[go: up one dir, main page]

JP2013098445A - Printed wiring board and induction heating cooker equipped with the same - Google Patents

Printed wiring board and induction heating cooker equipped with the same Download PDF

Info

Publication number
JP2013098445A
JP2013098445A JP2011241778A JP2011241778A JP2013098445A JP 2013098445 A JP2013098445 A JP 2013098445A JP 2011241778 A JP2011241778 A JP 2011241778A JP 2011241778 A JP2011241778 A JP 2011241778A JP 2013098445 A JP2013098445 A JP 2013098445A
Authority
JP
Japan
Prior art keywords
hole
printed wiring
wiring board
substrate
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011241778A
Other languages
Japanese (ja)
Inventor
Yuichiro Zaibe
裕一郎 財部
Yasumichi Okita
泰道 大北
Futoshi Okawa
太 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011241778A priority Critical patent/JP2013098445A/en
Publication of JP2013098445A publication Critical patent/JP2013098445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board which does not cause detachment of a copper plating layer 7 on an internal surface of a through hole 4a in a high-temperature soldering process, and provide an induction heating cooker equipped with the printed wiring board.SOLUTION: A printed wiring board comprises: a substrate 2 in which a through hole 5a is provided; and a plating layer 7 covering an internal wall of the through hole 5a and at least a part of a land part 6 provided on the substrate 2 connected to the internal wall, and having a boring on which a base material of the covered substrate is exposed. An induction heating cooker has the printed wiring board 1a.

Description

本発明は、プリント配線板に関するものであり、詳しくは信頼性に優れたスルーホールを有するプリント配線板及びこれを備えた誘導加熱調理器に関するものである。   The present invention relates to a printed wiring board, and more particularly to a printed wiring board having a through hole with excellent reliability and an induction heating cooker including the printed wiring board.

プリント配線板のスルーホールは、表面配線と裏面配線を有する基板に貫通孔を開け、表面配線のランドと裏面配線のランドとの導通を確保するために、その内壁面に銅メッキ層等を形成したものである。このスルーホールに電子部品等のリードを挿入し、鉛フリー半田等の半田を充填して、プリント配線板への電子部品の実装を行なう。   The through hole of the printed wiring board is formed with a copper plating layer on the inner wall surface in order to make a through hole in the board having the front surface wiring and the back surface wiring, and to ensure conduction between the land of the front surface wiring and the land of the back surface wiring. It is a thing. A lead such as an electronic component is inserted into the through hole and filled with solder such as lead-free solder, and the electronic component is mounted on the printed wiring board.

この実装工程には、加熱して溶融した半田が入った半田槽に、電子部品等を仮付けしたプリント配線板を漬しながら通過させる、いわゆるフロー半田付け法が用いられる。フロー半田付け法は、プリント配線板の下面を溶融した高温の半田に漬し、スルーホール内に半田が吸い上げられ、スルーホール内に半田が充填されるものである。   In this mounting process, a so-called flow soldering method is used in which a printed wiring board temporarily attached with electronic components or the like is passed through a solder tank containing heated and melted solder. In the flow soldering method, the lower surface of a printed wiring board is immersed in molten high-temperature solder, the solder is sucked into the through hole, and the solder is filled into the through hole.

しかし、このフロー半田付け法は、プリント配線板が高温に晒されるので、スルーホールの内壁面の銅メッキ層や、プリント配線板表面に銅箔により形成されているスルーホールのランド等が剥離する可能性がある。従って、スルーホールの内壁面の銅メッキ層等には、高温での剥離を防止する、高い信頼性が求められる。   However, with this flow soldering method, the printed wiring board is exposed to high temperatures, so the copper plating layer on the inner wall surface of the through hole, the land of the through hole formed of copper foil on the surface of the printed wiring board, and the like peel off. there is a possibility. Therefore, the copper plating layer on the inner wall surface of the through hole is required to have high reliability for preventing peeling at a high temperature.

そこで、フロー半田付け法による半田付け時等の高温に晒されてスルーホールの内壁面の銅メッキ層が剥離しないように、スルーホールの内壁面に段差構造を形成して、基板の基材と銅メッキ層の接触面積を大きくし、密着力を強くする方法が提案されている(例えば特許文献1)。   Therefore, a step structure is formed on the inner wall surface of the through hole so that the copper plating layer on the inner wall surface of the through hole is not peeled off by being exposed to a high temperature such as when soldering by flow soldering method. A method for increasing the contact area of the copper plating layer and increasing the adhesion is proposed (for example, Patent Document 1).

特開2010−258048号公報JP 2010-258048 A

しかし、上記で説明した従来のプリント配線板では、フロー半田付け時にプリント配線板が高温に晒されることにより、例えばガラス繊維とエポキシ樹脂からなる有機無機複合材やセラミック材等の基板の基材から放出される水蒸気、有機溶剤等のガスにより、基板の基材とメッキ層との密着力が低下し、メッキ層の剥離が生じるという問題点がある。   However, in the conventional printed wiring board described above, when the printed wiring board is exposed to a high temperature during flow soldering, for example, from an organic-inorganic composite material made of glass fiber and epoxy resin, or a base material of a substrate such as a ceramic material. The gas such as water vapor and organic solvent that is released has a problem in that the adhesion between the base material of the substrate and the plating layer is reduced, and the plating layer is peeled off.

本発明は上記の問題を解決するためになされたものであり、フロー半田付け時等の高温に晒されてもメッキ層の剥離を防止することができる、信頼性の高いスルーホールを有するプリント配線板及びこれを備えた誘電加熱調理器を得ることを目的とする。   The present invention has been made to solve the above-described problem, and is a printed wiring having a highly reliable through hole that can prevent peeling of a plating layer even when exposed to a high temperature during flow soldering or the like. An object is to obtain a plate and a dielectric heating cooker provided with the plate.

本発明のプリント配線板は、貫通孔が設けられた基板と、貫通孔の内壁部と内壁部に接続された基板上に設けられたランド部の少なくとも一部とを覆い、覆われた基板の基材が露出する穿孔を有するメッキ層と、を備えるものである。   The printed wiring board of the present invention covers a substrate provided with a through-hole, and an inner wall portion of the through-hole and at least a part of a land portion provided on the substrate connected to the inner wall portion. And a plating layer having perforations through which the substrate is exposed.

フロー半田付け時等の高温に晒されることによって、プリント配線板を構成する基板の基材の内部から発生する水蒸気、有機溶剤のガス等をスルーホールの内壁面の銅メッキ層に設けた穿孔から放出することができるため、プリント配線板を構成する基板の基材とメッキ層との界面の内圧を高めることがなく、メッキ層の剥離を防止することができる。   When exposed to high temperatures during flow soldering, etc., the water vapor generated from the inside of the base material of the substrate constituting the printed wiring board, organic solvent gas, etc. from the perforations provided in the copper plating layer on the inner wall surface of the through hole Since it can be released, it is possible to prevent peeling of the plating layer without increasing the internal pressure at the interface between the base material of the substrate constituting the printed wiring board and the plating layer.

実施の形態1のプリント配線板の製造工程において、プリント配線板の銅メッキ層に穿孔を形成する前のスルーホールの断面模式図である。In the manufacturing process of the printed wiring board of Embodiment 1, it is a cross-sectional schematic diagram of the through hole before forming a perforation in the copper plating layer of the printed wiring board. 実施の形態1のプリント配線板の製造工程において、銅メッキ層に穿孔が形成されたスルーホールの上面模式図である。In the manufacturing process of the printed wiring board of Embodiment 1, it is an upper surface schematic diagram of the through hole by which perforation was formed in the copper plating layer. 実施の形態1のプリント配線板の製造工程において、銅メッキ層に穿孔が形成されたスルーホールの断面模式図である。In the manufacturing process of the printed wiring board of Embodiment 1, it is a cross-sectional schematic diagram of the through hole in which the perforation was formed in the copper plating layer. 実施の形態1のプリント配線板に対して、フロー半田付けを施した後のスルーホールの断面模式図であるIt is a cross-sectional schematic diagram of the through hole after performing flow soldering with respect to the printed wiring board of Embodiment 1. FIG. 実施の形態2のプリント配線板のスルーホールの断面模式図(穿孔部分が略円形)である。FIG. 5 is a schematic cross-sectional view of a through hole of a printed wiring board according to Embodiment 2 (a perforated portion is substantially circular). 実施の形態2のプリント配線板の別のスルーホールの断面模式図(穿孔部分が楕円形)である。It is a cross-sectional schematic diagram of another through hole of the printed wiring board of Embodiment 2 (the perforated portion is elliptical).

実施の形態の説明及び各図において、同一の符号を付した部分は、同一又は相当する部分を示すものである。   In the description of the embodiments and the respective drawings, the portions denoted by the same reference numerals indicate the same or corresponding portions.

実施の形態1.
図1〜図3を用いて、スルーホールを有するプリント配線板の製造工程、構成を説明する。図1は、プリント配線板の製造工程において、プリント配線板の銅メッキ層に穿孔を形成する前のスルーホールの断面模式図、図2は実施の形態1のプリント配線板1aの製造工程において、銅メッキ層に穿孔が形成されたスルーホールの上面模式図、図3は実施の形態1のプリント配線板1aの製造工程において、銅メッキ層に穿孔が形成されたスルーホールの断面模式図を示している。
Embodiment 1 FIG.
A manufacturing process and a configuration of a printed wiring board having a through hole will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a through hole before a perforation is formed in a copper plating layer of a printed wiring board in the manufacturing process of the printed wiring board. FIG. 2 is a manufacturing process of the printed wiring board 1a of the first embodiment. FIG. 3 is a schematic cross-sectional view of a through hole in which a perforation is formed in the copper plating layer in the manufacturing process of the printed wiring board 1a of the first embodiment. ing.

なお、本実施の形態においては、誘導加熱調理器に用いられるプリント配線板1aを例として説明する。誘導加熱調理器に用いられるプリント配線板1aには、大きな電流を流すことが要求される電解コンデンサ等の部品を実装することが必要である。このような部品の実装部分で大きな許容電流値を確保するために、大型円形、または長円形(角丸長方形)のスルーホールが用いられる。本実施の形態のプリント配線板1aにおいては、図2に示されるように、スルーホール4aの形状が長円形の場合を例に説明するが、他の部品との配置等、実装の形態に応じてスルーホールの形状を設定すればよいことは言うまでもない。   In addition, in this Embodiment, the printed wiring board 1a used for an induction heating cooking appliance is demonstrated as an example. On the printed wiring board 1a used in the induction heating cooker, it is necessary to mount components such as an electrolytic capacitor required to pass a large current. In order to secure a large allowable current value at the mounting part of such a component, a large circular or oval (rounded rectangular) through hole is used. In the printed wiring board 1a of the present embodiment, as shown in FIG. 2, a case where the through hole 4a has an oval shape will be described as an example. However, depending on the mounting form such as arrangement with other components, etc. Needless to say, the shape of the through hole may be set.

図1は、銅メッキ層7に穿孔を形成する前の、誘導加熱調理器に用いられるプリント配線板1aのスルーホール4aの断面模式図を示す。まず、プリント配線となる銅箔3が両面に形成された基板2に、打ち抜き加工法を用いて、長径5mm、短径1mmの長円形の、両面を貫通した貫通孔5aが開けられる。この基板2は、例えば厚さ1mmで、基材がガラス繊維とエポキシ樹脂からなる有機無機複合材からできている。図1の断面模式図は、短径方向の断面模式図を示している。次に、無電解銅メッキ法を用いて、長円形の貫通孔5aの内壁面と基板2の銅箔上全面とに銅メッキ層7が形成される。次に、フォトリソグラフィ法を用いて、基板2の両面に配線パターンが形成される。また、基板2に貫通する貫通孔5aの周囲には、配線パターンの一部としてランド部6が形成される。   FIG. 1 is a schematic cross-sectional view of the through hole 4a of the printed wiring board 1a used in the induction heating cooker before the perforation is formed in the copper plating layer 7. FIG. First, an oval through hole 5a having a major axis of 5 mm and a minor axis of 1 mm and penetrating both sides is opened on a substrate 2 on which copper foils 3 to be printed wirings are formed on both sides using a punching method. The substrate 2 has a thickness of 1 mm, for example, and is made of an organic-inorganic composite material whose base material is made of glass fiber and epoxy resin. The cross-sectional schematic diagram of FIG. 1 shows a cross-sectional schematic diagram in the minor axis direction. Next, using an electroless copper plating method, a copper plating layer 7 is formed on the inner wall surface of the oval through hole 5a and the entire surface of the substrate 2 on the copper foil. Next, wiring patterns are formed on both surfaces of the substrate 2 using a photolithography method. A land portion 6 is formed as a part of the wiring pattern around the through hole 5a penetrating the substrate 2.

次に紫外線硬化型のソルダレジストを基板2の全面に塗布し、プレキュアを行なった後、フォトリソグラフィ法を用いて不要部分取り除く。その結果、半田付けをしない部分にソルダレジスト層8が形成され、長円形のスルーホール4aを有するプリント配線板1aが得られる。以上のように、スルーホール4aは、貫通孔5aと、ランド部6と、この貫通孔5aの内壁面とランド部6とを覆う銅メッキ層7とから構成されている。   Next, an ultraviolet curable solder resist is applied to the entire surface of the substrate 2 and pre-cured, and then unnecessary portions are removed using a photolithography method. As a result, the solder resist layer 8 is formed in the part not to be soldered, and the printed wiring board 1a having the oval through hole 4a is obtained. As described above, the through hole 4 a is configured by the through hole 5 a, the land portion 6, and the copper plating layer 7 that covers the inner wall surface of the through hole 5 a and the land portion 6.

ここまでの工程により得られた、長円形のスルーホール4aが設けられた基板2は、微小な位置調整が可能なドリル装置に取り付けられる。次に、ドリル装置で、図2に示されるように、スルーホール4aの内壁面からスルーホール4aの外側方向へ0.1mm移動した位置を基板穿孔9の中心位置10として直径0.3mmの基板穿孔9がプリント配線板1aに対し垂直方向に開けられる。基板穿孔9は、基板2の表面から裏面まで連続する穿孔となっている。   The substrate 2 provided with the oval through-holes 4a obtained by the steps so far is attached to a drill device capable of minute position adjustment. Next, as shown in FIG. 2, a substrate having a diameter of 0.3 mm is set by using a drill device as a center position 10 of the substrate perforation 9 at a position moved 0.1 mm from the inner wall surface of the through hole 4 a toward the outer side of the through hole 4 a. Perforations 9 are opened in a direction perpendicular to the printed wiring board 1a. The substrate perforations 9 are continuous perforations from the front surface to the back surface of the substrate 2.

図2は、基板穿孔9が開けられた長円形のスルーホール4aの上面模式図である。また、図3は、図2のA−A部分の断面模式図である。この基板穿孔9は、図2及び図3に示すように、スルーホール4aと連続して繋がった構造となっている。さらに、図3に示すように、この基板穿孔9の内壁面は、基板の断面が露出しており、言い換えれば、基板2の基材である有機無機複合材が露出された状態である。つまり、スルーホール4aの内壁面の銅メッキ層7に、基板2の一方の面から他方の面まで連続した基板穿孔9が形成されることで、基板2の基材が露出している。   FIG. 2 is a schematic top view of an oval through hole 4a in which the substrate perforations 9 are opened. FIG. 3 is a schematic cross-sectional view taken along the line AA in FIG. As shown in FIGS. 2 and 3, the substrate perforation 9 has a structure continuously connected to the through hole 4a. Further, as shown in FIG. 3, the inner wall surface of the substrate perforation 9 has a section of the substrate exposed, in other words, an organic-inorganic composite material that is a base material of the substrate 2 is exposed. That is, the base material of the board | substrate 2 is exposed by forming the board | substrate perforation 9 continuous from the one surface of the board | substrate 2 to the other surface in the copper plating layer 7 of the inner wall face of the through hole 4a.

図4は、実施の形態1のプリント配線板1aに対して、半田付けを施した後の状態を示した断面模式図である。本実施の形態で得た長円形のスルーホール4aを有する誘導加熱調理器用のプリント配線板1aを用いて、電解コンデンサのリード12部分がスルーホール4aに通され、255℃の鉛フリー半田槽に5秒間漬してスルーホール4aに半田13を充填することで半田付けを行なう。   FIG. 4 is a schematic cross-sectional view showing a state after soldering is performed on the printed wiring board 1a of the first embodiment. Using the printed wiring board 1a for an induction heating cooker having the oval through hole 4a obtained in the present embodiment, the lead 12 portion of the electrolytic capacitor is passed through the through hole 4a, and the lead-free solder bath at 255 ° C. The soldering is performed by dipping for 5 seconds and filling the through hole 4a with the solder 13.

実施の形態1のプリント配線板1aとは異なる通常のプリント配線板を高温の半田槽に漬すと、プリント配線板を構成する基板2の基材から水蒸気、有機溶剤のガスが発生する。この水蒸気、ガスはスルーホール4aの内壁面からも発生し、基板2の基材と銅メッキ層7との間にたまり、銅メッキ層7が膨らむ。   When a normal printed wiring board different from the printed wiring board 1a of the first embodiment is immersed in a high-temperature solder bath, water vapor and organic solvent gas are generated from the base material of the substrate 2 constituting the printed wiring board. The water vapor and gas are also generated from the inner wall surface of the through-hole 4a, accumulate between the base material of the substrate 2 and the copper plating layer 7, and the copper plating layer 7 swells.

発生する水蒸気、ガスが少ない場合、銅メッキ層7の膨らみは小さく、大きな問題とはならないが、半田槽の温度が高く、発生する水蒸気、ガスが多いと、銅メッキ層7は大きく膨らみ、基板2の基材から銅メッキ層7が剥離する。   When the generated water vapor and gas are small, the bulge of the copper plating layer 7 is small and not a big problem. However, when the temperature of the solder bath is high and the generated water vapor and gas are large, the copper plating layer 7 swells greatly, and the substrate The copper plating layer 7 peels from the base material 2.

そこで、本実施の形態のように、スルーホール4aの横に基板穿孔9が形成され、プリント配線板1aの基板2の基材が露出した部分が設けられたことによって、発生した水蒸気、ガスが外部に放出され、銅メッキ層7の膨らみは生じず、剥離とはならない。   Therefore, as in the present embodiment, the substrate perforation 9 is formed beside the through hole 4a, and the portion where the base material of the substrate 2 of the printed wiring board 1a is exposed is provided. It is discharged to the outside, and the copper plating layer 7 does not bulge and does not peel off.

図4に模式的に示すように、本実施の形態のプリント配線板1aは、良好な半田付けをすることができ、高温に晒されてもスルーホール4aの内壁面の銅メッキ層7の剥離はなく、良好な品質を示すことができた。   As schematically shown in FIG. 4, the printed wiring board 1a of the present embodiment can be soldered satisfactorily, and the copper plating layer 7 is peeled off from the inner wall surface of the through hole 4a even when exposed to high temperatures. Not good quality.

本実施の形態において、スルーホール4aの形状は長円形としたが、スルーホールの形状は特に限定するものではなく、挿入して半田付けする電子部品のリード12の形状に応じて円形、楕円形、長方形等のスルーホールを用いることができる。   In the present embodiment, the shape of the through hole 4a is oval. However, the shape of the through hole is not particularly limited, and is circular or elliptical depending on the shape of the lead 12 of the electronic component to be inserted and soldered. A through hole such as a rectangle can be used.

本実施の形態において、スルーホール4aの大きさは、短径1mm、長径5mmとし、スルーホール4aの横に位置する基板穿孔9の直径は0.3mmとした。スルーホール4a、基板穿孔9の大きさ、それぞれの位置関係は、基板穿孔9により、少なくともスルーホール4aの内壁面の銅メッキ層7に穿孔を形成し、基板2の基材が露出される位置であることが必要であり、且つ、スルーホール4aと基板穿孔9が離れて分離した状態とならないことが必要である。つまり、基板穿孔9の中心位置10は、スルーホール4aの内壁面から、スルーホール4aの外側に、基板穿孔9の半径よりも離れない位置とすることが必要である。この位置関係の条件を満たす範囲で、スルーホール4a、基板穿孔9の大きさは、実装する電子部品のリード12の大きさ等を考慮し、設定することができる。   In the present embodiment, the size of the through hole 4a is 1 mm short diameter and 5 mm long diameter, and the diameter of the substrate perforation 9 located beside the through hole 4a is 0.3 mm. The size of the through hole 4a and the substrate perforation 9 and the positional relationship thereof are positions where the substrate perforation 9 forms a perforation at least in the copper plating layer 7 on the inner wall surface of the through hole 4a and the base material of the substrate 2 is exposed. It is necessary that the through hole 4a and the substrate perforation 9 are not separated and separated. In other words, the center position 10 of the substrate perforation 9 needs to be a position that is not separated from the inner wall surface of the through hole 4a to the outside of the through hole 4a than the radius of the substrate perforation 9. The size of the through hole 4a and the substrate perforation 9 can be set in consideration of the size of the lead 12 of the electronic component to be mounted and the like within a range satisfying the positional relationship.

本実施の形態においては、スルーホール4aの横に、1個の基板穿孔9を形成したが、複数の基板穿孔9を形成しても同様の効果を得ることができる。ただし、基板穿孔9が形成されると、スルーホール4aの内壁面の銅メッキ層7の面積が減少し、実装した電子部品とプリント配線板1上に形成された配線パターンとの導電性が不十分となる。したがって、少なくとも基板穿孔9により、スルーホール4aの内壁面の銅メッキ層7が20%以上残っていることが必要である。   In the present embodiment, one substrate perforation 9 is formed beside the through hole 4a, but the same effect can be obtained even if a plurality of substrate perforations 9 are formed. However, when the substrate perforation 9 is formed, the area of the copper plating layer 7 on the inner wall surface of the through hole 4a is reduced, and the electrical conductivity between the mounted electronic component and the wiring pattern formed on the printed wiring board 1 is not good. It will be enough. Therefore, it is necessary that at least 20% of the copper plating layer 7 on the inner wall surface of the through hole 4a remains due to the substrate perforation 9.

また、本実施の形態においては、基板2の厚みは1mmとしたが、この厚みは特に限定するものではなく、通常の基板2であれば用いることができる。例えば、少なくとも0.2mm以上、5mm以下の厚みであれば、本実施の形態と同様の効果を得ることができる。   Moreover, in this Embodiment, although the thickness of the board | substrate 2 was 1 mm, this thickness is not specifically limited, If it is the normal board | substrate 2, it can be used. For example, if the thickness is at least 0.2 mm or more and 5 mm or less, the same effect as this embodiment can be obtained.

実施の形態2.
本実施の形態においては、実施の形態1と同様の基板2を用いた。また特に限定しない構成、製造工程等は、実施の形態1と同様の構成、製造工程を用いている。本実施の形態においては、スルーホール4bの内壁面の銅メッキ層7に穿孔を形成しており、本実施の形態で形成する穿孔を実施の形態1での基板穿孔9と区別して、内壁穿孔11a及び11bと呼ぶ。
Embodiment 2. FIG.
In the present embodiment, the same substrate 2 as in the first embodiment is used. Further, configurations, manufacturing processes, and the like that are not particularly limited use the same configurations and manufacturing processes as those in the first embodiment. In the present embodiment, a perforation is formed in the copper plating layer 7 on the inner wall surface of the through hole 4b. The perforation formed in the present embodiment is distinguished from the substrate perforation 9 in the first embodiment. Called 11a and 11b.

図5、図6を用いて、本実施の形態のプリント配線板1b及び1cのスルーホール4bを説明する。図5は実施の形態2のプリント配線板1bのスルーホール4bの断面模式図(内壁穿孔11a部分が略円形)であり、図6は実施の形態2のプリント配線板1cのスルーホール4bの断面模式図(内壁穿孔11b部分が楕円形)である。   The printed wiring boards 1b and 1c of the through holes 4b of the present embodiment will be described with reference to FIGS. FIG. 5 is a schematic cross-sectional view of the through hole 4b of the printed wiring board 1b of the second embodiment (the inner wall perforation 11a portion is substantially circular), and FIG. 6 is a cross-sectional view of the through hole 4b of the printed wiring board 1c of the second embodiment. It is a schematic diagram (the inner wall perforation 11b portion is elliptical).

本実施の形態においては、直径3mmの円形のスルーホール4bを基板2に形成した場合を例に説明している。次に、円形のスルーホール4bが設けられた基板2を微小な位置調整が可能で、且つ、斜め方向からの穴あけ加工をすることができるドリル装置に取り付ける。直径0.2mmのドリルを用いて、プリント配線板のスルーホール4bの内壁面の銅メッキ層7に、垂直方向から30°の角度で、図5に示すように内壁穿孔11aを形成する。   In the present embodiment, a case where a circular through hole 4b having a diameter of 3 mm is formed in the substrate 2 is described as an example. Next, the substrate 2 provided with the circular through-hole 4b is attached to a drilling device capable of minute position adjustment and capable of drilling from an oblique direction. Using a drill with a diameter of 0.2 mm, an inner wall perforation 11a is formed on the copper plating layer 7 on the inner wall surface of the through hole 4b of the printed wiring board at an angle of 30 ° from the vertical direction as shown in FIG.

内壁穿孔11aは、内壁穿孔11aどうしがお互いに接することがないように、スルーホール4bの内壁面の銅メッキ層7全体にほぼ均等に分布するように5個が形成される。   Five inner wall perforations 11a are formed so as to be substantially evenly distributed over the entire copper plating layer 7 on the inner wall surface of the through hole 4b so that the inner wall perforations 11a do not contact each other.

ここで得たスルーホール4bを有するプリント配線板1bを用いて、電子部品のリード12部分をスルーホール4bに通し、255℃の鉛フリー半田槽に5秒間漬して半田付けを行なう。プリント配線板1bを高温の半田槽に漬すとプリント配線板1bの基板2の基材から発生する水蒸気、有機溶剤のガスが銅メッキ層7の内壁穿孔11aを経て外部に排出されるため、銅メッキ層7の膨らみや剥離が生じることがなく、良好な特性のプリント配線板1bを得ることができる。   Using the printed wiring board 1b having the through hole 4b obtained here, the lead 12 portion of the electronic component is passed through the through hole 4b and immersed in a lead-free solder bath at 255 ° C. for 5 seconds for soldering. When the printed wiring board 1b is immersed in a high-temperature solder bath, water vapor and organic solvent gas generated from the base material of the substrate 2 of the printed wiring board 1b are discharged to the outside through the inner wall perforations 11a of the copper plating layer 7, The copper plating layer 7 does not swell or peel off, and the printed wiring board 1b having good characteristics can be obtained.

本実施の形態において、垂直方向から30°の角度でドリルをスルーホール4bに入れ、内壁面の銅メッキ層7に内壁穿孔11aが形成されたが、この角度は特に限定するものではなく、ドリルにより、銅メッキ層7の内壁穿孔11aを形成する部分以外に傷をつけない角度であれば用いることができる。   In the present embodiment, the drill is inserted into the through hole 4b at an angle of 30 ° from the vertical direction, and the inner wall perforation 11a is formed in the copper plating layer 7 on the inner wall surface. However, this angle is not particularly limited. Thus, any angle can be used as long as it does not damage the portion other than the portion where the inner wall perforation 11a of the copper plating layer 7 is formed.

また、本実施の形態においては、銅メッキ層7に5個の内壁穿孔11aが形成されたが、この内壁穿孔11aの数は特に限定するものではなく、1個以上の内壁穿孔11aであれば用いることができる。さらに、本実施の形態においては、内壁穿孔11a相互間に接することがないように、銅メッキ層7の全面に内壁穿孔11aが均等に形成されたが、内壁穿孔11aの分布は特に限定するものではなく、相互に接した内壁穿孔11aであっても本発明の目的を達することができる。   Further, in the present embodiment, five inner wall perforations 11a are formed in the copper plating layer 7. However, the number of inner wall perforations 11a is not particularly limited, and one or more inner wall perforations 11a may be used. Can be used. Furthermore, in the present embodiment, the inner wall perforations 11a are uniformly formed on the entire surface of the copper plating layer 7 so that the inner wall perforations 11a do not contact each other, but the distribution of the inner wall perforations 11a is particularly limited. Instead, the inner wall perforations 11a in contact with each other can achieve the object of the present invention.

ただし、内壁穿孔11aの数が多すぎる場合、銅メッキ層7の面積が小さくなり、電子部品のリード12とプリント配線板1bの配線パターンとの導電性が不十分となるため、スルーホール4bの内壁面の銅メッキ層7が、少なくとも20%以上残っていることが必要である。   However, when the number of inner wall perforations 11a is too large, the area of the copper plating layer 7 is reduced, and the electrical conductivity between the lead 12 of the electronic component and the wiring pattern of the printed wiring board 1b becomes insufficient. It is necessary that at least 20% or more of the copper plating layer 7 on the inner wall surface remains.

スルーホール4bの内壁面に形成する内壁穿孔の形状は特に限定するものではなく、図5に示す略円形の他に、図6に示す楕円形の内壁穿孔11bとする等、任意の形状とすることができる。図6に示された楕円形の内部穿孔11bを形成してプリント配線板1cを得るためには、例えば、ドリルの進入角度を変化させて穿孔するようにすれば良い。   The shape of the inner wall perforation formed on the inner wall surface of the through hole 4b is not particularly limited, and may be an arbitrary shape such as the elliptical inner wall perforation 11b shown in FIG. 6 in addition to the substantially circular shape shown in FIG. be able to. In order to form the elliptical internal perforation 11b shown in FIG. 6 to obtain the printed wiring board 1c, for example, the drill may be perforated while changing the drill entry angle.

また、本実施の形態においては、ドリルを用いて内壁穿孔11a及び11bを形成したが、内壁穿孔11a及び11bの形成方法はこれに限定するものではなく、スルーホール4bの内壁面の銅メッキ層7に内壁穿孔11a及び11bを形成することができる方法であれば用いることができる。例えば、ドリルのほかに、レーザ加工機を用いた方法も適用することができる。   In the present embodiment, the inner wall perforations 11a and 11b are formed by using a drill. However, the method of forming the inner wall perforations 11a and 11b is not limited to this, and the copper plating layer on the inner wall surface of the through hole 4b. 7 can be used as long as the inner wall perforations 11a and 11b can be formed. For example, in addition to a drill, a method using a laser processing machine can also be applied.

本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略することができる。   Within the scope of the present invention, the present invention can be freely combined with each other, or can be appropriately modified or omitted.

1a プリント配線板、1b プリント配線板、1c プリント配線板、2 基板、3 銅箔、4a スルーホール、4b スルーホール、5a 貫通孔、5b 貫通孔、6 ランド部、7 銅メッキ層、8 ソルダレジスト層、9 基板穿孔、10 基板穿孔の中心位置、11a 内壁穿孔、11b 内壁穿孔、12 リード、13 半田。   DESCRIPTION OF SYMBOLS 1a Printed wiring board, 1b Printed wiring board, 1c Printed wiring board, 2 Substrate, 3 Copper foil, 4a Through hole, 4b Through hole, 5a Through hole, 5b Through hole, 6 Land part, 7 Copper plating layer, 8 Solder resist Layer, 9 substrate drilling, 10 substrate drilling center position, 11a inner wall drilling, 11b inner wall drilling, 12 lead, 13 solder.

Claims (6)

貫通孔が設けられた基板と、
前記貫通孔の内壁部と、当該内壁部に接続された前記基板上に設けられたランド部の少なくとも一部と、を覆い、覆われた前記基板の基材が露出する穿孔を有するメッキ層と、
を備えるプリント配線板。
A substrate provided with a through hole;
A plating layer having a perforation that covers an inner wall portion of the through-hole and at least a part of a land portion provided on the substrate connected to the inner wall portion and exposes the covered base material of the substrate; ,
A printed wiring board comprising:
メッキ層は、基板の一方の面から他方の面まで連続する穿孔を有すること
を特徴とする請求項1に記載のプリント配線板。
The printed wiring board according to claim 1, wherein the plated layer has perforations continuous from one surface of the substrate to the other surface.
メッキ層は、当該メッキ層のうちの貫通孔の内壁部を覆う位置に穿孔を有すること
を特徴とする請求項1に記載のプリント配線板。
The printed wiring board according to claim 1, wherein the plated layer has a perforation at a position covering an inner wall portion of the through hole in the plated layer.
基板は、長円形の貫通孔が設けられたこと
を特徴とする請求項1乃至3のいずれか1項に記載のプリント配線板。
The printed wiring board according to claim 1, wherein the substrate is provided with an oval through hole.
基板は、円形の貫通孔が設けられたこと
を特徴とする請求項1乃至3のいずれか1項に記載のプリント配線板。
The printed wiring board according to any one of claims 1 to 3, wherein the substrate is provided with a circular through hole.
請求項1乃至請求項5のいずれか1項に記載のプリント配線板を備える誘導加熱調理器。   An induction heating cooker comprising the printed wiring board according to any one of claims 1 to 5.
JP2011241778A 2011-11-03 2011-11-03 Printed wiring board and induction heating cooker equipped with the same Pending JP2013098445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241778A JP2013098445A (en) 2011-11-03 2011-11-03 Printed wiring board and induction heating cooker equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241778A JP2013098445A (en) 2011-11-03 2011-11-03 Printed wiring board and induction heating cooker equipped with the same

Publications (1)

Publication Number Publication Date
JP2013098445A true JP2013098445A (en) 2013-05-20

Family

ID=48620068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241778A Pending JP2013098445A (en) 2011-11-03 2011-11-03 Printed wiring board and induction heating cooker equipped with the same

Country Status (1)

Country Link
JP (1) JP2013098445A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194328A (en) * 2006-01-18 2007-08-02 Nec Corp Printed-wiring board and semiconductor device
JP2009094303A (en) * 2007-10-10 2009-04-30 Nec Access Technica Ltd Through-hole structure and printed circuit board using the same
JP2009099624A (en) * 2007-10-12 2009-05-07 Fujitsu Ltd Wiring board and manufacturing method thereof
JP2010118390A (en) * 2008-11-11 2010-05-27 Mitsubishi Electric Corp Semiconductor device and method for mounting semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194328A (en) * 2006-01-18 2007-08-02 Nec Corp Printed-wiring board and semiconductor device
JP2009094303A (en) * 2007-10-10 2009-04-30 Nec Access Technica Ltd Through-hole structure and printed circuit board using the same
JP2009099624A (en) * 2007-10-12 2009-05-07 Fujitsu Ltd Wiring board and manufacturing method thereof
JP2010118390A (en) * 2008-11-11 2010-05-27 Mitsubishi Electric Corp Semiconductor device and method for mounting semiconductor device

Similar Documents

Publication Publication Date Title
JP4855186B2 (en) Manufacturing method of double-sided flexible printed wiring board
TWI449485B (en) Printed circuit board and method for manufacturing the same
TWI442854B (en) The printed circuit board and the method for manufacturing the same
US20120152606A1 (en) Printed wiring board
EP2656702B1 (en) Printed circuit board and method for manufacturing the same
TWI492691B (en) Multilayer printed circuit board and method for manufacturing same
JP2009283671A (en) Method of manufacturing printed-wiring board
JP2013140955A (en) Printed circuit board with built-in component and manufacturing method thereof
TW201703592A (en) Printed circuit board and method of manufacturing printed circuit board
JP2010278067A (en) Method of manufacturing multilayer flexible printed circuit board, and multilayer circuit base material
JP2015128124A (en) Printed wiring board mounted with components and manufacturing method of the same
JP2014150091A (en) Wiring board, and method of manufacturing the same
KR100772432B1 (en) Printed Circuit Board Manufacturing Method
TWI636720B (en) Circuit board structure and method for fabricating the same
JP2004047836A (en) Printed board and its manufacturing method
JP2011142285A (en) Heat radiation substrate and method of manufacturing the same
JP6107021B2 (en) Wiring board manufacturing method
JP2013098445A (en) Printed wiring board and induction heating cooker equipped with the same
JP2007207897A (en) Printed circuit board including end surface through-hole
JP2013008945A (en) Manufacturing method of coreless substrate
KR20120019948A (en) Method for manufacturing tailess printed circuit board and printed circuit board using the same
TW201532239A (en) Embedded board and method of manufacturing the same
KR101231522B1 (en) The printed circuit board and the method for manufacturing the same
JP5409480B2 (en) Wiring board manufacturing method
JP2006049457A (en) Wiring board with built-in parts and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902