JP2013083003A - Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine - Google Patents
Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine Download PDFInfo
- Publication number
- JP2013083003A JP2013083003A JP2012257133A JP2012257133A JP2013083003A JP 2013083003 A JP2013083003 A JP 2013083003A JP 2012257133 A JP2012257133 A JP 2012257133A JP 2012257133 A JP2012257133 A JP 2012257133A JP 2013083003 A JP2013083003 A JP 2013083003A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- cylinder block
- liner surface
- powder
- alloy layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001018 Cast iron Inorganic materials 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 63
- 239000000956 alloy Substances 0.000 claims abstract description 63
- 239000000843 powder Substances 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000002904 solvent Substances 0.000 claims abstract description 22
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000010894 electron beam technology Methods 0.000 claims abstract description 10
- 230000002745 absorbent Effects 0.000 claims abstract description 9
- 239000002250 absorbent Substances 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 claims abstract description 7
- 230000001737 promoting effect Effects 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 238000001723 curing Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910039444 MoC Inorganic materials 0.000 description 6
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 229910002110 ceramic alloy Inorganic materials 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001141 Ductile iron Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910019912 CrN Inorganic materials 0.000 description 1
- 229910034327 TiC Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- WUPRCGRRQUZFAB-DEGKJRJSSA-N corrin Chemical compound N1C2CC\C1=C\C(CC/1)=N\C\1=C/C(CC\1)=N/C/1=C\C1=NC2CC1 WUPRCGRRQUZFAB-DEGKJRJSSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- -1 thinner Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、エンジンや駆動部品などの、輸送機分野や機械構造分野など耐磨耗性が必要となる部品である鋳鉄製シリンダブロックのライナ表面部の硬化処理方法に関する。 The present invention relates to a method for curing a liner surface portion of a cast iron cylinder block, which is a part that requires wear resistance, such as a transportation machine field or a machine structure field, such as an engine or a driving component.
近年、原油の重質化、軽質油の需要増加、石油精製法の変化等に伴い、低質油の燃料性状は悪化しており、燃料中に含まれる硬質粒子や硫黄分、燃料残渣物等により内燃機関の部品は磨耗しやすい環境にある。そういった上記状況に対応するため、例えば主にディーゼルエンジンに使用されている一体型FCD(ダグタイル鋳鉄)製エンジン部品の耐磨耗性を向上させるための技術として、リング溝部にレーザを用いて焼入れを行うというレーザ焼入れ技術(例えば、特許文献1参照)、高周波焼入れ技術(例えば、特許文献2参照)及びクロムメッキ処理技術などが公知となっており、広く適用されている。 In recent years, fuel properties of low quality oil have deteriorated due to heavy crude oil, increased demand for light oil, changes in petroleum refining methods, etc., due to hard particles, sulfur content, fuel residue, etc. contained in fuel Internal combustion engine components are subject to wear. In order to cope with such a situation, for example, as a technique for improving the wear resistance of an integral FCD (dug tile cast iron) engine part mainly used in a diesel engine, a ring groove portion is hardened by using a laser. Laser hardening technology (for example, refer to Patent Document 1), induction hardening technology (for example, refer to Patent Document 2), chrome plating processing technology, and the like are known and widely applied.
しかし、レーザ焼入れ技術や高周波焼入れ技術によって施された焼入れ部の硬さは600Hv〜800Hv程度しかない。また、焼入れ部の組織は完全に均一ではなく、マルテンサイト、ベイナイト、残留オーステナイト等の組織が混在しており硬さのバラツキも大きい。また、トップリング溝はエンジン燃焼温度が伝わりやすく、約150℃以上になると焼入れ組織は焼戻され、硬さが約100Hv〜200Hv程度低下する。更に、エンジン部品の材質が腐食されやすい鋳鉄である場合、燃焼ガス中に含まれる硫黄等によりエンジン部品に腐食が発生する。上記理由から、長時間使用によりエンジン部品が磨耗し、特に内燃機関用のエンジン部品において、磨耗によってその上下隙間が大きくなると、一定の磨耗量に達するとエンジン部品を交換しなければならず、メンテナンスコストが発生する。また、レーザ焼入れは焼入れ深さが約300μm以上になると微細亀裂が多数発生するため、あまり深い焼入れができない。一方、高周波焼入れは焼入れ深さが約800μm程度まで可能であるが、熱処理歪が大きく、研削等の後加工が必要となる。 However, the hardness of the hardened portion applied by the laser hardening technique or the induction hardening technique is only about 600 Hv to 800 Hv. Further, the structure of the quenched portion is not completely uniform, and a structure such as martensite, bainite, and retained austenite is mixed, resulting in a large variation in hardness. Further, the engine combustion temperature is easily transmitted to the top ring groove, and when the temperature is about 150 ° C. or higher, the quenched structure is tempered, and the hardness is reduced by about 100 Hv to 200 Hv. Furthermore, when the material of the engine component is easily corroded cast iron, the engine component is corroded by sulfur or the like contained in the combustion gas. For the above reasons, engine parts are worn by long-term use. Especially in engine parts for internal combustion engines, if the upper and lower gaps become larger due to wear, the engine parts must be replaced when a certain amount of wear is reached. There is a cost. Also, laser quenching cannot be performed very deeply because many fine cracks are generated when the quenching depth is about 300 μm or more. On the other hand, induction hardening is possible up to a quenching depth of about 800 μm, but the heat treatment distortion is large and post-processing such as grinding is required.
また、クロムメッキ処理における表面硬化においては、メッキ部の硬さは800Hv〜1000Hv程度であり耐磨耗性は優れているが、非常に高コストである。また、メッキ処理液に6価クロムを含むため、環境への影響を考慮すると好ましいものではない。そこで、本発明は上記事情に鑑みてなされたものであり、エンジン部品の表面に耐磨耗性に優れた合金層をコーティングし、部品寿命を向上させる表面硬化方法を提案することを目的とする。 Further, in the surface hardening in the chrome plating process, the hardness of the plated portion is about 800 Hv to 1000 Hv and the wear resistance is excellent, but it is very expensive. Moreover, since hexavalent chromium is included in the plating treatment liquid, it is not preferable in view of the influence on the environment. Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to propose a surface hardening method for improving the life of a component by coating the surface of an engine component with an alloy layer having excellent wear resistance. .
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
請求項1においては、内燃機関用鋳鉄製シリンダブロック(25)のピストン摺動部となるライナ表面部(26)に、金属粉末、バインダー及び溶剤を混合した混合物を塗布して塗膜を形成し、該塗膜を乾燥させ、該塗膜にレーザあるいは電子ビームを照射し、前記金属粉末を焼結及び拡散させることにより、前記シリンダブロック(25)にMC系炭化物を生成するとともに、該MC系炭化物を鋳鉄母材に接合する内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化方法において、前記乾燥させたシリンダブロック(25)の内壁のライナ表面部(26)の塗膜の上に、黒鉛粉末をシンナー等の溶剤で希釈した吸収剤(10)を塗布被覆し、前記レーザあるいは電子ビームの照射時に、前記MC系炭化物を焼結し、前記金属粉末の鋳鉄母材への拡散を促進させることにより、前記シリンダブロック(25)の内壁のライナ表面部(26)に合金層(22)を形成するものである。 In claim 1, a coating film is formed by applying a mixture of metal powder, binder and solvent to the liner surface portion (26) which becomes the piston sliding portion of the cast iron cylinder block (25) for the internal combustion engine. The coating film is dried, and the coating film is irradiated with a laser or an electron beam to sinter and diffuse the metal powder, thereby generating MC-based carbides in the cylinder block (25), and In a method of curing a liner surface portion of a cast iron cylinder block for an internal combustion engine in which carbide is joined to a cast iron base material, graphite is coated on the liner surface portion (26) of the inner wall of the dried cylinder block (25). An absorbent (10) obtained by diluting the powder with a solvent such as thinner is applied and coated, and upon irradiation with the laser or electron beam, the MC carbide is sintered, and the metal powder is cast. By promoting the diffusion of the base material, the liner surface portion of the inner wall of the cylinder block (25) to (26) and forms an alloy layer (22).
請求項2においては、請求項1記載の内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法において、前記金属粉末が、バナジウムの粉末、タングステンの粉末、またはクロムの粉末であるものである。 According to a second aspect of the present invention, in the method of hardening a liner surface portion of a cast iron cylinder block for an internal combustion engine according to the first aspect, the metal powder is a vanadium powder, a tungsten powder, or a chromium powder. .
本発明の効果として、以下に示すような効果を奏する。 As effects of the present invention, the following effects can be obtained.
本発明によれば、内燃機関用鋳鉄製シリンダブロック(25)のライナ表面部(26)に、高硬度な合金層を容易に形成することが可能となる。
これにより、カーボン等の燃焼残渣物によるアグレッシブ磨耗を防ぐことが可能となる。
According to the present invention, a high hardness alloy layer can be easily formed on the liner surface portion (26) of the cast iron cylinder block (25) for an internal combustion engine.
This makes it possible to prevent aggressive wear due to combustion residues such as carbon.
次に、発明の実施の形態を説明する。まず、金属部材の表面硬化方法を内燃機関用鋳鉄製ピストンの製造に適用した工程を、図1、図2及び図3を用いて説明する。 Next, embodiments of the invention will be described. First, the process which applied the surface hardening method of a metal member to manufacture of the cast iron piston for internal combustion engines is demonstrated using FIG.1, FIG.2 and FIG.3.
<鋳造・機械加工工程>
鋳型に鋳鉄溶湯を流し込みFCD(ダグタイル鋳鉄)製ピストン1を鋳造後、ピストンリング溝部を切削加工し、リング溝部3、4を形成する。
<Casting and machining process>
After casting the cast iron melt into the mold and casting the piston 1 made of FCD (dug tile cast iron), the piston ring groove is cut to form the ring grooves 3 and 4.
<配合・塗布工程>
まず、数種の金属粉末について所定量を秤量し配合する。次に、ボールミル等を用いて前記金属粉末が均等に分散するように合金粉末を混合する。該合金粉末に所定量の溶剤を入れて、さらに混合し、合金粉末と溶剤を均一に分散させる。そうして、その中にバインダーを添加して、全体が均一な混合物となるように十分に撹拌する。次に、前記リング溝部3、4に上記の如く得られた合金粉末、樹脂及び溶剤を混合した混合物を噴射用ノズル(図示せず)を用いて塗布する。塗布する際に、ピストン1を一定速度で回転させて、均一な粉末合金層(厚さ:200〜400μm)を形成する。該粉末合金層を形成後、常温で放置し十分に溶剤を乾燥させる。上記金属粉末としては、例えばCr、V、W、Mo、Ti等の非常に硬い炭化物(MC系炭化物)を生成する金属を使用することが好ましいが、その他の硬合金を形成する金属として、アルミナ、TiN、TiO2、CrN、ジルコニア、SiC、TiC等を用いて粉末合金層を形成してもかまわない。
<Formulation / application process>
First, a predetermined amount of several kinds of metal powder is weighed and blended. Next, the alloy powder is mixed using a ball mill or the like so that the metal powder is evenly dispersed. A predetermined amount of a solvent is added to the alloy powder and further mixed to uniformly disperse the alloy powder and the solvent. Then, the binder is added therein and stirred sufficiently so that the whole becomes a uniform mixture. Next, a mixture obtained by mixing the alloy powder, resin, and solvent obtained as described above is applied to the ring groove portions 3 and 4 by using an injection nozzle (not shown). At the time of application, the piston 1 is rotated at a constant speed to form a uniform powder alloy layer (thickness: 200 to 400 μm). After forming the powder alloy layer, the solvent is sufficiently dried by leaving it at room temperature. As said metal powder, it is preferable to use the metal which produces | generates very hard carbide | carbonized_material (MC type carbide), such as Cr, V, W, Mo, Ti, for example, but as a metal which forms other hard alloys, alumina , TiN, TiO2, CrN, zirconia, SiC, TiC or the like may be used to form the powder alloy layer.
また、樹脂は常温で硬化が可能なフタル酸樹脂系、アルキド樹脂系を使用することが好ましいが、特にこれらに限定するものでない。なお、溶剤としてはシンナー、トルエン、キシレン又はメタノール、エタノール、プロパノールなどのアルコール類を用いることが可能であり、乾燥速度や安全性を考慮し適宜選択すれば良い。 The resin is preferably a phthalic acid resin or alkyd resin that can be cured at room temperature, but is not particularly limited thereto. As the solvent, thinner, toluene, xylene or alcohols such as methanol, ethanol, and propanol can be used, and may be appropriately selected in consideration of drying speed and safety.
また、実施例として上記のように金属粉末と溶剤の混合物に、後からバインダーを添加する工程を一例として上げたが、溶剤とバインダーの混合物のなかに金属粉末を添加して配合する工程としてもかまわない。また、本発明の効果を得るために粉末合金層の厚さとして200〜400μm程度とするのが好ましいが、特にこれに限定するものではない。なお、金属粉末は複数種を混合するだけでなく単一の金属粉末だけを用いてもかまわない。また、溶剤乾燥を促進するため被塗布物を乾燥炉等に入れて乾燥時間を短縮してもかまわない。 In addition, as an example, the process of adding a binder later to the mixture of metal powder and solvent as described above is given as an example, but as a process of adding and blending metal powder in the mixture of solvent and binder It doesn't matter. In order to obtain the effects of the present invention, the thickness of the powder alloy layer is preferably about 200 to 400 μm, but is not particularly limited thereto. In addition, not only a mixture of a plurality of kinds of metal powders, but also a single metal powder may be used. In order to accelerate solvent drying, the object to be coated may be placed in a drying furnace or the like to shorten the drying time.
<吸収剤塗布工程>
前記粉末合金層の上に、レーザ波長に応じてレーザ吸収剤10を5μm〜15μm程度の膜厚となるよう噴射用ノズルを用いて塗布を行う。塗布する際に、ピストン1を一定速度で回転させて、均一な被膜となるようにする。該被膜を形成後、常温で放置し十分に溶剤を乾燥させる。本実施例では、レーザ吸収剤10として黒鉛粉末をシンナー等の溶剤で希釈したものを用いて粉末合金層上に黒鉛被膜を形成したが、特にこれに限るものではなく、酸化第2鉄等を主成分とした塗布剤等を吸収剤として塗布してもかまわない。また、前記希釈溶剤はシンナー、トルエン、キシレン又はメタノール、エタノール、プロパノールなどのアルコール類を用いることが可能であり、乾燥速度や安全性を考慮し適宜選択すれば良い。
<Absorbent application process>
On the powder alloy layer, the laser absorbent 10 is applied using an injection nozzle so as to have a film thickness of about 5 μm to 15 μm according to the laser wavelength. When applying, the piston 1 is rotated at a constant speed so as to form a uniform film. After the coating is formed, the solvent is sufficiently dried by leaving it at room temperature. In this embodiment, a graphite film is formed on the powder alloy layer using a laser absorbent 10 obtained by diluting graphite powder with a solvent such as thinner. However, the present invention is not limited to this. You may apply | coat the coating agent etc. which were made into the main components as an absorber. The diluent solvent may be thinner, toluene, xylene, or alcohols such as methanol, ethanol, propanol, etc., and may be appropriately selected in consideration of drying speed and safety.
<合金化工程>
図2及び図3に示すようにリング溝部3、4にレーザあるいは電子ビームを適切な出力及び走査速度にて照射し、粉末合金層を焼結あるいは溶融させ、リング溝部3、4に150μm〜350μm程度の膜厚の合金層20を形成する。また、レーザとしては、CO2レーザやYAGレーザ、半導体レーザ等が上げられる。またレーザよりも高エネルギーである電子ビーム等を用いることも可能である。こうして、前工程のレーザ吸収剤(黒鉛被膜)10の塗布により、レーザ光8が粉末合金層上で効率的に吸収されることで粉末合金層が加熱されて、粉末合金層内及び該粉末合金層とピストン等金属母材(鋳鉄母材)との界面部で焼結及び溶融、母材への拡散が促進されることにより、金属母材表面に強固で耐磨耗性を有する合金層を生成するとともに、その合金層を金属母材(鋳鉄母材)に接合することが可能となるのである。なお、本実施例では金属母材としてFCD(ダグタイル鋳鉄)製の部材を用いているが、特にこれに限定するものではなくアルミ合金等などでもかまわない。
<Alloying process>
As shown in FIGS. 2 and 3, the ring grooves 3 and 4 are irradiated with a laser or an electron beam at an appropriate output and scanning speed to sinter or melt the powder alloy layer, and the ring grooves 3 and 4 are 150 μm to 350 μm. The
<仕上げ加工>
以上の工程により製造されたピストン1のリング溝3、4においては、必要に応じて合金層20の表面の研削加工を行う。このような工程により、リング溝部3、4に合金層を有するピストンを製造することができる。
<Finishing>
In the ring grooves 3 and 4 of the piston 1 manufactured by the above steps, the surface of the
次に、ピストン1の製造の具体的な一例について説明する。まず、溶剤であるトルエン中にMo(モリブデン)粉末を秤量し添加して、ボールミル装置を用いて混合する。続いてフタル酸樹脂を所定量添加し、全体が均一な混合物となるように撹拌する。次に、FCD製ピストンを周方向に回転させながらリング溝部3の凹部に上記混合物を噴射用ノズルを用いて膜厚が300μm程度となるように均一に塗布して、粉末合金層を形成する。該粉末合金層を形成後、常温で放置し十分に溶剤を乾燥させる。次に、前記粉末合金層の上にレーザ吸収剤10(黒鉛とシンナーの混合物)を10μm程度の膜厚となるよう噴射用ノズルを用いて塗布を行う。塗布する際に、ピストンを一定速度で周方向に回転させて、均一な被膜となるようにする。該被膜を形成後、常温で放置し十分に溶剤を乾燥させる。そして、図2及び図3に示すようにリング溝部3にCO2レーザにてレーザ光8を照射し、例えばリング溝部3の上側面に合金層20を形成する場合、レーザ光8を集光レンズ5により集光した後、反射鏡6によって形成した、入射角αでもって、前記上側面に照射しながら、該ピストン1を回転させ溝全周に合金層20を形成させる。続いて、リング溝部3の下側面に合金層20を形成する場合は、ピストン1を上下反転させてレーザ光8を照射してもよいが、レーザ光8の入射角αを変化させて照射させてもよい。ここで、本実施例では、特にリング溝部3の両側面に合金層20を形成するに際し、図2に示す如く、レーザ光8に入射角αをもたせ、しかも、該溝の粉末合金層上に塗布したレーザ吸収剤10と同様の黒鉛を塗布した遮蔽板9を介して角部12をマスクして照射させるので、該角部12のレーザ吸収剤10を剥離してその厚さを調整する必要もなく、磨耗領域11のみに合金層20を形成でき、該角部12が溶融することがなく、溶融による割れなどの欠陥を防止できるように構成している。このようにして、リング溝部3の磨耗領域11に合金層20を形成させたピストンを作製した。
Next, a specific example of manufacturing the piston 1 will be described. First, Mo (molybdenum) powder is weighed and added to toluene, which is a solvent, and mixed using a ball mill apparatus. Subsequently, a predetermined amount of phthalic acid resin is added and stirred so that the whole becomes a uniform mixture. Next, while rotating the FCD piston in the circumferential direction, the above mixture is uniformly applied to the concave portion of the ring groove portion 3 using an injection nozzle so that the film thickness becomes about 300 μm to form a powder alloy layer. After forming the powder alloy layer, the solvent is sufficiently dried by leaving it at room temperature. Next, the laser absorbent 10 (mixture of graphite and thinner) is applied onto the powder alloy layer using an injection nozzle so as to have a film thickness of about 10 μm. When applying, the piston is rotated in the circumferential direction at a constant speed so as to form a uniform film. After the coating is formed, the solvent is sufficiently dried by leaving it at room temperature. Then, as shown in FIGS. 2 and 3, when the ring groove portion 3 is irradiated with the
<耐磨耗性評価方法>
上記の工程と同様の作製条件で、ダクタイル鋳鉄製テストピース(30×100(mm))上に合金層20を形成させて、表面の硬さをビッカース硬度計で測定し、耐磨耗性評価を行った。上述したようにMo(モリブデン)とC(カーボン)の混合粉末を用いて合金層20を形成したテストピースにおいては、ビッカース硬度が2000Hv程度であった。母材であるダグタイル鋳鉄(ビッカース硬度:300Hv〜350Hv)と比較して6倍程度の高硬度の合金層20が得られたことを確認した。
<Abrasion resistance evaluation method>
Under the same production conditions as in the above process, an
<合金層の分析方法>
上記テストピースについて、EDX(エネルギー分散型蛍光X線分析装置)を用いて合金層20と鋳鉄母材であるテストピースとの界面部分を分析した結果としてMo(モリブデン)が傾斜的に分布していることを確認した。つまり合金層20が鋳鉄母材に接合していることを確認した。また、X線回折装置を用いてMoがCと結合し高硬度かつ高融点のセラミック合金の一例であるMoC(モリブデン炭化物)を生成していることも確認した。
<Analytical method of alloy layer>
As a result of analyzing the interface part between the
このような工程により、すなわち金属粉末、バインダー及び溶剤を混合し、その混合物を金属母材表面に均一に塗布して塗膜(粉末合金層)を形成し、該塗膜を乾燥させてレーザ8あるいは電子ビームを照射し焼結及び溶融、拡散させることにより、前記金属母材表面に合金層20を生成するとともに、その合金層20を金属母材に接合するという本発明の表面硬化方法を金属部材の製造に適用することにより、例えばFCD製ピストンのリング溝表面部に、MoCやVCといったMC型炭化物を微細にかつ均一に分散させ、1000〜3000Hv程度の硬度を有する高硬度な合金層を容易に形成することが可能となる。これにより耐磨耗性または耐熱性が飛躍的に向上しカーボン等の燃焼残渣物によるアグレッシブ磨耗を防ぐことが可能となる。また、高価な金属合金を用いる場合であっても、必要箇所のみの使用となるため使用量が極めて少なく経済的である。
By such a process, that is, the metal powder, the binder and the solvent are mixed, and the mixture is uniformly applied to the surface of the metal base material to form a coating film (powder alloy layer). Alternatively, the surface hardening method of the present invention in which the
また、鉄鋼材料の場合では150℃以上で焼戻しによる硬さの低下が起こるが、上記のMoCなどのような特殊炭化物は高融点であり高温でも凝集粗大化しにくい。そのため、エンジン運転時におけるピストンリング溝部3、4の温度上昇に伴うリング溝表面の硬度低下を防止する。 In the case of steel materials, the hardness is reduced by tempering at 150 ° C. or higher. However, special carbides such as the above-mentioned MoC have a high melting point and are difficult to agglomerate and coarsen even at high temperatures. Therefore, a decrease in the hardness of the ring groove surface due to the temperature increase of the piston ring groove portions 3 and 4 during engine operation is prevented.
更に、鉄鋼材料よりも耐食性のある上記のようなセラミック系の合金を表面に形成することにより硫黄等による腐食防止が可能となる。 Furthermore, corrosion such as sulfur can be prevented by forming on the surface a ceramic alloy as described above that is more resistant to corrosion than steel materials.
また、従来工法の高周波焼入れでは、焼入れ後、焼戻し及び研削を必要とする。一方、本発明ではリング溝部3を切削加工した後、その表面に100μm〜300μmの合金層20を均一に形成することにより、焼戻しを省き、後加工も無くすことが可能であるため、製造コストを削減することができる。
In addition, the induction hardening of the conventional method requires tempering and grinding after quenching. On the other hand, in the present invention, after the ring groove portion 3 is cut, the
次に、金属部材の表面硬化方法を内燃機関用鋳鉄製シリンダヘッドに適用した例を、図4、図5を用いて説明する。 Next, an example in which the metal member surface hardening method is applied to a cast iron cylinder head for an internal combustion engine will be described with reference to FIGS.
金属粉末としてV(バナジウム)とCの混合粉末を用いたこと以外は前述と同様の作製条件において、シリンダヘッド15を作製した。図5に示すように鋳鉄製シリンダヘッド15には、吸気バルブ16と排気バルブ17がバルブステム18を介して上下方向に摺動自在に支持されている。シリンダヘッド15の摺動部となるバルブシート部19に本発明の製造方法に基づいて、150μm〜350μmの膜厚の合金層21を形成した。該合金層21と鋳鉄母材であるシリンダヘッド15との界面部分においては、Vが傾斜的に分布しており、またVC(バナジウム炭化物)が生成していることを確認した。VCは前述のMoCと同じく高硬度で耐磨耗性・耐熱性を有するセラミック合金(ビッカース硬度:2500〜2800Hv程度)として知られており、摺動部の耐磨耗性向上において非常に効果的である。すなわち上記のように金属粉末がレーザ光8により加熱溶融されて合金層21内及び合金層21と母材であるシリンダヘッド15との界面部分で焼結及び拡散が促進されることにより、バルブシート部19の表面に耐磨耗性のある合金層21を有するバルブシート一体型シリンダヘッド15を製造することができる。
The
以上の工程で製作された鋳鉄製シリンダヘッド15によれば、バルブシート部19と鋳鉄母材(シリンダヘッド11)とを一体構造とすることが可能となるので、鋳鉄母材であるシリンダヘッド11と合金層21との境界部の接合強度を向上させることができる。つまり従来のバルブシート嵌合方式の鋳鉄シリンダヘッドと比較して、接合強度を高めることができるのである。
According to the cast
次に、金属部材の表面硬化方法を内燃機関用鋳鉄製シリンダブロックのライナ表面部に適用した実施例を、図6を用いて説明する。 Next, the Example which applied the surface hardening method of the metal member to the liner surface part of the cast iron cylinder block for internal combustion engines is described using FIG.
金属粉末としてW(タングステン)とCの混合粉末を用いたこと以外は前述と同様の作製条件において、シリンダブロック25を作製した。図6に示すように鋳鉄製シリンダブロック25の摺動部となるライナ表面部26に、本発明の製造方法に基づいて150μm〜350μmの膜厚の合金層22を形成した。該合金層22と鋳鉄母材であるシリンダブロック25のライナ表面部26との界面部分においては、W(タングステン)が傾斜的に分布しており、またWC(タングステン炭化物)が生成していることを確認した。WC(タングステン炭化物)は前述のMoCやVCと同じく高硬度で耐磨耗性・耐熱性を有するセラミック合金(ビッカース硬度:2600〜2800Hv程度)として知られており、耐磨耗性向上において非常に効果的である。すなわち上記のように金属粉末がレーザ光8により加熱溶融されて合金層22内及び合金層22と母材であるシリンダブロック25のライナ表面部26との界面部分で焼結及び拡散が促進されることにより、ライナ表面部26に耐磨耗性のある合金層22を有する鋳鉄製シリンダブロック25を製造することができる。
The
なお、以上内燃機関用金属部材について耐磨耗性及び耐熱性を有する合金層を形成する方法について説明したが、それ以外の用途で耐磨耗性を必要とする部材表面部に同様に合金層を形成して耐磨耗性を向上することも可能である。 In addition, although the method for forming an alloy layer having wear resistance and heat resistance on the metal member for an internal combustion engine has been described above, the alloy layer is similarly applied to the surface portion of the member that requires wear resistance for other purposes. It is also possible to improve wear resistance by forming.
1 ピストン
3・4 リング溝部
8 レーザ光
10 レーザ吸収剤
15 シリンダヘッド
19 バルブシート部
20・21・22 合金層
25 シリンダブロック
26 ライナ表面部
DESCRIPTION OF SYMBOLS 1 Piston 3.4
請求項1においては、内燃機関用鋳鉄製シリンダブロック(25)のピストン摺動部となるライナ表面部(26)に、金属粉末、バインダー及び溶剤を混合した混合物を塗布して塗膜を形成し、該塗膜を乾燥させ、該塗膜にレーザあるいは電子ビームを照射し、前記金属粉末を焼結及び拡散させることにより、前記シリンダブロック(25)にMC系炭化物を生成するとともに、該MC系炭化物を鋳鉄母材に接合する内燃機関用鋳鉄製シリンダブロックのライナ表面部の硬化処理方法において、前記乾燥させたシリンダブロック(25)の内壁のライナ表面部(26)の塗膜の上に、黒鉛粉末をシンナー等の溶剤で希釈した吸収剤(10)を塗布被覆し、前記レーザあるいは電子ビームの照射時に、前記MC系炭化物を焼結し、前記金属粉末の鋳鉄母材への拡散を促進させることにより、前記シリンダブロック(25)の内壁のライナ表面部(26)に合金層(22)を形成するものである。 In claim 1, a coating film is formed by applying a mixture of metal powder, binder and solvent to the liner surface portion (26) which becomes the piston sliding portion of the cast iron cylinder block (25) for the internal combustion engine. The coating film is dried, and the coating film is irradiated with a laser or an electron beam to sinter and diffuse the metal powder, thereby generating MC-based carbides in the cylinder block (25), and carbides in hardening method of the liner surface portion of the cast iron cylinder block for an internal combustion engine to be bonded to the cast iron base material, on the coating of the liner surface portion of the inner wall (26) of the dried cylinder block (25), The metal powder is coated with an absorbent (10) obtained by diluting graphite powder with a solvent such as thinner, and the MC carbide is sintered at the time of irradiation with the laser or electron beam. By promoting the diffusion of the cast iron base material, the liner surface portion of the inner wall of the cylinder block (25) to (26) and forms an alloy layer (22).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257133A JP2013083003A (en) | 2012-11-26 | 2012-11-26 | Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257133A JP2013083003A (en) | 2012-11-26 | 2012-11-26 | Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011135789A Division JP5480203B2 (en) | 2011-06-17 | 2011-06-17 | Surface hardening method for metal members |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013083003A true JP2013083003A (en) | 2013-05-09 |
Family
ID=48528457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012257133A Pending JP2013083003A (en) | 2012-11-26 | 2012-11-26 | Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013083003A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019198591A1 (en) * | 2018-04-13 | 2021-04-30 | 東京応化工業株式会社 | Method for manufacturing cladding composition and metal / resin bonding member |
CN112746272A (en) * | 2020-12-28 | 2021-05-04 | 洛阳清科激光技术有限公司 | Engine cylinder sleeve strengthening method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149424A (en) * | 1984-12-24 | 1986-07-08 | Yanmar Diesel Engine Co Ltd | Laser quenching method of member constituted of recessed and projected part |
JPS6267182A (en) * | 1985-09-20 | 1987-03-26 | Mitsubishi Motors Corp | Metal surface remelting alloying method |
JPS62279255A (en) * | 1986-05-29 | 1987-12-04 | Toyota Motor Corp | Cast iron cylinder block and its manufacture |
JPH01203799A (en) * | 1988-02-08 | 1989-08-16 | Toyota Motor Corp | Abrasion-resistive sliding member |
JPH0762424A (en) * | 1993-08-26 | 1995-03-07 | Mitsubishi Motors Corp | Laser absorber for laser hardening |
-
2012
- 2012-11-26 JP JP2012257133A patent/JP2013083003A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149424A (en) * | 1984-12-24 | 1986-07-08 | Yanmar Diesel Engine Co Ltd | Laser quenching method of member constituted of recessed and projected part |
JPS6267182A (en) * | 1985-09-20 | 1987-03-26 | Mitsubishi Motors Corp | Metal surface remelting alloying method |
JPS62279255A (en) * | 1986-05-29 | 1987-12-04 | Toyota Motor Corp | Cast iron cylinder block and its manufacture |
JPH01203799A (en) * | 1988-02-08 | 1989-08-16 | Toyota Motor Corp | Abrasion-resistive sliding member |
JPH0762424A (en) * | 1993-08-26 | 1995-03-07 | Mitsubishi Motors Corp | Laser absorber for laser hardening |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019198591A1 (en) * | 2018-04-13 | 2021-04-30 | 東京応化工業株式会社 | Method for manufacturing cladding composition and metal / resin bonding member |
EP3778197A4 (en) * | 2018-04-13 | 2022-06-22 | Tokyo Ohka Kogyo Co., Ltd. | COMPOSITION FOR FACING AND METHOD OF MAKING A JOINTED METAL/RESIN ELEMENT |
US11667767B2 (en) | 2018-04-13 | 2023-06-06 | Tokyo Ohka Kogyo Co., Ltd. | Cladding composition, and method for producing metal/resin bonded member |
JP7341984B2 (en) | 2018-04-13 | 2023-09-11 | 東京応化工業株式会社 | Cladding composition and method for producing metal/resin bonding member |
CN112746272A (en) * | 2020-12-28 | 2021-05-04 | 洛阳清科激光技术有限公司 | Engine cylinder sleeve strengthening method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101838B2 (en) | Surface hardening method for metal members | |
Rastegar et al. | Alternative to chrome: HVOF cermet coatings for high horse power diesel engines | |
US20160340762A1 (en) | Cladding Composition and Method for Remanufacturing Components | |
US20110143039A1 (en) | Process and device for cold spraying | |
US20140220380A1 (en) | Slide component and method for production of cladding on a substrate | |
JP3835694B2 (en) | Manufacturing method of valve seat | |
CN106480380A (en) | A kind of laser manufactures the iron(-)base powder of low-speed heave-load marine diesel engine piston annular groove | |
Wank et al. | Environmentally friendly protective coatings for brake disks | |
Hebbale et al. | A comparative study on characteristics of composite (Cr3C2-NiCr) clad developed through diode laser and microwave energy | |
JP2013083003A (en) | Hardening treatment method of liner surface part of cast iron cylinder block for internal combustion engine | |
JP2013092150A (en) | Surface hardening method for valve seat of cast-iron cylinder head for internal combustion engine | |
JP5480203B2 (en) | Surface hardening method for metal members | |
RU2310089C2 (en) | Piston for large-capacity engine and method of making wear protective layer of such piston (versions) | |
Bartels et al. | Effect of Volumetric Energy Density and Part Height on the Material Properties of Low‐Alloyed Steels Manufactured by Laser‐Based Powder Bed Fusion of Metals | |
Seraj et al. | Microstructural evolution and wear resistance of friction stir-processed AISI 52100 steel | |
KR100267709B1 (en) | A metal composition for engine valve seat, a method for manufacturing it, and an apparatus therefor | |
Singh et al. | Enhancing Tribological Performance of SS-316 Through Microwave Cladding of NiCr-Cr3C2 Composite: Fabrication, Characterization, and Optimization | |
Liu et al. | Microstructures and high-temperature friction and wear behavior of high-velocity oxygen-fuel-sprayed WC-12% Co-6% Cr coatings before and after sealing | |
Zohuri | Laser surface processing | |
CN118875275A (en) | Laser cladding iron-based composite powder for nitriding crankshaft repair and process thereof | |
Cernašejus et al. | Oscillating Laser Post-Processing of NiCrCoFeCBSi/WC Thermally Sprayed Coatings. Materials 2022, 15, 8041 | |
Shchitsyn et al. | Development of Layered Growth Technology for a Workpiece of Highly Alloyed Steel by Plasma Surfacing | |
Phani et al. | Laser Metal Deposition of WC-NiCrBSi Powders on Gas Carburization Steels Used in Mining Industry | |
Sani et al. | Analysis and Prediction of Laser Single-Track Geometrical Characteristics of Stellite 6 on Locomotive Crankshaft Alloy | |
Marschall et al. | In-situ modification of material hardness for low-alloyed steels processed via PBF-LB/M–a view on process related microstructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140310 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141126 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141204 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150109 |