[go: up one dir, main page]

JP2013096122A - Flap gate - Google Patents

Flap gate Download PDF

Info

Publication number
JP2013096122A
JP2013096122A JP2011239176A JP2011239176A JP2013096122A JP 2013096122 A JP2013096122 A JP 2013096122A JP 2011239176 A JP2011239176 A JP 2011239176A JP 2011239176 A JP2011239176 A JP 2011239176A JP 2013096122 A JP2013096122 A JP 2013096122A
Authority
JP
Japan
Prior art keywords
door body
door
gate
water level
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011239176A
Other languages
Japanese (ja)
Inventor
Michihiro Fujii
道博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Seisakusho Co Ltd
Original Assignee
Kyowa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Seisakusho Co Ltd filed Critical Kyowa Seisakusho Co Ltd
Priority to JP2011239176A priority Critical patent/JP2013096122A/en
Publication of JP2013096122A publication Critical patent/JP2013096122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flap gate that smoothly discharges water when an upstream-side water level is low or when a large amount of water is discharged, and prevents water from flowing back when a river-side water level and a sluice pipe-side water level is substantially as high as each other.SOLUTION: There is provided the flap gate such that a door body 1 to be freely opened and closed is installed at a river-side exit of a sluice pipe provided to a river bank etc., while suspended by an upper hinge mechanism to cutoff water flowing from the river side, and rotates to a river direction to open the sluice pipe for water flowing from the sluice pipe side, the flip gate being characterized in that a float structure part 1e which generates buoyance is formed at a lower part of the door body 1, a balance weight which moves the position W of the center of gravity of the door body in a downstream direction of the flap gate is installed at an upper part of the door body 1, and the position W of the center of gravity of the door body 1 and the position of a suspension core suspending the door body 1 are arranged downstream from a perpendicular line V2 passing the center of buoyance of the float structure part.

Description

本発明は、樋門等に逆流防止を目的として設置され、ゲート上下流側の水位変動に対応して自動開閉する上ヒンジ方式のフラップゲートに関する。   The present invention relates to an upper hinge-type flap gate that is installed in a lock gate or the like for the purpose of preventing a backflow and automatically opens and closes in response to a water level fluctuation on the upstream and downstream sides of the gate.

河川堤防の樋管に、河川水の逆流防止を目的として上ヒンジ方式のフラップゲートが設置されている。   An upper hinge flap gate is installed on the river bank of the river bank to prevent backflow of river water.

図14において、扉体11が上部支持金物12、連結金物12a、連結ピン12bからなるヒンジ機構によって開閉自在に設置されている。図中、13は戸当金物、31は樋管側河床、32は河川側河床、33は堤防、WL1は上流側(樋管側)水位、WL2は下流側(河川側)水位である。   In FIG. 14, the door body 11 is installed so as to be opened and closed by a hinge mechanism including an upper support metal 12, a connection metal 12a, and a connection pin 12b. In the figure, 13 is a door metal fitting, 31 is a riverside riverbed, 32 is a riverside riverbed, 33 is a bank, WL1 is an upstream (floorside) water level, and WL2 is a downstream (riverside) water level.

図14(a)に示すように、上流水位WL1と下流水位WL2が同等程度の水位状態では扉体11は全閉し、水密ゴム11dが戸当金物13に圧着して止水する。なお、ヒンジ機構の連結金物12aは扉体11の水密ゴム11dと戸当金物13との良好な圧着性を確保するものである。   As shown in FIG. 14 (a), when the upstream water level WL1 and the downstream water level WL2 are at the same level, the door body 11 is fully closed, and the watertight rubber 11d is pressed against the door fitting 13 to stop water. It should be noted that the connecting hardware 12a of the hinge mechanism ensures a good pressure-bonding property between the watertight rubber 11d of the door body 11 and the door metal fitting 13.

図14(b)に示すように、上流側水位WL1が下流水位WL2を超えて上昇する場合、扉体11はヒンジ機構を回転中心として扉体下端を下流側に開放する形態で開放作動し、矢印アが示す水流方向で、上流側から下流側に排水する。   As shown in FIG. 14 (b), when the upstream water level WL1 rises above the downstream water level WL2, the door body 11 opens in a form that opens the lower end of the door body to the downstream side with the hinge mechanism as the rotation center, Drain from the upstream side to the downstream side in the direction of the water flow indicated by the arrow A.

フラップゲートは、ゲート上下流水位の変動に対応し、無動力、無人操作でゲート開閉を行うことができるため、最も一般的な自動ゲート設備として利用されている。   The flap gate is used as the most common automatic gate facility because it can respond to fluctuations in the water level upstream and downstream of the gate and can open and close the gate with no power and unmanned operation.

しかしながら、従来のフラップゲートには、次に述べるような問題点、課題点がある。
図15(a)に示すように、従来のフラップゲートは懸垂された扉体11が常時一定の閉作動力で樋管を閉鎖しているため、上流側水位が低い場合は扉体11が十分に開放作動せず、樋管内に排水困難な低水位WL3を発生させてしまう場合がある。また、これにより樋管内に土砂の堆積や流木等34の滞留が発生し易くなる。さらに、図15(b)に示すように、滞留した流木等34が扉体11と戸当金物13間に挟まり込んで不完全閉作状態を発生させ易くまた、一旦挟まり込んだ流木等34が外れ難く、この状態で河川増水した場合は河川水が樋管内に逆流する問題点がある。
However, the conventional flap gate has the following problems and issues.
As shown in FIG. 15 (a), in the conventional flap gate, the suspended door body 11 always closes the tub tube with a constant closing operation force, so that the door body 11 is sufficient when the upstream water level is low. In some cases, the low water level WL3, which is difficult to drain, is generated in the pipe. This also makes it easier for sediment to accumulate and driftwood or the like 34 to stay in the dredger. Further, as shown in FIG. 15 (b), the accumulated driftwood 34 is easily caught between the door body 11 and the door bracket 13, and an incompletely closed state is easily generated. It is hard to come off, and there is a problem that the river water flows back into the pipe when the river increases in this state.

さらに、図16に示すように、扉体11の開放角度θが大きくなると扉体11の閉作動力が増大する特性を有するため、支川から大量の排水が行われる場合でも扉体が十分に開放作動せず、扉体11が流水を遮る形態となり比較的大きな上下流水位差△hが発生するなど、円滑な排水を阻害するという問題点がある。   Furthermore, as shown in FIG. 16, since the closing operation force of the door body 11 increases as the opening angle θ of the door body 11 increases, the door body opens sufficiently even when a large amount of drainage is performed from the tributaries. There is a problem that smooth drainage is hindered, for example, the door body 11 does not operate and the door body 11 blocks the flowing water, and a relatively large upstream / downstream water level difference Δh is generated.

図15に示す問題の原因は、フラップゲートの全閉時の閉作動力にある。図17に示すように、従来のフラップゲートでは全閉時の扉体11を上流側に5°程度傾斜させて設置される。図17において、Wは扉体11の質量、X1は重心位置、L9は重心位置とヒンジ機構吊芯との水平距離を示す。この状態で、閉方向の回転モーメントM1(=W×L9)が全閉時閉作動力として作用し、扉体11を戸当金物13に押し当てる。フラップゲートは、この全閉時閉作動力によって上下流同等水位状態でも確実に扉体11を全閉作動させることを可能とする。反面、開放作動時は抵抗力として作用するため、上流側が低水位の状態では排水不良や土砂・流木等の堆積発生の原因となる。   The cause of the problem shown in FIG. 15 is the closing operation force when the flap gate is fully closed. As shown in FIG. 17, in the conventional flap gate, the door body 11 when fully closed is installed with an inclination of about 5 ° upstream. In FIG. 17, W is the mass of the door body 11, X1 is the center of gravity position, and L9 is the horizontal distance between the center of gravity position and the hinge mechanism suspension core. In this state, the rotational moment M1 (= W × L9) in the closing direction acts as a closing operation force when fully closed, and presses the door body 11 against the door hardware 13. The flap gate enables the door body 11 to be fully closed even in the same upstream / downstream water level state by this fully closed closing operation force. On the other hand, since it acts as a resistance force during the opening operation, if the upstream side is at a low water level, it may cause poor drainage, sedimentation of sediment, driftwood, etc.

図16に示す問題点は、図18に示すように扉体11が開放作動するに伴い扉体重心位置X1と吊芯間の距離L10が大きくなることにより、扉体質量による閉方向の回転モーメントM1(=W×L10)が増大することによる。この問題点を解消するため、図19に示すように、扉体11の下部を浮体構造(フロート)11eとし、下流側水位WL2によって発生する浮力Fにより排水時の開放作動性を向上させる方法がある。しかしながら、図19に示す従来のフラップゲートの設置形態においては扉体下部に大きな浮力を発生させると全閉時の閉作動力を減少させる問題点がある。この形態では浮力Fによるヒンジ機構回りの回転モーメントM2(=F×L11)は開放作動方向に作用し、扉体質量Wによる閉作動力と反対に作用する。浮芯距離L11が重心距離L12より大きいため、浮力Fを大きくすると確実な全閉作動に支障が発生する危険性がある。   The problem shown in FIG. 16 is that, as the door body 11 is opened as shown in FIG. 18, the distance L10 between the door body center-of-gravity position X1 and the suspension core becomes larger, and thus the rotational moment in the closing direction due to the door body mass. This is because M1 (= W × L10) increases. In order to solve this problem, as shown in FIG. 19, the lower part of the door body 11 has a floating structure (float) 11e, and a method of improving the opening operability during drainage by buoyancy F generated by the downstream water level WL2. is there. However, in the conventional flap gate installation mode shown in FIG. 19, there is a problem in that when a large buoyancy is generated in the lower part of the door body, the closing operation force when fully closed is reduced. In this embodiment, the rotational moment M2 (= F × L11) around the hinge mechanism due to the buoyancy F acts in the opening operation direction, and acts opposite to the closing operation force due to the door body mass W. Since the buoyancy distance L11 is larger than the center of gravity distance L12, if the buoyancy F is increased, there is a risk that a reliable full closing operation may be hindered.

このような従来のフラップゲートの問題点に対し、特許文献1には、上ヒンジ方式の扉体の支持軸回りにバランスウェイトを設け、比較的小さな作動力で扉体の開閉作動を可能としたうえ、自重と下流側水圧によって起立・倒伏作動する浮体式扉体とを連動アームで連結させて一体の自動ゲートとし、常時樋管を全開放状態として円滑な排水を行い、水位上昇時は浮体式扉体の起立作動と連動させて扉体を全閉作動させる自動ゲートが開示されている。   With respect to such problems of the conventional flap gate, in Patent Document 1, a balance weight is provided around the support shaft of the upper hinge type door body, and the door body can be opened and closed with a relatively small operating force. In addition, a floating body that rises and falls by its own weight and downstream water pressure is connected by an interlocking arm to form an integrated automatic gate, and the drainage pipe is always fully open for smooth drainage. An automatic gate is disclosed in which a door body is fully closed in conjunction with an upright operation of a type door body.

しかしながら、特許文献1のゲートは、上下の扉体の連結機構が複雑であり、長期間における現場での使用では設備の維持管理が困難であるという問題点がある。   However, the gate of Patent Document 1 has a complicated mechanism for connecting the upper and lower door bodies, and there is a problem that it is difficult to maintain and manage the equipment when used on site for a long period of time.

これに対し、特許文献2には、扉体を浮体構造としたうえ、突出した上部ヒンジを支点とする回転アームの先端に扉体を設置し、河川水上昇時には扉体浮力によって全閉作動させるが、所定以下の水位では扉体を常時開放状態に支持して円滑な排水を行わせるゲートが開示されている。   On the other hand, in Patent Document 2, the door body has a floating structure, and a door body is installed at the tip of the rotating arm with the protruding upper hinge as a fulcrum. When the river water rises, the door body is fully closed by buoyancy. However, there is disclosed a gate that allows smooth drainage by always supporting the door in an open state at a water level below a predetermined level.

また、特許文献3には上部ヒンジを回転中心とする回転アームの一端に扉体を、他端にバランスウェイトを設けて扉体の回転作動が僅かな作動力で可能としたうえ、扉体の樋管側面部上方にフロートを設け、一定の水位上昇によってフロートに発生する浮力によって自動閉作動を行わせ、所定の水位以下では常時ゲート下部を開放状態として円滑な排水を行うゲートが開示されている。   Further, in Patent Document 3, a door body is provided at one end of a rotary arm having an upper hinge as a rotation center, and a balance weight is provided at the other end so that the door body can be rotated with a slight operating force. A gate is disclosed in which a float is provided above the side surface of the tub tube, and the automatic closing operation is performed by a buoyancy generated in the float due to a certain rise in water level, and smooth drainage is performed with the lower part of the gate always open below a predetermined water level. Yes.

しかしながら、特許文献2に開示されたゲートでは扉体全体の概ね50〜60%以上が没水状態となって閉作動する浮力が発生する。また、特許文献3に開示されたゲートでは扉体の樋管側面部の上方に設置したフロートによって閉作動力が発生する構造であるため、上方に設置したフロートに浮力が発生するまで概ね樋管内高の1/2以上の水位上昇が必要である。特許文献2、3のゲートは、いずれも扉体が全閉作動するまでに樋管内高の1/2〜2/3以上のゲート上下流水位の上昇が必要な機構であり、扉体全閉時以外は止水出来ない構造により、全閉状態までは河川側から樋管側への逆流が発生する。これにより中水位以下での逆流を防止することが困難となる課題点を有する。   However, in the gate disclosed in Patent Document 2, approximately 50 to 60% or more of the entire door body is submerged and generates buoyancy for closing. In addition, since the gate disclosed in Patent Document 3 has a structure in which a closing operation force is generated by the float installed above the side surface of the side pipe of the door body, the inside of the side pipe is generally kept until buoyancy is generated in the float installed above. It is necessary to raise the water level by more than half of the height. The gates of Patent Documents 2 and 3 are mechanisms that require a rise in the water level above and below the gate to be 1/2 to 2/3 or more of the inner height of the pipe before the door is fully closed. Backflow from the river side to the side of the culvert pipe occurs until the fully closed state due to the structure that cannot stop the water except during times. Accordingly, there is a problem that it is difficult to prevent a back flow at a middle water level or lower.

特許第3822715号明細書Japanese Patent No. 3822715 特許第3350902号明細書Japanese Patent No. 3350902 特許第3500388号明細書Japanese Patent No. 3500388

本発明は、上流側が低水位の状態においても扉体が容易に開放作動して排水を行い、大容量の排水時においては扉体が大きく開放作動して円滑な排水を行いまた、河川側水位と樋管側水位が同程度となった状態では樋管を確実に全閉作動させて逆流の発生を防止することが可能で構造が簡単なフラップゲートを提供するものである。   The present invention enables the door body to easily open and drain even when the upstream side is at a low water level, and when large capacity drainage, the door body opens and operates to smoothly drain water. When the water level on the side of the soot pipe is about the same level, a flap gate that can prevent the occurrence of back flow by reliably closing the soot pipe and providing a simple structure is provided.

本願の請求項1の発明は、河川堤防等に設けられる樋管の河川側出口に、開閉自在の扉体が河川側からの流水に対し止水可能に上部ヒンジ機構により懸垂状態で設置され、樋管側からの流水に対して扉体が河川方向に回転作動して樋管を開放するフラップゲートにおいて、前記扉体の下部にはゲート全閉時は閉作動力として作用し且つゲート開放作動時には開放作動力として作用する浮力を発生させる浮体構造部が形成され、前記扉体の上部には扉体の重心位置をフラップゲートの下流方向に移動させるバランスウェイトが設置され、前記扉体の前記重心位置と前記扉体を懸垂状態に吊す吊芯位置が前記浮体構造部の浮力中心を通る鉛直線より下流側に配置されていることを特徴とするフラップゲートである。   In the invention of claim 1 of the present application, an openable and closable door body is installed in a suspended state by an upper hinge mechanism at a river side outlet of a dredger pipe provided on a river bank or the like so that water can be stopped against flowing water from the river side, In the flap gate where the door body rotates in the direction of the river against flowing water from the side of the dredging pipe and opens the dredging pipe, the lower part of the door acts as a closing force when the gate is fully closed and the gate opening operation A floating structure that generates buoyancy acting as an opening actuation force is sometimes formed, and a balance weight that moves the center of gravity of the door body in the downstream direction of the flap gate is installed at the top of the door body. The flap gate is characterized in that a gravity center position and a suspension core position for suspending the door body in a suspended state are arranged on a downstream side of a vertical line passing through a buoyancy center of the floating structure portion.

この構成により、扉体下部に発生する浮力をゲート開放作動時には開放作動力として活用することで排水を促進し、ゲート全閉時は閉作動力として活用する事が可能となる。   With this configuration, the buoyancy generated in the lower part of the door body can be used as an opening operation force when the gate is opened to promote drainage, and can be used as a closing operation force when the gate is fully closed.

本願の請求項2の発明は、前記扉体の質量、浮力は、前記扉体の重力により閉作動力として作用し且つ全閉状態では小さく且つ扉体開放作動とともに増加する回転モーメント(S1)と、前記扉体の前記下部浮体構造に作用する浮力により扉体の開放に伴い開作動力として作用する回転モーメント(S2)との絶対値が、|S1|>|S2|となるように設定されていることを特徴とする請求項1に記載のフラップゲート。   In the invention of claim 2 of the present application, the mass and buoyancy of the door body act as a closing operation force due to the gravity of the door body, and are small in the fully closed state and increase with the door body opening operation (S1). The absolute value of the rotational moment (S2) acting as the opening actuating force as the door body opens due to the buoyancy acting on the lower floating body structure of the door body is set to be | S1 |> | S2 | The flap gate according to claim 1, wherein the flap gate is provided.

本願の請求項3の発明は、前記扉体の下部戸当金物が上部戸当金物より上流側となるよう傾斜した形態で配置されていることを特徴とする請求項1又は2に記載のフラップゲートである。   The invention according to claim 3 of the present application is characterized in that the lower door hardware of the door body is arranged in an inclined form so as to be upstream of the upper door hardware. It is a gate.

本発明は、扉体の重心と吊芯間隔を小さくすることで全閉時における扉体自重による閉作動力を小さくして上流側低水位による小さな水圧でも扉体を開放作動させることができるので、上流側低水位において扉体が容易に開放作動して円滑な排水を行うことが可能となる。   Since the present invention reduces the center of gravity of the door body and the distance between the suspension cores to reduce the closing operation force due to the weight of the door body when fully closed, the door body can be opened even with a small water pressure due to the low water level on the upstream side. The door body can be easily opened and drained smoothly at the upstream low water level.

本発明は、扉体下端に浮体構造部を設けているので、発生する浮力をゲート開放作動時には開放作動力として活用することで排水を促進し、ゲート全閉時は閉作動力として活用することが可能となる。   In the present invention, since the floating structure is provided at the lower end of the door body, drainage is promoted by utilizing the generated buoyancy as an opening actuation force when the gate is opened, and as a closing actuation force when the gate is fully closed. Is possible.

本発明は、扉体の重力により閉作動力として作用し、かつ全閉状態では小さく且つ扉体開放作動とともに増加する回転モーメント(S1)と、扉体の前記下部浮体構造に作用する浮力により扉体の開放に伴い開作動力として作用する回転モーメント(S2)との絶対値が、|S1|>|S2|となるように扉体の質量、浮力を設定すること、ならびにゲート全閉状態では上記浮力が閉作動方向に作用することにより、下流側水位が上昇した場合、下流側水位によって扉体下部の浮体構造部に浮力が発生して閉作動力が高まり、扉体を確実に全閉作動させることができる。全閉位置では扉体に作用する浮力が閉作動方向に作用することで、上下流同等水位状態において一定の閉作動力が確保されて確実な止水ができる。   According to the present invention, the door acts as a closing operation force due to the gravity of the door body, and is small in the fully closed state and increases with the door body opening operation (S1), and the buoyancy force acting on the lower floating body structure of the door body. Set the mass and buoyancy of the door body so that the absolute value of the rotational moment (S2) acting as the opening actuating force as the body opens becomes | S1 |> | S2 | If the buoyancy acts in the closing operation direction and the downstream water level rises, the downstream water level generates buoyancy in the floating body structure at the lower part of the door body, increasing the closing operation force and ensuring that the door body is fully closed. Can be operated. In the fully closed position, buoyancy acting on the door body acts in the closing operation direction, so that a constant closing operation force is secured in the upstream and downstream equivalent water level states, and reliable water stopping can be achieved.

本発明は、扉体下部の浮体構造部が水没した状態での排水作動では、浮力が開放作動力として作用し扉体質量による閉作動力を削減することができるため、大容量の排水に対し扉体を大きく開放作動させて円滑に排水することができる。   In the drainage operation in which the floating structure at the bottom of the door body is submerged, the buoyancy acts as an opening actuation force and the closing actuation force due to the door body mass can be reduced. The door body can be opened largely to allow smooth drainage.

さらに、本発明は、上記状態においても安定した閉作動力が常に確保されていることから、全てのゲート作動範囲において、河川側水位と樋管側水位が同等程度となる前に、扉体は全閉位置に回転作動し逆流発生を防止する。   Furthermore, since the present invention always ensures a stable closing force even in the above-described state, before the river side water level and the side pipe side water level become comparable in all gate operating ranges, Rotate to the fully closed position to prevent backflow.

また、本発明は、樋管内高の1/3程度以下の低水位における逆流発生を許容し得る現場条件においては、扉体の下部戸当金物が上部戸当金物より上流側となるよう配置することにより、下流側水位が低い状態では懸垂された扉体と戸当金物間に隙間を設けることで上流側からの排水を円滑に流下させることができる。通常時、扉体下部を開放状態として円滑な排水を行い、下流水位上昇とともに扉体に作用する浮力を閉作動側に作用させ、水位上昇とともに扉体自動閉作動を行わせ、樋管内高の1/5〜1/3程度の低水位状態で早期にゲート全閉状態とすることができる。   Further, the present invention is arranged such that the lower door hardware of the door body is located upstream of the upper door hardware in the field conditions that can allow backflow generation at a low water level of about 1/3 or less of the inner height of the vertical pipe. Accordingly, in a state where the downstream water level is low, the drainage from the upstream side can smoothly flow down by providing a gap between the suspended door body and the door hardware. During normal operation, smooth drainage is performed with the lower part of the door open, causing the buoyancy acting on the door body to act on the closing operation side as the downstream water level rises, causing the door body to automatically close when the water level rises, The gate can be fully closed early at a low water level of about 1/5 to 1/3.

本発明は、駆動手段を必要とせず、ヒンジ機構により扉体を懸垂するので、簡単な構造のフラップゲートが得られる。   The present invention does not require a driving means and suspends the door body by a hinge mechanism, so that a flap gate having a simple structure can be obtained.

本発明のフラップゲートの設置概要図で、(a)が下流側からの鳥瞰図、(b)がゲート設置部の断面概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the installation schematic diagram of the flap gate of this invention, (a) is a bird's-eye view from the downstream, (b) is a cross-sectional schematic diagram of a gate installation part. 本発明のフラップゲート概要図で、(a)がゲート開放作動状態図、(b)がヒンジ部の構造概要図である。It is a flap gate schematic diagram of the present invention, (a) is a gate opening operation state diagram, (b) is a structural schematic diagram of the hinge part. 本発明のフラップゲートの扉体概要図で、(a)が上流側(樋管側)から見た概要図、(b)が下流側(河川側)から見た概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the door body of the flap gate of this invention, (a) is the schematic diagram seen from the upstream (the side pipe side), (b) is the schematic diagram seen from the downstream (river side). 本発明のフラップゲートにおける扉体下部の構造概要図である。It is a structure schematic diagram of the lower part of a door body in the flap gate of the present invention. 本発明の実施例1のフラップゲートの設置形態図で、(a)がゲート全閉時の側断面図、(b)がゲート全開時の側断面図である。It is the installation form figure of the flap gate of Example 1 of this invention, (a) is a sectional side view when a gate is fully closed, (b) is a sectional side view when a gate is fully opened. 本発明の実施例1のフラップゲートの設置条件図である。It is an installation condition figure of the flap gate of Example 1 of the present invention. 本発明の実施例1のフラップゲートの作動力形態図で、(a)が無水状態のゲート全閉時、(b)が上流から排水状態の開放作動時である。It is an operation | movement force form figure of the flap gate of Example 1 of this invention, (a) is at the time of the gate full closure of an anhydrous state, (b) is at the time of the opening | release operation of the drainage state from the upstream. 本発明の実施例1のフラップゲートの作動力形態図で、上下流同等水位でゲート全閉状態時を示す。FIG. 5 is a diagram showing the operating force of the flap gate according to the first embodiment of the present invention, and shows the gate in a fully closed state at the same upstream and downstream water levels. 本発明の実施例1のフラップゲートの作動力形態図で、一定水位で上流から排水状態時を示す。FIG. 3 is a diagram showing the operating force of the flap gate according to the first embodiment of the present invention, and shows a state of drainage from the upstream at a constant water level. 本発明の実施例1のフラップゲートの開放度と作動力の特性を示すグラフである。It is a graph which shows the characteristic of the open degree of a flap gate of Example 1 of this invention, and an operating force. 本発明の実施例2の設置条件図を示す。The installation condition figure of Example 2 of this invention is shown. 本発明の実施例2の上流からの低水位排水状態の作動力形態図である。It is an operation power form figure of the low water level drainage state from the upper stream of Example 2 of the present invention. 本発明の実施例2の作動力形態図で、(a)が全閉作動水位時、(b)は全閉状態で下部浮体構造部の全没水の状態図である。It is an operation force form figure of Example 2 of the present invention, (a) at the time of a fully closed operation water level, (b) is a state figure of all submersion of a lower floating body structure part in a fully closed state. 従来のフラップゲートの概要図で、(a)が全閉状態、(b)が開放作動状態を示す。In the schematic diagram of the conventional flap gate, (a) shows a fully closed state, (b) shows an open operation state. 従来のフラップゲートの問題点を示す概要図で、(a)は樋管内の排水不良と流木等の堆積発生、(b)は扉体と戸当金物間に流木等が挟まり込んだ状態を示す。It is the schematic which shows the problem of the conventional flap gate, (a) is the drainage failure in the vertical pipe and accumulation of driftwood, etc., (b) shows the state where driftwood etc. are sandwiched between the door body and door metal fittings. . 従来のフラップゲートの排水作動時の問題点を示す概要図である。It is a schematic diagram which shows the problem at the time of the drain operation of the conventional flap gate. 従来のフラップゲートの全閉時における重心位置を示す概要図である。It is a schematic diagram which shows the gravity center position at the time of the full closure of the conventional flap gate. 従来のフラップゲートの扉体開放状態における重心位置を示す概要図である。It is a schematic diagram which shows the gravity center position in the door body open state of the conventional flap gate. 従来のフラップゲートにおいて扉体下部を浮体構造とした事例での全閉状態における重心位置と浮心位置を示す概要図である。It is a schematic diagram which shows the gravity center position and buoyancy position in the fully-closed state in the example which made the lower part of the door body the floating body structure in the conventional flap gate.

本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

<実施例1>
図1において、河川堤防33に設けられた樋管31の河川側出口に、樋管31を閉鎖する形態で扉体1がヒンジ機構の吊金物2により戸当金物3に接する状態で、かつ河川方向に回転自在に懸垂されて設置される。32は河川側水路である。
<Example 1>
In FIG. 1, the door body 1 is in contact with the door-to-door hardware 3 by the hinge 2 of the hinge mechanism in the form of closing the river pipe 31 at the river side outlet of the river pipe 31 provided on the river bank 33, and the river It is suspended and installed in a freely rotating direction. 32 is a river side waterway.

図2(a)に示すように、本発明の扉体1は吊金物2によるヒンジ機構により揺動可能に懸垂されて開放作動可能である。ヒンジ機構は、図2(b)に示すように、扉体1の連結部1aと吊金物2が連結板2aを介して各々連結ピン2bによって連結されている。このヒンジ機構により扉体1は自在に回転作動可能となり、また全閉時の扉体1の水密ゴム1dが円滑に戸当金物3に圧着して河川側から樋管方向への止水を行う。図2(a)に示すように、ゲート開放作動状態では扉体1の水密ゴム1dが上部戸当金物3a、下部戸当金物3b、側部戸当金物3cから離れる形態で樋管31の水路を開放し、樋管側から河川方向に排水を行う。   As shown in FIG. 2A, the door body 1 of the present invention is swingably suspended by a hinge mechanism by a hanging object 2 and can be opened. In the hinge mechanism, as shown in FIG. 2B, the connecting portion 1a of the door body 1 and the hanging object 2 are connected to each other by connecting pins 2b via connecting plates 2a. By this hinge mechanism, the door body 1 can freely rotate, and the watertight rubber 1d of the door body 1 when fully closed is smoothly crimped to the door fitting 3 to stop the water from the river side in the direction of the pipe. . As shown in FIG. 2 (a), in the gate opening operation state, the watertight rubber 1d of the door body 1 is separated from the upper door hardware 3a, the lower door hardware 3b, and the side door hardware 3c. And drain the water from the side of the pipe to the river.

図3に示すように、本発明の扉体1は、上端桁にヒンジ機構の吊金物2との連結部1a、扉体上部にバランスウェイトアーム1bが固定設置され、バランスウェイトアーム1bの先端にバランスウェイト1cが設置されている。このバランスウェイトアーム1b、バランスウェイト1cによって扉体1の重心位置をゲート下流方向に移動させることが可能な構造となっている。   As shown in FIG. 3, the door body 1 of the present invention has a connecting portion 1 a to a hinge mechanism suspension 2 at the upper end girder, and a balance weight arm 1 b fixedly installed at the upper portion of the door body, at the tip of the balance weight arm 1 b. A balance weight 1c is installed. The balance weight arm 1b and the balance weight 1c allow the center of gravity of the door body 1 to be moved in the downstream direction of the gate.

また、扉体1の上流面部に水密ゴム1dが設置され、扉体下部下流側を浮体構造1eとすることで、ゲート全閉時においてはゲート下流側水位により扉体に浮力を発生させる構造としている。浮体構造部1eは、例えば図4に示すように、扉体下部のスキンプレート1eアと縦桁1eイ、横桁1eウに囲まれた部分を背板1eエで覆い、この内空部分を完全気密式構造とすることによって形成する。但し、発生する最大浮力の大きさは扉体1の重量の1/2以下とし、扉体全没水状態における全ての作動範囲で扉体1の自重による閉作動力を喪失させないものとする。   In addition, a watertight rubber 1d is installed on the upstream surface portion of the door body 1, and the lower downstream side of the door body is a floating body structure 1e so that buoyancy is generated in the door body by the water level on the downstream side of the gate when the gate is fully closed. Yes. For example, as shown in FIG. 4, the floating structure 1e covers a portion surrounded by a skin plate 1e, a vertical girder 1e, a horizontal girder 1e, and a back plate 1e. It is formed by making it a completely airtight structure. However, the magnitude of the maximum buoyancy to be generated is not more than ½ of the weight of the door body 1, and the closing operation force due to the weight of the door body 1 is not lost in the entire operation range in the fully immersed state of the door body.

図5(a)に示すように、本設置形態では、ゲート全閉時にヒンジ機構によって懸垂された扉体1が概ね垂直となるように設置される。また、図5(b)に示すように、ゲート全開作動した状態においてバランスウェイト1cがヒンジ機構や土木構造物等と干渉せず、扉体1が確実に開放作動可能な形態で設置される。   As shown to Fig.5 (a), in this installation form, when the gate is fully closed, the door body 1 suspended by the hinge mechanism is installed so as to be substantially vertical. Further, as shown in FIG. 5B, the balance weight 1c does not interfere with the hinge mechanism, the civil engineering structure, or the like in the state where the gate is fully opened, and the door 1 is installed in a form that can be reliably opened.

図6において、扉体1は全閉状態とし、X1は扉体1の全質量Wの重心点、V1はX1を通過する鉛直線とする。またX2は扉体1の下部浮体構造1eの全浮力Fの浮心、V2はX2を通過する鉛直線とする。扉体1の吊中心位置を通過する鉛直線をV3とし、V1、V3はV2より河川側とし、かつV3はV1と同一、又は若干樋管側に配置される。   In FIG. 6, the door body 1 is in a fully closed state, X1 is a center of gravity of the total mass W of the door body 1, and V1 is a vertical line passing through X1. X2 is the buoyancy of the total buoyancy F of the lower floating body structure 1e of the door body 1, and V2 is a vertical line passing through X2. The vertical line passing through the suspension center position of the door body 1 is V3, V1 and V3 are on the river side from V2, and V3 is the same as V1 or slightly on the side of the tub.

この設置条件により、図7(a)に示すように、ゲート下流側に水位がない状態で、扉体1にはV3とV1間の距離L1と質量Wによる回転モーメントM1(=W×L1)によって閉方向への作動力が発生している。L1は比較的小さいため、M1も小さい力となり比較的小さな作動力で扉体1は開放作動することができる。図7(b)に示すように、上流側水位WL1が比較的小さい水位であっても、扉体1は簡単に開放作動し、円滑に排水することができる。図7(b)では、扉体1が開放作動したことにより扉体1の回転モーメントM1(=W×L1’)は図7(a)より大きくなるが、WL1の水圧とバランスした状態まで開放作動する。   With this installation condition, as shown in FIG. 7A, the door body 1 has a rotational moment M1 (= W × L1) due to the distance L1 between V3 and V1 and the mass W, with no water level on the downstream side of the gate. Due to this, an operating force in the closing direction is generated. Since L1 is relatively small, M1 also becomes a small force, and the door body 1 can be opened by a relatively small operating force. As shown in FIG. 7B, even when the upstream water level WL1 is a relatively small water level, the door body 1 can be easily opened and drained smoothly. In FIG. 7 (b), the door body 1 is opened and the rotational moment M1 (= W × L1 ′) of the door body 1 becomes larger than that in FIG. 7 (a), but the door body 1 is opened to a state balanced with the water pressure of WL1. Operate.

また、図6に示すV3とV1を同一線上に設定した場合、扉体1は全閉状態で吊合状態となり、この場合の初期閉作動力は概ね0の状態となる。したがって、上流側からの流水に対しさらに開放作動し易くなる。   Moreover, when V3 and V1 shown in FIG. 6 are set on the same line, the door body 1 is in a fully closed state and is in a suspended state, and the initial closing operation force in this case is substantially zero. Therefore, it becomes easier to perform the opening operation with respect to the flowing water from the upstream side.

図8に示すように、下流側水位の上昇とともに、浮力Fが発生してゲート閉方向の回転モーメントM2(=F×L2)を発生させる。これにより、上下流が同水位状態であっても、発生した浮力M2によってゲート閉作動力を確保する。   As shown in FIG. 8, as the downstream water level rises, buoyancy F is generated to generate a rotational moment M2 (= F × L2) in the gate closing direction. Thereby, even if the upstream and downstream are in the same water level state, the gate closing operation force is ensured by the generated buoyancy M2.

扉体1の開放作動によって図6に示す鉛直線V1、V2は下流側に移動する。図6に示す鉛直線V2がV3より下流側に移動すると浮力Fは開放作動側に作用する。   By the opening operation of the door body 1, the vertical lines V1 and V2 shown in FIG. When the vertical line V2 shown in FIG. 6 moves downstream from V3, the buoyancy F acts on the opening operation side.

図9に示すように、扉体1の浮体構造部1eが水没した状態で排水作動を行う場合、質量Wによる回転モーメントM1(=W×L3)はゲート閉作動方向に作用するが、浮力Fによる回転モーメントM2(=F×L4)は開放作動方向に作用する。この結果、ゲートを開放作動させるために必要な作動力はM2相当分が減少することとなり、排水時の上流側水位WL1と下流側水位WL2の水位差が小さくなり、円滑な排水が行える。   As shown in FIG. 9, when the drainage operation is performed with the floating structure 1e of the door body 1 submerged, the rotational moment M1 (= W × L3) due to the mass W acts in the gate closing operation direction, but the buoyancy F The rotational moment M2 (= F × L4) due to acts on the opening operation direction. As a result, the operating force required to open the gate is reduced by an amount corresponding to M2, and the difference in water level between the upstream water level WL1 and the downstream water level WL2 during drainage is reduced, and smooth drainage can be performed.

図10に示す本発明のフラップゲートにおける自動作動力グラフにおいて、横軸はゲート開放度を示し、原点は開度0(=全閉状態)とし、右方向でゲートが開放する。縦軸は開閉方向作動力を示し、中心線0を境に、正方向(上方向)がゲート閉作動力、負方向(下方向)がゲート開作動力を示す。S1は扉体1の重力Wによる回転モーメントM1であり、本設置形態では常に閉作動力として作用し、全閉状態では小さく扉体開放作動とともに増加する特性を有する。S2は扉体1の下部浮体構造1eに作用する全浮力Fによる回転モーメントM2であり、全閉状態では閉作動方向に作用するが、扉体1の開放作動とともに閉作動力として低下し、図6に示す鉛直線V2が同V3と同一線となる角度で0となり、開放に伴い開作動力として作用する。この結果、浮力Fが作用している水位条件下では、扉体の閉作動力はS1とS2を加算した回転モーメントS3となる。   In the automatic operating force graph of the flap gate of the present invention shown in FIG. 10, the horizontal axis indicates the gate opening degree, the origin is the opening degree 0 (= fully closed state), and the gate opens in the right direction. The vertical axis indicates the opening / closing direction operating force, with the center line 0 as a boundary, the positive direction (upward) indicates the gate closing operating force, and the negative direction (downward) indicates the gate opening operating force. S1 is a rotational moment M1 due to the gravity W of the door body 1, and always acts as a closing operation force in the present installation form, and has a characteristic of increasing in the door body opening operation in a fully closed state. S2 is a rotational moment M2 due to the total buoyancy F acting on the lower floating structure 1e of the door body 1 and acts in the closing operation direction in the fully closed state, but decreases as the closing operation force with the opening operation of the door body 1, The vertical line V2 shown in FIG. 6 becomes 0 at an angle where the vertical line V2 is the same line as the same V3, and acts as an opening actuating force with the opening. As a result, under the water level condition where the buoyancy F acts, the door closing force is a rotational moment S3 obtained by adding S1 and S2.

本発明のフラップゲートでは、この自動作動力グラフにおけるS1がS2のうち開作動力の絶対値より常に大きくなるように、すなわち|S1|>|S2|に扉体1の質量W、浮力Fが設定される。   In the flap gate of the present invention, S1 in this automatic operating force graph is always larger than the absolute value of the opening operating force in S2, that is, | S1 |> | S2 | Is set.

この結果、図10に示すように、浮力Fが作用する水位条件下では、扉体の閉作動力S3がゲート開度の増加に対して安定した値となる特性を有することなる。これは、上流からの排水量に応じて容易にゲートが開放作動することとなり、排水作動性を高める。また、常に閉作動力が確保されていることより、上流側からの排水圧力が低下した場合は速やかに自動閉作動を行い、上下流水位が逆転する前にゲートを全閉作動させることができる。 As a result, as shown in FIG. 10, under the water level condition where the buoyancy F acts, the door closing force S3 has a characteristic that becomes a stable value with respect to the increase in the gate opening. This easily opens the gate according to the amount of drainage from the upstream, and improves drainage operability. In addition, since the closing operation force is always secured, the automatic closing operation can be quickly performed when the drain pressure from the upstream side decreases, and the gate can be fully closed before the upstream and downstream water levels are reversed. .

以上のように、本発明のフラップゲートは、ゲート下流側に水位がない状態、又は下流側水位が低い状態ではゲート閉作動力が小さく、上流側からの排水流に対し容易に開放作動して円滑に排水する。下流水位が上昇すると扉体下部より浮力Fが扉体閉作動方向に作用し、ゲートを確実に閉作動させて下流から上流方向への逆流発生を防止することができる。また、一定水位での上流水から下流方向へ排水する状態においては、浮力Fが開放作動方向に作用し、排水量に応じて容易にゲート開放度を増加させて円滑な排水を行うことができる。   As described above, the flap gate according to the present invention has a small gate closing operation force when there is no water level on the downstream side of the gate or when the downstream water level is low, and the flap gate easily operates to open the drainage flow from the upstream side. Drain smoothly. When the downstream water level rises, buoyancy F acts from the lower part of the door body in the door body closing operation direction, and the gate is reliably closed to prevent backflow from downstream to upstream. Further, in the state of draining from upstream water at a constant water level to the downstream direction, the buoyancy F acts in the opening operation direction, and it is possible to easily increase the gate opening degree according to the amount of drainage and perform smooth drainage.

<実施例2>
図11において、樋管31の開口の周囲に設けられた枠状の戸当金物を、上部戸当金物3aより下部戸当金物3bが上流側となるように傾斜した形態で配置し、扉体1を実施例1と同様にヒンジ機構によって概ね垂直となるように扉体1を懸垂させて設置する。傾斜角度は5度〜10度程度の範囲とする。図11は、重心X1を通過する鉛直線V1と扉体吊芯の鉛直線V2を同一線上とし、扉体1を垂直に懸垂した設置状態を示す。なお、本実施例では、V1を扉体1の吊中心位置を通過する鉛直線V3と同一線上に設定している。
<Example 2>
In FIG. 11, a frame-like door metal fitting provided around the opening of the tub tube 31 is arranged in an inclined form so that the lower door hardware 3b is upstream from the upper door hardware 3a. As in the first embodiment, the door body 1 is suspended and installed so as to be substantially vertical by a hinge mechanism. The inclination angle is in the range of about 5 to 10 degrees. FIG. 11 shows an installation state in which the vertical line V1 passing through the center of gravity X1 and the vertical line V2 of the door suspension core are on the same line, and the door 1 is suspended vertically. In this embodiment, V1 is set on the same line as the vertical line V3 passing through the suspension center position of the door body 1.

この状態で、扉体1は下部戸当金物3bより離れ、扉体1の下端と下部戸当金物3b間に隙間を設けた形となって樋管を開放した状態となっている。扉体1の吊芯を樋管側に少量移動すると扉体1の下端が上流方向に移動する形で傾斜する。この場合も扉体下端と下部戸当金物3b間にゴミ等が通過できる隙間を確保するようにする。   In this state, the door body 1 is separated from the lower door metal fitting 3b, and has a shape in which a gap is provided between the lower end of the door body 1 and the lower door metal fitting 3b, and the iron pipe is opened. When a small amount of the suspension core of the door body 1 is moved to the side of the duct, the lower end of the door body 1 is inclined so as to move in the upstream direction. Also in this case, a gap through which dust or the like can pass is secured between the lower end of the door body and the lower door hardware 3b.

図12に示すように、下流側に水位がない状態では扉体1は釣合い状態で懸垂されておりまた、扉体下端が開放されていることより上流からの排水が円滑に行われ、また流木塵芥等が円滑に流下することができる。   As shown in FIG. 12, when there is no water level on the downstream side, the door body 1 is suspended in a balanced state, and since the lower end of the door body is open, drainage from the upstream is performed smoothly, and driftwood Dust etc. can flow smoothly.

図13(a)に示すように、下流側水位が上昇すると扉体1の下部浮体構造部1eに浮力Fによる回転モーメントM2(=F×L7)が扉体閉方向に作用し、扉体1の質量Wにより懸垂状態へ復元しようとする回転モーメントM1(=W×L6)を上回った状態で自動閉作動を行い、所定水位(概ね樋管高さの1/5〜1/3程度の水位)で全閉状態となる。   As shown in FIG. 13A, when the downstream water level rises, the rotational moment M2 (= F × L7) due to the buoyancy F acts on the lower floating structure 1e of the door 1 in the door closing direction. The automatic closing operation is performed in a state exceeding the rotational moment M1 (= W × L6) to restore to the suspended state due to the mass W of the water, and a predetermined water level (approximately 1/5 to 1/3 of the vertical pipe height) ) Is fully closed.

図13(b)に示すように、下流側水位WL2が更に上昇すると浮力Fが増加し、閉作動力を増加して扉体1を下部戸当金物3bに圧着させて止水する。下流水位WL2の上昇による自動閉作動力は、上下流同等水位状態で確実に作用するよう設計されるため、下流水位WL2が上流水位WL1を超えた状態では更に水位差水圧が閉作動方向に作用し、早期にゲートを全閉作動させる。   As shown in FIG. 13B, when the downstream water level WL2 further rises, the buoyancy F increases, the closing operation force is increased, and the door body 1 is pressed against the lower door fitting 3b to stop the water. Since the automatic closing operation force due to the rise of the downstream water level WL2 is designed to act reliably in the upstream and downstream equivalent water level states, the water level differential water pressure further acts in the closing operation direction when the downstream water level WL2 exceeds the upstream water level WL1. Then, the gate is fully closed early.

反対に上流水位WL1が下流水位WL2を超えて上昇すると扉体1は開放作動を開始し、図12に示すように比較的小さな水位差で円滑な排水を行う。   On the contrary, when the upstream water level WL1 rises above the downstream water level WL2, the door body 1 starts an opening operation, and performs smooth drainage with a relatively small water level difference as shown in FIG.

1:扉体 1a:連結部
1b:バランスウェイトアーム 1c:バランスウェイト
1d:水密ゴム 1e:扉体下部の浮体構造部
1eア:扉体のスキンプレート 1eイ:扉体の端縦桁
1eウ:扉体の横桁 1eエ:扉体の背板
2:吊金物(ヒンジ機構) 2a:連結金物(ヒンジ機構)
2b:吊ピン 3:戸当金物
3a:上部戸当金物 3b:下部戸当金物
3c:側部戸当金物 11:扉体
11d:水密ゴム 11e:扉体下部の浮体構造部
12:吊金物 12a:吊板
12b:吊ピン 13:戸当金物
31:樋管側水路 32:河川側水路
33:堤防 34:流木等
WL1:ゲート上流側(樋管側)水位
WL2:ゲート下流側(河川側)水位
WL3:扉体閉により樋管側に発生した排水困難な水位
W:扉体とバランスウェイトの全体質量
F:水中部の扉体下部浮体構造により発生する浮力
X1:Wの重心位置
X2:Fの浮心位置
V1:X1を通過する鉛直線
V2:X2を通過する鉛直線
V3:扉体の吊芯位置を通過する鉛直線
L1〜L11:扉体の吊芯から扉体の重心、または浮心までの水平距離
矢印ア:流水方向
△h:排水時の上下流水位差
1: Door body 1a: Connecting part 1b: Balance weight arm 1c: Balance weight 1d: Watertight rubber 1e: Floating structure part 1e at the lower part of the door body: Skin plate of the door body 1e I: Door end stringer 1e: Crosspiece 1d of door body: Back plate of door body 2: Hanging hardware (hinge mechanism) 2a: Connection hardware (hinge mechanism)
2b: Hanging pin 3: Towel hardware
3a: Upper door hardware 3b: Lower door hardware 3c: Side door hardware 11: Door 11d: Watertight rubber 11e: Floating structure 12 under the door body 12: Hanging metal 12a: Hanging plate 12b: Hanging pin 13: Door-to-door hardware 31: Pipe side waterway 32: River side waterway 33: Embankment 34: Driftwood, etc. WL1: Gate upstream side (floor pipe side) water level WL2: Gate downstream side (river side) water level WL3: Pipe pipe by closing the door Water level generated on the side that is difficult to drain W: Total mass of door body and balance weight F: Buoyant force generated by the floating structure below the door body in the underwater part X1: W center of gravity position X2: F centering position V1: Passed through X1 Vertical line V2 passing through: Vertical line V3 passing through X2: Vertical lines L1 to L11 passing through the suspension core position of the door body: Horizontal distance from the suspension core of the door body to the center of gravity of the door body or buoyancy. Direction △ h: Difference between upstream and downstream water levels during drainage

Claims (3)

河川堤防等に設けられる樋管の河川側出口に、開閉自在の扉体が河川側からの流水に対し止水可能に上部ヒンジ機構により懸垂された状態で設置され、樋管側からの流水に対して前記扉体が河川方向に回転作動して樋管を開放するフラップゲートにおいて、
前記扉体の下部にはゲート全閉時は閉作動力として作用し且つゲート開放作動時には開放作動力として作用する浮力を発生させる浮体構造部が形成され、前記扉体の上部には前記扉体の重心位置をフラップゲートの下流方向に移動させるバランスウェイトが設置され、前記扉体の前記重心位置と前記扉体を懸垂状態に吊す吊芯位置が前記浮体構造部の浮力中心を通る鉛直線より下流側に配置されていることを特徴とするフラップゲート。
An openable door is installed at the river side exit of the dredging pipe on the river embankment, etc., suspended from the river side by the upper hinge mechanism so that it can be stopped against running water from the river side. On the other hand, in the flap gate where the door body rotates in the direction of the river and opens the pipe.
A floating structure for generating a buoyancy that acts as a closing operation force when the gate is fully closed and as an opening operation force when the gate is opened is formed at a lower portion of the door body, and the door body is formed above the door body. A balance weight is installed to move the center of gravity of the door in the downstream direction of the flap gate, and the center of gravity of the door body and the suspension core position for hanging the door body in a suspended state are from the vertical line passing through the buoyancy center of the floating body structure part. A flap gate, which is arranged on the downstream side.
前記扉体の質量、浮力は、前記扉体の重力により閉作動力として作用し且つ全閉状態では小さく且つ扉体開放作動とともに増加する回転モーメント(S1)と、前記扉体の前記下部浮体構造に作用する浮力により扉体の開放に伴い開作動力として作用する回転モーメント(S2)との絶対値が、|S1|>|S2|となるように設定されていることを特徴とする請求項1に記載のフラップゲート。   The mass and buoyancy of the door body act as a closing operation force due to the gravity of the door body and are small in the fully closed state and increase with the door body opening operation (S1), and the lower floating body structure of the door body The absolute value of the rotational moment (S2) acting as an opening actuating force as the door body opens due to the buoyancy acting on the door is set to satisfy | S1 |> | S2 |. 1. The flap gate according to 1. 前記扉体の下部戸当金物が上部戸当金物より上流側となるよう傾斜した形態で配置されていることを特徴とする請求項1又は2に記載のフラップゲート。   The flap gate according to claim 1 or 2, wherein the lower door hardware of the door body is disposed in an inclined form so as to be upstream of the upper door hardware.
JP2011239176A 2011-10-31 2011-10-31 Flap gate Pending JP2013096122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239176A JP2013096122A (en) 2011-10-31 2011-10-31 Flap gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239176A JP2013096122A (en) 2011-10-31 2011-10-31 Flap gate

Publications (1)

Publication Number Publication Date
JP2013096122A true JP2013096122A (en) 2013-05-20

Family

ID=48618379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239176A Pending JP2013096122A (en) 2011-10-31 2011-10-31 Flap gate

Country Status (1)

Country Link
JP (1) JP2013096122A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105566A (en) * 2013-12-03 2015-06-08 株式会社丸島アクアシステム Flap gate
CN105256774A (en) * 2015-11-10 2016-01-20 武汉大学 Method for reducing closure difficulty of upstream hydropower station by using returned water of downstream reservoir
CN108426067A (en) * 2017-02-14 2018-08-21 姜天佑 Gravity traction turnover plate one-way valve
CN110185009A (en) * 2019-06-23 2019-08-30 李孝兵 Coordinated type overturns lock
JP2021001442A (en) * 2019-06-19 2021-01-07 株式会社協和製作所 Hinge device for flap gate
CN114808871A (en) * 2022-05-23 2022-07-29 水利部交通运输部国家能源局南京水利科学研究院 Linear floating body gate without opening and closing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272334U (en) * 1985-10-23 1987-05-09
JP2000328545A (en) * 1999-05-19 2000-11-28 Asahi Tekkosho:Kk Automatic gate
JP2001065720A (en) * 1999-08-31 2001-03-16 Kubota Corp Backflow prevention gate
JP3149416U (en) * 2009-01-13 2009-03-26 旭イノベックス株式会社 Xiamen opening and closing door device
JP2011117146A (en) * 2009-12-01 2011-06-16 Asahi Inovex Kk Flap gate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272334U (en) * 1985-10-23 1987-05-09
JP2000328545A (en) * 1999-05-19 2000-11-28 Asahi Tekkosho:Kk Automatic gate
JP2001065720A (en) * 1999-08-31 2001-03-16 Kubota Corp Backflow prevention gate
JP3149416U (en) * 2009-01-13 2009-03-26 旭イノベックス株式会社 Xiamen opening and closing door device
JP2011117146A (en) * 2009-12-01 2011-06-16 Asahi Inovex Kk Flap gate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105566A (en) * 2013-12-03 2015-06-08 株式会社丸島アクアシステム Flap gate
CN105256774A (en) * 2015-11-10 2016-01-20 武汉大学 Method for reducing closure difficulty of upstream hydropower station by using returned water of downstream reservoir
CN108426067A (en) * 2017-02-14 2018-08-21 姜天佑 Gravity traction turnover plate one-way valve
JP2021001442A (en) * 2019-06-19 2021-01-07 株式会社協和製作所 Hinge device for flap gate
JP7256533B2 (en) 2019-06-19 2023-04-12 株式会社協和製作所 Hinge device for flap gate
CN110185009A (en) * 2019-06-23 2019-08-30 李孝兵 Coordinated type overturns lock
CN110185009B (en) * 2019-06-23 2023-08-15 李孝兵 Linkage type turnover gate
CN114808871A (en) * 2022-05-23 2022-07-29 水利部交通运输部国家能源局南京水利科学研究院 Linear floating body gate without opening and closing system

Similar Documents

Publication Publication Date Title
JP2013096122A (en) Flap gate
US6171023B1 (en) Water control gate
AU2020246272B2 (en) Watertight structure for flap gate and flap gate comprising same
CN104452684B (en) The hollow flap gate of waterpower self-control
JP6629457B2 (en) Floodgate
JP5697695B2 (en) Pull-up type flap in gate
JP6625911B2 (en) Flap gate and gate equipment
KR101355949B1 (en) Flap gate
JPH04203112A (en) Automatic control gate for brine counterflow prevention
JP5333872B2 (en) Water gate
US1861397A (en) Superservice flood valve
JP5051588B2 (en) Flap gate, water channel temporary wall, and water channel connection method
JP2017119983A (en) Flap gate
JPH11269857A (en) Float type flap gate
JP4115380B2 (en) Peerless gate
JP5503075B1 (en) Flap gate
JP4495999B2 (en) Gate facility with movable channel floor
JP6490473B2 (en) Pull-up type flap-in gate installation method
KR101253650B1 (en) The automatic gate device using weight plummet
JP7053060B2 (en) Flap gate
CN211200314U (en) Arc door capable of automatically controlling upstream water level by utilizing buoyancy
KR20040042669A (en) Apparatus for automatically controlling a water level of dam
JP3350902B2 (en) Gutter gates and gutter gates
JP2022165575A (en) Unit type flap gate
JP2017043931A (en) Rotary backflow prevention device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202