[go: up one dir, main page]

JP2013088380A - Portable radiation detector - Google Patents

Portable radiation detector Download PDF

Info

Publication number
JP2013088380A
JP2013088380A JP2011231544A JP2011231544A JP2013088380A JP 2013088380 A JP2013088380 A JP 2013088380A JP 2011231544 A JP2011231544 A JP 2011231544A JP 2011231544 A JP2011231544 A JP 2011231544A JP 2013088380 A JP2013088380 A JP 2013088380A
Authority
JP
Japan
Prior art keywords
temperature
photodetector
radiation detector
voltage
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231544A
Other languages
Japanese (ja)
Inventor
Atsushi Kataoka
淳 片岡
Kei Kamata
圭 鎌田
Shigeki Ito
繁記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Furukawa Co Ltd
Original Assignee
Waseda University
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Furukawa Co Ltd filed Critical Waseda University
Priority to JP2011231544A priority Critical patent/JP2013088380A/en
Publication of JP2013088380A publication Critical patent/JP2013088380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a portable radiation detector for achieving temperature compensation means by a relative simple constitution.SOLUTION: A portable radiation detector 1 includes: a scintillator 11 for emitting light when radiation is applied; a photodetector 12 for converting light emitted from the scintillator 11 into an electric signal; and a power supply part 20 including a battery 21 for supplying bias voltage to the photodetector 12 and connecting a temperature sensor 25 for changing a current value in accordance with a temperature change between the battery 21 and the photodetector 12.

Description

本発明は、携帯型放射線検出器に関する。   The present invention relates to a portable radiation detector.

放射線を検出する線量計を有する放射線検出器は、その種類により固有の温度特性を有している。従って、放射線を安定した精度で測定するためには、放射線検出器の温度特性に対して温度補償を施す必要があり、種々の方法が考えられ実用化されている。   A radiation detector having a dosimeter for detecting radiation has a unique temperature characteristic depending on its type. Therefore, in order to measure radiation with stable accuracy, it is necessary to perform temperature compensation on the temperature characteristics of the radiation detector, and various methods have been considered and put into practical use.

例えば、特許文献1に記載された技術がある。当該技術では、放射線検出器の出力電流パルスを電圧パルスに変換するために使用される前置増幅器に温度補償機能を持たせている。具体的には、前置増幅器の負帰還容量に負の温度特性を持たせて放射線検出器の温度特性を補償するようにしている。   For example, there is a technique described in Patent Document 1. In this technique, the preamplifier used for converting the output current pulse of the radiation detector into a voltage pulse has a temperature compensation function. More specifically, the negative feedback capacitor of the preamplifier has a negative temperature characteristic to compensate for the temperature characteristic of the radiation detector.

また、特許文献2に記載された技術がある。当該技術では、光電子増倍管の周辺温度を計測する測温手段を備えるとともに、当該周辺温度と、各周辺温度で所定の線量率検出感度を得るための光電子増倍管のバイアス電圧とを1対1で記憶させておく。そして、測温手段が周辺温度を計測すると、その周辺温度に対応する光電子増倍管のバイアス電圧を読み出し、そのバイアス電圧を光電子増倍管に与えるようにしている。   Further, there is a technique described in Patent Document 2. In this technique, temperature measuring means for measuring the ambient temperature of the photomultiplier tube is provided, and the ambient temperature and the bias voltage of the photomultiplier tube for obtaining a predetermined dose rate detection sensitivity at each ambient temperature are 1 Remember one-on-one. When the temperature measuring means measures the ambient temperature, the bias voltage of the photomultiplier tube corresponding to the ambient temperature is read, and the bias voltage is applied to the photomultiplier tube.

特公平4−12048号公報Japanese Examined Patent Publication No. 4-12048 特開2003−35779号公報JP 2003-35779 A

特許文献1に記載の技術は、放射線検出器の温度特性により前置増幅器の出力電圧パルスの波高値に現れる負の温度係数を前置増幅器に設けた負の温度係数の負帰還容量で補償するものであるため、パルス幅に負の温度係数が現れ、前置増幅器の出力電圧パルスを増幅するために設けられる主増幅器のゲイン−周波数特性により補償が目減りするという問題点がある。   In the technique described in Patent Document 1, a negative temperature coefficient appearing in the peak value of the output voltage pulse of the preamplifier is compensated by the negative feedback capacitance of the negative temperature coefficient provided in the preamplifier due to the temperature characteristics of the radiation detector. Therefore, there is a problem that a negative temperature coefficient appears in the pulse width, and the compensation is reduced by the gain-frequency characteristic of the main amplifier provided for amplifying the output voltage pulse of the preamplifier.

また、特許文献2に記載の技術の場合、温度とバイアス電圧を対応付けて記憶させる手段や、所定の演算処理を行う手段を、例えばマイコンなどで実現する必要があるため、回路設計が複雑になるほか、コスト負担が大きくなる、放射線検出器の小型化の妨げになるなどの問題が生じ得る。   Further, in the case of the technique described in Patent Document 2, it is necessary to realize a means for storing the temperature and the bias voltage in association with each other and a means for performing a predetermined calculation process by, for example, a microcomputer, so that the circuit design is complicated. In addition, problems such as increased cost burden and hindering downsizing of the radiation detector may occur.

本発明では、比較的簡易な構成で温度補償手段を実現する携帯型放射線検出器を提供することを課題とする。   An object of the present invention is to provide a portable radiation detector that realizes temperature compensation means with a relatively simple configuration.

本発明によれば、放射線があたると光を発するシンチレータと、前記シンチレータが発する光を電気信号に変換する光検出器と、前記光検出器にバイアス電圧を供給するためのバッテリーを有し、前記バッテリーと前記光検出器との間に、温度変化に応じて電流値が変化する温度センサを接続している電源部と、を有する携帯型放射線検出器が提供される。   According to the present invention, there is provided a scintillator that emits light when exposed to radiation, a photodetector that converts light emitted by the scintillator into an electrical signal, and a battery that supplies a bias voltage to the photodetector, There is provided a portable radiation detector having a power supply unit connected with a temperature sensor that changes a current value according to a temperature change between a battery and the photodetector.

本発明によれば、比較的簡易な構成で温度補償手段を実現する携帯型放射線検出器が提供される。   According to the present invention, there is provided a portable radiation detector that realizes temperature compensation means with a relatively simple configuration.

本実施形態の携帯型放射線検出の機能ブロック図の一例である。It is an example of the functional block diagram of the portable radiation detection of this embodiment. 本実施形態の携帯型放射線検出器の効果を説明するための図である。It is a figure for demonstrating the effect of the portable radiation detector of this embodiment.

以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1は本実施形態の携帯型放射線検出器1の機能ブロック図の一例である。図1に示すように、本実施形態の携帯型放射線検出器1は、放射線センサ部10と、電源部20と、アナログ信号処理回路30と、出力部40とを有する。以下、各構成要素について説明する。   FIG. 1 is an example of a functional block diagram of a portable radiation detector 1 of the present embodiment. As shown in FIG. 1, the portable radiation detector 1 of the present embodiment includes a radiation sensor unit 10, a power supply unit 20, an analog signal processing circuit 30, and an output unit 40. Hereinafter, each component will be described.

放射線センサ部10は、シンチレータ11と光検出器12とを有する。シンチレータ11は、放射線があたると光を発する。本実施形態では、従来のあらゆるシンチレータを採用することができる。光検出器12は、シンチレータ11が発する光を電気信号(電圧パルス信号)に変換した後、当該電圧パルス信号をアナログ信号処理回路30に入力する。光検出器12は、例えば、シリコンフォトマルチプライヤーや、高電子増倍管などとすることができるが、携帯型放射線検出器1の小型化を考慮すると、シリコンフォトマルチプライヤーとするのが好ましい。このような放射線センサ部10は、従来技術に準じて実現できるので、ここでの詳細な説明は省略する。   The radiation sensor unit 10 includes a scintillator 11 and a photodetector 12. The scintillator 11 emits light when exposed to radiation. In the present embodiment, any conventional scintillator can be employed. The photodetector 12 converts the light emitted from the scintillator 11 into an electrical signal (voltage pulse signal), and then inputs the voltage pulse signal to the analog signal processing circuit 30. The photodetector 12 can be, for example, a silicon photomultiplier, a high electron multiplier, or the like, but considering the downsizing of the portable radiation detector 1, it is preferably a silicon photomultiplier. Since such a radiation sensor unit 10 can be realized in accordance with the prior art, a detailed description thereof is omitted here.

電源部20は、光検出器12にバイアス電圧を供給するためのバッテリー21を有し、バッテリー21と光検出器12との間に、温度変化に応じて電流値が変化する温度センサ25を接続している。   The power supply unit 20 includes a battery 21 for supplying a bias voltage to the photodetector 12, and a temperature sensor 25 whose current value changes according to a temperature change is connected between the battery 21 and the photodetector 12. doing.

温度センサ25は、温度変化に応じて電流値が変化する。例えば、温度センサ25として、温度トランスデューサを採用することができる。このような温度センサ25は、温度と電流値の変化に線型性を有することが知られている。   The temperature value of the temperature sensor 25 changes according to the temperature change. For example, a temperature transducer can be employed as the temperature sensor 25. Such a temperature sensor 25 is known to have linearity in changes in temperature and current value.

本実施形態の電源部20は、温度センサ25をバッテリー21と光検出器12との間に接続することで、光検出器12に供給するバイアス電圧の値を温度に応じて線型的に変化させるよう構成している。そして、本実施形態の携帯型放射線検出器1は、このような電源部20を備えることで、光検出器12が出力する電圧パルス信号の波高値に現れる負の温度係数を補償する温度補償手段を実現している。以下、図1を用いてこのような電源部20の構成の一例を説明する。   The power supply unit 20 of the present embodiment connects the temperature sensor 25 between the battery 21 and the photodetector 12 to linearly change the value of the bias voltage supplied to the photodetector 12 according to the temperature. It is configured as follows. And the portable radiation detector 1 of this embodiment is provided with such a power supply part 20, and is a temperature compensation means which compensates the negative temperature coefficient which appears in the peak value of the voltage pulse signal which the photodetector 12 outputs. Is realized. Hereinafter, an example of the configuration of such a power supply unit 20 will be described with reference to FIG.

図1に示す電源部20は、バッテリー21及び温度センサ25の他、昇圧回路22、電圧レギュレータ23、電圧補正用抵抗24、ボルテージフォロアー26、および電圧調整回路27を有する。   The power supply unit 20 illustrated in FIG. 1 includes a booster circuit 22, a voltage regulator 23, a voltage correction resistor 24, a voltage follower 26, and a voltage adjustment circuit 27 in addition to the battery 21 and the temperature sensor 25.

このような電源部20によれば、バッテリー21から供給される電圧は、昇圧回路22により光検出器12の動作に必要な電圧まで昇圧された後、電圧調整回路27において適切な電圧に変換され、光検出器12の陽極または陰極に入力される。また、昇圧回路22により適当な電圧に昇圧された後、電圧レギュレータ23に入力された電圧は、電圧レギュレータ23により電圧の絶対値が所定量減圧され定圧となった後、電圧補正用抵抗24に入力され、ボルテージフォロアー26を経由して光検出器12の陰極または陽極に入力される。温度センサ25は電圧補正用抵抗24とボルテージフォロアー26の間に接続されるとともに、アース28に接続されている。   According to such a power supply unit 20, the voltage supplied from the battery 21 is boosted to a voltage necessary for the operation of the photodetector 12 by the booster circuit 22, and then converted into an appropriate voltage by the voltage adjustment circuit 27. , And input to the anode or cathode of the photodetector 12. Further, the voltage input to the voltage regulator 23 after being boosted to an appropriate voltage by the booster circuit 22 is reduced to a constant pressure by reducing the absolute value of the voltage by a predetermined amount by the voltage regulator 23, and then is supplied to the voltage correction resistor 24. It is input to the cathode or anode of the photodetector 12 via the voltage follower 26. The temperature sensor 25 is connected between the voltage correction resistor 24 and the voltage follower 26 and is connected to the ground 28.

ここで、電圧補正用抵抗24に入力する電圧をV、ボルデージフォロアー26から出力され光検出器12に入力する電圧をV(−)、温度センサ25から流れる電流値をI、電圧補正用抵抗24の抵抗をRとすると、これらは以下の式(1)の関係となる。 Here, the voltage input to the voltage correction resistor 24 is V 0 , the voltage output from the voltage follower 26 and input to the photodetector 12 is V (−), the current value flowing from the temperature sensor 25 is I, and the voltage correction is performed. When the resistance of the resistor 24 is R, these are represented by the following formula (1).

Figure 2013088380
Figure 2013088380

上述の通り、温度センサ25は、温度変化に応じて電流値が変化する。そこで、温度の変化をΔT、温度センサ25の温度係数をa、温度センサ25から流れる電流値の変化をΔIとすると、これらは以下の式(2)の関係となる。   As described above, the temperature value of the temperature sensor 25 changes according to the temperature change. Therefore, if the change in temperature is ΔT, the temperature coefficient of the temperature sensor 25 is a, and the change in the current value flowing from the temperature sensor 25 is ΔI, these are expressed by the following equation (2).

Figure 2013088380
Figure 2013088380

そして、上記式(1)及び(2)の関係より、ボルデージフォロアー26から出力され光検出器12に入力する電圧の温度変化に応じた変化ΔV(−)は、以下の式(3)で表わされる。   From the relationship of the above equations (1) and (2), the change ΔV (−) corresponding to the temperature change of the voltage output from the body follower 26 and input to the photodetector 12 is expressed by the following equation (3). Represented.

Figure 2013088380
Figure 2013088380

上記関係に基づいて、ΔV(−)を放射線センサ部10のゲイン温度依存性に対して負の係数をかけることで、放射線センサ部10から出力される電圧パルス信号の波高値の温度依存性が少なくなる。   Based on the above relationship, ΔV (−) is multiplied by a negative coefficient with respect to the gain temperature dependency of the radiation sensor unit 10, whereby the temperature dependency of the peak value of the voltage pulse signal output from the radiation sensor unit 10 is increased. Less.

なお、図1に示す電源部20の構成はあくまで一例であり、所望の温度補償手段を実現できる範囲で、その他の態様とすることができる。すなわち、バッテリー21と光検出器12との間に温度センサ25を接続する態様を変化させてもよいし、また、図1に示す複数のその他の部品(22、23、24、26、27)の中の少なくとも1つを含まなくてもよいし、また、図1に示されていないその他の部品を含んでもよい。   Note that the configuration of the power supply unit 20 shown in FIG. 1 is merely an example, and other modes can be used as long as desired temperature compensation means can be realized. That is, the aspect of connecting the temperature sensor 25 between the battery 21 and the photodetector 12 may be changed, or a plurality of other components (22, 23, 24, 26, 27) shown in FIG. 1 may not be included, or other parts not shown in FIG. 1 may be included.

アナログ信号処理回路30には、放射線センサ部10から出力される電圧パルス信号が入力される。アナログ信号処理回路30は、光検出器12から出力される電圧パルス信号のみを取得するため、前段回路で直流成分を除去する。その後、電圧パルス信号に対して、ある一定の電圧閾値を設け、閾値を超える信号のみをコンデンサーに蓄積し、蓄積された電圧値が、アナログ信号処理回路30から出力され、出力部40に入力される。   A voltage pulse signal output from the radiation sensor unit 10 is input to the analog signal processing circuit 30. Since the analog signal processing circuit 30 acquires only the voltage pulse signal output from the photodetector 12, a DC component is removed by the preceding circuit. After that, a certain voltage threshold is provided for the voltage pulse signal, only the signal exceeding the threshold is accumulated in the capacitor, and the accumulated voltage value is output from the analog signal processing circuit 30 and input to the output unit 40. The

出力部40は、アナログ信号処理回路30から入力された信号を利用して、放射線の検出結果を出力する。例えば、出力部40は、放射線センサ部10に入力した放射線の線量に応じて1cm線量当量を出力してもよい。出力部40による出力手段は特段制限されず、ディスプレイ、スピーカ、印刷装置などのあらゆる出力装置を利用して実現することができる。   The output unit 40 outputs a radiation detection result using the signal input from the analog signal processing circuit 30. For example, the output unit 40 may output a 1 cm dose equivalent according to the radiation dose input to the radiation sensor unit 10. The output means by the output unit 40 is not particularly limited, and can be realized by using any output device such as a display, a speaker, and a printing device.

<<実施例>>
<実施例1>
<放射線測定装置の構成>
シンチレータ11にセリウム賦活ガドリニウムガリウムガーネットを、光検出器12にシリコンフォトマルチプライヤーを用いて放射線センサ部10を構成した。この場合の放射線センサ部10のゲインの温度依存性は−5%/℃程度の負の依存性をとる。
<< Example >>
<Example 1>
<Configuration of radiation measurement device>
The radiation sensor unit 10 was configured using a cerium-activated gadolinium gallium garnet for the scintillator 11 and a silicon photomultiplier for the photodetector 12. In this case, the temperature dependence of the gain of the radiation sensor unit 10 has a negative dependence of about −5% / ° C.

電源部20は、図1に示す構成にした。温度センサ25の温度係数aは1×10−6、電圧補正用抵抗24に入力する電圧Vは23.3V、電圧補正用抵抗24の抵抗Rは56kΩとした。かかる場合、上記式(2)及び(3)に基づけば、光検出器12に入力する電圧の変化ΔVは、−0.05V/℃程度となる。 The power supply unit 20 has the configuration shown in FIG. The temperature coefficient a of the temperature sensor 25 is 1 × 10 −6 , the voltage V 0 input to the voltage correction resistor 24 is 23.3 V, and the resistance R of the voltage correction resistor 24 is 56 kΩ. In this case, based on the above formulas (2) and (3), the change ΔV in the voltage input to the photodetector 12 is about −0.05 V / ° C.

<比較例1>
<放射線測定装置の構成>
電源部20が温度センサ25を有さない点以外は、実施例1と同様の構成とした。
<Comparative Example 1>
<Configuration of radiation measurement device>
Except that the power supply unit 20 does not have the temperature sensor 25, the configuration is the same as that of the first embodiment.

<比較例2>
<放射線測定装置の構成>
電源部20が温度センサ25の代わりに、温度に応じて抵抗値が変化するサーミスタを有する点以外は、実施例1と同様の構成とした。
<Comparative example 2>
<Configuration of radiation measurement device>
Instead of the temperature sensor 25, the power supply unit 20 has the same configuration as that of the first embodiment except that the power supply unit 20 has a thermistor whose resistance value changes according to the temperature.

<測定>
実施例1、比較例1及び比較例2の放射線測定装置を周囲の放射線環境が大きく変化しない環境、具体的にはJIS_z_04333_2006に準拠し、周囲のγ線バックグラウンドが1cm線量当量率0.25以下になるように鉛等の遮蔽材で放射線測定装置を覆い10MBqのセシウム標準線源を、周囲の環境放射線を無視できる強度となるよう配置し放射線測定装置の周辺温度を−25℃から50℃の間で変化させながら、放射線測定結果の変化を観察した。そして、20℃における指示値を基準とし、それぞれの周囲温度における指示値から基準値を差し引いた値の基準値に対する百分率を求めた。
<Measurement>
The radiation measuring apparatus of Example 1, Comparative Example 1 and Comparative Example 2 is an environment in which the surrounding radiation environment does not change greatly, specifically, JIS_z_04333_2006, the surrounding γ-ray background is 1 cm dose equivalent rate of 0.25 or less Cover the radiation measurement device with a shielding material such as lead, and place a 10MBq cesium standard radiation source so that the ambient radiation is negligible. The ambient temperature of the radiation measurement device is -25 ° C to 50 ° C. The change of the radiation measurement result was observed while changing between. Then, using the indicated value at 20 ° C. as a reference, the percentage of the value obtained by subtracting the reference value from the indicated value at each ambient temperature with respect to the reference value was obtained.

結果を表1に示す。   The results are shown in Table 1.

Figure 2013088380
Figure 2013088380

また、これらのデータをグラフにプロットした結果を図2に示す。縦軸が指示値の変化率を示し、横軸が放射線測定装置の周辺温度を示している。   Moreover, the result of having plotted these data on the graph is shown in FIG. The vertical axis represents the change rate of the indicated value, and the horizontal axis represents the ambient temperature of the radiation measuring apparatus.

表1及び図2より、比較例1及び比較例2は温度変化に応じて変化率が大きく変動していることが分かる。これに対し、実施例1は温度変化の影響をほとんど受けず、ほぼ一定の測定結果を出力できることが分かる。さらに、実施例1は、周辺温度が−25℃以上50℃以下の範囲において、測定結果の変化率が10%以内に抑えることが可能であることが分かる。   From Table 1 and FIG. 2, it can be seen that the rate of change in Comparative Example 1 and Comparative Example 2 fluctuates greatly according to the temperature change. On the other hand, it can be seen that Example 1 is almost unaffected by temperature changes and can output a substantially constant measurement result. Furthermore, it can be seen that in Example 1, the change rate of the measurement result can be suppressed to within 10% in the range where the ambient temperature is −25 ° C. or more and 50 ° C. or less.

ここで、−25℃以上50℃以下という温度範囲は、JIS_z_04333_2006で定める特殊室外用X線及びγ線用線量当量率サーベイメータの基準に準拠し、極高温又は極低温下での使用を想定している。そして、このような温度範囲で測定結果の変化率を50%以内、好ましくは20%以内、さらに好ましくは10%以内とすることが好ましい。50%以内に抑えられた場合、JIS_z_04333_2006で定める特殊室外用X線及びγ線用線量当量率サーベイメータの基準に準拠し、極高温又は極低温下での使用が可能となるなどのメリットがある。20%以内に抑えられた場合、JIS_z_04333_2006で定める室外用X線及びγ線用線量当量率サーベイメータの基準と同等の変化率を極高温又は極低温下で達成できることから、極高温又は極低温下での高精度の測定が可能となるようなメリットがある。10%以内に抑えられた場合、JIS_z_04333_2006で定める室内用X線及びγ線用線量当量率サーベイメータの基準と同等の変化率を極高温又は極低温下で達成できることから、極高温又は極低温下でのより高精度の測定が可能となるようなメリットがある。   Here, the temperature range of -25 ° C or more and 50 ° C or less is based on the standard of X-ray and γ-ray dose equivalent rate survey meter specified in JIS_z_04333_2006, and is assumed to be used at extremely high or very low temperatures. Yes. In such a temperature range, the change rate of the measurement result is preferably within 50%, preferably within 20%, and more preferably within 10%. When it is suppressed to 50% or less, it conforms to the standard for the dose equivalent rate survey meter for special outdoor X-rays and γ-rays stipulated in JIS_z_04333_2006, and can be used at extremely high or very low temperatures. When the temperature is kept within 20%, the rate of change equivalent to the standard of dose equivalent rate survey meter for outdoor X-rays and γ-rays specified in JIS_z_04333_2006 can be achieved at extremely high or very low temperatures. There is a merit that enables highly accurate measurement. If it is kept within 10%, the rate of change equivalent to the standard of indoor X-ray and γ-ray dose equivalent rate survey meter defined in JIS_z_04333_2006 can be achieved at extremely high or very low temperatures. There is an advantage that more accurate measurement is possible.

以上説明した本実施形態の放射線測定装置によれば、周辺温度の影響を受けにくい携帯型放射線検出器が実現される。   According to the radiation measuring apparatus of the present embodiment described above, a portable radiation detector that is not easily affected by the ambient temperature is realized.

また、本実施形態の放射線測定装置は、バッテリー21と光検出器12との間に、温度変化に応じて電流値が変化する温度センサ25を接続するという比較的簡易な構成で、温度補償手段を実現している。すなわち、マイコンなどの高価な部品や、その他の多くの部品を要することなく温度補償手段を実現できる。結果、回路設計が容易になるほか、コスト負担の軽減を実現でき、また、放射線測定装置のより一層の小型化を実現することが可能となる。   Further, the radiation measuring apparatus of the present embodiment has a relatively simple configuration in which a temperature sensor 25 whose current value changes according to a temperature change is connected between the battery 21 and the photodetector 12, and the temperature compensation means. Is realized. That is, the temperature compensation means can be realized without requiring expensive parts such as a microcomputer and many other parts. As a result, the circuit design is facilitated, the cost burden can be reduced, and the radiation measuring apparatus can be further downsized.

1 携帯型放射線検出器
10 放射線センサ部
11 シンチレータ
12 光検出器
20 電源部
21 バッテリー
22 昇圧回路
23 電圧レギュレータ
24 電圧補正用抵抗
25 温度センサ
26 ボルテージフォロアー
27 電圧調整回路
28 アース
30 アナログ信号処理回路
40 出力部
DESCRIPTION OF SYMBOLS 1 Portable radiation detector 10 Radiation sensor part 11 Scintillator 12 Photodetector 20 Power supply part 21 Battery 22 Booster circuit 23 Voltage regulator 24 Voltage correction resistor 25 Temperature sensor 26 Voltage follower 27 Voltage adjustment circuit 28 Ground 30 Analog signal processing circuit 40 Output section

Claims (3)

放射線があたると光を発するシンチレータと、
前記シンチレータが発する光を電気信号に変換する光検出器と、
前記光検出器にバイアス電圧を供給するためのバッテリーを有し、前記バッテリーと前記光検出器との間に、温度変化に応じて電流値が変化する温度センサを接続している電源部と、
を有する携帯型放射線検出器。
A scintillator that emits light when exposed to radiation,
A photodetector that converts light emitted by the scintillator into an electrical signal;
A power supply unit having a battery for supplying a bias voltage to the photodetector, and connecting a temperature sensor whose current value changes according to a temperature change between the battery and the photodetector;
A portable radiation detector.
請求項1に記載の携帯型放射線検出器において、
前記光検出器から出力される電気信号の温度依存変化は、−25℃以上50℃以下の範囲において50%以内である携帯型放射線検出器。
The portable radiation detector according to claim 1, wherein
A portable radiation detector in which a temperature-dependent change of an electric signal output from the photodetector is within 50% in a range of −25 ° C. to 50 ° C.
請求項1または2に記載の携帯型放射線検出器において、
前記光検出器は、シリコンフォトマルチプライヤーである携帯型放射線検出器。
The portable radiation detector according to claim 1 or 2,
The photodetector is a portable radiation detector which is a silicon photomultiplier.
JP2011231544A 2011-10-21 2011-10-21 Portable radiation detector Pending JP2013088380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231544A JP2013088380A (en) 2011-10-21 2011-10-21 Portable radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231544A JP2013088380A (en) 2011-10-21 2011-10-21 Portable radiation detector

Publications (1)

Publication Number Publication Date
JP2013088380A true JP2013088380A (en) 2013-05-13

Family

ID=48532408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231544A Pending JP2013088380A (en) 2011-10-21 2011-10-21 Portable radiation detector

Country Status (1)

Country Link
JP (1) JP2013088380A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524453B1 (en) * 2013-08-28 2015-06-01 청주대학교 산학협력단 A Scintillation Detector with Temperature Compensation Funtion and Control Method thereof
KR101672874B1 (en) * 2014-04-17 2016-11-29 아주대학교산학협력단 Apparatus for detecting radiation portable and method using the same
WO2023190086A1 (en) * 2022-03-29 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 Radiation amount sensing device and radiation amount sensing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142261A (en) * 1979-04-24 1980-11-06 Fuji Electric Co Ltd Scintillation counter
JPS5717881A (en) * 1980-07-08 1982-01-29 Fuji Electric Co Ltd Radiant ray detection device
JPS58223775A (en) * 1982-06-23 1983-12-26 Japan Atom Energy Res Inst Temperature-dependent compensation circuit for scintillation detector
JP2004085384A (en) * 2002-08-27 2004-03-18 Seiko Epson Corp Temperature sensor circuit, semiconductor integrated circuit and adjustment method thereof
WO2006092890A1 (en) * 2005-03-02 2006-09-08 Mitsubishi Denki Kabushiki Kaisha Voltage controlled oscillator
JP2009031132A (en) * 2007-07-27 2009-02-12 Tohoku Univ Radiation detector
JP2011053130A (en) * 2009-09-03 2011-03-17 Toshiba Corp Image diagnostic equipment
JP2011066514A (en) * 2009-09-15 2011-03-31 Canon Inc Imager and imaging system, and control method and program for them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142261A (en) * 1979-04-24 1980-11-06 Fuji Electric Co Ltd Scintillation counter
JPS5717881A (en) * 1980-07-08 1982-01-29 Fuji Electric Co Ltd Radiant ray detection device
JPS58223775A (en) * 1982-06-23 1983-12-26 Japan Atom Energy Res Inst Temperature-dependent compensation circuit for scintillation detector
JP2004085384A (en) * 2002-08-27 2004-03-18 Seiko Epson Corp Temperature sensor circuit, semiconductor integrated circuit and adjustment method thereof
WO2006092890A1 (en) * 2005-03-02 2006-09-08 Mitsubishi Denki Kabushiki Kaisha Voltage controlled oscillator
JP2009031132A (en) * 2007-07-27 2009-02-12 Tohoku Univ Radiation detector
JP2011053130A (en) * 2009-09-03 2011-03-17 Toshiba Corp Image diagnostic equipment
JP2011066514A (en) * 2009-09-15 2011-03-31 Canon Inc Imager and imaging system, and control method and program for them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524453B1 (en) * 2013-08-28 2015-06-01 청주대학교 산학협력단 A Scintillation Detector with Temperature Compensation Funtion and Control Method thereof
KR101672874B1 (en) * 2014-04-17 2016-11-29 아주대학교산학협력단 Apparatus for detecting radiation portable and method using the same
WO2023190086A1 (en) * 2022-03-29 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 Radiation amount sensing device and radiation amount sensing method

Similar Documents

Publication Publication Date Title
US9476864B2 (en) Radioactive gas monitor
CN104570043B (en) Gain control, system and the gain control method of silicon photomultiplier
Kuznetsov Temperature-compensated silicon photomultiplier
CN106415318B (en) Radiation measuring apparatus
Licciulli et al. An active compensation system for the temperature dependence of SiPM gain
CN105572462A (en) Current detector
JP2013088380A (en) Portable radiation detector
KR101657153B1 (en) A wide range current-to-voltage module for radiation measurement
JPH0378597B2 (en)
JP2013195254A (en) Radiation measuring device
JP5313033B2 (en) Voltage detector and line voltage detector
JP6963488B2 (en) Temperature measuring device
Fiorini et al. A CMOS charge preamplifier for silicon drift detectors with on-chip JFET and feedback capacitor
JP2005147816A (en) Temperature measuring apparatus
Spahić et al. Application of transimpedance amplifiers in pin photodiode dosimetry
Ivanovs et al. Temperature stabilization of sipm-based gamma-radiation scintillation detectors
KR101919345B1 (en) Non-linear electrical conductivity measuring device and its method
Shukla et al. Multi-channel programmable power supply with temperature compensation for silicon sensors
JP2009244073A (en) Ionization type gas sensor
JP6038008B2 (en) Radiation measurement circuit
JP4748676B2 (en) Current detector
JP2016095245A (en) Radiation measuring device
JP2018004518A (en) Water level measurement device and water level measurement device manufacturing method
RU136591U1 (en) RADIOMETER-SPECTROMETER
RU2451913C1 (en) Temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161109

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170203