JP2013099132A - Power system control system and power system control method - Google Patents
Power system control system and power system control method Download PDFInfo
- Publication number
- JP2013099132A JP2013099132A JP2011240336A JP2011240336A JP2013099132A JP 2013099132 A JP2013099132 A JP 2013099132A JP 2011240336 A JP2011240336 A JP 2011240336A JP 2011240336 A JP2011240336 A JP 2011240336A JP 2013099132 A JP2013099132 A JP 2013099132A
- Authority
- JP
- Japan
- Prior art keywords
- power
- output
- command value
- reactive power
- reactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 8
- 238000010248 power generation Methods 0.000 claims abstract description 68
- 238000005259 measurement Methods 0.000 claims description 28
- 239000002803 fossil fuel Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 abstract description 19
- 230000008859 change Effects 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本発明は、電力系統全体の高効率な運用を目的とした電力系統制御システム及び電力系統制御方法に関するものである。 The present invention relates to a power system control system and a power system control method for the purpose of highly efficient operation of the entire power system.
従来の主たる電力供給は、火力、水力、原子力発電所に設置される大型の発電機から需要家側に略一方向に行われている。この電力供給には、需要家側で消費される有効電力の他に、需要家側での電圧を維持するための無効電力が含まれている。しかしながら、先の発電所は需要家から地理的に遠い場所にあるため、需要家までの送電距離が長く、無効電力に伴う位相ずれによる力率の低下が大きい。そのため、需要家近傍において、調相リアクトルや調相コンデンサ等の調相器を用いて力率の改善が行われている。また、無効電力の長距離送電を行うと系統配線での損失が大きくなる他、系統配線の容量が決まっていることから、送電可能な有効電力量が低下してしまう。 Conventional main power supply is performed in one direction from a large generator installed in a thermal power plant, a hydropower plant, or a nuclear power plant to a customer side. This power supply includes reactive power for maintaining the voltage on the consumer side in addition to the active power consumed on the consumer side. However, since the previous power plant is geographically far from the customer, the power transmission distance to the customer is long, and the power factor is greatly reduced due to the phase shift caused by reactive power. Therefore, the power factor is improved in the vicinity of the customer by using a phase adjuster such as a phase adjusting reactor or a phase adjusting capacitor. In addition, when reactive power is transmitted over long distances, the loss in the system wiring increases, and the capacity of the system wiring is determined, so that the amount of active power that can be transmitted decreases.
また近年では、太陽光等の再生可能エネルギーから電力を得る分散型電源が数多く電力系統に連系されつつあり、分散型電源に備えられる電力変換装置(パワーコンディショナ)から発電に伴う電力が需要家側から系統に逆潮流されるようになってきている。しかしながら、このような逆潮流が多くなると、分散型電源の系統との連系点にて電圧値が上昇するといった問題が懸念されるようになってきた。電圧値が上昇すると、先の調相器で電圧上昇を抑制しようと動作するが、その調整量には限度がある。例えば日中に太陽光発電出力が大きくなると(太陽光発電が大量導入された地域では特に)、調相器の調整可能な容量を超えてしまう場合が想定される。この場合、電圧値上昇の許容範囲の逸脱を回避するため、分散型電源にて出力抑制するように動作するが、当然ながら系統への出力機会損失となる。 In recent years, many distributed power sources that obtain power from renewable energy such as sunlight have been linked to the power system, and there is a demand for power associated with power generation from power converters (power conditioners) provided in the distributed power sources. It is starting to flow back to the grid from the house side. However, when such a reverse power flow increases, there is a concern that the voltage value increases at the connection point with the distributed power supply system. When the voltage value rises, the previous phase adjuster operates to suppress the voltage rise, but the amount of adjustment is limited. For example, when the solar power output increases during the daytime (especially in regions where a large amount of solar power is introduced), it may be assumed that the adjustable capacity of the phase adjuster is exceeded. In this case, in order to avoid the deviation of the allowable range of the voltage value increase, the operation is performed so as to suppress the output with the distributed power source, but naturally, the output opportunity is lost to the system.
そこで、例えば特許文献1において、分散型電源が無効電力を系統に出力することが提案されている。需要家に設置された分散型電源は、系統との連系点の電圧値に応じて、通常運転、無効電力出力、出力抑制、解列等の判定閾値を設定している。そして、通常運転時に連系点の電圧値が上昇すると、出力抑制の前に無効電力を出力する制御に切り替え、出力機会損失が極力生じないようになっている。また同文献1では、系統上の起点位置からの需要家の距離に応じて判定閾値を異なるものとし、需要家の地理的な違いから出力機会(売電機会)に不公平感が生じないようにしている。 Thus, for example, Patent Document 1 proposes that a distributed power source outputs reactive power to the system. A distributed power source installed in a consumer sets determination thresholds such as normal operation, reactive power output, output suppression, and disconnection in accordance with the voltage value at the connection point with the grid. And if the voltage value of a connection point rises at the time of a normal driving | operation, it will switch to the control which outputs reactive power before output suppression, and an output opportunity loss will not arise as much as possible. Also, in the same document 1, the determination threshold value is different according to the distance of the consumer from the starting position on the system so that an unfair feeling does not occur in the output opportunity (power sale opportunity) due to the geographical difference of the consumer. I have to.
また、例えば特許文献2において、分散型電源が系統に出力する有効電力に応じた無効電力を出力する提案もなされている。つまり、同文献2では、出力する有効電力が系統電圧に及ぼす影響(電圧変動)を小さくする無効電力の算出が行われ、該算出に基づく無効電力の注入により系統電圧の安定化が可能になるとしている。 Further, for example, in Patent Document 2, a proposal has been made to output reactive power according to active power output from a distributed power source to a system. That is, in the literature 2, reactive power is calculated to reduce the influence (voltage fluctuation) of the active power to be output on the system voltage, and the system voltage can be stabilized by injecting reactive power based on the calculation. It is said.
ところで、太陽光、風力を用いるソーラープラントやウインドファームといった大規模な再生可能エネルギーの発電所から系統に電力を供給するような場合では、系統電圧の維持を図るために必要な無効電力の多くを火力発電所から供給することになる。上記したように、遠隔地にある火力発電所からの無効電力の送電は損失が大きく有効電力の送電量増大の妨げとなるため、こういった大規模な再生可能エネルギーの発電を行う場合も考慮して、電力系統全体で効率的な送電を行うことを考慮する必要があった。 By the way, in the case where power is supplied to the system from a large-scale renewable energy power plant such as a solar plant or wind farm that uses sunlight or wind power, much of the reactive power necessary to maintain the system voltage is saved. It will be supplied from a thermal power plant. As mentioned above, reactive power transmission from remote thermal power plants is lossy and hinders the increase in the amount of active power transmission, so consider the case of generating such a large amount of renewable energy. Therefore, it was necessary to consider performing efficient power transmission in the entire power system.
そういった観点で特許文献1,2を見てみると、特許文献1に開示の技術では、系統の他の分散型電源の挙動を考慮して、通常運転、無効電力出力、出力抑制、解列等の判定閾値を需要家の距離に応じて変更しているものの、分散型電源以外の他の電力機器の挙動や配線損失までは考慮されてはいない。電力系統全体で効果的な無効電力の制御が行われているとは言えなかった。 Looking at Patent Documents 1 and 2 from this point of view, the technology disclosed in Patent Document 1 considers the behavior of other distributed power sources in the system, normal operation, reactive power output, output suppression, disconnection, etc. Although the determination threshold is changed according to the distance of the customer, the behavior of other power devices other than the distributed power source and the wiring loss are not taken into consideration. It cannot be said that the reactive power control is effectively performed in the entire power system.
また特許文献2に開示の技術においても、系統の他の分散型電源(太陽光発電システム)の挙動や分散型電源以外の他の電力機器の挙動、配線損失等の考慮がなされていないため、こちらの技術においても電力系統全体で効果的な無効電力の制御が行われているとは言えなかった。 Also in the technology disclosed in Patent Document 2, consideration is not given to the behavior of other distributed power sources (solar power generation system) of the system, the behavior of other power devices other than the distributed power source, wiring loss, etc. Even in this technology, it cannot be said that the reactive power is effectively controlled in the entire power system.
本発明は、上記課題を解決するためになされたものであって、その目的は、電力系統全体で効率的な送電を行うことができる電力系統制御システム及び電力系統制御方法を提供することにある。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a power system control system and a power system control method capable of performing efficient power transmission in the entire power system. .
上記課題を解決するために、請求項1に記載の発明は、所定電力系統上の任意ノードでの時刻同期測定による同時刻の少なくとも電圧及び位相を取得する測定値取得手段と、前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得する電力値取得手段と、前記取得した任意ノードの同時刻の電圧、位相、有効電力及び無効電力を少なくとも用いて任意ノード間の配線損失を算出し、前記電力系統の総配線損失を取得する配線損失取得手段と、前記電力系統への有効電力又は無効電力の出力が可能な制御対象の出力指令値であり、前記電力系統の総配線損失が小となるような前記制御対象の出力指令値を算出する出力指令値算出手段と、前記算出した出力指令値に基づいて前記制御対象を制御する系統制御手段とを備えたことをその要旨とする。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that measured value acquisition means for acquiring at least voltage and phase at the same time by time synchronous measurement at an arbitrary node on a predetermined power system, and the acquired same value. Power value acquisition means for acquiring active power and reactive power of the arbitrary node using at least the voltage and phase of time, and arbitrary using at least the acquired voltage, phase, active power and reactive power of the arbitrary node at the same time The wiring loss acquisition means for calculating the wiring loss between nodes and acquiring the total wiring loss of the power system, and the output command value of the control target capable of outputting active power or reactive power to the power system, Output command value calculation means for calculating the output command value of the control target so that the total wiring loss of the power system is small, and the control target is controlled based on the calculated output command value That a control control unit as its gist.
この発明では、電力系統上の任意ノードでの同時刻の電圧及び位相が少なくとも取得され、該取得値から任意ノードの有効電力及び無効電力が取得される。これら同時刻の少なくとも電圧、位相、有効電力及び無効電力から任意ノード間の配線損失が算出され、電力系統の総配線損失の取得が可能となる。そして、有効電力又は無効電力の系統出力が可能な制御対象に対し、電力系統の総配線損失が小となるような出力指令値が算出され、該出力指令値に基づいて制御対象が制御される。これにより、各制御対象では電力系統の総配線損失が小となるような出力制御がなされるため、電力系統の送電効率の向上が可能となる。 In the present invention, at least the voltage and phase at the same time at an arbitrary node on the power system are acquired, and the active power and reactive power of the arbitrary node are acquired from the acquired value. The wiring loss between arbitrary nodes is calculated from at least the voltage, phase, active power, and reactive power at the same time, and the total wiring loss of the power system can be obtained. Then, an output command value that reduces the total wiring loss of the power system is calculated for a control target capable of system output of active power or reactive power, and the control target is controlled based on the output command value. . As a result, output control is performed so that the total wiring loss of the power system is small in each control target, and thus the transmission efficiency of the power system can be improved.
請求項2に記載の発明は、請求項1に記載の電力系統制御システムにおいて、前記制御対象は、有効電力及び無効電力の系統出力が可能な分散型電源、無効電力の系統出力が可能な調相器を含み、前記出力指令値算出手段は、前記分散型電源が出力する有効電力を最大化する一方、前記分散型電源が出力する無効電力、前記調相器が出力する無効電力、前記電力系統の総配線損失が最小化するような前記制御対象の出力指令値を算出することをその要旨とする。 According to a second aspect of the present invention, in the power system control system according to the first aspect, the control target is a distributed power source capable of system output of active power and reactive power, and a control capable of system output of reactive power. The output command value calculating means maximizes the active power output from the distributed power supply, while the reactive power output from the distributed power supply, the reactive power output from the phase adjuster, and the power The gist is to calculate the output command value of the controlled object so that the total wiring loss of the system is minimized.
この発明では、制御対象として分散型電源及び調相器が含まれ、分散型電源が出力する有効電力を最大化する一方、分散型電源が出力する無効電力、調相器が出力する無効電力、電力系統の総配線損失が最小化するような制御対象の出力指令値が算出され、制御対象が制御される。これにより、電力消費地の近隣に配置されることが多い分散型電源や調相器から好適に無効電力が注入されて電力系統の総配線損失を低減させつつ、分散型電源が出力する有効電力量を増加させることが可能となる。 In the present invention, the distributed power source and the phase adjuster are included as control targets, and the active power output from the distributed power source is maximized while the reactive power output from the distributed power source, the reactive power output from the phase adjuster, An output command value for the controlled object that minimizes the total wiring loss of the power system is calculated, and the controlled object is controlled. As a result, reactive power is preferably injected from distributed power supplies and phase adjusters that are often placed near power consumption areas, reducing the total wiring loss of the power system, and effective power output from the distributed power supply The amount can be increased.
請求項3に記載の発明は、請求項1に記載の電力系統制御システムにおいて、前記制御対象は、有効電力及び無効電力の系統出力が可能な分散型電源、無効電力の系統出力が可能な調相器を含み、前記出力指令値算出手段は、前記分散型電源が出力する有効電力を最大化する一方、前記調相器が出力する無効電力、前記電力系統の総配線損失が最小化するような前記制御対象の出力指令値を算出することをその要旨とする。 According to a third aspect of the present invention, in the power system control system according to the first aspect, the control target is a distributed power source capable of system output of active power and reactive power, and a control capable of system output of reactive power. The output command value calculation means includes a phase shifter so as to maximize the active power output from the distributed power source, while minimizing the reactive power output from the phase adjuster and the total wiring loss of the power system. The gist is to calculate the output command value of the control object.
この発明では、制御対象として分散型電源及び調相器が含まれ、分散型電源が出力する有効電力を最大化する一方、調相器が出力する無効電力、電力系統の総配線損失が最小化するような制御対象の出力指令値が算出され、制御対象が制御される。これにより、電力消費地の近隣に配置されることが多い調相器から好適に無効電力が注入されて電力系統の総配線損失を低減させつつ、分散型電源が出力する有効電力量を増加させることが可能となる。この場合、調相器が出力する無効電力の負担が増加する分、分散型電源が出力する有効電力量を増加できる。 In this invention, a distributed power source and a phase adjuster are included as objects to be controlled, and the active power output from the distributed power source is maximized, while the reactive power output from the phase adjuster and the total wiring loss of the power system are minimized. The output command value of the controlled object is calculated, and the controlled object is controlled. As a result, reactive power is preferably injected from the phase adjuster that is often placed in the vicinity of the power consumption area to reduce the total wiring loss of the power system, and increase the amount of active power output by the distributed power source. It becomes possible. In this case, the amount of active power output by the distributed power source can be increased by the amount of reactive power output from the phase adjuster increased.
請求項4に記載の発明は、請求項2又は3に記載の電力系統制御システムにおいて、前記制御対象は、更に化石燃料を使用する発電所発電設備を含み、前記出力指令値算出手段は、前記発電所発電設備が出力する有効電力及び無効電力を含んで最小化するような前記制御対象の出力指令値を算出することをその要旨とする。 According to a fourth aspect of the present invention, in the power system control system according to the second or third aspect, the control target further includes a power plant power generation facility that uses fossil fuel, and the output command value calculating means includes The gist of the invention is to calculate the output command value of the control object that minimizes including the active power and reactive power output from the power plant power generation equipment.
この発明では、制御対象として更に化石燃料を使用する発電所発電設備が含まれ、発電所発電設備が出力する有効電力及び無効電力を含んで最小化するような制御対象の出力指令値が算出され、制御対象が制御される。これにより、化石燃料を使用する発電所発電機の出力の最小化が図られることから、化石燃料の使用量削減、二酸化炭素の排出削減に大きく寄与できる。 In this invention, a power plant power generation facility that further uses fossil fuel as a control target is included, and an output command value for the control target that minimizes including the active power and reactive power output by the power plant power generation facility is calculated. The controlled object is controlled. As a result, the output of the power plant generator using fossil fuel can be minimized, which can greatly contribute to the reduction of fossil fuel usage and the reduction of carbon dioxide emissions.
請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の電力系統制御システムにおいて、前記出力指令値算出手段は、前記取得した任意ノードの電圧、有効電力、無効電力を少なくとも用い、その有効電力及び無効電力の一方又は両者の時間変化量を加味して最小化するような前記制御対象の出力指令値を算出することをその要旨とする。 According to a fifth aspect of the present invention, in the power system control system according to any one of the first to fourth aspects, the output command value calculating means calculates the acquired voltage, active power, and reactive power of any node. The gist of the invention is to calculate an output command value of the control target that is used at least and minimizes the amount of time change of one or both of the active power and reactive power.
この発明では、任意ノードの有効電力及び無効電力の一方又は両者の時間変化量が加味されて最小化するような制御対象の出力指令値が算出され、制御対象が制御される。これにより、系統事故等による系統電圧低下が発生した場合であっても、速やかに反応して制御対象を通じて速やかな系統電圧復帰が可能となる。 In the present invention, the output command value of the control object is calculated so as to be minimized by taking into account the time change amount of one or both of the active power and the reactive power of the arbitrary node, and the control object is controlled. As a result, even if a system voltage drop occurs due to a system fault or the like, it is possible to react quickly and quickly recover the system voltage through the controlled object.
請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の電力系統制御システムにおいて、前記制御対象の出力指令値は、無効電力指令値であることをその要旨とする。
この発明では、無効電力指令値を通じて各制御対象に対して電力系統の総配線損失が小となるような出力制御がなされ、電力系統の送電効率の向上が図られる。また、出力指令値として無効電力指令値のみとすれば、指令値の算出、制御対象への指令値の出力が容易となる。
The gist of the invention described in claim 6 is the power system control system according to any one of claims 1 to 5, wherein the output command value to be controlled is a reactive power command value.
In this invention, output control is performed such that the total wiring loss of the power system is reduced for each control target through the reactive power command value, and transmission efficiency of the power system is improved. Further, if only the reactive power command value is used as the output command value, it is easy to calculate the command value and output the command value to the controlled object.
請求項7に記載の発明は、請求項1〜6のいずれか1項に記載の電力系統制御システムにおいて、前記制御対象は、分散型電源として太陽光発電システムを含むことをその要旨とする。 The gist of the invention described in claim 7 is that, in the power system control system according to any one of claims 1 to 6, the controlled object includes a photovoltaic power generation system as a distributed power source.
この発明では、制御対象の分散型電源として太陽光発電システムが制御対象に含まれ、太陽光発電システムを通じて電力系統の送電効率の向上が図られる。また、導入が進む太陽光発電システムを制御対象とすることで、制御の効果は大きい。 In this invention, a photovoltaic power generation system is included in the controlled object as a distributed power source to be controlled, and transmission efficiency of the power system is improved through the photovoltaic power generation system. Moreover, the effect of control is large by setting the photovoltaic power generation system that is being introduced to be controlled.
請求項8に記載の発明は、請求項1〜7のいずれか1項に記載の電力系統制御システムにおいて、前記測定値取得手段は、前記任意ノードでの同時刻の電圧及び位相を取得することをその要旨とする。 The invention according to claim 8 is the power system control system according to any one of claims 1 to 7, wherein the measurement value acquisition means acquires the voltage and phase at the same time in the arbitrary node. Is the gist.
この発明では、任意ノードでの同時刻の電圧及び位相の取得が実施され、電流及び位相の取得は実施されない。つまり、アドミタンスの実数・虚数成分等を系統係数データとして取得・保持しておけば、電流及び位相を測定しなくとも、有効電力、無効電力、配線損失等の算出が可能である。この場合、電流測定手段が不要である。 In the present invention, acquisition of the voltage and phase at the same time at any node is performed, and acquisition of the current and phase is not performed. In other words, if real and imaginary components of admittance are acquired and held as system coefficient data, it is possible to calculate active power, reactive power, wiring loss, and the like without measuring current and phase. In this case, no current measuring means is required.
請求項9に記載の発明は、請求項1〜7のいずれか1項に記載の電力系統制御システムにおいて、前記測定値取得手段は、前記任意ノードでの同時刻の電圧及び位相、並びに電流及び位相を取得することをその要旨とする。 The invention according to claim 9 is the power system control system according to any one of claims 1 to 7, wherein the measurement value acquisition means includes the voltage and phase at the same time at the arbitrary node, and the current and The gist is to obtain the phase.
この発明では、任意ノードでの同時刻の電圧及び位相、並びに電流及び位相の取得が実施される。つまり、電圧及び位相の測定に加え、電流及び位相を測定することで、各測定値から有効電力、無効電力、配線損失等の算出が可能である。この場合、アドミタンスの実数・虚数成分等を系統係数データとして取得・保持する必要がなく、またこれに係る演算負荷が軽減される。 In the present invention, acquisition of voltage and phase, current and phase at the same time at an arbitrary node is performed. That is, by measuring the current and phase in addition to the measurement of voltage and phase, it is possible to calculate active power, reactive power, wiring loss, and the like from each measured value. In this case, it is not necessary to acquire / hold the real number / imaginary number component of admittance as system coefficient data, and the calculation load related to this is reduced.
請求項10に記載の発明は、所定電力系統上の任意ノードでの時刻同期測定による同時刻の電圧及び位相を少なくとも取得し、前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得し、前記取得した任意ノードの同時刻の電圧、位相、有効電力及び無効電力を少なくとも用いて任意ノード間の配線損失を算出して前記電力系統の総配線損失を取得し、前記電力系統への有効電力又は無効電力の出力が可能な制御対象の出力指令値であり、前記電力系統の総配線損失が小となるような前記制御対象の出力指令値を算出し、前記算出した出力指令値に基づいて前記制御対象を制御する電力系統制御方法である。 The invention according to claim 10 obtains at least the voltage and phase at the same time by time synchronization measurement at an arbitrary node on a predetermined power system, and uses at least the acquired voltage and phase at the same time to Acquire active power and reactive power, calculate wiring loss between arbitrary nodes using at least the acquired voltage, phase, active power and reactive power at the same time of the arbitrary node, and acquire the total wiring loss of the power system The output command value of the control target capable of outputting active power or reactive power to the power system, and calculating the output command value of the control target such that the total wiring loss of the power system is small, It is an electric power system control method for controlling the controlled object based on the calculated output command value.
この発明では、請求項1と同様に、電力系統の送電効率の向上が可能となる。 In the present invention, similarly to the first aspect, the transmission efficiency of the power system can be improved.
本発明によれば、電力系統全体で効率的な送電を行うことができる電力系統制御システム及び電力系統制御方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the power system control system and power system control method which can perform efficient power transmission in the whole power system can be provided.
以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示す本実施形態の電力系統Lsは、火力発電所発電機G1にて発電された系統周波数の三相交流電力が第1系統Ls1、第2系統Ls2、第3系統Ls3に順次送電されるようになっている。第1系統Ls1には分散型電源として太陽光発電システムG2が連系され、第2系統Ls2には負荷(図示略)が連系され、第3系統Ls3には無効電力補償装置(SVC)G3が連系されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
In the power system Ls of the present embodiment shown in FIG. 1, three-phase AC power having a system frequency generated by the thermal power plant generator G1 is sequentially transmitted to the first system Ls1, the second system Ls2, and the third system Ls3. It has become so. A photovoltaic power generation system G2 as a distributed power source is connected to the first system Ls1, a load (not shown) is connected to the second system Ls2, and a reactive power compensator (SVC) G3 is connected to the third system Ls3. Are interconnected.
第1系統Ls1に連系されている太陽光発電システムG2は、再生可能エネルギーである太陽光から電力を得る太陽光パネルと電力変換装置(パワーコンディショナ)とを備えている(共に図示略)。太陽光発電システムG2は、太陽光パネルにて発電した直流発電電力を電力変換装置にて系統周波数の三相出力電力に変換して第1系統Ls1に出力する。第3系統Ls3に連系されている無効電力補償装置G3は、系統電圧・周波数維持を図るべくその時々に適切な無効電力を生成して第3系統Ls3に出力する。これら太陽光発電システムG2及び無効電力補償装置G3は、系統制御サーバGSと通信可能に接続され、該系統制御サーバGSにて制御されている。 The photovoltaic power generation system G2 linked to the first system Ls1 includes a solar panel that obtains electric power from sunlight, which is renewable energy, and a power converter (power conditioner) (both not shown). . The solar power generation system G2 converts the direct-current power generated by the solar panel into three-phase output power at the system frequency by the power converter and outputs it to the first system Ls1. The reactive power compensator G3 linked to the third system Ls3 generates appropriate reactive power from time to time to maintain the system voltage and frequency, and outputs the generated reactive power to the third system Ls3. These photovoltaic power generation system G2 and reactive power compensator G3 are communicably connected to the system control server GS and controlled by the system control server GS.
系統制御サーバGSには、電力系統Ls上の任意ノードiの同時刻に測定した電圧Vi及び位相θiが入力される。具体的には、図1の電力系統Lsでは4箇所のノードn1〜n4、この場合、発電所発電機G1が連系されるノードn1、太陽光発電システムG2が連系されるノードn2、負荷が連系されるノードn3、及び無効電力補償装置G3が連系されるノードn4のそれぞれから、GPS等を用いた時刻同期手段にて時刻同期を図った上での同時刻の電圧V1〜V4及び位相θ1〜θ4の各測定値が入力される。因みに、電力系統Lsには変圧器や開閉器等が多数配備されており、各ノードn1〜n4の電圧V1〜V4及び位相θ1〜θ4の測定を行う測定器は、各ノードn1〜n4に存在する変圧器や開閉器等に設置することで対応できる。測定器は、GPS信号を受けて時刻同期測定を実施し、その測定値を系統制御サーバGSに送信可能に構成される。 The voltage V i and the phase θ i measured at the same time of the arbitrary node i on the power system Ls are input to the system control server GS. Specifically, in the power system Ls of FIG. 1, four nodes n1 to n4, in this case, a node n1 to which the power plant generator G1 is linked, a node n2 to which the photovoltaic power generation system G2 is linked, and a load Are synchronized with each other by a time synchronization means using GPS or the like from each of a node n3 to which the reactive power compensator G3 is linked and a voltage V 1 to the same time V 1 to Each measurement value of V 4 and phases θ 1 to θ 4 is input. Incidentally, the power system Ls is provided with a large number of transformers, switches, and the like, and the measuring devices that measure the voltages V 1 to V 4 and the phases θ 1 to θ 4 of the nodes n1 to n4 are connected to the nodes n1. It can respond by installing in a transformer, a switch, etc. which exist in -n4. The measuring device is configured to receive a GPS signal, perform time synchronization measurement, and transmit the measurement value to the system control server GS.
また、系統制御サーバGSには、太陽光発電システムG2が出力する有効電力PG2及び無効電力QG2の測定値と、無効電力補償装置G3が出力する無効電力QG3の測定値とが入力される。有効電力PG2及び無効電力QG2,QG3の測定についても、時刻同期手段にて時刻同期を図った上で、先の電圧位相測定と同時刻で行われる。そして、系統制御サーバGSは、入力される各測定値に基づいて、太陽光発電システムG2及び無効電力補償装置G3に対して電力系統Lsの全体を考慮した制御を行う。 The grid control server GS receives the measured values of the active power P G2 and reactive power Q G2 output from the photovoltaic power generation system G2 and the measured value of the reactive power Q G3 output from the reactive power compensator G3. The The active power P G2 and reactive powers Q G2 and Q G3 are also measured at the same time as the previous voltage phase measurement after time synchronization is achieved by the time synchronization means. And system control server GS performs control which considered the whole electric power system Ls to photovoltaic power generation system G2 and reactive power compensator G3 based on each inputted measurement value.
系統制御サーバGSは、潮流方程式の演算を行って制御対象、本実施形態では太陽光発電システムG2及び無効電力補償装置G3に対する指令値の算出を行う指令値算出部GSaを備えている。指令値算出部GSaには、各ノードn1〜n4の時刻同期させた電圧V1〜V4及び位相θ1〜θ4の各測定値が入力され、また制御対象の太陽光発電システムG2及び無効電力補償装置G3からは有効電力PG2及び無効電力QG2,QG3の各測定値が同じく時刻同期で入力される。指令値算出部GSaは、同時刻に測定された各測定値に基づいてこの電力系統Lsでの送電効率が最大となるように、制御対象である太陽光発電システムG2と無効電力補償装置G3とがそれぞれ出力すべき無効電力とする無効電力指令値QG2_0,QG3_0の算出を行っている。 The system control server GS includes a command value calculation unit GSa that calculates a command value for the control target, in this embodiment, the photovoltaic power generation system G2 and the reactive power compensator G3, by calculating a power flow equation. The command value calculation unit GSa, the time measurement values of the voltage is synchronized V 1 ~V 4 and the phase theta 1 through? 4 are input and photovoltaic systems G2 and disable the control target of each node n1~n4 The measured values of the active power P G2 and the reactive powers Q G2 and Q G3 are also input from the power compensator G3 in time synchronization. The command value calculation unit GSa is configured to control the photovoltaic power generation system G2 and the reactive power compensator G3 so that the power transmission efficiency in the power system Ls is maximized based on the measured values measured at the same time. , Reactive power command values Q G2 — 0 and Q G3 — 0 are calculated as reactive powers to be output respectively.
ここで、理論的な考察を行ってみる。電力系統の任意ノードiにおいての有効電力Piと無効電力Qiとの算出に関し、先ず任意ノードiに任意ノードjから流入する電流Iijを求める。電流Iijは、ノードjの電圧をVj、ノードi,j間のアドミタンスをYijとすると(太字表記はベクトル)、次式が成立する。 Here, we will make a theoretical consideration. Regarding the calculation of the active power P i and the reactive power Q i at an arbitrary node i of the power system, first, a current I ij flowing from the arbitrary node j to the arbitrary node i is obtained. The current I ij is given by the following equation, assuming that the voltage at the node j is V j and the admittance between the nodes i and j is Y ij (a vector in bold notation).
ノードiに流入する全電流Iiは、総和をとる次式から求められる。 The total current I i flowing into the node i is obtained from the following equation that takes the sum.
ノードi,j間のアドミタンスYijは、実部成分をGij、虚部成分をBijとすると、 The admittance Y ij between the nodes i and j has a real part component G ij and an imaginary part component B ij .
である。尚、この実部成分Gij及び虚部成分Bijは、系統係数データより比較的容易に入手可能である。ノードjにおける位相をθjとすると、電圧Vjは次式で表される。 It is. The real part component G ij and the imaginary part component B ij can be obtained relatively easily from the system coefficient data. When the phase at node j is θ j , voltage V j is expressed by the following equation.
ノードiでの電圧をViとすると(太字表記はベクトル)、ノードiの有効電力Pi及び無効電力Qiは、 If the voltage at node i is V i (bold notation is a vector), the active power P i and reactive power Q i of node i are:
と表すことができる。従って、係数比較により、有効電力Piは、次式、 It can be expressed as. Therefore, by the coefficient comparison, the active power P i is expressed by the following equation:
で求めることができる。また、無効電力Qiは、次式、 Can be obtained. The reactive power Q i is given by
で求めることができる。尚、[数6][数7]にて電力系統のノードiでの有効電力Pi及び無効電力Qiを求めるには、ノードi,j間の位相差が必要である。位相値は時々刻々と変化するため、上記したGPS等の時刻同期手段を用いた各種測定値の同時計測が必要である。 Can be obtained. In addition, in order to obtain the active power P i and the reactive power Q i at the node i of the power system using [Equation 6] and [Equation 7], the phase difference between the nodes i and j is necessary. Since the phase value changes every moment, it is necessary to simultaneously measure various measurement values using the above-described time synchronization means such as GPS.
次いで、ノードiに接続される発電機の出力有効電力をPGi、出力無効電力をQGi、太陽光発電システムの出力有効電力をPPVi、出力無効電力をQPVi、無効電力補償装置の出力無効電力をQSVCi、負荷が消費する有効電力をPLi、無効電力をQLiとすると、(a)発電機ノード、(b)太陽光発電システムノード、(c)SVCノード、(d)負荷ノード、及びこれらが混在する場合の(e)混在ノードでの「潮流方程式」は以下のようになる。Pi,Qiは、[数6][数7]にて表される。 Next, the output active power of the generator connected to the node i is P Gi , the output reactive power is Q Gi , the output active power of the photovoltaic power generation system is P PVi , the output reactive power is Q PVi , and the output of the reactive power compensator Assuming that the reactive power is Q SVCi , the active power consumed by the load is P Li , and the reactive power is Q Li , (a) generator node, (b) photovoltaic system node, (c) SVC node, (d) load (E) “Tidal current equation” in a mixed node when these nodes are mixed is as follows. P i and Q i are expressed by [Equation 6] and [Equation 7].
(a)発電機ノード
(b)太陽光発電システムノード
(c)SVCノード
(d)負荷ノード
(e)混在ノード
次いで、上記の「潮流方程式」を解くには、電力系統の「系統運用条件」や、同系統に連系される電力機器(太陽光発電システム、無効電力補償装置等)の「機器制約条件」といった「束縛条件」を考慮する必要がある。 Next, in order to solve the above “flow equation”, “system operating conditions” of the power system and “equipment constraint conditions” of power equipment (solar power generation system, reactive power compensator, etc.) connected to the same system It is necessary to consider the “binding conditions”.
「系統運用条件」としては、(a)線路容量制約、(b)母線電圧制約がある。尚、線路容量をPCi、容量上限値をPCimaxとする。また、電圧下限値をVimin、電圧上限値をVimaxとする。 “System operation conditions” include (a) line capacity restriction and (b) bus voltage restriction. It is assumed that the line capacity is P Ci and the capacity upper limit value is P Cimax . The voltage lower limit value is V imin , and the voltage upper limit value is V imax .
(a)線路容量制約
(b)母線電圧制約
「機器制約条件」としては、(a)機器容量制約、(b)力率制約がある。尚、電力系統に連系される電力機器として、この場合、太陽光発電システム、無効電力補償装置とする。ノードiに接続される太陽光発電システムの機器容量をSPVi、その容量上限値をSPVimax、力率をΦ、無効電力補償装置の機器容量をSSVCi、その容量上限値をSSVCimaxとする。 “Device constraint conditions” include (a) device capacity constraints and (b) power factor constraints. In this case, a photovoltaic power generation system and a reactive power compensator are used as power devices connected to the power system. The equipment capacity of the photovoltaic power generation system connected to node i is S PVi , the capacity upper limit value is S PVimax , the power factor is Φ, the device capacity of the reactive power compensator is S SVCi , and the capacity upper limit value is S SVCimax . .
(a)機器容量制約
(b)力率制約
尚、太陽光発電システムの機器容量SPViは、出力制御以外でも日射変動により時々刻々と変化するものである。 Note that the equipment capacity S PVi of the photovoltaic power generation system changes from moment to moment due to variations in solar radiation other than output control.
次いで、電力系統の配線損失を考えてみる。ノードi,j間の配線抵抗をrij、配線損失をLijとすると、配線損失Lijは次式で表される。 Next, consider the wiring loss of the power system. When the wiring resistance between the nodes i and j is r ij and the wiring loss is L ij , the wiring loss L ij is expressed by the following equation.
また、ノードi,j間を導通してノードiに流入する有効電力をPij、無効電力をQijとすれば、配線損失Lijは次式のように変形できる。因みに、有効電力Pij及び無効電力Qijは、上記した有効電力Pi及び無効電力Qiの導出過程で求めることができるため、演算が省力化できる。 Further, if the active power flowing between the nodes i and j and flowing into the node i is P ij and the reactive power is Q ij , the wiring loss L ij can be transformed as follows. Incidentally, since the active power P ij and the reactive power Q ij can be obtained in the process of deriving the active power P i and the reactive power Q i described above, the calculation can be saved.
従って、電力系統における総配線損失Lは、重複分(配線の往復分)を考慮すると、次式のようになる。 Therefore, the total wiring loss L in the electric power system is expressed by the following equation in consideration of the overlap (wiring reciprocation).
そして、電力系統の送電効率を最大化するという目的において、例えば制御対象を太陽光発電システム及び無効電力補償装置とした場合の目的関数Fの最大化演算(MaximizeF)を行うことで、その目的の達成が可能となる。 For the purpose of maximizing the power transmission efficiency of the power system, for example, the objective function F is maximized (MaximizeF) when the control target is a photovoltaic power generation system and a reactive power compensator. Achievement is possible.
因みに、[数20]の演算式では、太陽光発電システムの出力有効電力PPViを最大に、一方で太陽光発電システムの出力無効電力QPVi、無効電力補償装置の出力無効電力QSVCi、電力系統の総配線損失Lを最小にする演算が行われる。 Incidentally, in the equation of [Equation 20], the output active power P PVi of the photovoltaic power generation system is maximized, while the output reactive power Q PVi of the photovoltaic power generation system, the output reactive power Q SVCi of the reactive power compensator, and the power An operation is performed to minimize the total wiring loss L of the system.
上記を踏まえ、本実施形態の系統制御サーバGSの指令値算出部GSaには、上記各種の目的関数Fの最大化演算式やその関連式、電力系統Lsの束縛条件(系統運用条件、機器制約条件)が格納されている。 Based on the above, the command value calculation unit GSa of the system control server GS according to the present embodiment includes the maximization calculation expression of the various objective functions F and related expressions, the constraint condition of the power system Ls (system operation condition, equipment constraint, etc. Condition) is stored.
そして、指令値算出部GSaは、電力系統Lsの各ノードn1〜n4にて得られる同時刻の電圧V1〜V4及び位相θ1〜θ4を用い、束縛条件を満足しつつ各種演算式による演算を都度実施して、その時々で電力系統Ls全体の無効電力が最適となる各ノードn1〜n4の有効電力P1〜P4及び無効電力Q1〜Q4の算出を行っている。指令値算出部GSaは、電圧V1〜V4及び位相θ1〜θ4と同時刻に得られた太陽光発電システムG2(PV)及び無効電力補償装置G3(SVC)からの有効電力PG2(PPVi)及び無効電力QG2(QPVi),QG3(QSVCi)に基づいて、先の無効電力Q2の算出値から制御対象の太陽光発電システムG2に対する無効電力指令値QG2_0と、無効電力Q3の算出値から制御対象の無効電力補償装置G3に対する無効電力指令値QG3_0とを算出している。指令値算出部GSaは、各無効電力指令値QG2_0,QG3_0をそれぞれ対応する太陽光発電システムG2及び無効電力補償装置G3に対して送信する。 Then, the command value calculating unit GSa uses the same time the voltage V 1 ~V 4 and the phase theta 1 through? 4 of the obtained at each node of the power system Ls n1 to n4, various arithmetic expressions while satisfying the constraints The active powers P 1 to P 4 and reactive powers Q 1 to Q 4 of the nodes n 1 to n 4 at which the reactive power of the entire power system Ls is optimized from time to time are calculated each time. The command value calculation unit GSa obtains the active power P G2 from the photovoltaic power generation system G2 (PV) and the reactive power compensator G3 (SVC) obtained at the same time as the voltages V 1 to V 4 and the phases θ 1 to θ 4. (P PVi) and the reactive power Q G2 (Q PVi), based on the Q G3 (Q SVCi), and the reactive power command value Q G2_0 for photovoltaic systems G2 of the control object from the calculated value of the reactive power Q 2 of the previous , and it calculates the reactive power command value Q G3_0 for reactive power compensator G3 of the control object from the calculated value of the reactive power Q 3. The command value calculation unit GSa transmits the reactive power command values Q G2 — 0 and Q G3 — 0 to the corresponding solar power generation system G2 and reactive power compensator G3, respectively.
太陽光発電システムG2及び無効電力補償装置G3は、指令値算出部GSaから送信されてきた無効電力指令値QG2_0,QG3_0を受信し、該指令値QG2_0,QG3_0に基づいた制御を実施する。太陽光発電システムG2は、無効電力指令値QG2_0に基づく制御にて生成した出力電力(有効電力PG2及び無効電力QG2)を電力系統Ls1に出力する。無効電力補償装置G3は、無効電力指令値QG3_0に基づく制御にて生成した無効電力QG3を電力系統Ls3に出力する。 Photovoltaic system G2 and the reactive power compensator G3 is command value calculating section reactive power command value sent from GSa Q G2_0, receives the Q G3_0, implement the control based on the finger command value Q G2_0, Q G3_0 To do. Photovoltaic system G2 outputs the generated by the control based on the reactive power instruction value Q G2_0 output power (active power P G2 and reactive power Q G2) to the power system Ls1. Reactive power compensator G3 outputs the reactive power Q G3 generated by the control based on the reactive power command value Q G3_0 to the power system Ls3.
こうして、電力系統Lsには、電力消費地の近隣に配置されることが多い太陽光発電システムG2や無効電力補償装置G3から無効電力QG2,QG3が注入され、遠隔地に設置され送電損失が大きくなる発電所発電機G1からの無効電力の注入が低減される。つまり、電力系統Lsの総配線損失(L)が最小化され、電力系統Lsの送電効率の最大化が図られる。またこの場合の太陽光発電システムG2及び無効電力補償装置G3の無効電力QG2,QG3は電力系統Lsの総配線損失(L)と合わせて最小化されることから、太陽光発電システムG2及び無効電力補償装置G3の無効電力QG2,QG3の出力は極力抑えられる。 In this way, the reactive power Q G2 and Q G3 are injected into the power system Ls from the photovoltaic power generation system G2 and the reactive power compensator G3, which are often arranged in the vicinity of the power consumption area, and installed in a remote location and transmission loss. The injection of reactive power from the power plant generator G1 that increases is reduced. That is, the total wiring loss (L) of the power system Ls is minimized, and the transmission efficiency of the power system Ls is maximized. In this case, the reactive power Q G2 and Q G3 of the photovoltaic power generation system G2 and the reactive power compensator G3 are minimized together with the total wiring loss (L) of the power system Ls. The outputs of reactive power Q G2 and Q G3 of reactive power compensator G3 are suppressed as much as possible.
従って、太陽光発電システムG2にて生成される有効電力PG2の最大化が可能となり、売電可能な電力の最大化が可能となる。また、電力系統Lsに複数の太陽光発電システムG2が別個に連系している場合でも、公平な無効電力QG2の出力指令が行われるため、各太陽光発電システムG2にて生成される売電対象の有効電力PG2が公平に最大化される。また、発電所発電機G1にて生成する無効電力が低減されることから、発電機G1の運転の効率化や発電機G1の容量削減(小型化)に大きく寄与する。 Therefore, it is possible to maximize the active power P G2 generated by photovoltaic systems G2, it is possible to maximize sellable power. Even when a plurality of photovoltaic power generation systems G2 are separately connected to the power system Ls, a fair reactive power Q G2 output command is issued. The active power P G2 of the power target is maximized fairly. Moreover, since the reactive power generated by the power plant generator G1 is reduced, it greatly contributes to the efficiency of the operation of the generator G1 and the capacity reduction (miniaturization) of the generator G1.
本実施形態の電力系統Lsの送電効率を最大化する運用については、図2に示すフローに示す通りである。GPS等の時刻同期手段を用い、所定タイミング毎に随時実施される。 The operation for maximizing the power transmission efficiency of the power system Ls of the present embodiment is as shown in the flow shown in FIG. Using time synchronization means such as GPS, it is carried out at any given timing.
ステップS1において、電力系統Lsの各ノードn1〜n4での同時刻の電圧V1〜V4及び位相θ1〜θ4の測定が行われる。また、制御対象(分散型電源、調相器、発電設備等)における同時刻の有効電力、無効電力の測定が行われる。本実施形態では、太陽光発電システムG2(分散型電源)及び無効電力補償装置G3(調相器)を制御対象としており、太陽光発電システムG2の有効電力PG2及び無効電力QG2の測定と、無効電力補償装置G3の測定とが行われる。尚、後述するが、制御対象に火力発電所発電機G1(発電設備)を加えてもよい。 In step S1, the same time measurement of the voltage V 1 ~V 4 and the phase theta 1 through? 4 of each node n1~n4 power system Ls is performed. In addition, measurement of active power and reactive power at the same time in a control target (distributed power supply, phase adjuster, power generation facility, etc.) is performed. In the present embodiment, the photovoltaic power generation system G2 (distributed power supply) and the reactive power compensator G3 (phase adjuster) are controlled, and the measurement of the active power P G2 and the reactive power Q G2 of the photovoltaic power generation system G2 Then, the reactive power compensator G3 is measured. As will be described later, a thermal power plant generator G1 (power generation equipment) may be added to the control target.
ステップS2では、測定した同時刻のn1〜n4の電圧V1〜V4及び位相θ1〜θ4の各測定が系統制御サーバGSに向けて送信される。同じく制御対象の太陽光発電システムG2及び無効電力補償装置G3からも、測定した同時刻の有効電力PG2及び無効電力QG2,QG3の各測定値が系統制御サーバGSに向けて送信される。 In step S2, the measurement of the voltage V 1 ~V 4 and the phase theta 1 through? 4 of n1~n4 the same time when the measurement is transmitted to the system control server GS. Similarly, the measured values of active power P G2 and reactive powers Q G2 and Q G3 measured at the same time are transmitted from the photovoltaic power generation system G2 and reactive power compensator G3 to be controlled to the system control server GS. .
ステップS3では、送信されてきた各測定値を用い、系統制御サーバGSの指令値算出部GSaにて目的関数Fの最大化演算式等の潮流方程式の演算が行われる。
ステップS4では、ステップS3での演算に基づいて、電力系統Ls全体の無効電力が最適となる各ノードn1〜n4の有効電力P1〜P4及び無効電力Q1〜Q4が算出され、無効電力Q2の算出値から制御対象の太陽光発電システムG2に対する無効電力指令値QG2_0と、無効電力Q3の算出値から制御対象の無効電力補償装置G3に対する無効電力指令値QG3_0とが算出される。
In step S3, using the transmitted measurement values, the command value calculation unit GSa of the system control server GS calculates a power flow equation such as a maximal calculation formula of the objective function F.
In step S4, based on the calculation in step S3, active powers P 1 to P 4 and reactive powers Q 1 to Q 4 of each node n1 to n4 for which the reactive power of the entire power system Ls is optimal are calculated, and invalid calculating a reactive power command value Q G2_0 for photovoltaic systems G2 of the control object from the calculated value of the power Q 2, and the reactive power command value Q G3_0 for reactive power compensator G3 of the control object from the calculated value of the reactive power Q 3 is Is done.
ステップS5では、ステップS4で算出された各無効電力指令値QG2_0,QG3_0が制御対象の太陽光発電システムG2及び無効電力補償装置G3に対して送信される。
ステップS6では、各制御対象の太陽光発電システムG2及び無効電力補償装置G3がそれぞれの無効電力指令値QG2_0,QG3_0に基づいて個別に制御を実施し、太陽光発電システムG2及び無効電力補償装置G3からは、その時々で電力系統Lsにおいて適切な無効電力QG2,QG3の出力がなされる。これにより、電力系統Lsの送電効率の最大化が図られるようになっている。
In step S5, the reactive power command values Q G2 — 0 and Q G3 — 0 calculated in step S4 are transmitted to the photovoltaic power generation system G2 and the reactive power compensator G3 to be controlled.
In step S6, the control target of the solar power generation system G2 and the reactive power compensator G3 each of the reactive power command value Q G2_0, conducted individually controlled based on the Q G3_0, photovoltaic systems G2 and reactive power compensator From the device G3, appropriate reactive powers Q G2 and Q G3 are output in the power system Ls from time to time. As a result, the transmission efficiency of the power system Ls can be maximized.
次に、本実施形態の特徴的な効果を記載する。
(1)系統制御サーバGS(指令値算出部GSa)において、電力系統Ls上の任意ノードiでの同時刻の電圧Vi及び位相θiが取得され、該取得値から任意ノードiの有効電力Pi及び無効電力Qiが取得される。これら同時刻の電圧Vi、位相θi、有効電力Pi及び無効電力Qiから任意ノードi,j間の配線損失Lijが算出され、電力系統Lsの総配線損失Lの取得が可能となる。そして、本実施形態にて制御対象とした太陽光発電システムG2及び無効電力補償装置G3に対し、電力系統Lsの総配線損失Lが小となるような出力指令値(無効電力指令値QG2_0,QG3_0)が算出され、該出力指令値に基づいて制御対象の制御が実施されるようになっている。これにより、各制御対象の太陽光発電システムG2及び無効電力補償装置G3では電力系統Lsの総配線損失Lが小となるような出力制御がなされるため、電力系統Lsの送電効率の向上を図ることができる。
Next, characteristic effects of the present embodiment will be described.
(1) In the system control server GS (command value calculation unit GSa), the voltage V i and the phase θ i at the same time at an arbitrary node i on the power system Ls are acquired, and the active power of the arbitrary node i is acquired from the acquired value. P i and the reactive power Q i is obtained. The wiring loss L ij between the arbitrary nodes i and j is calculated from the voltage V i , phase θ i , active power P i and reactive power Q i at the same time, and the total wiring loss L of the power system Ls can be obtained. Become. Then, an output command value (reactive power command value Q G2 — 0 , reactive power command value Q G2 —0,. Q G3 — 0 ) is calculated, and control of the control target is performed based on the output command value. Thereby, in the photovoltaic power generation system G2 and the reactive power compensator G3 to be controlled, output control is performed such that the total wiring loss L of the power system Ls is reduced, so that the power transmission efficiency of the power system Ls is improved. be able to.
(2)太陽光発電システムG2が出力する有効電力PG2を最大化する一方、太陽光発電システムG2が出力する無効電力QG2,QG3、無効電力補償装置G3が出力する無効電力QG、電力系統Lsの総配線損失Lが最小化するような制御対象の出力指令値(無効電力指令値QG2_0,QG3_0)が算出され、制御対象の太陽光発電システムG2及び無効電力補償装置G3の制御が行われる。これにより、電力消費地の近隣に配置されることが多い太陽光発電システムG2や無効電力補償装置G3から好適に無効電力QG2,QG3が注入されて電力系統Lsの総配線損失Lを低減させつつ、太陽光発電システムG2が出力する有効電力PG2を増加させることができる。 (2) while maximizing the active power P G2 of solar power generation system G2 is outputted, the reactive power Q G2 photovoltaic system G2 outputs, Q G3, the reactive power Q G output from the reactive power compensator G3, Control target output command values (reactive power command values Q G2 — 0 , Q G3 — 0 ) that minimize the total wiring loss L of the power system Ls are calculated, and the control target photovoltaic power generation system G2 and reactive power compensator G3 Control is performed. As a result, the reactive power Q G2 and Q G3 are preferably injected from the photovoltaic power generation system G2 and the reactive power compensator G3 that are often arranged in the vicinity of the power consumption area, thereby reducing the total wiring loss L of the power system Ls. It is possible to increase the effective power P G2 output from the solar power generation system G2.
(3)制御対象の太陽光発電システムG2及び無効電力補償装置G3の出力指令値として無効電力指令値QG2_0,QG3_0のみが算出され出力されることから、その算出、出力を容易に行うことができる。 (3) Since only the reactive power command values Q G2 — 0 and Q G3 — 0 are calculated and output as output command values of the photovoltaic power generation system G2 and the reactive power compensator G3 to be controlled, the calculation and output can be easily performed. Can do.
(4)導入が進む太陽光発電システムG2を制御対象とすることで、制御の効果は大きい。
(5)任意ノードiでの同時刻の電圧Vi及び位相θiの取得が実施され、電流及び位相の取得は実施されない。つまり、アドミタンスYijの実数・虚数成分Gij,Bij等を系統係数データとして取得し指令値算出部GSaに保持しておけば、電流及び位相を測定しなくとも、有効電力Pi、無効電力Qi、配線損失L等の算出が可能である。本実施形態では、電流測定手段を必要としない。
(4) The effect of the control is great by setting the photovoltaic power generation system G2 that is being introduced to be controlled.
(5) obtaining at the same time the voltage V i and the phase theta i at any node i is performed, obtaining the current and the phase is not performed. That is, if the real and imaginary components G ij , B ij, etc. of the admittance Y ij are acquired as system coefficient data and held in the command value calculation unit GSa, the effective power P i can be reduced without measuring the current and phase. The power Q i , wiring loss L, etc. can be calculated. In the present embodiment, no current measuring means is required.
尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態に用いる時刻同期を図る手段は、GPS以外であってもよい。例えば、電力系統Lsに併設して専用の時刻同期を図る手段を構築してもよい。
In addition, you may change embodiment of this invention as follows.
-The means for time synchronization used in the above embodiment may be other than GPS. For example, a means for achieving dedicated time synchronization in combination with the power system Ls may be constructed.
・上記実施形態では、系統制御サーバGSの制御対象として、分散型電源に太陽光発電システムG2、調相器に無効電力補償装置G3を対応させたが、これに限定されるものではない。例えば、分散型電源として太陽光発電システムG2の他、風力発電システム、コージェネレーションシステム等、需要家にて備えられる他の発電システムでもよい。調相器として無効電力補償装置G3の他、調相リアクトル、調相コンデンサ等でもよい。また、制御対象に火力発電所発電機G1や水力発電所発電機等の発電設備を加えてもよい。 In the above embodiment, the photovoltaic power generation system G2 is associated with the distributed power source and the reactive power compensator G3 is associated with the phase adjuster as the control target of the system control server GS. However, the present invention is not limited to this. For example, in addition to the photovoltaic power generation system G2, other power generation systems provided by customers such as a wind power generation system and a cogeneration system may be used as the distributed power source. In addition to the reactive power compensator G3, a phase adjusting reactor, a phase adjusting capacitor, or the like may be used as the phase adjuster. Further, a power generation facility such as a thermal power plant generator G1 or a hydroelectric power plant generator may be added to the control target.
・上記実施形態では、目的関数Fとして[数20]に示すように、太陽光発電システムG2の出力有効電力PG2(PPVi)を最大に、一方で太陽光発電システムG2の出力無効電力QG2(QPVi)、無効電力補償装置G3の出力無効電力QG3(QSVCi)、電力系統Lsの総配線損失Lを最小にする関数を用いたが、目的関数Fを適宜変更してもよい。 In the above embodiment, as shown in [Equation 20] as the objective function F, the output active power P G2 (P PVi ) of the photovoltaic power generation system G2 is maximized while the output reactive power Q of the photovoltaic power generation system G2 is maximized. G2 (Q PVi ), reactive power compensator G3 output reactive power Q G3 (Q SVCi ), and a function that minimizes total wiring loss L of power system Ls are used, but objective function F may be changed as appropriate. .
例えば次式[数21]に示す目的関数Fは、太陽光発電システムG2の出力有効電力PG2(PPVi)を最大に、一方で無効電力補償装置G3の出力無効電力QG3(QSVCi)、電力系統Lsの総配線損失Lを最小にする関数である。 For example, the objective function F shown in the following equation [Equation 21] maximizes the output active power P G2 (P PVi ) of the photovoltaic power generation system G2, while the output reactive power Q G3 (Q SVCi ) of the reactive power compensator G3. , A function that minimizes the total wiring loss L of the power system Ls.
この目的関数Fを用いれば、無効電力補償装置G3が出力する無効電力QG3(QSVCi)が増加し、負担分が増加するものの、太陽光発電システムG2が出力する無効電力QG2(QPVi)が無くなることから、太陽光発電システムG2が出力する有効電力PG2(PPVi)を更に増加させることが可能となる。 By using this objective function F, the reactive power Q G3 (Q SVCi ) output from the reactive power compensator G3 increases and the share increases, but the reactive power Q G2 (Q PVi) output from the photovoltaic power generation system G2 increases. ) Is eliminated, it is possible to further increase the effective power P G2 (P PVi ) output by the photovoltaic power generation system G2.
また、例えば次式[数22]に示す目的関数Fは、太陽光発電システムG2の出力有効電力PG2(PPVi)を最大に、一方で無効電力補償装置G3の出力無効電力QG3(QSVCi)、火力発電所発電機G1(発電設備)の出力有効電力PGi及び無効電力QGi、電力系統Lsの総配線損失Lを最小にする関数である。 Further, for example, the objective function F shown in the following equation [Equation 22] maximizes the output active power P G2 (P PVi ) of the photovoltaic power generation system G2, while the output reactive power Q G3 (Q of the reactive power compensator G3 SVCi ), output active power P Gi and reactive power Q Gi of the thermal power plant generator G1 (power generation equipment), and a function that minimizes the total wiring loss L of the power system Ls.
制御対象に発電設備としての火力発電所発電機G1を含めたこの目的関数Fを用いれば、火力発電所発電機G1の出力の最小化が図られることから、化石燃料の使用量削減、二酸化炭素の排出削減に大きく寄与することができる。尚、この場合も太陽光発電システムG2が出力する無効電力QG2(QPVi)を制御対象に加えてもよい。 If this objective function F including the thermal power plant generator G1 as a power generation facility is used as the control target, the output of the thermal power plant generator G1 can be minimized, so the amount of fossil fuel used can be reduced, carbon dioxide Can greatly contribute to the reduction of emissions. In this case, reactive power Q G2 (Q PVi ) output from the photovoltaic power generation system G2 may be added to the control target.
また、例えば次式[数23]に示す目的関数Fは、電力系統Lsの任意ノードiの電圧Vi、有効電力Pi、無効電力Qiを用いて表されるノードiでの有効電力Piの時間変化量及び無効電力Qiの時間変化量を最小にする関数である。 Also, for example, the objective function F shown in the following equation [Equation 23] is the active power P at the node i expressed using the voltage V i , the active power P i , and the reactive power Q i of the arbitrary node i of the power system Ls. This is a function that minimizes the time change amount of i and the time change amount of the reactive power Q i .
この目的関数Fを用いれば、系統事故等による系統電圧低下が発生した場合であっても、速やかに反応して無効電力Qiの出力が可能になり、その結果、速やかな系統電圧復帰が可能となる。また、電力系統Lsに同期発電機が接続されていれば、系統電圧復帰の結果、事故等により低下した同期化力がより速やかに回復することから、この点でも系統安定化に大きく寄与することができる。尚、有効電力Piの時間変化量、無効電力Qiの時間変化量の両者を用いず、いずれか一方を用いてもよい。 If this objective function F is used, even if a system voltage drop occurs due to a system fault or the like, the reactive power Q i can be output promptly and the system voltage can be quickly recovered. It becomes. In addition, if a synchronous generator is connected to the power system Ls, the synchronization power reduced due to an accident or the like is recovered more quickly as a result of the system voltage recovery, so that this point also greatly contributes to system stabilization. Can do. Note that either one of the time change amount of the active power P i and the time change amount of the reactive power Q i may be used without using both.
また、上記以外の目的関数Fを設定してもよい。更に、定常状態ではある目的関数Fを設定し、事故等、系統Ls上で何らかの大きな変動を検出した場合は別の目的関数Fに切り替えたり、太陽光発電の行われる昼間と発電の行われない夜間とで別々の目的関数Fに切り替えるようにしてもよい。つまり、同一のハードウェア構成で、目的関数Fを変更するソフト的な変更でそれぞれの要求に適した電力システムを構築することが可能となる。これは、電力事情が大きく異なる世界各国で同一のハードウェアシステムを用いながらも、より柔軟で利用効率の高いシステム運用が可能であることを示している。 Further, an objective function F other than the above may be set. Furthermore, when a certain objective function F is set in the steady state, and some kind of fluctuation is detected on the system Ls such as an accident, the objective function F is switched to another objective function F, or no power generation is performed during the daytime when solar power is generated. You may make it switch to the objective function F different at night. That is, with the same hardware configuration, it is possible to construct a power system suitable for each requirement by a software change that changes the objective function F. This indicates that the same hardware system can be used in various countries in the world where the power situation is greatly different, but the system operation is more flexible and efficient.
・上記実施形態では、電力系統Lsの任意ノードiの電圧Vi、位相θi、有効電力Pi、無効電力Qiから電力系統Lsの総配線損失Lを取得し、総配線損失Lが小となるような制御対象の制御が行われたが、制御までを行うシステム構成でなくてもよい。例えば、電力系統Lsの総配線損失Lまでのステップを用い、総配線損失Lを含む種々の電力系統情報を潮流マップとして作成するシステム等に適用してもよい。 In the above embodiment, the total wiring loss L of the power system Ls is obtained from the voltage V i , the phase θ i , the active power P i , and the reactive power Q i of the arbitrary node i of the power system Ls, and the total wiring loss L is small. The control target is controlled as described above, but the system configuration may not be limited to the control. For example, the steps up to the total wiring loss L of the power system Ls may be used to apply to a system that creates various power system information including the total wiring loss L as a power flow map.
・上記実施形態では、電圧及びその位相を電圧測定手段にて測定し、測定値から電流値の算出を行ったが、電流及びその位相を測定する電流測定手段を用い、電流値を直接取得するようにしてもよい。三相電力平衡条件を用い、相電流をIPi、相電圧をVPi、ノードiにおける電圧に対する電流の位相差をΦiとすると、ノードiにおける有効電力Pi及び無効電力Qiは次式で表される。 In the above embodiment, the voltage and its phase are measured by the voltage measuring means, and the current value is calculated from the measured value. However, the current value is directly obtained using the current measuring means for measuring the current and its phase. You may do it. Using a three-phase power balance condition, assuming that the phase current is I Pi , the phase voltage is V Pi , and the phase difference of the current with respect to the voltage at node i is Φ i , the active power P i and reactive power Q i at node i are: It is represented by
又は、線間電流をILi、線間電圧をVLiとすれば、次式で表される。 Or, if the line current is I Li and the line voltage is V Li , it is expressed by the following equation.
[数24]若しくは[数25]にて電力系統Lsのノードiでの有効電力Pi及び無効電力Qiを求めるには、電圧・電流間の位相差が必要である。位相値は時々刻々と変化するため、上記と同様にGPS等の時刻同期手段を用いた各種測定値の同時計測が必要である。このように時刻同期可能な電流測定手段を用いることで、[数6][数7]等にて示す系統係数データであるアドミタンスYijの実部成分Gijや虚部成分Bijの取得・保持は不要となり、またこれに係る演算負荷が軽減される。因みに、電力系統Lsの送電効率を最大化処理するフローは、図2に示したステップS1が図3に示すステップS1’に置換され、電流及びその位相の同時測定が追加される。 In order to obtain the active power P i and the reactive power Q i at the node i of the power system Ls in [Equation 24] or [Equation 25], a phase difference between voltage and current is required. Since the phase value changes from moment to moment, it is necessary to simultaneously measure various measurement values using time synchronization means such as GPS as described above. By using the current measuring means that can synchronize the time in this way, the real part component G ij and the imaginary part component B ij of the admittance Y ij as system coefficient data represented by [Formula 6], [Formula 7], etc. The holding is unnecessary, and the calculation load related to this is reduced. Incidentally, in the flow for maximizing the power transmission efficiency of the power system Ls, step S1 shown in FIG. 2 is replaced with step S1 ′ shown in FIG. 3, and simultaneous measurement of the current and its phase is added.
次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ) 所定電力系統上の任意ノードでの時刻同期測定による同時刻の少なくとも電圧及び位相を取得する測定値取得手段と、
前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得する電力値取得手段と、
前記取得した任意ノードの同時刻の電圧、有効電力及び無効電力を少なくとも用いてその一方又は両者の時間変化量を算出する電力変化量算出手段と、
前記電力系統への有効電力又は無効電力の出力が可能な制御対象の出力指令値であり、その有効電力及び無効電力の一方又は両者の時間変化量が小となるような前記制御対象の出力指令値を算出する出力指令値算出手段と、
前記算出した出力指令値に基づいて前記制御対象を制御する系統制御手段と
を備えたことを特徴とする電力系統制御システム。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(A) a measurement value acquisition means for acquiring at least a voltage and a phase at the same time by time synchronization measurement at an arbitrary node on a predetermined power system;
Power value acquisition means for acquiring active power and reactive power of the arbitrary node using at least the acquired voltage and phase at the same time;
A power change amount calculation means for calculating a time change amount of one or both of the acquired arbitrary node at the same time using the voltage, active power and reactive power at the same time;
The output command value of the control target that is capable of outputting active power or reactive power to the power system, and the control target output command is such that the amount of time change of one or both of the active power and reactive power is small. Output command value calculating means for calculating a value;
A power system control system comprising: system control means for controlling the control object based on the calculated output command value.
この構成では、任意ノードの有効電力及び無効電力の一方又は両者の時間変化量が加味されて最小化するような制御対象の出力指令値が算出される。これにより、系統事故等による系統電圧低下が発生した場合であっても、速やかに反応して制御対象を通じて速やかな系統電圧復帰が可能となる。 In this configuration, an output command value to be controlled is calculated that minimizes the time change amount of one or both of active power and reactive power of an arbitrary node. As a result, even if a system voltage drop occurs due to a system fault or the like, it is possible to react quickly and quickly recover the system voltage through the controlled object.
(ロ) 所定電力系統上の任意ノードでの時刻同期測定による同時刻の少なくとも電圧及び位相を取得し、
前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得し、
前記取得した任意ノードの同時刻の電圧、位相、有効電力及び無効電力を少なくとも用いて任意ノード間の配線損失を算出し、前記電力系統の総配線損失を取得するようにしたことを特徴とする電力系統情報取得方法。
(B) Obtain at least the voltage and phase at the same time by time-synchronized measurement at an arbitrary node on the predetermined power system,
Using the acquired voltage and phase at the same time to obtain the active power and reactive power of the arbitrary node,
The wiring loss between arbitrary nodes is calculated using at least the acquired voltage, phase, active power and reactive power at the same time of the arbitrary node, and the total wiring loss of the power system is acquired. Power system information acquisition method.
この構成では、電力系統の任意ノードの電圧、位相等の測定値、有効電力、無効電力から電力系統の総配線損失が取得される。これにより、総配線損失を含む種々の電力系統情報を潮流マップとして作成するシステム等に適用することができる。 In this configuration, the total wiring loss of the power system is acquired from the measured values such as the voltage and phase of any node of the power system, active power, and reactive power. Thereby, it can apply to the system etc. which produce various electric power system information including total wiring loss as a tidal current map.
Ls 電力系統
L 総配線損失
Lij 配線損失
n1〜n4 ノード(i,j 任意ノード)
V1〜V4 電圧(Vi 電圧)(測定値)
θ1〜θ4 位相(θi 位相)(測定値)
IPi 相電流(測定値)
VPi 相電圧(測定値)
ILi 線間電流(測定値)
VLi 線間電圧(測定値)
Φi 位相差(測定値)
PG2 有効電力(Pi 有効電力)
QG2,QG3 無効電力(Qi 無効電力)
QG2_0 無効電力指令値(出力指令値)
QG3_0 無効電力指令値(出力指令値)
G1 火力発電所発電機(発電設備、制御対象)
G2 太陽光発電システム(分散型電源、制御対象)
G3 無効電力補償装置(調相器、制御対象)
GS 系統制御サーバ
GSa 指令値算出部(測定値取得手段、電力値取得手段、配線損失取得手段、出力指令値算出手段、系統制御手段)
Ls Power system L Total wiring loss L ij wiring loss n1 to n4 nodes (i, j arbitrary nodes)
V 1 ~V 4 Voltage (V i Voltage) (measured value)
θ 1 to θ 4 phase (θ i phase) (measured value)
I Pi phase current (measured value)
V Pi phase voltage (measured value)
I Li line current (measured value)
V Li line voltage (measured value)
Φ i phase difference (measured value)
PG2 active power ( Pi active power)
Q G2 , Q G3 reactive power (Q i reactive power)
Q G2_0 Reactive power command value (output command value)
Q G3_0 Reactive power command value (output command value)
G1 Thermal power plant generator (power generation equipment, control target)
G2 Solar power generation system (distributed power supply, control target)
G3 Reactive power compensator (phase adjuster, control target)
GS system control server GSa command value calculation unit (measurement value acquisition means, power value acquisition means, wiring loss acquisition means, output command value calculation means, system control means)
Claims (10)
前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得する電力値取得手段と、
前記取得した任意ノードの同時刻の電圧、位相、有効電力及び無効電力を少なくとも用いて任意ノード間の配線損失を算出し、前記電力系統の総配線損失を取得する配線損失取得手段と、
前記電力系統への有効電力又は無効電力の出力が可能な制御対象の出力指令値であり、前記電力系統の総配線損失が小となるような前記制御対象の出力指令値を算出する出力指令値算出手段と、
前記算出した出力指令値に基づいて前記制御対象を制御する系統制御手段と
を備えたことを特徴とする電力系統制御システム。 Measurement value acquisition means for acquiring at least voltage and phase at the same time by time synchronization measurement at an arbitrary node on a predetermined power system;
Power value acquisition means for acquiring active power and reactive power of the arbitrary node using at least the acquired voltage and phase at the same time;
Wiring loss acquisition means for calculating wiring loss between arbitrary nodes using at least the voltage, phase, active power and reactive power at the same time of the acquired arbitrary node, and acquiring the total wiring loss of the power system;
Output command value of the control target capable of outputting active power or reactive power to the power system, and calculating the output command value of the control target such that the total wiring loss of the power system is small A calculation means;
A power system control system comprising: system control means for controlling the control object based on the calculated output command value.
前記制御対象は、有効電力及び無効電力の系統出力が可能な分散型電源、無効電力の系統出力が可能な調相器を含み、
前記出力指令値算出手段は、前記分散型電源が出力する有効電力を最大化する一方、前記分散型電源が出力する無効電力、前記調相器が出力する無効電力、前記電力系統の総配線損失が最小化するような前記制御対象の出力指令値を算出することを特徴とする電力系統制御システム。 In the electric power system control system according to claim 1,
The controlled object includes a distributed power source capable of system output of active power and reactive power, a phase adjuster capable of system output of reactive power,
The output command value calculating means maximizes the active power output from the distributed power supply, while the reactive power output from the distributed power supply, the reactive power output from the phase adjuster, and the total wiring loss of the power system. A power system control system characterized by calculating an output command value of the control object that minimizes the above.
前記制御対象は、有効電力及び無効電力の系統出力が可能な分散型電源、無効電力の系統出力が可能な調相器を含み、
前記出力指令値算出手段は、前記分散型電源が出力する有効電力を最大化する一方、前記調相器が出力する無効電力、前記電力系統の総配線損失が最小化するような前記制御対象の出力指令値を算出することを特徴とする電力系統制御システム。 In the electric power system control system according to claim 1,
The controlled object includes a distributed power source capable of system output of active power and reactive power, a phase adjuster capable of system output of reactive power,
The output command value calculating means maximizes the active power output from the distributed power supply, while the reactive power output from the phase adjuster and the control target such that the total wiring loss of the power system is minimized. An electric power system control system characterized by calculating an output command value.
前記制御対象は、更に化石燃料を使用する発電所発電設備を含み、
前記出力指令値算出手段は、前記発電所発電設備が出力する有効電力及び無効電力を含んで最小化するような前記制御対象の出力指令値を算出することを特徴とする電力系統制御システム。 In the electric power system control system according to claim 2 or 3,
The control object further includes a power plant power generation facility using fossil fuel,
The power command control system, wherein the output command value calculation means calculates an output command value of the control target that is minimized including active power and reactive power output from the power plant power generation equipment.
前記出力指令値算出手段は、前記取得した任意ノードの電圧、有効電力、無効電力を少なくとも用い、その有効電力及び無効電力の一方又は両者の時間変化量を加味して最小化するような前記制御対象の出力指令値を算出することを特徴とする電力系統制御システム。 In the electric power system control system of any one of Claims 1-4,
The output command value calculating means uses at least the acquired voltage, active power, reactive power of the arbitrary node, and minimizes the control by taking into account the time variation of one or both of the active power and reactive power. A power system control system characterized by calculating a target output command value.
前記制御対象の出力指令値は、無効電力指令値であることを特徴とする電力系統制御システム。 In the electric power system control system according to any one of claims 1 to 5,
The power system control system, wherein the output command value to be controlled is a reactive power command value.
前記制御対象は、分散型電源として太陽光発電システムを含むことを特徴とする電力系統制御システム。 In the electric power system control system according to any one of claims 1 to 6,
The control target includes a photovoltaic power generation system as a distributed power source.
前記測定値取得手段は、前記任意ノードでの同時刻の電圧及び位相を取得することを特徴とする電力系統制御システム。 In the electric power system control system according to any one of claims 1 to 7,
The measurement value acquisition means acquires the voltage and phase at the same time in the arbitrary node.
前記測定値取得手段は、前記任意ノードでの同時刻の電圧及び位相、並びに電流及び位相を取得することを特徴とする電力系統制御システム。 In the electric power system control system according to any one of claims 1 to 7,
The measured value acquisition means acquires the voltage and phase, current and phase at the same time in the arbitrary node.
前記取得した同時刻の電圧及び位相を少なくとも用いて前記任意ノードの有効電力及び無効電力を取得し、
前記取得した任意ノードの同時刻の電圧、位相、有効電力及び無効電力を少なくとも用いて任意ノード間の配線損失を算出して前記電力系統の総配線損失を取得し、
前記電力系統への有効電力又は無効電力の出力が可能な制御対象の出力指令値であり、前記電力系統の総配線損失が小となるような前記制御対象の出力指令値を算出し、
前記算出した出力指令値に基づいて前記制御対象を制御することを特徴とする電力系統制御方法。 Obtain at least the voltage and phase at the same time by time synchronization measurement at an arbitrary node on the predetermined power system,
Using the acquired voltage and phase at the same time to obtain the active power and reactive power of the arbitrary node,
Calculate the wiring loss between arbitrary nodes using at least the voltage, phase, active power and reactive power at the same time of the acquired arbitrary node to obtain the total wiring loss of the power system,
The output command value of the control object capable of outputting active power or reactive power to the power system, and calculating the output command value of the control object such that the total wiring loss of the power system is small,
A power system control method comprising controlling the control object based on the calculated output command value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011240336A JP5820240B2 (en) | 2011-11-01 | 2011-11-01 | Power system control system and power system control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011240336A JP5820240B2 (en) | 2011-11-01 | 2011-11-01 | Power system control system and power system control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013099132A true JP2013099132A (en) | 2013-05-20 |
JP5820240B2 JP5820240B2 (en) | 2015-11-24 |
Family
ID=48620508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011240336A Active JP5820240B2 (en) | 2011-11-01 | 2011-11-01 | Power system control system and power system control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5820240B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103701119A (en) * | 2013-12-21 | 2014-04-02 | 南京南瑞集团公司 | Method for processing non-convergence tide data on basis of regulation on reactive power |
DE102014113900A1 (en) | 2013-09-27 | 2015-04-02 | Daihen Corporation | Control circuit and control method for inverter circuit and control circuit and power conversion circuit control method |
JP2015077034A (en) * | 2013-10-11 | 2015-04-20 | 三菱電機株式会社 | Power system state estimation device |
JP2016025842A (en) * | 2014-07-23 | 2016-02-08 | 三菱電機株式会社 | Method of adjusting the voltage of distribution system, monitoring controller for monitoring voltage violation and distribution system having electric power substation transformer |
WO2021006274A1 (en) * | 2019-07-09 | 2021-01-14 | 富士電機株式会社 | Grid interconnection device and server |
CN114884072A (en) * | 2021-11-11 | 2022-08-09 | 中国电力科学研究院有限公司 | Method and device for reducing active network loss of high-proportion new energy power system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180032480A (en) | 2016-09-22 | 2018-03-30 | 엘에스산전 주식회사 | Power compensation apparatus and method of controlling the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843142A (en) * | 1981-09-03 | 1983-03-12 | 株式会社東芝 | Method of controlling generator |
JPS60241734A (en) * | 1984-05-15 | 1985-11-30 | 株式会社東芝 | System controller |
JPH11146560A (en) * | 1997-11-04 | 1999-05-28 | Hitachi Ltd | Loosely coupled power system controller |
JP2005143238A (en) * | 2003-11-07 | 2005-06-02 | Nippon Oil Corp | Power supply system |
JP2007052000A (en) * | 2005-07-21 | 2007-03-01 | Kyushu Institute Of Technology | Power strip with means for detecting overcurrent |
JP2010011735A (en) * | 2004-12-14 | 2010-01-14 | Tokyo Electric Power Co Inc:The | Optimum tidal current calculation method and optimum tidal current calculation device |
US20100114398A1 (en) * | 2008-11-05 | 2010-05-06 | Abb Research Ltd. | Reactive Power Optimization |
-
2011
- 2011-11-01 JP JP2011240336A patent/JP5820240B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843142A (en) * | 1981-09-03 | 1983-03-12 | 株式会社東芝 | Method of controlling generator |
JPS60241734A (en) * | 1984-05-15 | 1985-11-30 | 株式会社東芝 | System controller |
JPH11146560A (en) * | 1997-11-04 | 1999-05-28 | Hitachi Ltd | Loosely coupled power system controller |
JP2005143238A (en) * | 2003-11-07 | 2005-06-02 | Nippon Oil Corp | Power supply system |
JP2010011735A (en) * | 2004-12-14 | 2010-01-14 | Tokyo Electric Power Co Inc:The | Optimum tidal current calculation method and optimum tidal current calculation device |
JP2007052000A (en) * | 2005-07-21 | 2007-03-01 | Kyushu Institute Of Technology | Power strip with means for detecting overcurrent |
US20100114398A1 (en) * | 2008-11-05 | 2010-05-06 | Abb Research Ltd. | Reactive Power Optimization |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014113900A1 (en) | 2013-09-27 | 2015-04-02 | Daihen Corporation | Control circuit and control method for inverter circuit and control circuit and power conversion circuit control method |
US9450513B2 (en) | 2013-09-27 | 2016-09-20 | Daihen Corporation | Control circuit and control method for inverter circuit, and control circuit and control method for power conversion circuit |
JP2015077034A (en) * | 2013-10-11 | 2015-04-20 | 三菱電機株式会社 | Power system state estimation device |
CN103701119A (en) * | 2013-12-21 | 2014-04-02 | 南京南瑞集团公司 | Method for processing non-convergence tide data on basis of regulation on reactive power |
JP2016025842A (en) * | 2014-07-23 | 2016-02-08 | 三菱電機株式会社 | Method of adjusting the voltage of distribution system, monitoring controller for monitoring voltage violation and distribution system having electric power substation transformer |
WO2021006274A1 (en) * | 2019-07-09 | 2021-01-14 | 富士電機株式会社 | Grid interconnection device and server |
JP2021013294A (en) * | 2019-07-09 | 2021-02-04 | 富士電機株式会社 | Grid interconnection device and server |
US11515711B2 (en) | 2019-07-09 | 2022-11-29 | Fuji Electric Co., Ltd. | Grid interconnection device and server |
JP7338518B2 (en) | 2019-07-09 | 2023-09-05 | 富士電機株式会社 | Server and power generation system |
CN114884072A (en) * | 2021-11-11 | 2022-08-09 | 中国电力科学研究院有限公司 | Method and device for reducing active network loss of high-proportion new energy power system |
Also Published As
Publication number | Publication date |
---|---|
JP5820240B2 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5820240B2 (en) | Power system control system and power system control method | |
Mahmoud et al. | Modeling and control of microgrid: An overview | |
JP6163494B2 (en) | Power converter and method for controlling power converter | |
AlKaabi et al. | Incorporating PV inverter control schemes for planning active distribution networks | |
JP5756348B2 (en) | Power generation system and power generation apparatus | |
Kaushik et al. | A hybrid AC-DC microgrid: Opportunities & key issues in implementation | |
Bensmail et al. | Study of hybrid photovoltaic/fuel cell system for stand-alone applications | |
WO2013046244A1 (en) | System using direct-current power source, and direct-current-type microgrid network using same system | |
Østergaard | Geographic aggregation and wind power output variance in Denmark | |
Chistyakov et al. | Combined central and local control of reactive power in electrical grids with distributed generation | |
JP2008154445A (en) | System and method for controlling micro grid | |
JP2007300784A (en) | Distributed power supply | |
JP2011193606A (en) | Solar power generation system | |
JP4968105B2 (en) | Distributed power supply | |
JP2015039262A (en) | Distributed power supply facility system | |
JP5645783B2 (en) | Power system support system | |
KR101644810B1 (en) | Microgrid system, control apparatus for the system and control method for the system | |
KR20170021606A (en) | The battery energy storage system and reactive power compensation method using thereof | |
JP2007037226A (en) | Power supply system and its control method | |
WO2018020297A1 (en) | Apparatus and control method of self organized operation of distribution grid sections without new physical communication infrastructure | |
KR101707013B1 (en) | Reactive power control apparatus and method of combined generation system | |
Hanna et al. | Optimal power flow for micro-grids | |
Parida et al. | Remote area power supply through suitable solar PV augmented micro‐hydro generation: A case study | |
Albasheri et al. | Supervisory energy management strategy based-fuzzy logic for a DC microgrid | |
Testa et al. | A probabilistic approach to size step-up transformers for grid connected PV plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5820240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |