output wiring of the concentrating solar power generation apparatus A, and 18 is a power output wiring of the concentrating solar power generation apparatus B. Yes, the power output is connected to the external power system 19 via a control device (not shown).

次に、本発明の発電設備の運転方法を、図1の実施形態を例に、図3及び図4に基づき説明する。なお、図3及び図4に示す開閉弁13a〜13d,15a〜15dは、白抜きのものが開状態、黒く塗りつぶしたものが閉状態であることを示す。
太陽光線の強度が所定レベル以上の時間帯(主に太陽光が得られる昼間の時間帯)には、図3に示すように、集光型太陽光発電装置Aで発電を行なうとともに、集光型太陽熱発電装置Bにおいて、循環系xで熱媒体を循環させることにより、熱媒体による蓄熱装置3への蓄熱を行う。このため循環流路5の開閉弁13a,13cを開き、開閉弁13b,13dを閉じて、循環流路5内に循環系xを形成する。また、循環系wで冷却水を循環させ、太陽光レシーバー1(太陽電池セル)を冷却部12により冷却する。このため冷却水流路10の開閉弁15c,15dを開き、循環流路7の開閉弁15a,15bを閉じて、循環流路7及び冷却水流路10内に循環系wを形成する。一方、この時間帯では、集光型太陽熱発電装置Bの熱交換器4における蒸気の生成と蒸気タービン発電機6による発電は行わない。
Next, an operation method of the power generation facility of the present invention will be described based on FIGS. 3 and 4 taking the embodiment of FIG. 1 as an example. 3 and 4, the open / close valves 13a to 13d and 15a to 15d indicate that the white ones are in an open state and the ones that are painted black are in a closed state.
In a time zone in which the intensity of the solar rays is equal to or higher than a predetermined level (mainly a daytime time zone in which sunlight is obtained), as shown in FIG. In the solar thermal power generation apparatus B, heat storage is performed on the heat storage device 3 by the heat medium by circulating the heat medium in the circulation system x. Therefore, the on-off valves 13 a and 13 c of the circulation channel 5 are opened, the on-off valves 13 b and 13 d are closed, and the circulation system x is formed in the circulation channel 5. Further, the cooling water is circulated in the circulation system w, and the solar receiver 1 (solar battery cell) is cooled by the cooling unit 12. For this reason, the on-off valves 15 c and 15 d of the cooling water passage 10 are opened, the on-off valves 15 a and 15 b of the circulation passage 7 are closed, and the circulation system w is formed in the circulation passage 7 and the cooling water passage 10. On the other hand, in this time zone, steam generation in the heat exchanger 4 of the concentrating solar power generation apparatus B and power generation by the steam turbine generator 6 are not performed.

例えば、集光装置S(ヘリオスタットなど)の約半数を太陽光レシーバー1に向けて集光し、残りの約半数を太陽熱レシーバー2に向けて集光する。このときレシーバー受光面での集光倍率(ヘリオスタット鏡面積の合計÷レシーバー受光面積)は500〜1000倍程度である。
集光型太陽光発電装置Aでは、循環系wにおいて、循環用ポンプ14により太陽光レシーバー1(太陽光発電モジュール11)の冷却部12と水タンク9間で冷却水が循環し、太陽光レシーバー1の太陽電池セルが冷却される。太陽光レシーバー1で発電された電力は、配線18を経由して外部電力系統19に供給される。一方、集光型太陽熱発電装置Bでは、循環系xにおいて、循環用ポンプ20aにより熱媒体が太陽熱レシーバー2と蓄熱装置3間で循環し、熱媒体は太陽熱レシーバー2において太陽熱で加熱される。太陽熱レシーバー2で加熱された熱媒体は、蓄熱装置3を通過する過程で、例えば装置内部の蓄熱体を加熱することで、蓄熱装置3に熱を蓄える。
For example, about half of the condensing device S (such as a heliostat) is condensed toward the solar receiver 1, and the remaining half is condensed toward the solar receiver 2. At this time, the condensing magnification (total heliostat mirror area / receiver light receiving area) on the receiver light receiving surface is about 500 to 1000 times.
In the concentrating solar power generation apparatus A, in the circulation system w, cooling water circulates between the cooling unit 12 of the solar receiver 1 (solar power generation module 11) and the water tank 9 by the circulation pump 14, and the solar receiver One solar cell is cooled. The electric power generated by the solar receiver 1 is supplied to the external power system 19 via the wiring 18. On the other hand, in the concentrating solar thermal power generation apparatus B, in the circulation system x, the heat medium is circulated between the solar receiver 2 and the heat storage device 3 by the circulation pump 20a, and the heat medium is heated by the solar heat in the solar receiver 2. The heat medium heated by the solar heat receiver 2 stores heat in the heat storage device 3 by, for example, heating a heat storage body inside the device in the process of passing through the heat storage device 3.

次に、太陽光線の強度が所定レベル未満の時間帯(主に太陽光が得られなくなる夕方乃至夜間の時間帯)には、集光型太陽光発電装置Aによる発電ができなくなるので、図4に示すように、集光型太陽熱発電装置Bにおいて、循環系yで熱媒体を循環させることにより、蓄熱装置3に蓄えられた熱を熱媒体に放熱するとともに、熱交換器4において熱媒体と水との熱交換により蒸気を生成させ、その蒸気で蒸気タービン発電機6を駆動させ発電を行なう。このため循環流路5の開閉弁13b,13dを開き、開閉弁13a,13cを閉じて、循環流路5内に循環系yを形成する。すなわち、循環流路5において形成される熱媒体の循環系を、図3で形成されていた循環系xから循環系yに切り替える。また、熱交換器4と蒸気タービン発電機6間で水及び蒸気を循環させるため、循環流路7の開閉弁15a,15bを開き、冷却水流路10の開閉弁15c,15dを閉じて循環系zを形成する。すなわち、図3で形成されていた循環系wから循環系zに切り替える。   Next, power generation by the concentrating solar power generation apparatus A cannot be performed in a time zone in which the intensity of the sunbeam is less than a predetermined level (mainly in the evening or night time when sunlight cannot be obtained). In the concentrating solar power generation device B, the heat medium is circulated in the circulation system y to radiate the heat stored in the heat storage device 3 to the heat medium, and in the heat exchanger 4 Steam is generated by heat exchange with water, and the steam turbine generator 6 is driven by the steam to generate power. For this reason, the on-off valves 13b and 13d of the circulation channel 5 are opened, the on-off valves 13a and 13c are closed, and the circulation system y is formed in the circulation channel 5. That is, the circulation system of the heat medium formed in the circulation channel 5 is switched from the circulation system x formed in FIG. 3 to the circulation system y. Further, in order to circulate water and steam between the heat exchanger 4 and the steam turbine generator 6, the on-off valves 15a and 15b of the circulation channel 7 are opened, and the on-off valves 15c and 15d of the cooling water channel 10 are closed to circulate the system. z is formed. That is, the circulatory system w formed in FIG. 3 is switched to the circulatory system z.

集光型太陽熱発電装置Bでは、循環系yにおいて、循環用ポンプ20bにより熱媒体が蓄熱装置3と熱交換器4間で循環し、循環系zにおいて、熱交換器4と蒸気タービン発電機6間で水及び蒸気を循環する。
循環系yでは、熱媒体が蓄熱装置3を通過する際に蓄熱装置3に蓄えられた熱により熱媒体が加熱され、この加熱された熱媒体が熱交換器4において水と熱交換して蒸気を生成させる。熱交換器4で生成した蒸気は、蒸気タービン発電機6に送られ発電が行われる。蒸気タービン発電機6を出た蒸気は、凝縮器8で液化し、水タンク9に戻される。蒸気タービン発電機6で発電された電力は、配線18を経由して外部電力系統19に供給される。
In the concentrating solar thermal power generator B, in the circulation system y, the heat medium is circulated between the heat storage device 3 and the heat exchanger 4 by the circulation pump 20b, and in the circulation system z, the heat exchanger 4 and the steam turbine generator 6 are circulated. Circulate water and steam between them.
In the circulation system y, when the heat medium passes through the heat storage device 3, the heat medium is heated by the heat stored in the heat storage device 3, and the heated heat medium exchanges heat with water in the heat exchanger 4 to generate steam. Is generated. The steam generated by the heat exchanger 4 is sent to the steam turbine generator 6 for power generation. The steam exiting the steam turbine generator 6 is liquefied by the condenser 8 and returned to the water tank 9. The electric power generated by the steam turbine generator 6 is supplied to the external power system 19 via the wiring 18.

なお、日照計16により太陽光の照射強度が測定され、この測定結果に基づいて、図示しない制御装置により、図3の操業形態と図4の操業形態の切り替えが行われる。
以上のように、本発明では、集光型太陽光発電装置Aと集光型太陽熱発電装置Bを組み合わせた設備構成を用い、これらを時間帯によって使い分けことにより、太陽エネルギーを利用して、高い発電効率で且つ安価に安定した発電を行うことができる。
In addition, the irradiation intensity of sunlight is measured by the sunshine meter 16, and the operation mode shown in FIG. 3 and the operation mode shown in FIG. 4 are switched by a control device (not shown) based on the measurement result.
As described above, in the present invention, using a facility configuration in which the concentrating solar power generation device A and the concentrating solar power generation device B are combined, and using them properly according to time zones, the solar energy is utilized, which is high. Power generation efficiency and stable power generation can be performed at low cost.

A 集光型太陽光発電装置
B 集光型太陽熱発電装置
1 太陽光レシーバー
2 太陽熱レシーバー
3 蓄熱装置
4 熱交換器
5 循環流路
6 蒸気タービン発電機
7 循環流路
8 凝縮器
9 水タンク
10 冷却水流路
11 太陽光発電モジュール
12 冷却部
13a,13b,13c,13d 開閉弁
14 循環用ポンプ
15a,15b,15c,15d 開閉弁
16 日射計
17,18 配線
19 外部電力系統
20a,20b, 循環用ポンプ
21 太陽電池セル集合体
22 集光体
50,51 流路
100,101 流路
210 太陽電池セル
500,501,510,511 分岐流路
x,y 循環系
z,w 循環系
A Concentration type solar power generation device B Concentration type solar thermal power generation device 1 Solar receiver 2 Solar heat receiver 3 Thermal storage device 4 Heat exchanger 5 Circulation channel 6 Steam turbine generator 7 Circulation channel 8 Condenser 9 Water tank 10 Cooling Water flow path 11 Solar power generation module 12 Cooling unit 13a, 13b, 13c, 13d On-off valve 14 Circulating pump 15a, 15b, 15c, 15d On-off valve 16 Solar radiation meter 17, 18 Wiring 19 External power system 20a, 20b, Circulation pump 21 Solar cell assembly 22 Condenser 50, 51 Channel 100, 101 Channel 210 Solar cell 500, 501, 510, 511 Branch channel x, y Circulation system z, w Circulation system

Claims (7)

複数の鏡体を備えた集光装置により集光された太陽光線を受光する受光面に太陽電池セルが配置された太陽光レシーバー(1)を有する集光型太陽光発電装置(A)と、
熱媒体を循環させる循環流路(5)に、複数の鏡体を備えた集光装置により集光された太陽光線で熱媒体を加熱する太陽熱レシーバー(2)と、熱媒体の通過により蓄熱又は放熱が行なわれる蓄熱装置(3)と、熱媒体と水との熱交換で蒸気を生成させる熱交換器(4)が配置されるとともに、熱交換器(4)で生成した蒸気を用いて発電を行う蒸気タービン発電機(6)を備えた集光型太陽熱発電装置(B)を有し、
集光型太陽熱発電装置(B)の循環流路(5)は、太陽熱レシーバー(2)と蓄熱装置(3)間で熱媒体を循環させる循環系(x)と、蓄熱装置(3)と熱交換器(4)間で熱媒体を循環させる循環系(y)を切替可能に形成できるようにしたことを特徴とする太陽エネルギーを利用した発電設備。
A concentrating solar power generation device (A) having a solar receiver (1) in which solar cells are arranged on a light receiving surface that receives solar rays collected by a condensing device including a plurality of mirror bodies;
A solar heat receiver (2) that heats the heat medium with solar rays collected by a light collecting device having a plurality of mirror bodies in the circulation channel (5) that circulates the heat medium; A heat storage device (3) that dissipates heat and a heat exchanger (4) that generates steam by heat exchange between the heat medium and water are disposed, and power is generated using the steam generated by the heat exchanger (4). A concentrating solar power generator (B) equipped with a steam turbine generator (6) for performing
The circulation flow path (5) of the concentrating solar thermal power generation device (B) includes a circulation system (x) for circulating a heat medium between the solar heat receiver (2) and the heat storage device (3), a heat storage device (3), and heat. A power generation facility using solar energy, characterized in that the circulation system (y) for circulating the heat medium between the exchangers (4) can be switched.
太陽光レシーバー(1)に設けられる太陽電池セルは、多接合型太陽電池セルであることを特徴とする請求項1に記載の太陽エネルギーを利用した発電設備。   The solar cell provided in the solar receiver (1) is a multi-junction solar cell, and the power generation facility using solar energy according to claim 1. 太陽光レシーバー(1)に設けられる太陽電池セルの背面に水冷式の冷却部(12)を有することを特徴とする請求項1又は2に記載の太陽エネルギーを利用した発電設備。   The power generation facility using solar energy according to claim 1 or 2, further comprising a water-cooled cooling section (12) on a back surface of the solar battery cell provided in the solar receiver (1). 集光型太陽熱発電装置(B)は、熱交換器(4)と蒸気タービン発電機(6)との間で蒸気及び水を循環させる循環流路(7)を備え、該循環流路(7)の途中には蒸気タービン発電機(6)を出た蒸気を凝縮させる凝縮器(8)と、該凝縮器(8)で生じた水を貯留し、これを熱交換器(4)に供給する水タンク(9)が設けられ、
集光型太陽光発電装置(A)は、太陽光レシーバー(1)の冷却部(12)に冷却水を供給するための冷却水流路(10)を備え、該冷却水流路(10)の各端部が、水タンク(9)−熱交換器(4)間の循環流路(7)の流路部分と、凝縮器(8)−水タンク(9)間の循環流路(7)の流路部分に、それぞれ接続され、
循環流路(7)とこれに接続された冷却水流路(10)は、熱交換器(4)と蒸気タービン発電機(6)と水タンク(9)間で蒸気及び水を循環させる循環系(z)と、冷却部(12)と水タンク(9)間で水を循環させる循環系(w)を切替可能に形成できるようにしたことを特徴とする請求項3に記載の太陽エネルギーを利用した発電設備。
The concentrating solar thermal power generation device (B) includes a circulation channel (7) for circulating steam and water between the heat exchanger (4) and the steam turbine generator (6), and the circulation channel (7 ), The condenser (8) for condensing the steam exiting the steam turbine generator (6) and the water produced in the condenser (8) are stored and supplied to the heat exchanger (4). Water tank (9) is provided,
The concentrating solar power generation device (A) includes a cooling water channel (10) for supplying cooling water to the cooling unit (12) of the solar receiver (1), and each of the cooling water channels (10) is provided. The end portions of the circulation channel (7) between the water tank (9) and the heat exchanger (4) and the circulation channel (7) between the condenser (8) and the water tank (9) Connected to the flow channel part,
A circulation channel (7) and a cooling water channel (10) connected to the circulation channel (10) circulate the steam and water among the heat exchanger (4), the steam turbine generator (6), and the water tank (9). The solar energy according to claim 3, characterized in that (z) and a circulation system (w) for circulating water between the cooling part (12) and the water tank (9) can be switched. Power generation equipment used.
循環流路(5)のうち、蓄熱装置(3)の一方の熱媒体出入口に接続される流路(50)は2つの分岐流路(500),(501)を有し、このうち分岐流路(500)が太陽熱レシーバー(2)の一方の熱媒体出入口に接続され、分岐流路(501)が熱交換器(4)の一方の熱媒体出入口に接続され、
蓄熱装置(3)の他方の熱媒体出入口に接続される流路(51)は2つの分岐流路(510),(511)を有し、このうち分岐流路(510)が太陽熱レシーバー(2)の他方の熱媒体出入口に接続され、分岐流路(511)が熱交換器(4)の他方の熱媒体出入口に接続され、
各分岐流路(500),(501),(510),(511)には、それぞれ開閉弁(13)が設けられ、これら開閉弁(13)の開閉操作により、分岐流路(500)と分岐流路(510)を経由して太陽熱レシーバー(2)と蓄熱装置(3)間で熱媒体を循環させる循環系(x)と、分岐流路(501)と分岐流路(511)を経由して蓄熱装置(3)と熱交換器(4)間で熱媒体を循環させる循環系(y)が、切替可能に形成されるようにしたこと特徴とする請求項1〜4のいずれかに記載の太陽エネルギーを利用した発電設備。
Of the circulation flow path (5), the flow path (50) connected to one heat medium inlet / outlet of the heat storage device (3) has two branch flow paths (500) and (501), of which the branch flow The channel (500) is connected to one heat medium inlet / outlet of the solar receiver (2), the branch channel (501) is connected to one heat medium inlet / outlet of the heat exchanger (4),
The flow path (51) connected to the other heat medium inlet / outlet of the heat storage device (3) has two branch flow paths (510) and (511), of which the branch flow path (510) is the solar heat receiver (2). ) Is connected to the other heat medium inlet / outlet, and the branch channel (511) is connected to the other heat medium inlet / outlet of the heat exchanger (4).
Each branch flow path (500), (501), (510), (511) is provided with an open / close valve (13), and the open / close valve (13) is operated to open and close the branch flow path (500). Via the circulation system (x) for circulating the heat medium between the solar receiver (2) and the heat storage device (3) via the branch channel (510), via the branch channel (501) and the branch channel (511) The circulation system (y) for circulating the heat medium between the heat storage device (3) and the heat exchanger (4) is formed to be switchable. Power generation facility using solar energy as described.
太陽光レシーバー(1)と太陽熱レシーバー(2)を1つのソーラータワーに設置することを特徴とする請求項1〜5のいずれかに記載の太陽エネルギーを利用した発電設備。   The solar power receiver (1) and the solar heat receiver (2) are installed in one solar tower, The power generation facility using solar energy according to any one of claims 1 to 5. 請求項1〜6のいずれかに記載の発電設備の運転方法であって、
太陽光線の強度が所定レベル以上の時間帯には、集光型太陽光発電装置(A)で発電を行なうとともに、集光型太陽熱発電装置(B)において、循環系(x)で熱媒体を循環させることにより、熱媒体による蓄熱装置(3)への蓄熱を行い、
太陽光線の強度が所定レベル未満の時間帯には、集光型太陽熱発電装置(B)において、循環系(y)で熱媒体を循環させることにより、蓄熱装置(3)に蓄えられた熱を熱媒体に放熱するとともに、熱交換器(4)において熱媒体と水との熱交換により蒸気を生成させ、その蒸気で蒸気タービン発電機(6)を駆動させ発電を行なうことを特徴とする太陽エネルギーを利用した発電装置の運転方法。
A method for operating the power generation facility according to any one of claims 1 to 6,
In a time zone in which the intensity of solar rays is equal to or higher than a predetermined level, power is generated by the concentrating solar power generation device (A), and in the concentrating solar thermal power generation device (B), a heat medium is supplied by the circulation system (x). By circulating, heat storage to the heat storage device (3) by the heat medium,
In the time zone when the intensity of the sun rays is less than a predetermined level, the heat storage device (3) is circulated by circulating the heat medium in the circulation system (y) in the concentrating solar power generation device (B). A solar that radiates heat to the heat medium, generates steam by heat exchange between the heat medium and water in the heat exchanger (4), and drives the steam turbine generator (6) with the steam to generate electric power. A method of operating a power generator using energy.
JP2011249350A 2011-11-15 2011-11-15 Power generating facility utilizing solar energy and operational method thereof Pending JP2013105927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249350A JP2013105927A (en) 2011-11-15 2011-11-15 Power generating facility utilizing solar energy and operational method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249350A JP2013105927A (en) 2011-11-15 2011-11-15 Power generating facility utilizing solar energy and operational method thereof

Publications (1)

Publication Number Publication Date
JP2013105927A true JP2013105927A (en) 2013-05-30

Family

ID=48625256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249350A Pending JP2013105927A (en) 2011-11-15 2011-11-15 Power generating facility utilizing solar energy and operational method thereof

Country Status (1)

Country Link
JP (1) JP2013105927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101496726B1 (en) * 2013-08-28 2015-03-04 이성민 energy extractor with resistance of wire
JP2016127755A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Generation power smoothing system
CN106545475A (en) * 2015-09-21 2017-03-29 郎风 Photo-thermal vector electricity generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101496726B1 (en) * 2013-08-28 2015-03-04 이성민 energy extractor with resistance of wire
JP2016127755A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Generation power smoothing system
CN106545475A (en) * 2015-09-21 2017-03-29 郎风 Photo-thermal vector electricity generation system

Similar Documents

Publication Publication Date Title
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
US20140366536A1 (en) High temperature thermal energy for grid storage and concentrated solar plant enhancement
US20140075939A1 (en) Solar thermal power plant
US10404204B2 (en) Storage of solar energy
US20130285380A1 (en) Thermal storage system and methods
SA111320102B1 (en) Molten Salt Solar Receiver and Procedure to Reduce the Temperature Gradient in Said Receiver
US9279416B2 (en) Solar power system
US9080788B2 (en) Solar power system and method of operation
CN101915225B (en) Solar ammonia water thermoelectric conversion system
US20130139807A1 (en) Thermal energy generation system
WO2011067773A1 (en) Thermal generation systems
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
EP2507846B1 (en) Energy generation system
EP2503260B1 (en) Solar heat collecting apparatus and solar power generation system
JP2013105927A (en) Power generating facility utilizing solar energy and operational method thereof
CN108800605A (en) A kind of solar energy heat collection pipe and thermo-electric generation system
CN103608586B (en) Solar energy system
JP5799692B2 (en) Steam generation method and apparatus using solar heat
CN104912756B (en) Solar energy composite utilizes system
JP5621555B2 (en) Solar power generator
EP2878898A1 (en) Solar ray heat conversion device and solar heat power generating system using same
JP2013096384A (en) Solar thermal power generation method and facility
CN108150370A (en) A kind of solar power system and electricity-generating method
JP2013221651A (en) Thermal power generation and hot-water supply device
JP2015161284A (en) control system and heat supply method