[go: up one dir, main page]

JP2013083003A - Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine - Google Patents

Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine Download PDF

Info

Publication number
JP2013083003A
JP2013083003A JP2012257133A JP2012257133A JP2013083003A JP 2013083003 A JP2013083003 A JP 2013083003A JP 2012257133 A JP2012257133 A JP 2012257133A JP 2012257133 A JP2012257133 A JP 2012257133A JP 2013083003 A JP2013083003 A JP 2013083003A
Authority
JP
Japan
Prior art keywords
cast iron
cylinder block
liner surface
powder
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012257133A
Other languages
Japanese (ja)
Inventor
Tomoya Ogino
知也 荻野
Yasuhiro Kanai
保博 金井
Masanori Oka
正徳 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2012257133A priority Critical patent/JP2013083003A/en
Publication of JP2013083003A publication Critical patent/JP2013083003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardening treatment method of a liner surface part of a cast iron cylinder block as an engine component.SOLUTION: In the hardening method of the liner surface part of the cast iron cylinder block for an internal combustion engine, an absorbent 10 in which graphite powder is diluted with a solvent such as a thinner is coated on a coating film of the liner surface part 26 of an inner wall of the dried cylinder block 25 and MC-based carbide is sintered during laser or electron beam irradiation. By promoting the diffusion of metal powders on a cast iron base material, an alloy layer 22 is formed on the liner surface part 26 of the inner wall of the cylinder block 25.

Description

本発明は、エンジンや駆動部品などの、輸送機分野や機械構造分野など耐磨耗性が必要となる部品である鋳鉄製シリンダブロックのライナ表面部の硬化処理方法に関する。   The present invention relates to a method for curing a liner surface portion of a cast iron cylinder block, which is a part that requires wear resistance, such as a transportation machine field or a machine structure field, such as an engine or a driving component.

近年、原油の重質化、軽質油の需要増加、石油精製法の変化等に伴い、低質油の燃料性状は悪化しており、燃料中に含まれる硬質粒子や硫黄分、燃料残渣物等により内燃機関の部品は磨耗しやすい環境にある。そういった上記状況に対応するため、例えば主にディーゼルエンジンに使用されている一体型FCD(ダグタイル鋳鉄)製エンジン部品の耐磨耗性を向上させるための技術として、リング溝部にレーザを用いて焼入れを行うというレーザ焼入れ技術(例えば、特許文献1参照)、高周波焼入れ技術(例えば、特許文献2参照)及びクロムメッキ処理技術などが公知となっており、広く適用されている。   In recent years, fuel properties of low quality oil have deteriorated due to heavy crude oil, increased demand for light oil, changes in petroleum refining methods, etc., due to hard particles, sulfur content, fuel residue, etc. contained in fuel Internal combustion engine components are subject to wear. In order to cope with such a situation, for example, as a technique for improving the wear resistance of an integral FCD (dug tile cast iron) engine part mainly used in a diesel engine, a ring groove portion is hardened by using a laser. Laser hardening technology (for example, refer to Patent Document 1), induction hardening technology (for example, refer to Patent Document 2), chrome plating processing technology, and the like are known and widely applied.

特開昭61−149424号公報JP-A 61-149424 特開平7−119831号公報Japanese Patent Laid-Open No. 7-119831

しかし、レーザ焼入れ技術や高周波焼入れ技術によって施された焼入れ部の硬さは600Hv〜800Hv程度しかない。また、焼入れ部の組織は完全に均一ではなく、マルテンサイト、ベイナイト、残留オーステナイト等の組織が混在しており硬さのバラツキも大きい。また、トップリング溝はエンジン燃焼温度が伝わりやすく、約150℃以上になると焼入れ組織は焼戻され、硬さが約100Hv〜200Hv程度低下する。更に、エンジン部品の材質が腐食されやすい鋳鉄である場合、燃焼ガス中に含まれる硫黄等によりエンジン部品に腐食が発生する。上記理由から、長時間使用によりエンジン部品が磨耗し、特に内燃機関用のエンジン部品において、磨耗によってその上下隙間が大きくなると、一定の磨耗量に達するとエンジン部品を交換しなければならず、メンテナンスコストが発生する。また、レーザ焼入れは焼入れ深さが約300μm以上になると微細亀裂が多数発生するため、あまり深い焼入れができない。一方、高周波焼入れは焼入れ深さが約800μm程度まで可能であるが、熱処理歪が大きく、研削等の後加工が必要となる。   However, the hardness of the hardened portion applied by the laser hardening technique or the induction hardening technique is only about 600 Hv to 800 Hv. Further, the structure of the quenched portion is not completely uniform, and a structure such as martensite, bainite, and retained austenite is mixed, resulting in a large variation in hardness. Further, the engine combustion temperature is easily transmitted to the top ring groove, and when the temperature is about 150 ° C. or higher, the quenched structure is tempered, and the hardness is reduced by about 100 Hv to 200 Hv. Furthermore, when the material of the engine component is easily corroded cast iron, the engine component is corroded by sulfur or the like contained in the combustion gas. For the above reasons, engine parts are worn by long-term use. Especially in engine parts for internal combustion engines, if the upper and lower gaps become larger due to wear, the engine parts must be replaced when a certain amount of wear is reached. There is a cost. Also, laser quenching cannot be performed very deeply because many fine cracks are generated when the quenching depth is about 300 μm or more. On the other hand, induction hardening is possible up to a quenching depth of about 800 μm, but the heat treatment distortion is large and post-processing such as grinding is required.

また、クロムメッキ処理における表面硬化においては、メッキ部の硬さは800Hv〜1000Hv程度であり耐磨耗性は優れているが、非常に高コストである。また、メッキ処理液に6価クロムを含むため、環境への影響を考慮すると好ましいものではない。そこで、本発明は上記事情に鑑みてなされたものであり、エンジン部品の表面に耐磨耗性に優れた合金層をコーティングし、部品寿命を向上させる表面硬化方法を提案することを目的とする。   Further, in the surface hardening in the chrome plating process, the hardness of the plated portion is about 800 Hv to 1000 Hv and the wear resistance is excellent, but it is very expensive. Moreover, since hexavalent chromium is included in the plating treatment liquid, it is not preferable in view of the influence on the environment. Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to propose a surface hardening method for improving the life of a component by coating the surface of an engine component with an alloy layer having excellent wear resistance. .

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

請求項1においては、内燃機関用鋳鉄製シリンダブロック(25)のピストン摺動部となるライナ表面部(26)に、金属粉末、バインダー及び溶剤を混合した混合物を塗布して塗膜を形成し、該塗膜を乾燥させ、該塗膜にレーザあるいは電子ビームを照射し、前記金属粉末を焼結及び拡散させることにより、前記シリンダブロック(25)にMC系炭化物を生成するとともに、該MC系炭化物を鋳鉄母材に接合する内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化方法において、前記乾燥させたシリンダブロック(25)の内壁のライナ表面部(26)の塗膜の上に、黒鉛粉末をシンナー等の溶剤で希釈した吸収剤(10)を塗布被覆し、前記レーザあるいは電子ビームの照射時に、前記MC系炭化物を焼結し、前記金属粉末の鋳鉄母材への拡散を促進させることにより、前記シリンダブロック(25)の内壁のライナ表面部(26)に合金層(22)を形成するものである。   In claim 1, a coating film is formed by applying a mixture of metal powder, binder and solvent to the liner surface portion (26) which becomes the piston sliding portion of the cast iron cylinder block (25) for the internal combustion engine. The coating film is dried, and the coating film is irradiated with a laser or an electron beam to sinter and diffuse the metal powder, thereby generating MC-based carbides in the cylinder block (25), and In a method of curing a liner surface portion of a cast iron cylinder block for an internal combustion engine in which carbide is joined to a cast iron base material, graphite is coated on the liner surface portion (26) of the inner wall of the dried cylinder block (25). An absorbent (10) obtained by diluting the powder with a solvent such as thinner is applied and coated, and upon irradiation with the laser or electron beam, the MC carbide is sintered, and the metal powder is cast. By promoting the diffusion of the base material, the liner surface portion of the inner wall of the cylinder block (25) to (26) and forms an alloy layer (22).

請求項2においては、請求項1記載の内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法において、前記金属粉末が、バナジウムの粉末、タングステンの粉末、またはクロムの粉末であるものである。   According to a second aspect of the present invention, in the method of hardening a liner surface portion of a cast iron cylinder block for an internal combustion engine according to the first aspect, the metal powder is a vanadium powder, a tungsten powder, or a chromium powder. .

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

本発明によれば、内燃機関用鋳鉄製シリンダブロック(25)のライナ表面部(26)に、高硬度な合金層を容易に形成することが可能となる。
これにより、カーボン等の燃焼残渣物によるアグレッシブ磨耗を防ぐことが可能となる。
According to the present invention, a high hardness alloy layer can be easily formed on the liner surface portion (26) of the cast iron cylinder block (25) for an internal combustion engine.
This makes it possible to prevent aggressive wear due to combustion residues such as carbon.

エンジン部品の中でピストンの一例に係る製造工程を示す図。The figure which shows the manufacturing process which concerns on an example of a piston in engine parts. 同じく一部断面のピストンに適用する模型図。The model figure similarly applied to the piston of a partial cross section.

図2の要部拡大断面図。The principal part expanded sectional view of FIG. 鋳鉄製シリンダヘッドの一例を模式的に示す要部断面図。The principal part sectional drawing which shows an example of a cylinder head made from cast iron typically.

図4のZ部拡大図。The Z section enlarged view of FIG. 本発明の鋳鉄製シリンダブロックのライナ表面部を示す図。The figure which shows the liner surface part of the cylinder block made from cast iron of this invention.

次に、発明の実施の形態を説明する。まず、金属部材の表面硬化方法を内燃機関用鋳鉄製ピストンの製造に適用した工程を、図1、図2及び図3を用いて説明する。   Next, embodiments of the invention will be described. First, the process which applied the surface hardening method of a metal member to manufacture of the cast iron piston for internal combustion engines is demonstrated using FIG.1, FIG.2 and FIG.3.

<鋳造・機械加工工程>
鋳型に鋳鉄溶湯を流し込みFCD(ダグタイル鋳鉄)製ピストン1を鋳造後、ピストンリング溝部を切削加工し、リング溝部3、4を形成する。
<Casting and machining process>
After casting the cast iron melt into the mold and casting the piston 1 made of FCD (dug tile cast iron), the piston ring groove is cut to form the ring grooves 3 and 4.

<配合・塗布工程>
まず、数種の金属粉末について所定量を秤量し配合する。次に、ボールミル等を用いて前記金属粉末が均等に分散するように合金粉末を混合する。該合金粉末に所定量の溶剤を入れて、さらに混合し、合金粉末と溶剤を均一に分散させる。そうして、その中にバインダーを添加して、全体が均一な混合物となるように十分に撹拌する。次に、前記リング溝部3、4に上記の如く得られた合金粉末、樹脂及び溶剤を混合した混合物を噴射用ノズル(図示せず)を用いて塗布する。塗布する際に、ピストン1を一定速度で回転させて、均一な粉末合金層(厚さ:200〜400μm)を形成する。該粉末合金層を形成後、常温で放置し十分に溶剤を乾燥させる。上記金属粉末としては、例えばCr、V、W、Mo、Ti等の非常に硬い炭化物(MC系炭化物)を生成する金属を使用することが好ましいが、その他の硬合金を形成する金属として、アルミナ、TiN、TiO2、CrN、ジルコニア、SiC、TiC等を用いて粉末合金層を形成してもかまわない。
<Formulation / application process>
First, a predetermined amount of several kinds of metal powder is weighed and blended. Next, the alloy powder is mixed using a ball mill or the like so that the metal powder is evenly dispersed. A predetermined amount of a solvent is added to the alloy powder and further mixed to uniformly disperse the alloy powder and the solvent. Then, the binder is added therein and stirred sufficiently so that the whole becomes a uniform mixture. Next, a mixture obtained by mixing the alloy powder, resin, and solvent obtained as described above is applied to the ring groove portions 3 and 4 by using an injection nozzle (not shown). At the time of application, the piston 1 is rotated at a constant speed to form a uniform powder alloy layer (thickness: 200 to 400 μm). After forming the powder alloy layer, the solvent is sufficiently dried by leaving it at room temperature. As said metal powder, it is preferable to use the metal which produces | generates very hard carbide | carbonized_material (MC type carbide), such as Cr, V, W, Mo, Ti, for example, but as a metal which forms other hard alloys, alumina , TiN, TiO2, CrN, zirconia, SiC, TiC or the like may be used to form the powder alloy layer.

また、樹脂は常温で硬化が可能なフタル酸樹脂系、アルキド樹脂系を使用することが好ましいが、特にこれらに限定するものでない。なお、溶剤としてはシンナー、トルエン、キシレン又はメタノール、エタノール、プロパノールなどのアルコール類を用いることが可能であり、乾燥速度や安全性を考慮し適宜選択すれば良い。   The resin is preferably a phthalic acid resin or alkyd resin that can be cured at room temperature, but is not particularly limited thereto. As the solvent, thinner, toluene, xylene or alcohols such as methanol, ethanol, and propanol can be used, and may be appropriately selected in consideration of drying speed and safety.

また、実施例として上記のように金属粉末と溶剤の混合物に、後からバインダーを添加する工程を一例として上げたが、溶剤とバインダーの混合物のなかに金属粉末を添加して配合する工程としてもかまわない。また、本発明の効果を得るために粉末合金層の厚さとして200〜400μm程度とするのが好ましいが、特にこれに限定するものではない。なお、金属粉末は複数種を混合するだけでなく単一の金属粉末だけを用いてもかまわない。また、溶剤乾燥を促進するため被塗布物を乾燥炉等に入れて乾燥時間を短縮してもかまわない。   In addition, as an example, the process of adding a binder later to the mixture of metal powder and solvent as described above is given as an example, but as a process of adding and blending metal powder in the mixture of solvent and binder It doesn't matter. In order to obtain the effects of the present invention, the thickness of the powder alloy layer is preferably about 200 to 400 μm, but is not particularly limited thereto. In addition, not only a mixture of a plurality of kinds of metal powders, but also a single metal powder may be used. In order to accelerate solvent drying, the object to be coated may be placed in a drying furnace or the like to shorten the drying time.

<吸収剤塗布工程>
前記粉末合金層の上に、レーザ波長に応じてレーザ吸収剤10を5μm〜15μm程度の膜厚となるよう噴射用ノズルを用いて塗布を行う。塗布する際に、ピストン1を一定速度で回転させて、均一な被膜となるようにする。該被膜を形成後、常温で放置し十分に溶剤を乾燥させる。本実施例では、レーザ吸収剤10として黒鉛粉末をシンナー等の溶剤で希釈したものを用いて粉末合金層上に黒鉛被膜を形成したが、特にこれに限るものではなく、酸化第2鉄等を主成分とした塗布剤等を吸収剤として塗布してもかまわない。また、前記希釈溶剤はシンナー、トルエン、キシレン又はメタノール、エタノール、プロパノールなどのアルコール類を用いることが可能であり、乾燥速度や安全性を考慮し適宜選択すれば良い。
<Absorbent application process>
On the powder alloy layer, the laser absorbent 10 is applied using an injection nozzle so as to have a film thickness of about 5 μm to 15 μm according to the laser wavelength. When applying, the piston 1 is rotated at a constant speed so as to form a uniform film. After the coating is formed, the solvent is sufficiently dried by leaving it at room temperature. In this embodiment, a graphite film is formed on the powder alloy layer using a laser absorbent 10 obtained by diluting graphite powder with a solvent such as thinner. However, the present invention is not limited to this. You may apply | coat the coating agent etc. which were made into the main components as an absorber. The diluent solvent may be thinner, toluene, xylene, or alcohols such as methanol, ethanol, propanol, etc., and may be appropriately selected in consideration of drying speed and safety.

<合金化工程>
図2及び図3に示すようにリング溝部3、4にレーザあるいは電子ビームを適切な出力及び走査速度にて照射し、粉末合金層を焼結あるいは溶融させ、リング溝部3、4に150μm〜350μm程度の膜厚の合金層20を形成する。また、レーザとしては、CO2レーザやYAGレーザ、半導体レーザ等が上げられる。またレーザよりも高エネルギーである電子ビーム等を用いることも可能である。こうして、前工程のレーザ吸収剤(黒鉛被膜)10の塗布により、レーザ光8が粉末合金層上で効率的に吸収されることで粉末合金層が加熱されて、粉末合金層内及び該粉末合金層とピストン等金属母材(鋳鉄母材)との界面部で焼結及び溶融、母材への拡散が促進されることにより、金属母材表面に強固で耐磨耗性を有する合金層を生成するとともに、その合金層を金属母材(鋳鉄母材)に接合することが可能となるのである。なお、本実施例では金属母材としてFCD(ダグタイル鋳鉄)製の部材を用いているが、特にこれに限定するものではなくアルミ合金等などでもかまわない。
<Alloying process>
As shown in FIGS. 2 and 3, the ring grooves 3 and 4 are irradiated with a laser or an electron beam at an appropriate output and scanning speed to sinter or melt the powder alloy layer, and the ring grooves 3 and 4 are 150 μm to 350 μm. The alloy layer 20 having a thickness of about is formed. Examples of the laser include a CO2 laser, a YAG laser, and a semiconductor laser. It is also possible to use an electron beam having higher energy than the laser. Thus, by applying the laser absorbent (graphite coating) 10 in the previous step, the laser beam 8 is efficiently absorbed on the powder alloy layer, whereby the powder alloy layer is heated, and the powder alloy layer and the powder alloy are heated. Sintering and melting at the interface between the layer and the metal base material (cast iron base material) such as a piston, and diffusion to the base material are promoted to form a strong and wear-resistant alloy layer on the surface of the metal base material In addition, the alloy layer can be bonded to a metal base material (cast iron base material). In this embodiment, a member made of FCD (dug tile cast iron) is used as the metal base material, but it is not particularly limited to this, and an aluminum alloy or the like may be used.

<仕上げ加工>
以上の工程により製造されたピストン1のリング溝3、4においては、必要に応じて合金層20の表面の研削加工を行う。このような工程により、リング溝部3、4に合金層を有するピストンを製造することができる。
<Finishing>
In the ring grooves 3 and 4 of the piston 1 manufactured by the above steps, the surface of the alloy layer 20 is ground as necessary. By such a process, a piston having an alloy layer in the ring groove portions 3 and 4 can be manufactured.

次に、ピストン1の製造の具体的な一例について説明する。まず、溶剤であるトルエン中にMo(モリブデン)粉末を秤量し添加して、ボールミル装置を用いて混合する。続いてフタル酸樹脂を所定量添加し、全体が均一な混合物となるように撹拌する。次に、FCD製ピストンを周方向に回転させながらリング溝部3の凹部に上記混合物を噴射用ノズルを用いて膜厚が300μm程度となるように均一に塗布して、粉末合金層を形成する。該粉末合金層を形成後、常温で放置し十分に溶剤を乾燥させる。次に、前記粉末合金層の上にレーザ吸収剤10(黒鉛とシンナーの混合物)を10μm程度の膜厚となるよう噴射用ノズルを用いて塗布を行う。塗布する際に、ピストンを一定速度で周方向に回転させて、均一な被膜となるようにする。該被膜を形成後、常温で放置し十分に溶剤を乾燥させる。そして、図2及び図3に示すようにリング溝部3にCO2レーザにてレーザ光8を照射し、例えばリング溝部3の上側面に合金層20を形成する場合、レーザ光8を集光レンズ5により集光した後、反射鏡6によって形成した、入射角αでもって、前記上側面に照射しながら、該ピストン1を回転させ溝全周に合金層20を形成させる。続いて、リング溝部3の下側面に合金層20を形成する場合は、ピストン1を上下反転させてレーザ光8を照射してもよいが、レーザ光8の入射角αを変化させて照射させてもよい。ここで、本実施例では、特にリング溝部3の両側面に合金層20を形成するに際し、図2に示す如く、レーザ光8に入射角αをもたせ、しかも、該溝の粉末合金層上に塗布したレーザ吸収剤10と同様の黒鉛を塗布した遮蔽板9を介して角部12をマスクして照射させるので、該角部12のレーザ吸収剤10を剥離してその厚さを調整する必要もなく、磨耗領域11のみに合金層20を形成でき、該角部12が溶融することがなく、溶融による割れなどの欠陥を防止できるように構成している。このようにして、リング溝部3の磨耗領域11に合金層20を形成させたピストンを作製した。   Next, a specific example of manufacturing the piston 1 will be described. First, Mo (molybdenum) powder is weighed and added to toluene, which is a solvent, and mixed using a ball mill apparatus. Subsequently, a predetermined amount of phthalic acid resin is added and stirred so that the whole becomes a uniform mixture. Next, while rotating the FCD piston in the circumferential direction, the above mixture is uniformly applied to the concave portion of the ring groove portion 3 using an injection nozzle so that the film thickness becomes about 300 μm to form a powder alloy layer. After forming the powder alloy layer, the solvent is sufficiently dried by leaving it at room temperature. Next, the laser absorbent 10 (mixture of graphite and thinner) is applied onto the powder alloy layer using an injection nozzle so as to have a film thickness of about 10 μm. When applying, the piston is rotated in the circumferential direction at a constant speed so as to form a uniform film. After the coating is formed, the solvent is sufficiently dried by leaving it at room temperature. Then, as shown in FIGS. 2 and 3, when the ring groove portion 3 is irradiated with the laser beam 8 with a CO 2 laser and, for example, the alloy layer 20 is formed on the upper surface of the ring groove portion 3, the laser beam 8 is emitted from the condenser lens 5. Then, the piston 1 is rotated to form the alloy layer 20 around the entire groove while irradiating the upper surface with the incident angle α formed by the reflecting mirror 6. Subsequently, when the alloy layer 20 is formed on the lower surface of the ring groove 3, the piston 1 may be turned upside down and irradiated with the laser beam 8. However, the incident angle α of the laser beam 8 is changed for irradiation. May be. Here, in this embodiment, when forming the alloy layer 20 on both side surfaces of the ring groove portion 3 in particular, as shown in FIG. 2, the laser beam 8 has an incident angle α, and on the powder alloy layer of the groove. Since the corner portion 12 is masked and irradiated through the shielding plate 9 coated with the same graphite as the applied laser absorber 10, it is necessary to peel off the laser absorber 10 at the corner portion 12 and adjust its thickness. In addition, the alloy layer 20 can be formed only in the wear region 11, the corner portion 12 is not melted, and defects such as cracks due to melting can be prevented. In this way, a piston in which the alloy layer 20 was formed in the wear region 11 of the ring groove 3 was produced.

<耐磨耗性評価方法>
上記の工程と同様の作製条件で、ダクタイル鋳鉄製テストピース(30×100(mm))上に合金層20を形成させて、表面の硬さをビッカース硬度計で測定し、耐磨耗性評価を行った。上述したようにMo(モリブデン)とC(カーボン)の混合粉末を用いて合金層20を形成したテストピースにおいては、ビッカース硬度が2000Hv程度であった。母材であるダグタイル鋳鉄(ビッカース硬度:300Hv〜350Hv)と比較して6倍程度の高硬度の合金層20が得られたことを確認した。
<Abrasion resistance evaluation method>
Under the same production conditions as in the above process, an alloy layer 20 is formed on a ductile cast iron test piece (30 × 100 (mm)), the surface hardness is measured with a Vickers hardness tester, and the wear resistance is evaluated. Went. As described above, in the test piece in which the alloy layer 20 was formed using the mixed powder of Mo (molybdenum) and C (carbon), the Vickers hardness was about 2000 Hv. It was confirmed that an alloy layer 20 having a hardness of about 6 times that of the base material, ductile cast iron (Vickers hardness: 300 Hv to 350 Hv), was obtained.

<合金層の分析方法>
上記テストピースについて、EDX(エネルギー分散型蛍光X線分析装置)を用いて合金層20と鋳鉄母材であるテストピースとの界面部分を分析した結果としてMo(モリブデン)が傾斜的に分布していることを確認した。つまり合金層20が鋳鉄母材に接合していることを確認した。また、X線回折装置を用いてMoがCと結合し高硬度かつ高融点のセラミック合金の一例であるMoC(モリブデン炭化物)を生成していることも確認した。
<Analytical method of alloy layer>
As a result of analyzing the interface part between the alloy layer 20 and the test piece which is a cast iron base material using EDX (energy dispersive X-ray fluorescence analyzer), Mo (molybdenum) is distributed in a gradient manner. I confirmed. That is, it was confirmed that the alloy layer 20 was joined to the cast iron base material. It was also confirmed that Mo was combined with C using an X-ray diffractometer to produce MoC (molybdenum carbide), which is an example of a ceramic alloy having a high hardness and a high melting point.

このような工程により、すなわち金属粉末、バインダー及び溶剤を混合し、その混合物を金属母材表面に均一に塗布して塗膜(粉末合金層)を形成し、該塗膜を乾燥させてレーザ8あるいは電子ビームを照射し焼結及び溶融、拡散させることにより、前記金属母材表面に合金層20を生成するとともに、その合金層20を金属母材に接合するという本発明の表面硬化方法を金属部材の製造に適用することにより、例えばFCD製ピストンのリング溝表面部に、MoCやVCといったMC型炭化物を微細にかつ均一に分散させ、1000〜3000Hv程度の硬度を有する高硬度な合金層を容易に形成することが可能となる。これにより耐磨耗性または耐熱性が飛躍的に向上しカーボン等の燃焼残渣物によるアグレッシブ磨耗を防ぐことが可能となる。また、高価な金属合金を用いる場合であっても、必要箇所のみの使用となるため使用量が極めて少なく経済的である。   By such a process, that is, the metal powder, the binder and the solvent are mixed, and the mixture is uniformly applied to the surface of the metal base material to form a coating film (powder alloy layer). Alternatively, the surface hardening method of the present invention in which the alloy layer 20 is formed on the surface of the metal base material by irradiating an electron beam to sinter, melt, and diffuse, and the alloy layer 20 is joined to the metal base material. By applying to the manufacture of members, for example, MC type carbides such as MoC and VC are finely and uniformly dispersed on the ring groove surface portion of an FCD piston, and a high-hardness alloy layer having a hardness of about 1000 to 3000 Hv is formed. It can be formed easily. As a result, the wear resistance or heat resistance is drastically improved, and aggressive wear due to combustion residues such as carbon can be prevented. Further, even when an expensive metal alloy is used, since only necessary portions are used, the amount used is extremely small and economical.

また、鉄鋼材料の場合では150℃以上で焼戻しによる硬さの低下が起こるが、上記のMoCなどのような特殊炭化物は高融点であり高温でも凝集粗大化しにくい。そのため、エンジン運転時におけるピストンリング溝部3、4の温度上昇に伴うリング溝表面の硬度低下を防止する。   In the case of steel materials, the hardness is reduced by tempering at 150 ° C. or higher. However, special carbides such as the above-mentioned MoC have a high melting point and are difficult to agglomerate and coarsen even at high temperatures. Therefore, a decrease in the hardness of the ring groove surface due to the temperature increase of the piston ring groove portions 3 and 4 during engine operation is prevented.

更に、鉄鋼材料よりも耐食性のある上記のようなセラミック系の合金を表面に形成することにより硫黄等による腐食防止が可能となる。   Furthermore, corrosion such as sulfur can be prevented by forming on the surface a ceramic alloy as described above that is more resistant to corrosion than steel materials.

また、従来工法の高周波焼入れでは、焼入れ後、焼戻し及び研削を必要とする。一方、本発明ではリング溝部3を切削加工した後、その表面に100μm〜300μmの合金層20を均一に形成することにより、焼戻しを省き、後加工も無くすことが可能であるため、製造コストを削減することができる。   In addition, the induction hardening of the conventional method requires tempering and grinding after quenching. On the other hand, in the present invention, after the ring groove portion 3 is cut, the alloy layer 20 having a thickness of 100 μm to 300 μm is uniformly formed on the surface thereof, so that the tempering can be omitted and the post-processing can be eliminated. Can be reduced.

次に、金属部材の表面硬化方法を内燃機関用鋳鉄製シリンダヘッドに適用した例を、図4、図5を用いて説明する。   Next, an example in which the metal member surface hardening method is applied to a cast iron cylinder head for an internal combustion engine will be described with reference to FIGS.

金属粉末としてV(バナジウム)とCの混合粉末を用いたこと以外は前述と同様の作製条件において、シリンダヘッド15を作製した。図5に示すように鋳鉄製シリンダヘッド15には、吸気バルブ16と排気バルブ17がバルブステム18を介して上下方向に摺動自在に支持されている。シリンダヘッド15の摺動部となるバルブシート部19に本発明の製造方法に基づいて、150μm〜350μmの膜厚の合金層21を形成した。該合金層21と鋳鉄母材であるシリンダヘッド15との界面部分においては、Vが傾斜的に分布しており、またVC(バナジウム炭化物)が生成していることを確認した。VCは前述のMoCと同じく高硬度で耐磨耗性・耐熱性を有するセラミック合金(ビッカース硬度:2500〜2800Hv程度)として知られており、摺動部の耐磨耗性向上において非常に効果的である。すなわち上記のように金属粉末がレーザ光8により加熱溶融されて合金層21内及び合金層21と母材であるシリンダヘッド15との界面部分で焼結及び拡散が促進されることにより、バルブシート部19の表面に耐磨耗性のある合金層21を有するバルブシート一体型シリンダヘッド15を製造することができる。   The cylinder head 15 was produced under the same production conditions as described above except that a mixed powder of V (vanadium) and C was used as the metal powder. As shown in FIG. 5, an intake valve 16 and an exhaust valve 17 are supported on the cast iron cylinder head 15 via a valve stem 18 so as to be slidable in the vertical direction. Based on the manufacturing method of the present invention, an alloy layer 21 having a film thickness of 150 μm to 350 μm was formed on the valve seat portion 19 serving as a sliding portion of the cylinder head 15. It was confirmed that V was distributed in an inclined manner and VC (vanadium carbide) was generated at the interface portion between the alloy layer 21 and the cylinder head 15 as the cast iron base material. VC is known as a ceramic alloy (Vickers hardness: about 2500 to 2800 Hv) having high hardness, wear resistance and heat resistance like MoC described above, and is very effective in improving the wear resistance of sliding parts. It is. That is, as described above, the metal powder is heated and melted by the laser beam 8 to promote sintering and diffusion in the alloy layer 21 and at the interface portion between the alloy layer 21 and the cylinder head 15 that is the base material, thereby providing a valve seat. The valve seat integrated cylinder head 15 having the wear-resistant alloy layer 21 on the surface of the portion 19 can be manufactured.

以上の工程で製作された鋳鉄製シリンダヘッド15によれば、バルブシート部19と鋳鉄母材(シリンダヘッド11)とを一体構造とすることが可能となるので、鋳鉄母材であるシリンダヘッド11と合金層21との境界部の接合強度を向上させることができる。つまり従来のバルブシート嵌合方式の鋳鉄シリンダヘッドと比較して、接合強度を高めることができるのである。   According to the cast iron cylinder head 15 manufactured by the above process, the valve seat portion 19 and the cast iron base material (cylinder head 11) can be integrated, so that the cylinder head 11 which is a cast iron base material. And the bonding strength at the boundary between the alloy layer 21 and the alloy layer 21 can be improved. That is, the bonding strength can be increased as compared with the conventional valve seat fitting type cast iron cylinder head.

次に、金属部材の表面硬化方法を内燃機関用鋳鉄製シリンダブロックのライナ表面部に適用した実施例を、図6を用いて説明する。   Next, the Example which applied the surface hardening method of the metal member to the liner surface part of the cast iron cylinder block for internal combustion engines is described using FIG.

金属粉末としてW(タングステン)とCの混合粉末を用いたこと以外は前述と同様の作製条件において、シリンダブロック25を作製した。図6に示すように鋳鉄製シリンダブロック25の摺動部となるライナ表面部26に、本発明の製造方法に基づいて150μm〜350μmの膜厚の合金層22を形成した。該合金層22と鋳鉄母材であるシリンダブロック25のライナ表面部26との界面部分においては、W(タングステン)が傾斜的に分布しており、またWC(タングステン炭化物)が生成していることを確認した。WC(タングステン炭化物)は前述のMoCやVCと同じく高硬度で耐磨耗性・耐熱性を有するセラミック合金(ビッカース硬度:2600〜2800Hv程度)として知られており、耐磨耗性向上において非常に効果的である。すなわち上記のように金属粉末がレーザ光8により加熱溶融されて合金層22内及び合金層22と母材であるシリンダブロック25のライナ表面部26との界面部分で焼結及び拡散が促進されることにより、ライナ表面部26に耐磨耗性のある合金層22を有する鋳鉄製シリンダブロック25を製造することができる。   The cylinder block 25 was manufactured under the same manufacturing conditions as described above except that a mixed powder of W (tungsten) and C was used as the metal powder. As shown in FIG. 6, an alloy layer 22 having a film thickness of 150 μm to 350 μm was formed on the liner surface portion 26 serving as a sliding portion of the cast iron cylinder block 25 based on the manufacturing method of the present invention. W (tungsten) is distributed in an inclined manner and WC (tungsten carbide) is generated at the interface portion between the alloy layer 22 and the liner surface portion 26 of the cylinder block 25 which is a cast iron base material. It was confirmed. WC (tungsten carbide) is known as a ceramic alloy (Vickers hardness: about 2600-2800Hv) having high hardness, wear resistance and heat resistance, similar to the above-mentioned MoC and VC, and is extremely effective in improving wear resistance. It is effective. That is, as described above, the metal powder is heated and melted by the laser beam 8 to promote sintering and diffusion in the alloy layer 22 and at the interface portion between the alloy layer 22 and the liner surface portion 26 of the cylinder block 25 that is the base material. Thus, the cast iron cylinder block 25 having the wear-resistant alloy layer 22 on the liner surface portion 26 can be manufactured.

なお、以上内燃機関用金属部材について耐磨耗性及び耐熱性を有する合金層を形成する方法について説明したが、それ以外の用途で耐磨耗性を必要とする部材表面部に同様に合金層を形成して耐磨耗性を向上することも可能である。   In addition, although the method for forming an alloy layer having wear resistance and heat resistance on the metal member for an internal combustion engine has been described above, the alloy layer is similarly applied to the surface portion of the member that requires wear resistance for other purposes. It is also possible to improve wear resistance by forming.

1 ピストン
3・4 リング溝部
8 レーザ光
10 レーザ吸収剤
15 シリンダヘッド
19 バルブシート部
20・21・22 合金層
25 シリンダブロック
26 ライナ表面部
DESCRIPTION OF SYMBOLS 1 Piston 3.4 Ring ring part 8 Laser beam 10 Laser absorber 15 Cylinder head 19 Valve seat part 20, 21, 22 Alloy layer 25 Cylinder block 26 Liner surface part

請求項1においては、内燃機関用鋳鉄製シリンダブロック(25)のピストン摺動部となるライナ表面部(26)に、金属粉末、バインダー及び溶剤を混合した混合物を塗布して塗膜を形成し、該塗膜を乾燥させ、該塗膜にレーザあるいは電子ビームを照射し、前記金属粉末を焼結及び拡散させることにより、前記シリンダブロック(25)にMC系炭化物を生成するとともに、該MC系炭化物を鋳鉄母材に接合する内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法において、前記乾燥させたシリンダブロック(25)の内壁のライナ表面部(26)の塗膜の上に、黒鉛粉末をシンナー等の溶剤で希釈した吸収剤(10)を塗布被覆し、前記レーザあるいは電子ビームの照射時に、前記MC系炭化物を焼結し、前記金属粉末の鋳鉄母材への拡散を促進させることにより、前記シリンダブロック(25)の内壁のライナ表面部(26)に合金層(22)を形成するものである。 In claim 1, a coating film is formed by applying a mixture of metal powder, binder and solvent to the liner surface portion (26) which becomes the piston sliding portion of the cast iron cylinder block (25) for the internal combustion engine. The coating film is dried, and the coating film is irradiated with a laser or an electron beam to sinter and diffuse the metal powder, thereby generating MC-based carbides in the cylinder block (25), and carbides in hardening method of the liner surface portion of the cast iron cylinder block for an internal combustion engine to be bonded to the cast iron base material, on the coating of the liner surface portion of the inner wall (26) of the dried cylinder block (25), The metal powder is coated with an absorbent (10) obtained by diluting graphite powder with a solvent such as thinner, and the MC carbide is sintered at the time of irradiation with the laser or electron beam. By promoting the diffusion of the cast iron base material, the liner surface portion of the inner wall of the cylinder block (25) to (26) and forms an alloy layer (22).

Claims (2)

内燃機関用鋳鉄製シリンダブロック(25)のピストン摺動部となるライナ表面部(26)に、金属粉末、バインダー及び溶剤を混合した混合物を塗布して塗膜を形成し、該塗膜を乾燥させ、該塗膜にレーザあるいは電子ビームを照射し、前記金属粉末を焼結及び拡散させることにより、前記シリンダブロック(25)にMC系炭化物を生成するとともに、該MC系炭化物を鋳鉄母材に接合する内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化方法において、前記乾燥させたシリンダブロック(25)の内壁のライナ表面部(26)の塗膜の上に、黒鉛粉末をシンナー等の溶剤で希釈した吸収剤(10)を塗布被覆し、前記レーザあるいは電子ビームの照射時に、前記MC系炭化物を焼結し、前記金属粉末の鋳鉄母材への拡散を促進させることにより、前記シリンダブロック(25)の内壁のライナ表面部(26)に合金層(22)を形成することを特徴とする内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法。   A mixture of metal powder, binder and solvent is applied to the liner surface portion (26) which is the piston sliding portion of the cast iron cylinder block (25) for the internal combustion engine to form a coating film, and the coating film is dried. The coating film is irradiated with a laser or an electron beam to sinter and diffuse the metal powder, thereby generating MC-based carbides in the cylinder block (25), and using the MC-based carbides as a cast iron base material. In the method for curing a liner surface portion of a cast iron cylinder block for an internal combustion engine to be joined, graphite powder is used as a solvent such as thinner on the coating film on the liner surface portion (26) of the inner wall of the dried cylinder block (25). Applying and coating the absorbent diluted with (10), sintering the MC carbide during the laser or electron beam irradiation, and promoting the diffusion of the metal powder into the cast iron base material It makes the cylinder block (25) hardening method of the liner surface portion of the cast iron cylinder block for an internal combustion engine, characterized in that the liner surface portion (26) to form an alloy layer (22) of the inner wall of which. 請求項1記載の内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法において、前記金属粉末が、バナジウムの粉末、タングステンの粉末、またはクロムの粉末であることを特徴とする内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法。   The cast iron for an internal combustion engine according to claim 1, wherein the metal powder is a vanadium powder, a tungsten powder, or a chromium powder. Curing method for liner surface of cylinder block made of steel.
JP2012257133A 2012-11-26 2012-11-26 Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine Pending JP2013083003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257133A JP2013083003A (en) 2012-11-26 2012-11-26 Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257133A JP2013083003A (en) 2012-11-26 2012-11-26 Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011135789A Division JP5480203B2 (en) 2011-06-17 2011-06-17 Surface hardening method for metal members

Publications (1)

Publication Number Publication Date
JP2013083003A true JP2013083003A (en) 2013-05-09

Family

ID=48528457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257133A Pending JP2013083003A (en) 2012-11-26 2012-11-26 Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013083003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019198591A1 (en) * 2018-04-13 2021-04-30 東京応化工業株式会社 Method for manufacturing cladding composition and metal / resin bonding member
CN112746272A (en) * 2020-12-28 2021-05-04 洛阳清科激光技术有限公司 Engine cylinder sleeve strengthening method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149424A (en) * 1984-12-24 1986-07-08 Yanmar Diesel Engine Co Ltd Laser quenching method of member constituted of recessed and projected part
JPS6267182A (en) * 1985-09-20 1987-03-26 Mitsubishi Motors Corp Metal surface remelting alloying method
JPS62279255A (en) * 1986-05-29 1987-12-04 Toyota Motor Corp Cast iron cylinder block and its manufacture
JPH01203799A (en) * 1988-02-08 1989-08-16 Toyota Motor Corp Abrasion-resistive sliding member
JPH0762424A (en) * 1993-08-26 1995-03-07 Mitsubishi Motors Corp Laser absorber for laser hardening

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149424A (en) * 1984-12-24 1986-07-08 Yanmar Diesel Engine Co Ltd Laser quenching method of member constituted of recessed and projected part
JPS6267182A (en) * 1985-09-20 1987-03-26 Mitsubishi Motors Corp Metal surface remelting alloying method
JPS62279255A (en) * 1986-05-29 1987-12-04 Toyota Motor Corp Cast iron cylinder block and its manufacture
JPH01203799A (en) * 1988-02-08 1989-08-16 Toyota Motor Corp Abrasion-resistive sliding member
JPH0762424A (en) * 1993-08-26 1995-03-07 Mitsubishi Motors Corp Laser absorber for laser hardening

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019198591A1 (en) * 2018-04-13 2021-04-30 東京応化工業株式会社 Method for manufacturing cladding composition and metal / resin bonding member
EP3778197A4 (en) * 2018-04-13 2022-06-22 Tokyo Ohka Kogyo Co., Ltd. COMPOSITION FOR FACING AND METHOD OF MAKING A JOINTED METAL/RESIN ELEMENT
US11667767B2 (en) 2018-04-13 2023-06-06 Tokyo Ohka Kogyo Co., Ltd. Cladding composition, and method for producing metal/resin bonded member
JP7341984B2 (en) 2018-04-13 2023-09-11 東京応化工業株式会社 Cladding composition and method for producing metal/resin bonding member
CN112746272A (en) * 2020-12-28 2021-05-04 洛阳清科激光技术有限公司 Engine cylinder sleeve strengthening method

Similar Documents

Publication Publication Date Title
JP5101838B2 (en) Surface hardening method for metal members
Rastegar et al. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines
US20160340762A1 (en) Cladding Composition and Method for Remanufacturing Components
US20110143039A1 (en) Process and device for cold spraying
US20140220380A1 (en) Slide component and method for production of cladding on a substrate
JP3835694B2 (en) Manufacturing method of valve seat
CN106480380A (en) A kind of laser manufactures the iron(-)base powder of low-speed heave-load marine diesel engine piston annular groove
Wank et al. Environmentally friendly protective coatings for brake disks
Hebbale et al. A comparative study on characteristics of composite (Cr3C2-NiCr) clad developed through diode laser and microwave energy
JP2013083003A (en) Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine
JP2013092150A (en) Surface hardening method for valve seat of cast-iron cylinder head for internal combustion engine
JP5480203B2 (en) Surface hardening method for metal members
RU2310089C2 (en) Piston for large-capacity engine and method of making wear protective layer of such piston (versions)
Bartels et al. Effect of Volumetric Energy Density and Part Height on the Material Properties of Low‐Alloyed Steels Manufactured by Laser‐Based Powder Bed Fusion of Metals
Seraj et al. Microstructural evolution and wear resistance of friction stir-processed AISI 52100 steel
KR100267709B1 (en) A metal composition for engine valve seat, a method for manufacturing it, and an apparatus therefor
Singh et al. Enhancing Tribological Performance of SS-316 Through Microwave Cladding of NiCr-Cr3C2 Composite: Fabrication, Characterization, and Optimization
Liu et al. Microstructures and high-temperature friction and wear behavior of high-velocity oxygen-fuel-sprayed WC-12% Co-6% Cr coatings before and after sealing
Zohuri Laser surface processing
CN118875275A (en) Laser cladding iron-based composite powder for nitriding crankshaft repair and process thereof
Cernašejus et al. Oscillating Laser Post-Processing of NiCrCoFeCBSi/WC Thermally Sprayed Coatings. Materials 2022, 15, 8041
Shchitsyn et al. Development of Layered Growth Technology for a Workpiece of Highly Alloyed Steel by Plasma Surfacing
Phani et al. Laser Metal Deposition of WC-NiCrBSi Powders on Gas Carburization Steels Used in Mining Industry
Sani et al. Analysis and Prediction of Laser Single-Track Geometrical Characteristics of Stellite 6 on Locomotive Crankshaft Alloy
Marschall et al. In-situ modification of material hardness for low-alloyed steels processed via PBF-LB/M–a view on process related microstructure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150109