[go: up one dir, main page]

JP2013104703A - Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device - Google Patents

Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device Download PDF

Info

Publication number
JP2013104703A
JP2013104703A JP2011247081A JP2011247081A JP2013104703A JP 2013104703 A JP2013104703 A JP 2013104703A JP 2011247081 A JP2011247081 A JP 2011247081A JP 2011247081 A JP2011247081 A JP 2011247081A JP 2013104703 A JP2013104703 A JP 2013104703A
Authority
JP
Japan
Prior art keywords
straightness
evaluation
measuring machine
coordinate measuring
contact coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247081A
Other languages
Japanese (ja)
Inventor
Toshinori Ohashi
利仙 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Original Assignee
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture filed Critical Tochigi Prefecture
Priority to JP2011247081A priority Critical patent/JP2013104703A/en
Publication of JP2013104703A publication Critical patent/JP2013104703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a long time from being taken for evaluation work of the straightness of a non-contact type coordinate measuring machine.SOLUTION: A straightness evaluation method includes: a first step of measuring an evaluation standard 1 that comprises a rectangular-parallelepiped base material 11, and a plurality of spherical bodies 16, 17, 18 and 19 fixed at some intervals apart in the length direction of the base material 11, by a highly precise contact type coordinate measuring machine and obtaining a calibration value A of the straightness of the central positions of the spherical bodies 16, 17, 18 and 19 of the evaluation standard 1; a second step of measuring the evaluation standard 1 by a non-contact type coordinate measuring machine 2 to be evaluated and obtaining a measured value B of the straightness of the central positions of the spherical bodies 16, 17, 18, and 19 of the evaluation standard 1; and a third step of evaluating the straightness of the non-contact type coordinate measuring machine 2 from a correction value C obtained by subtracting the calibration value A from the measured value B.

Description

本発明は、非接触座標測定機の真直度の評価(精度検査)に係る技術分野に属する。   The present invention belongs to a technical field related to straightness evaluation (accuracy inspection) of a non-contact coordinate measuring machine.

非接触座標測定機は、接触座標測定機に比して被測定物を高速に測定することができる利点があることから急速に普及してきている。このため、非接触座標測定機の測定精度を評価する手法の確立が求められている。   Non-contact coordinate measuring machines are rapidly spreading because they have the advantage of being able to measure an object to be measured at a higher speed than contact coordinate measuring machines. For this reason, establishment of the method of evaluating the measurement accuracy of a non-contact coordinate measuring machine is calculated | required.

従来、非接触座標測定機の測定精度の重要な要素である真直度については、直定規を評価用標準器として、センサヘッドに電気マイクロメータ等の接触式変位計を取付けて測定して、得られた測定値から評価することが行われている。この理由は、平面的形状の直定規を評価用標準器とた場合に、非接触プローブでそのまま測定するとノイズが大きくなって高精度の測定が不能になるためである。   Conventionally, the straightness, which is an important element of the measurement accuracy of non-contact coordinate measuring machines, can be obtained by measuring a straight-line ruler as a standard for evaluation and attaching a contact displacement meter such as an electric micrometer to the sensor head. Evaluation is performed from the measured values. This is because, when a straight ruler with a planar shape is used as an evaluation standard, if measurement is performed with a non-contact probe as it is, noise increases and high-precision measurement becomes impossible.

また、接触座標測定機の真直度を評価する技術としては、例えば、特許文献1に記載のものが知られている。   Further, as a technique for evaluating the straightness of the contact coordinate measuring machine, for example, a technique described in Patent Document 1 is known.

特許文献1には、直方体形の基材と基材の長さ方向に間隔を介して固定された複数の球体とからなる部材を評価用標準器に組込む技術が記載されている。   Patent Document 1 describes a technique in which a member composed of a rectangular parallelepiped base material and a plurality of spheres fixed in the length direction of the base material through a space is incorporated in an evaluation standard device.

この評価用標準器に組込まれる部材は、「JIS B7441」においてボールバーと称せられ寸法測定用標準器とされている。   A member incorporated in the evaluation standard is called a ball bar in “JIS B7441” and is a standard for measuring dimensions.

特許第3837503号公報Japanese Patent No. 3837503

前述の従来の非接触座標測定機の真直度の評価技術では、非接触プローブに接触式変位計を取付けて測定することから、直定規からなる評価用標準器の測定面を1つの軸方向とこれに直交する軸方向とに向けてセットし直して2回の測定を行わなければならないため、評価作業に時間が掛かってしまうという問題点がある。また、長尺の直定規の製作が困難であることから、真直度の測定範囲が制約されてしまうという問題点がある。   In the above-described straightness evaluation technology of the conventional non-contact coordinate measuring machine, since a contact displacement meter is attached to a non-contact probe and measured, the measurement surface of the evaluation standard device composed of a straight ruler is defined as one axial direction. There is a problem that it takes time for the evaluation work because the measurement must be performed twice by resetting it toward the axial direction perpendicular to this. In addition, since it is difficult to produce a long straight ruler, there is a problem that the straightness measurement range is limited.

本発明は、このような問題点を考慮してなされたもので、評価作業に時間が掛からない非接触座標測定機の真直度評価方法を提供することを第1の課題とし、第1の課題を解決することができるとともに真直度の測定範囲が制約されることのない非接触座標測定機の真直度評価方法とこれに使用される非接触座標測定機の真直度評価装置とを提供することを第2の課題とする。   The present invention has been made in consideration of such problems, and it is a first problem to provide a straightness evaluation method for a non-contact coordinate measuring machine that does not take time for evaluation work. And a straightness evaluation method for a non-contact coordinate measuring machine and a straightness evaluation apparatus for the non-contact coordinate measuring machine used therefor. Is a second problem.

前述の第1の課題を解決するため、本発明に係る非接触座標測定機の真直度評価方法は、特許請求の範囲の請求項1,2に記載の手段を採用する。   In order to solve the first problem described above, the straightness evaluation method for a non-contact coordinate measuring machine according to the present invention employs the means described in claims 1 and 2 of the claims.

即ち、請求項1では、直方体形の基材と基材の長さ方向に間隔を介して固定された複数の球体とからなる評価用標準器を高精度の接触座標測定機で測定して評価用標準器の球体の中心の位置の真直度についての校正値を得る第1の手順と、評価する非接触座標測定機で評価用標準器を測定して評価用標準器の球体の中心の位置の真直度についての測定値を得る第2の手順と、測定値から校正値を引いた補正値から非接触座標測定機の真直度を評価する第3の手順とを実行することを特徴とする。   That is, in claim 1, an evaluation standard device composed of a rectangular parallelepiped base material and a plurality of spheres fixed at intervals in the length direction of the base material is measured by a high precision contact coordinate measuring machine and evaluated. The first procedure for obtaining a calibration value for the straightness of the center position of the sphere of the standard for measurement, and the position of the center of the sphere of the evaluation standard by measuring the evaluation standard with the non-contact coordinate measuring machine to be evaluated A second procedure for obtaining a measurement value for the straightness of the first and a third procedure for evaluating the straightness of the non-contact coordinate measuring machine from a correction value obtained by subtracting the calibration value from the measurement value. .

この手段では、ボールバーを評価用標準器として使用して、予め評価用標準器の球体の中心の位置の真直度の校正値を得ておき、評価する非接触座標測定機の測定による評価用標準器の球体の中心の位置の真直度の測定値から校正値を引いて補正値を得ることで評価する。   In this means, a ball bar is used as an evaluation standard, and a calibration value of the straightness of the center position of the sphere of the evaluation standard is obtained in advance, and for evaluation by measurement of a non-contact coordinate measuring machine to be evaluated. Evaluation is performed by subtracting the calibration value from the straightness measurement value at the center position of the sphere of the standard device to obtain a correction value.

また、請求項2では、請求項1の非接触座標測定機の真直度評価方法において、評価用標準器の球体の中心の位置の真直度は、球体の外周面の測定分布から最小自乗法によってそれぞれ求めた球体の中心の位置の全てから最小自乗法によって全ての球体の中心付近を通過する近似直線を求め、近似直線の方向をX軸としX軸に直交し基材の球体が取付けられている面を基準面とした場合に基準面に平行な方向をY軸としX軸,Y軸に直交する方向をZ軸として座標系を設定し、各球体の中心の位置から近似直線に延ばした垂線の長さによって表すものであることを特徴とする。   Further, according to claim 2, in the straightness evaluation method of the non-contact coordinate measuring machine according to claim 1, the straightness of the center position of the sphere of the standard device for evaluation is calculated by the least square method from the measurement distribution of the outer peripheral surface of the sphere. Approximate straight lines that pass near the centers of all the spheres are obtained from all the obtained center positions of the spheres by the method of least squares, and the direction of the approximate straight line is the X axis and the base sphere is attached perpendicular to the X axis. The coordinate system is set with the direction parallel to the reference plane as the Y-axis and the direction perpendicular to the Y-axis as the Z-axis, and extending from the center position of each sphere to an approximate straight line. It is represented by the length of a perpendicular line.

この手段では、評価用標準器の球体の中心の位置を全ての球体の中心付近を通過する近似直線を基準にした座標系を設定し、各球体の中心の位置から近似直線に延ばした垂線の長さによって真直度を表すことにしている。   In this means, a coordinate system is set with reference to an approximate straight line passing through the vicinity of the center of all the spheres for the position of the center of the sphere of the evaluation standard device, and a perpendicular line extending from the center position of each sphere to the approximate line is set. The straightness is expressed by the length.

さらに、前述の第2の課題を解決するため、本発明に係る非接触座標測定機の真直度評価方法は、特許請求の範囲の請求項3,4に記載の手段を採用する。   Furthermore, in order to solve the second problem described above, the straightness evaluation method for a non-contact coordinate measuring machine according to the present invention employs the means described in claims 3 and 4 of the claims.

即ち、請求項3では、請求項1または2の非接触座標測定機の真直度評価方法において、第2の手順の実行に際して、測定値を得た後に評価用標準器をスライドさせスライドの前の最前方の球体の位置にスライドの後の最後方の球体を位置させて再度測定値を得て、第3の手順の実行に際して、評価用標準器のスライドの前後の測定値からの補正値をスライドの前の最前方の球体の位置とスライドの後の最後方の球体の位置とで2点連鎖法でつなぎ合わせることを特徴とする。   That is, according to claim 3, in the straightness evaluation method of the non-contact coordinate measuring machine according to claim 1 or 2, when the second procedure is executed, after the measurement value is obtained, the evaluation standard is slid before the slide. Position the last sphere after the slide at the position of the foremost sphere, obtain the measurement value again, and when performing the third procedure, set the correction value from the measurement value before and after the slide of the evaluation standard device The position of the foremost sphere before the slide and the position of the last sphere after the slide are connected by a two-point chain method.

この手段では、請求項1または2と同様の作用を奏することに加えて、評価用標準器をスライドさせてスライドの前後の各測定値からの補正値を2点連鎖法でつなぎ合わせることにしている。   In this means, in addition to having the same effect as in the first or second aspect, the evaluation standard is slid and the correction values from the measured values before and after the slide are connected by the two-point chain method. Yes.

また、請求項4では、請求項3の非接触座標測定機の真直度評価方法において、第2の手順の評価用標準器のスライドの前後の姿勢を測定し、第3の手順の2点連鎖法による測定値のつなぎ合わせの際に、評価用標準器のスライドの前後の姿勢を一致させるように補正することを特徴とする。   According to a fourth aspect of the present invention, in the straightness evaluation method for the non-contact coordinate measuring machine according to the third aspect, the posture before and after the slide of the evaluation standard device of the second procedure is measured, and the two-point chain of the third procedure. When the measured values are joined by the method, correction is made so that the postures before and after the slide of the standard device for evaluation match.

この手段では、補正値を2点連鎖法でつなぎ合わせる前に評価用標準器のスライドの前後の姿勢を一致させるように補正することにしている。   In this means, the correction values are corrected so that the postures before and after the slide of the standard device for evaluation match before connecting the correction values by the two-point chain method.

さらに、前述の第2の課題を解決するため、本発明に係る非接触座標測定機の真直度評価装置は、特許請求の範囲の請求項5,6に記載の手段を採用する。   Furthermore, in order to solve the second problem described above, the straightness evaluation apparatus for a non-contact coordinate measuring machine according to the present invention employs means described in claims 5 and 6 of the claims.

即ち、請求項5では、直方体形の基材と基材の長さ方向に間隔を介して固定された複数の球体とからなり非接触座標測定機で球体の中心の位置の真直度について測定される評価用標準器と、評価用標準器の基材に取付けられた反射鏡と、非接触座標測定機に設置され反射鏡に向けて照射した光の反射光から評価用標準器の姿勢を測定するオートコリメータとを備えたことを特徴とする。   That is, in claim 5, the straightness of the center position of the sphere is measured by a non-contact coordinate measuring machine comprising a rectangular parallelepiped base material and a plurality of spheres fixed at intervals in the length direction of the base material. Measure the attitude of the evaluation standard device from the evaluation standard device, the reflecting mirror attached to the base material of the evaluation standard device, and the reflected light of the light installed on the non-contact coordinate measuring machine And an autocollimator that performs the operation.

この手段では、請求項3または4の実施に際して、評価用標準器の基材に取付けられた反射鏡と汎用されているオートコリメータとによって装置を構成するようにしている。   In this means, when the third or fourth aspect is implemented, the apparatus is constituted by a reflecting mirror attached to the base material of the standard device for evaluation and a widely used autocollimator.

また、請求項6では、請求項5の非接触座標測定機の真直度評価装置において、反射鏡とオートコリメータとの間に設置され反射鏡とオートコリメータとの間の光路をV字形にする中継鏡を備えたことを特徴とする。   Further, according to claim 6, in the straightness evaluation apparatus for the non-contact coordinate measuring machine according to claim 5, the relay is installed between the reflecting mirror and the autocollimator so that the optical path between the reflecting mirror and the autocollimator is V-shaped. It is characterized by having a mirror.

この手段では、中継鏡を備えることによって反射鏡とオートコリメータとの間の光路をV字形にしている。   In this means, the optical path between the reflecting mirror and the autocollimator is V-shaped by providing the relay mirror.

本発明に係る非接触座標測定機の真直度評価方法は、請求項1として、ボールバーを評価用標準器として使用して、予め評価用標準器の球体の中心の位置の真直度の校正値を得ておき、評価する非接触座標測定機の測定による評価用標準器の球体の中心の位置の真直度の測定値から校正値を引いて補正値を得ることで評価するため、校正値を得るという準備的な作業が必要になるものの、非接触座標測定機の通常の測定の作業で実施することができるため、評価作業に時間が掛からなくなる効果がある。   A straightness evaluation method for a non-contact coordinate measuring machine according to the present invention is as follows. Claim 1 uses a ball bar as a standard for evaluation, and a calibration value for the straightness of the center position of the sphere of the standard for evaluation in advance. Since the calibration value is obtained by subtracting the calibration value from the straightness measurement value of the center position of the sphere of the evaluation standard device measured by the non-contact coordinate measuring machine to be evaluated, the calibration value is Although a preparatory work of obtaining is required, since it can be carried out by a normal measurement work of a non-contact coordinate measuring machine, there is an effect that the evaluation work does not take time.

また、請求項2として、評価用標準器の球体の中心の位置を全ての球体の中心付近を通過する近似直線を基準にした座標系を設定し、各球体の中心の位置から近似直線に延ばした垂線の長さによって真直度を表すことにしているため、評価をコンピュータ処理する際のプログラムの作成が容易になる効果がある。   Further, as a second aspect of the present invention, a coordinate system based on an approximate straight line passing through the vicinity of the center of all the spheres is set as the position of the center of the sphere of the evaluation standard device, and extended from the center position of each sphere to the approximate straight line. Since the straightness is represented by the length of the vertical line, there is an effect that it is easy to create a program when the evaluation is computer processed.

さらに、本発明に係る非接触座標測定機の真直度評価方法は、請求項3として、請求項1または2と同様の作用を奏することに加えて、評価用標準器をスライドさせてスライドの前後の各測定値からの補正値を2点連鎖法でつなぎ合わせることにしているため、評価作業に時間が掛からなくなる効果があるとともに、真直度の測定範囲が制約されることがなく長尺の範囲の真直度を評価することができる効果がある。   Further, the straightness evaluation method for a non-contact coordinate measuring machine according to the present invention provides the same operation as that of claim 1 or 2 as a third aspect, and slides the evaluation standard device before and after the slide. Since the correction values from the measured values are connected by the two-point chain method, the evaluation work does not take much time, and the straightness measurement range is not restricted and is a long range. There is an effect that the straightness of can be evaluated.

また、請求項4として、補正値を2点連鎖法でつなぎ合わせる前に評価用標準器のスライドの前後の姿勢を一致させるように補正することにしているため、評価用標準器のスライドの前後の姿勢の相違が補正値から排除される効果がある。   Further, since the correction value is corrected so that the postures before and after the slide of the evaluation standard device are matched before connecting the correction values by the two-point chain method, before and after the slide of the evaluation standard device, This has the effect of eliminating the difference in posture from the correction value.

さらに、本発明に係る非接触座標測定機の真直度評価装置は、請求項5として、請求項3または4の実施に際して、評価用標準器の基材に取付けられた反射鏡と汎用されているオートコリメータとによって装置を構成するようにしているため、簡素な装置構成によって請求項3または4の非接触座標測定機の真直度評価方法を実施することができる効果がある。   Furthermore, the straightness evaluation apparatus for a non-contact coordinate measuring machine according to the present invention is widely used as a fifth aspect of the invention, in the implementation of the third or fourth aspect, with a reflecting mirror attached to a base material of an evaluation standard. Since the apparatus is configured by the autocollimator, there is an effect that the straightness evaluation method for a non-contact coordinate measuring machine according to claim 3 or 4 can be implemented with a simple apparatus configuration.

また、請求項6として、中継鏡を備えることによって反射鏡とオートコリメータとの間の光路をV字形にしているため、光路をI字形にすることが困難な非接触座標測定機に対してもオートコリメータを設置することが可能になる効果がある。   In addition, since the optical path between the reflecting mirror and the autocollimator is V-shaped by providing the relay mirror, the non-contact coordinate measuring machine which is difficult to make the optical path I-shaped is provided. There is an effect that an autocollimator can be installed.

本発明に係る非接触座標測定機の真直度評価方法を実施をするための形態の第1例の概略図である。It is the schematic of the 1st example of the form for implementing the straightness evaluation method of the non-contact coordinate measuring machine which concerns on this invention. 図1の実施のために使用される非接触座標測定機の側面図である。It is a side view of the non-contact coordinate measuring machine used for implementation of FIG. 図1で実施される手順のフローチャートである。It is a flowchart of the procedure implemented in FIG. 図1の実施による評価を示すグラフである。It is a graph which shows the evaluation by implementation of FIG. 図1の実施による評価を示すグラフである。It is a graph which shows the evaluation by implementation of FIG. 本発明に係る非接触座標測定機の真直度評価方法を実施をするための形態の第2例および本発明に係る非接触座標測定機の真直度評価装置を実施をするための形態の斜視図であり、(A)に評価用標準器のスライドの前の状態が示され、(B)に評価用標準器のスライドの後の状態が示されている。The perspective view of the form for implementing 2nd example of the form for implementing the straightness evaluation method of the non-contact coordinate measuring machine which concerns on this invention, and the straightness evaluation apparatus of the non-contact coordinate measuring machine which concerns on this invention (A) shows the state before the slide of the evaluation standard device, and (B) shows the state after the slide of the evaluation standard device. 図6で実施される校正値,測定値,補正値の扱いのブロック図である。FIG. 7 is a block diagram of handling of calibration values, measured values, and correction values implemented in FIG. 6. 図6の装置構成の変形例を示す斜視図である。It is a perspective view which shows the modification of the apparatus structure of FIG.

以下、本発明に係る非接触座標測定機の真直度評価方法および真直度評価装置を実施するための形態を図面に基づいて説明する。   EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the straightness evaluation method and straightness evaluation apparatus of the non-contact coordinate measuring machine based on this invention is demonstrated based on drawing.

図1〜図5は、本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第1例を示すものである。   FIGS. 1-5 shows the 1st example of the form for enforcing the straightness evaluation method of the non-contact coordinate measuring machine based on this invention.

第1例は、第1の課題を解決するもので、評価用標準器1としてボールバーを採用している。   The first example solves the first problem and employs a ball bar as the standard device 1 for evaluation.

評価用標準器1は、精密仕上げされた基材11,脚12,13,14,15,球体16,17,18,19からなる。基材11は、直方体形に形成され、基準面となる上面11aに脚12,13,14,15が固定される。脚12,13,14,15は、円柱体形に形成され、基材1の長さ方向に4個が同一の間隔を介して固定され直線状に整列されている。球体16,17,18,19は、真球体形に形成され、脚12,13,14,15の上端部に4個がそれぞれ固定されている。   The evaluation standard device 1 is composed of a precision-finished base material 11, legs 12, 13, 14, 15, and spheres 16, 17, 18, 19. The base material 11 is formed in a rectangular parallelepiped shape, and the legs 12, 13, 14, and 15 are fixed to the upper surface 11a serving as a reference surface. The legs 12, 13, 14, 15 are formed in a columnar shape, and four pieces are fixed in the length direction of the base material 1 through the same interval and aligned linearly. The spheres 16, 17, 18, and 19 are formed in a true sphere shape, and four are fixed to the upper ends of the legs 12, 13, 14, and 15, respectively.

第1の手順としては、評価用標準器1を高精度の接触座標測定機で測定して評価用標準器1の球体16,17,18,19の中心16a,17a,18a,19aの位置の真直度についての校正値Aを得る。   As a first procedure, the evaluation standard 1 is measured with a high-precision contact coordinate measuring machine, and the positions of the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 are measured. A calibration value A for straightness is obtained.

校正値Aを得るためには、まず、基準面とする評価用標準器1の基材11の上面11aを高精度の接触座標測定機による複数箇所の測定から特定する。続いて、高精度の接触座標測定機で測定した評価用標準器1の球体16,17,18,19の外周面の測定分布から最小自乗法によって球体16,17,18,19の中心16a,17a,18a,19aの位置を求める。続いて、求めた評価用標準器1の球体16,17,18,19の4個の中心16a,17a,18a,19aの位置から最小自乗法によって、全ての球体16,17,18,19の中心16a,17a,18a,19a付近を通過する近似直線Lを求める。そして、近似直線Lの方向をX軸とし、X軸に直交し基準面である評価用標準器1の基材11の上面11aに平行な方向をY軸とし、X軸,Y軸に直交する方向をZ軸として座標系を設定する。さらに、評価用標準器1の各球体16,17,18,19の中心16a,17a,18a,19aの位置から近似直線Lに延ばした垂線の長さによって真直度の校正値Aを表すことにする。図1には、評価用標準器1の各球体16,17,18,19の中心16a,17a,18a,19aからの垂線の長さがそれぞれa1,a2,a3,a4として示されている。   In order to obtain the calibration value A, first, the upper surface 11a of the base material 11 of the evaluation standard device 1 serving as a reference surface is specified from measurement at a plurality of locations by a high-accuracy contact coordinate measuring machine. Subsequently, the centers 16a of the spheres 16, 17, 18, 19 are measured by the least square method from the measurement distribution of the outer peripheral surfaces of the spheres 16, 17, 18, 19 of the evaluation standard 1 measured with a high-precision contact coordinate measuring machine. The positions of 17a, 18a, 19a are obtained. Subsequently, all the spheres 16, 17, 18, and 19 are obtained by the least square method from the positions of the four centers 16a, 17a, 18a, and 19a of the obtained spheres 16, 17, 18, and 19 of the evaluation standard device 1. An approximate straight line L passing through the vicinity of the centers 16a, 17a, 18a, 19a is obtained. The direction of the approximate straight line L is the X axis, the direction perpendicular to the X axis and parallel to the upper surface 11a of the base material 11 of the evaluation standard device 1 is the Y axis, and is orthogonal to the X and Y axes. A coordinate system is set with the direction as the Z-axis. Further, the straightness calibration value A is represented by the length of the perpendicular extending from the position of the center 16a, 17a, 18a, 19a of each of the spheres 16, 17, 18, 19 of the evaluation standard 1 to the approximate straight line L. To do. In FIG. 1, the lengths of the perpendiculars from the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 are shown as a1, a2, a3, a4, respectively.

第2の手順としては、校正値Aを得た後に、評価用標準器1を評価しようとする非接触座標測定機2で測定して評価用標準器1の球体16,17,18,19の中心16a,17a,18a,19aの位置の真直度についての測定値Bを得る。   As a second procedure, after obtaining the calibration value A, the evaluation standard 1 is measured by the non-contact coordinate measuring machine 2 to be evaluated, and the spheres 16, 17, 18, 19 of the evaluation standard 1 are measured. A measurement value B is obtained for the straightness of the positions of the centers 16a, 17a, 18a, 19a.

非接触座標測定機2としては、図2に示すように、3軸門形に構成され測定用テーブル21にセットされた被測定物の上方を非接触プローブ22が走査移動されるものが想定されている。評価用標準器1は、被測定物として測定用テーブル21にセットされる。   As shown in FIG. 2, the non-contact coordinate measuring machine 2 is assumed to be configured such that the non-contact probe 22 is scanned and moved above the object to be measured which is configured in a three-axis gate shape and set on the measurement table 21. ing. The evaluation standard 1 is set on the measurement table 21 as an object to be measured.

測定値Bを得るためには、評価しようとする非接触座標測定機2において前述の校正値Aを得るためのプロセスと同様のプロセスが行われる。図1には、評価用標準器1の各球体16,17,18,19の中心16a,17a,18a,19aからの垂線の長さがそれぞれb1,b2,b3,b4として示されている。   In order to obtain the measurement value B, the same process as that for obtaining the calibration value A is performed in the non-contact coordinate measuring machine 2 to be evaluated. In FIG. 1, the lengths of the perpendiculars from the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 are shown as b1, b2, b3, b4, respectively.

第3の手順としては、測定値Bを得た後に、測定値Bのb1,b2,b3,b4から校正値Aのa1,a2,a3,a4を引いて、補正値Cを得る。   As a third procedure, after obtaining the measurement value B, the correction value C is obtained by subtracting the calibration values A1, a2, a3, and a4 from b1, b2, b3, and b4 of the measurement value B.

図1には、評価用標準器1の各球体16,17,18,19の中心16a,17a,18a,19aからの垂線の長さがそれぞれc1(b1−a1),c2(b2−a2),c3(b3−a3),c4(b4−a4)として示されている。   In FIG. 1, the lengths of the perpendicular lines from the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 are c1 (b1-a1) and c2 (b2-a2), respectively. , C3 (b3-a3), c4 (b4-a4).

この補正値Cにおける評価用標準器1の各球体16,17,18,19の中心16a,17a,18a,19aからの垂線の長さc1,c2,c3,c4によって、非接触座標測定機2の真直度を評価することになる。   The non-contact coordinate measuring machine 2 is determined by the perpendicular lengths c1, c2, c3, c4 from the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 at the correction value C. Will be evaluated for straightness.

この評価の信頼性については、図4,図5に示すグラフによって明らかにされている。   The reliability of this evaluation is clarified by the graphs shown in FIGS.

図4,図5のグラフは、縦軸にc1,c2,c3,c4に相当する真直度(mm)をとり、横軸にX軸の位置(mm)をとったもので、本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第1例で得られたc1,c2,c3,c4が実線で示されている。図4は、X軸のZ軸(垂直)方向の真直度を表している。また、図5は、X軸のY軸(平面)方向の真直度を表している。なお、図4,図5のグラフには、この非接触座標測定機2の非接触プローブ22に接触式変位計を取付けて測定した測定値が破線で比較表示されている。   4 and 5, the vertical axis indicates straightness (mm) corresponding to c1, c2, c3, and c4, and the horizontal axis indicates the X-axis position (mm). C1, c2, c3, and c4 obtained in the first example of the embodiment for carrying out the straightness evaluation method of the non-contact coordinate measuring machine are indicated by solid lines. FIG. 4 shows the straightness of the X-axis in the Z-axis (vertical) direction. FIG. 5 shows the straightness of the X-axis in the Y-axis (plane) direction. In the graphs of FIGS. 4 and 5, the measurement values measured by attaching a contact-type displacement meter to the non-contact probe 22 of the non-contact coordinate measuring machine 2 are displayed in comparison with broken lines.

図4,図5のグラフから理解されるように、真直度の評価の対象となる補正値C(c1,c2,c3,c4)が非接触座標測定機2の非接触プローブ22に接触式変位計を取付けて測定した測定値に対して0.001mmまでの差が生じていない。従って、非接触座標測定機2の真直度の評価に充分に対応することができるといえる。   As can be understood from the graphs of FIGS. 4 and 5, the correction value C (c 1, c 2, c 3, c 4) to be evaluated for straightness is applied to the non-contact probe 22 of the non-contact coordinate measuring machine 2 as a contact displacement. There is no difference of up to 0.001 mm with respect to the measured value measured with the meter attached. Therefore, it can be said that it can sufficiently cope with the straightness evaluation of the non-contact coordinate measuring machine 2.

第1例によると、ボールバーを評価用標準器1として使用して、予め評価用標準器1の球体16,17,18,19の中心16a,17a,18a,19aの位置の真直度の校正値Aを得ておき、評価する非接触座標測定機2の測定による評価用標準器1の球体16,17,18,19の中心16a,17a,18a,19aの位置の真直度の測定値Bから校正値Aを引いて補正値Cを得ることで評価することになる。従って、校正値Aを得るという準備的な作業が必要になるものの、評価用標準器1のセットのし直しが不要な非接触座標測定機2の通常の測定の作業で実施することができるため、評価作業に時間が掛からなくなる。   According to the first example, the straightness of the positions of the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 is previously corrected using the ball bar as the evaluation standard 1. A value A is obtained, and a straightness measurement value B of the positions of the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard device 1 by measurement of the non-contact coordinate measuring machine 2 to be evaluated. The correction value C is obtained by subtracting the calibration value A from the evaluation value. Therefore, although a preparatory work for obtaining the calibration value A is required, it is possible to carry out the normal measurement work of the non-contact coordinate measuring machine 2 that does not require re-setting of the evaluation standard device 1. The evaluation work will not take much time.

また、評価用標準器1の球体16,17,18,19の中心16a,17a,18a,19aの位置を全ての球体16,17,18,19の中心16a,17a,18a,19a付近を通過する近似直線Lを基準にした座標系を設定して測定し、各球体16,17,18,19の中心16a,17a,18a,19aの位置から近似直線に延ばした垂線の長さ(a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4)によって真直度を表すことにしている。従って、評価をコンピュータ処理する際のプログラムの作成が容易になる。   Further, the positions of the centers 16a, 17a, 18a, 19a of the spheres 16, 17, 18, 19 of the evaluation standard 1 pass through the vicinity of the centers 16a, 17a, 18a, 19a of all the spheres 16, 17, 18, 19 The measurement is performed by setting a coordinate system based on the approximate straight line L to be measured, and the length of the perpendicular (a1, 1) extending from the position of the center 16a, 17a, 18a, 19a of each sphere 16, 17, 18, 19 to the approximate straight line. The straightness is represented by a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4). Therefore, it is easy to create a program when the evaluation is computer processed.

図6〜図8は、本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第2例と、本発明に係る非接触座標測定機の真直度評価装置を実施するための形態とを示すものである。   FIGS. 6-8 implement the 2nd example of the form for implementing the straightness evaluation method of the non-contact coordinate measuring machine which concerns on this invention, and the straightness evaluation apparatus of the non-contact coordinate measuring machine which concerns on this invention. The form for this is shown.

第1例は、第2の課題を解決するもので、第1例と同一の評価用標準器1をスライドさせて使用する。   The first example solves the second problem and uses the same evaluation standard device 1 as in the first example.

本発明に係る非接触座標測定機の真直度評価装置を実施するための形態では、評価用標準器1をスライダ3に載せて非接触座標測定機2の測定用テーブル21にセットされたレール4の上をスライドすることができるように構成している。   In the form for carrying out the straightness evaluation apparatus for a non-contact coordinate measuring machine according to the present invention, the rail 4 set on the measurement table 21 of the non-contact coordinate measuring machine 2 with the evaluation standard 1 mounted on the slider 3. It is configured to be able to slide on.

さらに、評価用標準器1の基材11の側面11bに反射鏡5が取付けられ、反射鏡5に向けて照射した光の反射光から評価用標準器1の姿勢を測定するオートコリメータ6が非接触座標測定機2の測定用テーブル21等に設置されている。   Further, the reflecting mirror 5 is attached to the side surface 11b of the base material 11 of the evaluation standard device 1, and the autocollimator 6 that measures the posture of the evaluation standard device 1 from the reflected light irradiated toward the reflecting mirror 5 is not used. It is installed on the measurement table 21 of the contact coordinate measuring machine 2 or the like.

この本発明に係る非接触座標測定機の真直度評価装置を実施するための形態を使用した本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第2例では、第1例の第2の手順の実行に際して、最初に測定値B−1(b1,b2,b3,b4)を得た後に評価用標準器1をスライドさせスライドの前の最前方の球体19の位置にスライドの後の最後方の球体16を位置させて再度の測定値B−2(b5,b6,b7,b8)を得る。   In the second example of the form for carrying out the straightness evaluation method of the non-contact coordinate measuring machine according to the present invention using the form for carrying out the straightness evaluating apparatus of the non-contact coordinate measuring machine according to the present invention, When the second procedure of the first example is executed, the evaluation standard 1 is slid after the measurement value B-1 (b1, b2, b3, b4) is first obtained, and the frontmost sphere 19 before the slide is moved. The last sphere 16 after the slide is positioned at the position, and the measured value B-2 (b5, b6, b7, b8) is obtained again.

そして、第1例の第3の手順の実行に際して、測定値B−1(b1,b2,b3,b4),B−2(b5,b6,b7,b8)からそれぞれ補正値C−1(c1,c2,c3,c4),C−2(c5,c6,c7,c8)を得た後に、オートコリメータ6で測定した評価用標準器1のスライドの前後の姿勢(近似直線Lの角度)を一致させるように補正し、補正値C−1(c1,c2,c3,c4),C−2(c5,c6,c7,c8)を評価用標準器1のスライドの前後で重複した球体19,16の中心19a,16aの位置で2点連鎖法でつなぎ合わせることで、最終的な補正値C−3を得る。   When the third procedure of the first example is executed, the correction values C-1 (c1) from the measurement values B-1 (b1, b2, b3, b4) and B-2 (b5, b6, b7, b8) are respectively obtained. , C2, c3, c4), C-2 (c5, c6, c7, c8), the posture of the evaluation standard device 1 before and after the slide (angle of the approximate straight line L) measured by the autocollimator 6 is obtained. The spheres 19, which are corrected so as to coincide with each other and the correction values C-1 (c1, c2, c3, c4) and C-2 (c5, c6, c7, c8) are overlapped before and after the slide of the evaluation standard device 1, The final correction value C-3 is obtained by connecting the 16 centers 19a and 16a by the two-point chain method.

本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第2例によると、評価用標準器1をスライドさせてスライドの前後の測定値B−1(b1,b2,b3,b4),B−2(b5,b6,b7,b8)からの補正値C−1(c1,c2,c3,c4),C−2(c5,c6,c7,c8)を2点連鎖法でつなぎ合わせることにしているため、真直度の測定範囲が制約されることがなく長尺の範囲の真直度を評価することができる。   According to the second example of the embodiment for carrying out the straightness evaluation method of the non-contact coordinate measuring machine according to the present invention, the evaluation standard 1 is slid to measure the measured values B-1 (b1, b2, b1 and b2) before and after the slide. b3, b4), B-2 (b5, b6, b7, b8) correction values C-1 (c1, c2, c3, c4), C-2 (c5, c6, c7, c8) are linked in two points. Therefore, the straightness measurement range is not restricted and the straightness of the long range can be evaluated.

また、補正値C−1(c1,c2,c3,c4),C−2(c5,c6,c7,c8)を2点連鎖法でつなぎ合わせる前に、評価用標準器1のスライドの前後の姿勢を一致させるように補正することにしているため、評価用標準器1のスライドの前後の姿勢の相違が補正値C−1(c1,c2,c3,c4),C−2(c5,c6,c7,c8)から排除される。   Before the correction values C-1 (c1, c2, c3, c4) and C-2 (c5, c6, c7, c8) are joined by the two-point chain method, before and after the slide of the evaluation standard 1 Since the postures are corrected so as to coincide with each other, the difference between the postures before and after the slide of the evaluation standard device 1 is corrected by the correction values C-1 (c1, c2, c3, c4), C-2 (c5, c6). , C7, c8).

なお、第2例では、その他の点について第1例と同様の作用効果が奏される。   In addition, in the 2nd example, the effect similar to a 1st example is show | played about another point.

本発明に係る非接触座標測定機の真直度評価装置を実施するための形態によると、評価用標準器1の基材11に取付けられた反射鏡5と、汎用されているオートコリメータ6とによって装置を構成するようにしている。従って、簡素な装置構成によって本発明に係る非接触座標測定機の真直度評価方法を実施するための形態の第2例を実施することができる。   According to the form for implementing the straightness evaluation apparatus of the non-contact coordinate measuring machine which concerns on this invention, by the reflecting mirror 5 attached to the base material 11 of the standard device 1 for evaluation, and the widely used autocollimator 6 The device is configured. Therefore, the 2nd example of the form for implementing the straightness evaluation method of the non-contact coordinate measuring machine concerning the present invention with a simple device composition can be carried out.

なお、図8には、反射鏡5,オートコリメータ6の間に中継鏡7を設置して、光路がV字形になるように構成している。   In FIG. 8, the relay mirror 7 is installed between the reflecting mirror 5 and the autocollimator 6 so that the optical path is V-shaped.

図8に示した本発明に係る非接触座標測定機の真直度評価装置の変形例によると、光路をI字形にすることが困難な非接触座標測定機2に対してもオートコリメータ6を設置することが可能になる。   According to the modification of the straightness evaluation apparatus for a non-contact coordinate measuring machine according to the present invention shown in FIG. 8, the autocollimator 6 is also installed for the non-contact coordinate measuring machine 2 in which it is difficult to make the optical path into an I-shape. It becomes possible to do.

以上、図示した各例の外に、評価用標準器1の球体16,17,18,19を2個,3個または5個以上とすることも可能である。   As described above, in addition to the illustrated examples, the number of spheres 16, 17, 18, and 19 of the evaluation standard device 1 can be two, three, or five or more.

さらに、評価用標準器1を非接触座標測定機2の測定用テーブル21へのセットについては、X軸,Y軸,Z軸のいずれか1つの方向や複数の方向に設定することが可能である。   Further, regarding the setting of the evaluation standard device 1 on the measurement table 21 of the non-contact coordinate measuring machine 2, it is possible to set in any one direction or a plurality of directions of the X axis, the Y axis, and the Z axis. is there.

図4,図5のグラフで示した数値を得るための評価用標準器1については、基材11を断面形状が1辺40mmの正方形で長さが360mmの低熱膨張のセラミックスバー材とし、球体16,17,18,19を直径25.4mmの玉軸受用鋼球(JIS 1501)の表面をブラスト処理してTiNコーティングしたものを用い中心16a,17a,18a,19aの間隔を100mmに設定している。   For the evaluation standard device 1 for obtaining the numerical values shown in the graphs of FIGS. 4 and 5, the base material 11 is a square bar having a cross-sectional shape of 40 mm on one side and a low thermal expansion ceramic bar material having a length of 360 mm. 16, 17, 18, and 19 are sphere-treated steel balls for ball bearings (JIS 1501) with a diameter of 25.4 mm (JIS 1501) and TiN coating is used, and the distance between the centers 16 a, 17 a, 18 a, and 19 a is set to 100 mm. ing.

1 評価用標準器
11 基材
16,17,18,19 球体
2 非接触座標測定機
5 反射鏡
6 オートコリメータ
7 中継鏡
A 校正値
B 測定値
C 補正値
DESCRIPTION OF SYMBOLS 1 Standard device for evaluation 11 Base material 16, 17, 18, 19 Sphere 2 Non-contact coordinate measuring machine 5 Reflector 6 Auto collimator 7 Relay mirror A Calibration value B Measurement value C Correction value

Claims (6)

直方体形の基材と基材の長さ方向に間隔を介して固定された複数の球体とからなる評価用標準器を高精度の接触座標測定機で測定して評価用標準器の球体の中心の位置の真直度についての校正値を得る第1の手順と、評価する非接触座標測定機で評価用標準器を測定して評価用標準器の球体の中心の位置の真直度についての測定値を得る第2の手順と、測定値から校正値を引いた補正値から非接触座標測定機の真直度を評価する第3の手順とを実行することを特徴とする非接触座標測定機の真直度評価方法。   The center of the sphere of the evaluation standard device is measured by measuring a standard device for evaluation consisting of a rectangular parallelepiped base material and a plurality of spheres fixed at intervals in the length direction of the base material with a high-precision contact coordinate measuring machine. A first procedure for obtaining a calibration value for the straightness of the position of the object, and a measured value for the straightness of the center position of the sphere of the evaluation standard by measuring the evaluation standard with the non-contact coordinate measuring machine to be evaluated And a third procedure for evaluating the straightness of the non-contact coordinate measuring machine from the correction value obtained by subtracting the calibration value from the measured value. Degree evaluation method. 請求項1の非接触座標測定機の真直度評価方法において、評価用標準器の球体の中心の位置の真直度は、球体の外周面の測定分布から最小自乗法によってそれぞれ求めた球体の中心の位置の全てから最小自乗法によって全ての球体の中心付近を通過する近似直線を求め、近似直線の方向をX軸としX軸に直交し基材の球体が取付けられている面を基準面とした場合に基準面に平行な方向をY軸としX軸,Y軸の双方に直交する方向をZ軸として座標系を設定し、各球体の中心の位置から近似直線に延ばした垂線の長さによって表すものであることを特徴とする非接触座標測定機の真直度評価方法。   The straightness evaluation method of the non-contact coordinate measuring machine according to claim 1, wherein the straightness of the center position of the sphere of the standard device for evaluation is determined by the least square method from the measurement distribution of the outer peripheral surface of the sphere. Approximate straight lines that pass near the center of all the spheres are obtained from all positions by the least square method, and the direction of the approximate straight line is the X axis, and the surface on which the base sphere is attached perpendicular to the X axis is used as the reference plane. In this case, the coordinate system is set with the direction parallel to the reference plane as the Y axis and the direction orthogonal to both the X axis and the Y axis as the Z axis, and depending on the length of the perpendicular extending from the center position of each sphere to the approximate line A straightness evaluation method for a non-contact coordinate measuring machine, characterized by: 請求項1または2の非接触座標測定機の真直度評価方法において、第2の手順の実行に際して、測定値を得た後に評価用標準器をスライドさせスライドの前の最前方の球体の位置にスライドの後の最後方の球体を位置させて再度測定値を得て、第3の手順の実行に際して、評価用標準器のスライドの前後の測定値からの補正値をスライドの前の最前方の球体の位置とスライドの後の最後方の球体の位置とで2点連鎖法でつなぎ合わせることを特徴とする非接触座標測定機の真直度評価方法。   3. The straightness evaluation method for a non-contact coordinate measuring machine according to claim 1 or 2, wherein when the second procedure is executed, after the measurement value is obtained, the evaluation standard is slid to the position of the foremost sphere before the slide. Position the last sphere after the slide and obtain the measurement value again. When executing the third procedure, the correction value from the measurement value before and after the slide of the standard for evaluation is set to the frontmost position before the slide. A straightness evaluation method for a non-contact coordinate measuring machine, wherein the position of the sphere and the position of the last sphere after the slide are connected by a two-point chain method. 請求項3の非接触座標測定機の真直度評価方法において、第2の手順の評価用標準器のスライドの前後の姿勢を測定し、第3の手順の2点連鎖法による測定値のつなぎ合わせの際に、評価用標準器のスライドの前後の姿勢を一致させるように補正することを特徴とする非接触座標測定機の真直度評価方法。   4. The straightness evaluation method for a non-contact coordinate measuring machine according to claim 3, wherein the posture before and after the slide of the standard device for evaluation in the second procedure is measured, and the measured values are joined by the two-point chain method in the third procedure. In this case, a straightness evaluation method for a non-contact coordinate measuring machine, wherein correction is made so that the postures before and after the slide of the standard device for evaluation match. 直方体形の基材と基材の長さ方向に間隔を介して固定された複数の球体とからなり非接触座標測定機で球体の中心の位置の真直度について測定される評価用標準器と、評価用標準器の基材に取付けられた反射鏡と、非接触座標測定機に設置され反射鏡に向けて照射した光の反射光から評価用標準器の姿勢を測定するオートコリメータとを備えたことを特徴とする非接触座標測定機の真直度評価装置。   A standard for evaluation consisting of a rectangular parallelepiped base material and a plurality of spheres fixed at intervals in the length direction of the base material, and measuring the straightness of the center position of the sphere with a non-contact coordinate measuring machine; A reflection mirror attached to the base material of the evaluation standard device and an autocollimator that is installed in a non-contact coordinate measuring machine and measures the posture of the evaluation standard device from the reflected light irradiated toward the reflection mirror A straightness evaluation apparatus for a non-contact coordinate measuring machine. 請求項5の非接触座標測定機の真直度評価装置において、反射鏡とオートコリメータとの間に設置され反射鏡とオートコリメータとの間の光路をV字形にする中継鏡を備えたことを特徴とする非接触座標測定機の真直度評価装置。   6. The straightness evaluation apparatus for a non-contact coordinate measuring machine according to claim 5, further comprising a relay mirror that is installed between the reflecting mirror and the autocollimator and makes the optical path between the reflecting mirror and the autocollimator V-shaped. Straightness evaluation device for non-contact coordinate measuring machine.
JP2011247081A 2011-11-11 2011-11-11 Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device Pending JP2013104703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247081A JP2013104703A (en) 2011-11-11 2011-11-11 Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247081A JP2013104703A (en) 2011-11-11 2011-11-11 Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device

Publications (1)

Publication Number Publication Date
JP2013104703A true JP2013104703A (en) 2013-05-30

Family

ID=48624362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247081A Pending JP2013104703A (en) 2011-11-11 2011-11-11 Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device

Country Status (1)

Country Link
JP (1) JP2013104703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074455A (en) * 2017-10-18 2019-05-16 株式会社浅沼技研 Inspection master, reference member for inspection master, and method for confirming measurement traceability of optical three-dimensional measuring instrument
CN114674273A (en) * 2022-04-21 2022-06-28 核工业理化工程研究院 Measuring device and method for measuring cylinder straightness by three-coordinate measuring machine
JP7588025B2 (en) 2021-04-07 2024-11-21 株式会社ミツトヨ Calibration Method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074455A (en) * 2017-10-18 2019-05-16 株式会社浅沼技研 Inspection master, reference member for inspection master, and method for confirming measurement traceability of optical three-dimensional measuring instrument
JP7588025B2 (en) 2021-04-07 2024-11-21 株式会社ミツトヨ Calibration Method
CN114674273A (en) * 2022-04-21 2022-06-28 核工业理化工程研究院 Measuring device and method for measuring cylinder straightness by three-coordinate measuring machine
CN114674273B (en) * 2022-04-21 2024-02-09 核工业理化工程研究院 Measuring device and method for measuring straightness of cylinder by three-coordinate measuring machine

Similar Documents

Publication Publication Date Title
KR100616483B1 (en) Gauge for 3-D Coordinate Measuring Machine
Wendt et al. Measuring large 3D structures using four portable tracking laser interferometers
CN105157606B (en) Contactless complicated optical surface profile high precision three-dimensional measurement method and measurement apparatus
CN102538727B (en) Machine calibration artifact
CN101975560B (en) An optical detection method for the parallelism between the surface array CCD target surface and the installation positioning surface
JP2001330428A (en) Method for evaluating measurement error of three-dimensional measuring machine and gauge for three-dimensional measuring machine
CN111795644B (en) Positive intersection point laser double-measuring head pose calibration test piece
WO2000079216A1 (en) Ball step gauge
JP2012058057A (en) Gage for three-dimensional coordinate measuring instrument and precision evaluation method for three-dimensional coordinate measuring instrument
CN110470239A (en) A kind of laser profile sensor calibration system and method based on crosspoint
CN103528526B (en) Morphology compensation type three-optical-axis linear displacement laser interferometer calibration method and device
JP2013104703A (en) Method for evaluating straightness of non-contact type coordinate measuring machine, and straightness evaluation device
CN103528525B (en) Three-optical axis compensation and air bath type linear displacement laser interferometer calibration method and device
US11774227B2 (en) Inspection gauge for coordinate measuring apparatus and abnormality determination method
CN101825453A (en) Temperature error compensation method for three-coordinate measuring machine with cylindrical-coordinate system
Zapico et al. Extrinsic calibration of a conoscopic holography system integrated in a CMM
CN103499278B (en) Method and device for calibrating morphology compensation type four-optical-axis linear displacement laser interferometer
KR102093556B1 (en) Geometric error measuring method and computer readable record medium having program recorded for executing same
CN103499279B (en) Linear displacement laser interferometer calibration method and device based on three standard optical axes
JP2012108100A (en) Long gauge for three-dimensional measuring instrument
JP6181935B2 (en) Coordinate measuring machine
KR101480210B1 (en) Method to measure geometric error of linear feed system
Khan et al. Squareness perpendicularity measuring techniques in multiaxis machine tools
JP2010210372A (en) Reference member for inspection master in optical three-dimensional measuring machine
Neuschaefer-Rube et al. Recent developments of the 3D fiber probe