[go: up one dir, main page]

JP2013057872A - Electromagnetic driving device - Google Patents

Electromagnetic driving device Download PDF

Info

Publication number
JP2013057872A
JP2013057872A JP2011197132A JP2011197132A JP2013057872A JP 2013057872 A JP2013057872 A JP 2013057872A JP 2011197132 A JP2011197132 A JP 2011197132A JP 2011197132 A JP2011197132 A JP 2011197132A JP 2013057872 A JP2013057872 A JP 2013057872A
Authority
JP
Japan
Prior art keywords
driving
drive
repulsion
coil
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011197132A
Other languages
Japanese (ja)
Inventor
Kokichi Terajima
厚吉 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINHONGZHOU PRECISION Tech CO Ltd
Micro Win Tech Inc
Largan Precision Co Ltd
Original Assignee
XINHONGZHOU PRECISION Tech CO Ltd
Micro Win Tech Inc
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINHONGZHOU PRECISION Tech CO Ltd, Micro Win Tech Inc, Largan Precision Co Ltd filed Critical XINHONGZHOU PRECISION Tech CO Ltd
Priority to JP2011197132A priority Critical patent/JP2013057872A/en
Publication of JP2013057872A publication Critical patent/JP2013057872A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic driving device capable of oscillating a movable member stably and effectively even at a high temperature without using a permanent magnet.SOLUTION: The electromagnetic driving device comprises: a lens holder 12 that is a movable member; and a case 11 that functions as a fixing member supporting the lens holder 12 in such a manner to allow the lens holder 12 to be oscillated. A driving plate-shaped repulsive member 15 made of a nonmagnetic conductive material is mounted to the case 11 and a driving coil 14 is attached to the lens holder 12 in such a way that the axial direction of the coil is in the thickness direction of the driving repulsive member 15, or the driving coil 14 is attached to the case 11 and the driving repulsive member 15 is mounted to the lens holder 12. An AC current is applied to the driving coil 14 to generate an eddy current in the driving repulsive member 15, thereby generating a repulsive force caused by the eddy current between the driving coil 14 and the driving repulsive member 15. The repulsive force moves the lens holder 12 in the axial direction of the lens holder 12.

Description

本発明は、例えば、撮影用光学機器などの自動焦点駆動や手振れの抑制を行うことのできる電磁駆動装置に関するものである。   The present invention relates to an electromagnetic drive device capable of performing automatic focus drive and suppression of camera shake, for example, for a photographing optical apparatus.

近年、携帯電話等に搭載されるカメラはイメージセンサーの画素数が増大されて撮影画像の高品質化が進んでいる。これに伴って、搭載されるレンズ系についても、従来の固定焦点のレンズ駆動装置から可動焦点のレンズ駆動装置へと移行しつつある。これは、固定焦点のレンズ駆動装置では、焦点ボケが生じて、高画素数イメージセンサーの分解能に対応することができないためである。
可動焦点のレンズ駆動装置におけるレンズ系の駆動方式としては、永久磁石の作る磁界中に配置された駆動用コイルに通電し、ローレンツ力により駆動用コイルを駆動してレンズホルダーをレンズの光軸方向に移動させるボイスコイルモータ型のレンズ駆動装置が多く用いられている(例えば、特許文献1参照)。
また、携帯電話等に搭載されるカメラでは、撮影時に手振れが発生しやすいことから、永久磁石と手振れ抑制用のコイルとを用いてレンズホルダーを揺動させて手振れを抑制する機能を有する撮影用光学装置が提案されている。これにより、レンズホルダーをレンズの光軸方向に駆動する機能に加えて、手振れを抑制できるので、イメージセンサー上に鮮明な画像を結像させることができる(例えば、特許文献2参照)。
また、前記ボイスコイルモータ型のレンズ駆動装置や電磁駆動装置では、近年、大きな推進力を発揮させるため、永久磁石としてネオジウムマグネット等の希土類元素を多量に含有する飽和磁束密度の高い希土類マグネットが用いられている(例えば、特許文献3参照)。
In recent years, a camera mounted on a mobile phone or the like has increased in the number of pixels of an image sensor, and the quality of captured images has been improved. Along with this, the lens system to be mounted is also shifting from the conventional fixed focus lens driving device to the movable focus lens driving device. This is because a fixed-focus lens driving device is out of focus and cannot cope with the resolution of a high pixel count image sensor.
The lens system in the movable focus lens driving device is driven by energizing a driving coil arranged in a magnetic field created by a permanent magnet and driving the driving coil by Lorentz force to move the lens holder in the direction of the optical axis of the lens. In many cases, a voice coil motor type lens driving device is used that is moved to (see, for example, Patent Document 1).
Cameras mounted on mobile phones and the like are prone to camera shake during shooting, and therefore have a function for suppressing camera shake by swinging the lens holder using a permanent magnet and a coil for suppressing camera shake. Optical devices have been proposed. Accordingly, in addition to the function of driving the lens holder in the optical axis direction of the lens, camera shake can be suppressed, so that a clear image can be formed on the image sensor (see, for example, Patent Document 2).
In addition, in recent years, the voice coil motor type lens driving device and electromagnetic driving device use a rare earth magnet having a high saturation magnetic flux density containing a large amount of rare earth elements such as a neodymium magnet as a permanent magnet in order to exert a large driving force. (For example, see Patent Document 3).

特開2004−280031号公報JP 2004-280031 A 特開2009−294393号公報JP 2009-294393 A 特開2010−14920号公報JP 2010-14920 A

しかしながら、前記希土類マグネットは耐熱温度が低く、100℃前後の温度においても保存中に磁気劣化し易いだけでなく、磁気特性の温度依存性が大きいため、高温動作時において駆動力が変化するなどの問題点があった。
また、前記ボイスコイルモータ型のレンズ駆動装置や電磁駆動装置では、駆動用コイルの一部の辺に発生するローレンツ力によりレンズホルダーなどの可動部材を揺動させる構成であるため、駆動効率が悪いといった問題点があった。
However, the rare earth magnet has a low heat-resistant temperature, and is not only easily deteriorated during storage even at a temperature around 100 ° C., but also has a large temperature dependence of magnetic properties, so that the driving force changes during high-temperature operation. There was a problem.
The voice coil motor type lens driving device or electromagnetic driving device has a configuration in which a movable member such as a lens holder is swung by a Lorentz force generated at a part of a side of the driving coil, and thus driving efficiency is poor. There was a problem.

本発明は、従来の問題点に鑑みてなされたもので、永久磁石を用いることなく、高温においても安定して可動部材を効率よく揺動させることのできる電磁駆動装置を提供することを目的とする。   The present invention has been made in view of conventional problems, and an object of the present invention is to provide an electromagnetic drive device that can stably swing a movable member even at a high temperature without using a permanent magnet. To do.

本発明者は鋭意検討の結果、コイルとコイルに向き合うように配置された非磁性導電部材との対を電磁駆動手段とし、コイルに交流電流を供給することで非磁性導電部材に渦電流を生じさせ、この渦電流による反磁界によりコイルと非磁性導電部材との間に発生する斥力を駆動力とすれば、永久磁石を用いない、小型で性能の安定した電磁駆動装置を得ることができることを見出し本発明に到ったものである。
すなわち、本願発明は、柱状もしくは筒状の可動部材と、前記可動部材を揺動可能に支持する固定部材と、前記可動部材を前記固定部材に対して揺動させる駆動手段とを備えた電磁駆動装置であって、前記駆動手段は、非磁性導電材料から成る板状もしくは環状の駆動用反発部材と、前記駆動用反発部材の厚さ方向の一方の側と他方の側のいずれか一方または両方に、巻線の軸線方向が前記駆動用反発部材の厚さ方向を向くように配置された駆動用コイルとを備え、前記駆動用反発部材及び前記駆動用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする。

このように、非磁性導電材料から成る板状の駆動用反発部材と駆動用コイルとを対向させて配置するとともに、駆動用コイルに交流電流を通電して駆動用反発部材に渦電流を発生させるという簡単な構成で、可動部材に、直線往復運動や軸周りの回転を伴う振り子運動を含む揺動を与えることができる電磁駆動装置を得ることができる。
As a result of intensive studies, the inventor has used a pair of a coil and a nonmagnetic conductive member arranged so as to face the coil as electromagnetic drive means, and an eddy current is generated in the nonmagnetic conductive member by supplying an alternating current to the coil. If the repulsive force generated between the coil and the nonmagnetic conductive member by the demagnetizing field due to the eddy current is used as the driving force, a small and stable electromagnetic driving device that does not use a permanent magnet can be obtained. The present invention has been reached.
That is, the present invention provides an electromagnetic drive comprising a columnar or cylindrical movable member, a fixed member that supports the movable member in a swingable manner, and a drive unit that swings the movable member relative to the fixed member. The driving means includes a plate-like or annular driving repulsion member made of a nonmagnetic conductive material, and one or both of one side and the other side in the thickness direction of the driving repulsion member. And a driving coil arranged so that the axial direction of the winding faces the thickness direction of the driving repulsion member, and either one of the driving repulsion member or the driving coil acts as the movable member. It is mounted, and the other is mounted on the fixing member.

In this way, the plate-like drive repulsion member made of a nonmagnetic conductive material and the drive coil are arranged to face each other, and an alternating current is passed through the drive coil to generate an eddy current in the drive repulsion member. With this simple configuration, it is possible to obtain an electromagnetic drive device capable of giving the movable member swinging including a linear reciprocating motion and a pendulum motion involving rotation around an axis.

また、本願発明は、前記可動部材がバネ部材により前記固定部材に対して揺動可能に支持されていることを特徴とする。
これにより、簡単な構成で可動部材を固定部材に揺動可動に取付けることができる。
また、本願発明は、前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、前記駆動用コイルを前記駆動用反発部材の一方の側と他方の側とにそれぞれ配置するとともに、前記可動部材に設けられて前記可動部材の軸線方向に延長するガイド孔と、両端がそれぞれ前記固定部材に固定されて前記ガイド孔を貫通するガイドピンとを更に備えたことを特徴とする。
これにより、可動部材は、当該可動部材の軸線方向において、一方の側の駆動用コイルと駆動用反発部材との間に作用する斥力と他方の側の駆動用コイルと駆動用反発部材との間に作用する斥力との釣り合う位置までガイドピンに沿って移動するので、可動部材を固定部材に取り付けることなく、可動部材を安定して当該可動部材の軸線方向に往復運動させることができる。
Further, the present invention is characterized in that the movable member is supported by a spring member so as to be swingable with respect to the fixed member.
As a result, the movable member can be swingably attached to the fixed member with a simple configuration.
In the present invention, the thickness direction of the drive repulsion member is the axial direction of the movable member, and the drive coil is disposed on one side and the other side of the drive repulsion member, A guide hole provided in the movable member and extending in the axial direction of the movable member, and a guide pin having both ends fixed to the fixed member and penetrating the guide hole are further provided.
As a result, the movable member moves between the repulsive force acting between the driving coil on one side and the driving repulsion member and the driving coil on the other side and the driving repulsion member in the axial direction of the movable member. Therefore, the movable member can be stably reciprocated in the axial direction of the movable member without attaching the movable member to the fixed member.

また、本願発明は、前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、前記駆動用反発部材と前記駆動用コイルとの組を前記可動部材の軸線方向に沿って複数組配置するとともに、厚さ方向が前記可動部材の軸線方向とは直交する方向になるように配置された非磁性導電材料から成る板状もしくは環状の支持用反発部材と、前記支持用反発部材の厚さ方向に、巻線の軸線方向が前記支持用反発部材の厚さ方向を向くように配置された支持用コイルとの組を少なくとも3組備え、前記支持用反発部材及び前記支持用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする。
これにより、可動部材は、3組の支持用反発部材と支持用コイルとの間に作用する斥力により当該可動部材の軸線方向に移動可能に浮上しながら、複数の駆動用反発部材と駆動用コイルとに作用する斥力の釣り合う位置に沿って移動するので、可動部材を固定部材に取り付けることなく、可動部材を安定して当該可動部材の軸線方向に往復運動させることができる。
In the present invention, the thickness direction of the drive repulsion member is the axial direction of the movable member, and a plurality of sets of the drive repulsion member and the drive coil are arranged along the axial direction of the movable member In addition, a plate-like or annular support repulsion member made of a nonmagnetic conductive material and disposed so that the thickness direction is perpendicular to the axial direction of the movable member, and the thickness of the support repulsion member And at least three sets of supporting coils arranged so that the axial direction of the winding faces the thickness direction of the supporting repelling member, and any one of the supporting repelling member and the supporting coil One is attached to the movable member, and the other is attached to the fixed member.
As a result, the movable member floats so as to be movable in the axial direction of the movable member by a repulsive force acting between the three sets of the supporting repulsive member and the supporting coil, and a plurality of the driving repulsive members and the driving coils Therefore, the movable member can be stably reciprocated in the axial direction of the movable member without attaching the movable member to the fixed member.

また、本願発明は、前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、前記駆動用コイルを前記駆動用反発部材の一方の側と他方の側とにそれぞれ配置するとともに、前記駆動用コイルの内周側に、厚さ方向が前記可動部材の軸線方向とは直交する方向になるように配置された非磁性導電材料から成る板状もしくは環状の支持用反発部材を更に備え、前記2種類の反発部材(駆動用反発部と支持用反発部材)及び前記駆動用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする。
これにより、可動部材は、駆動用コイルと支持用反発部材との間に作用する斥力により当該可動部材の軸線方向に移動可能に浮上しながら、一方の側の駆動用コイルと駆動用反発部材との間に作用する斥力と他方の側の駆動用コイルと駆動用反発部材との間に作用する斥力との釣り合う位置に沿って移動するので、可動部材を固定部材に取り付けることなく、可動部材を安定して当該可動部材の軸線方向に往復運動させることができる。
In the present invention, the thickness direction of the drive repulsion member is the axial direction of the movable member, and the drive coil is disposed on one side and the other side of the drive repulsion member, Further provided on the inner peripheral side of the drive coil is a plate-like or annular support repulsion member made of a non-magnetic conductive material arranged so that the thickness direction is perpendicular to the axial direction of the movable member, One of the two types of repulsion members (drive repulsion part and support repulsion member) and the drive coil is mounted on the movable member, and the other is mounted on the fixed member.
Thus, the movable member floats movably in the axial direction of the movable member by a repulsive force acting between the driving coil and the supporting repulsive member, while the driving coil and the driving repelling member on one side are The reciprocating force acting between the driving coil on the other side and the repulsive force acting between the driving repulsion member move along a balanced position, so that the movable member can be moved without attaching the movable member to the fixed member. The movable member can be stably reciprocated in the axial direction.

また、本願発明は、前記駆動用反発部材を、円錐台側面を有し前記可動部材と同軸に配置された環状の部材とし、前記駆動用コイルを前記環状の駆動用反発部材の厚さ方向の一方の側と他方の側とにそれぞれ配置するととともに、前記駆動用反発部材の円環部がそれぞれ前記2つの駆動用コイルの巻線部に対向するように配置されていることを特徴とする。
これにより、可動部材には、可動部材の軸線方向と交差しかつ軸線方向に対して線対称な方向の斥力が作用するので、可動部材を軸線方向に移動可能に浮上させながら、一方の側の駆動用コイルと駆動用反発部材との間に作用する斥力の軸線方向の成分と他方の側の駆動用コイルと駆動用反発部材との間に作用する斥力の軸線方向の成分との釣り合う位置に沿って移動させることができる。したがって、可動部材を固定部材に取り付けることなく、可動部材を安定して当該可動部材の軸線方向に往復運動させることができる。
Further, in the present invention, the driving repulsion member is an annular member having a truncated cone side surface and disposed coaxially with the movable member, and the driving coil is arranged in the thickness direction of the annular driving repulsion member. It arrange | positions at one side and the other side, respectively, and it arrange | positions so that the annular part of the said drive repulsion member may each oppose the winding part of the said two drive coils.
As a result, a repulsive force that intersects the axial direction of the movable member and is symmetric with respect to the axial direction acts on the movable member, so that the movable member floats so as to be movable in the axial direction. At a position where the axial component of the repulsive force acting between the driving coil and the driving repulsive member balances with the axial component of the repulsive force acting between the driving coil on the other side and the driving repulsive member Can be moved along. Therefore, the movable member can be stably reciprocated in the axial direction of the movable member without attaching the movable member to the fixed member.

また、本願発明は、前記可動部材をバネ部材により前記固定部材に対して揺動可能に支持するとともに、前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向と直交する方向とし、前記駆動用反発部材の厚さ方向に、巻線の軸線方向が前記駆動用反発部材の厚さ方向を向くように前記駆動用コイルを配置したことを特徴とする。
これにより、可動部材を、当該可動部材の軸線方向と直交する軸周りに揺動させることができるので、簡単な構成で可動部材に作用する揺動を効果的に抑制することができる。
また、本願発明は、前記駆動用コイルの内周側、外周側、及び、前記駆動用反発部材とは反対側の面である背面側のいずれか1つまたは複数または全部に軟磁性材料から成るコア部材を配置したことを特徴とする。
これにより、駆動用コイルからの交流磁界を駆動用反発部材や支持用反発部材に有効に導くことができるので、可動部材を効率よく揺動させることができる。また、駆動用コイルからの磁界は主にコア部材内を通るので、コア部材の外側に磁界を弱める、いわゆるシールド効果を有するので、駆動コイルからの磁界の漏れを少なくできる。
また、本願発明は、前記駆動用反発部材の外縁部から前記駆動用コイルの外周側に突出する突出部、もしくは、前記駆動用反発部材の内周部から前記駆動用コイルの内周側に突出する突出部のいずれか1つまたは両方を前記駆動用反発部材に設けたことを特徴とする。
駆動用反発部材もシールド効果を有するので、駆動コイルからの磁界の漏れを少なくできるとともに、これに伴って、駆動用反発部材自身に印加される磁界が強まるので、可動部材を効率よく揺動させることができる。
In the present invention, the movable member is supported by the spring member so as to be swingable with respect to the fixed member, and the thickness direction of the driving repulsion member is set to a direction orthogonal to the axial direction of the movable member, The drive coil is arranged in the thickness direction of the drive repulsion member so that the axial direction of the winding faces the thickness direction of the drive repulsion member.
As a result, the movable member can be swung around an axis orthogonal to the axial direction of the movable member, so that the swing acting on the movable member can be effectively suppressed with a simple configuration.
Further, the present invention is made of a soft magnetic material on any one or a plurality or all of the inner peripheral side, the outer peripheral side, and the back side which is the surface opposite to the driving repulsion member. A core member is arranged.
Thereby, the AC magnetic field from the drive coil can be effectively guided to the drive repulsion member and the support repulsion member, so that the movable member can be efficiently swung. Further, since the magnetic field from the driving coil mainly passes through the core member, it has a so-called shielding effect that weakens the magnetic field outside the core member, so that leakage of the magnetic field from the driving coil can be reduced.
Further, the present invention provides a protruding portion that protrudes from the outer edge of the driving repulsion member to the outer peripheral side of the driving coil, or protrudes from the inner peripheral portion of the driving repulsive member to the inner peripheral side of the driving coil. Any one or both of the projecting portions are provided on the drive repulsion member.
Since the drive repulsion member also has a shielding effect, the leakage of the magnetic field from the drive coil can be reduced, and accordingly, the magnetic field applied to the drive repulsion member itself is strengthened, so that the movable member can be swung efficiently. be able to.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明の実施の形態1に係るレンズ駆動装置の構成を示す図である。It is a figure which shows the structure of the lens drive device which concerns on Embodiment 1 of this invention. 本実施の形態1に係るレンズ駆動装置の分解斜視図である。FIG. 3 is an exploded perspective view of the lens driving device according to the first embodiment. 駆動用反発部材の他の形状を示す図である。It is a figure which shows the other shape of the repulsion member for a drive. 駆動用コイルに交流電流を供給したときの磁界分布の一例を示す図である。It is a figure which shows an example of magnetic field distribution when alternating current is supplied to the coil for a drive. 駆動用コイルと駆動用反発部材との間の距離と推力との関係を示す図である。It is a figure which shows the relationship between the distance between a drive coil and a drive repulsion member, and thrust. 駆動電流とレンズホルダーの変位量との関係を示す図である。It is a figure which shows the relationship between a drive current and the displacement amount of a lens holder. 巻線部の断面形状と推力との関係を示す図である。It is a figure which shows the relationship between the cross-sectional shape of a coil | winding part, and thrust. 本発明の実施の形態2に係るレンズ駆動装置の構成を示す図である。It is a figure which shows the structure of the lens drive device which concerns on Embodiment 2 of this invention. コア部材の他の形状を示す図である。It is a figure which shows the other shape of a core member. 駆動用コイルの背面側のみに軟磁性部材が配置されている場合の磁界分布の一例を示す図である。It is a figure which shows an example of magnetic field distribution in case the soft-magnetic member is arrange | positioned only at the back side of the drive coil. 実施の形態2における駆動用コイルに交流電流を供給したときの磁界分布の一例を示す図である。6 is a diagram illustrating an example of a magnetic field distribution when an alternating current is supplied to a driving coil according to Embodiment 2. FIG. 円環部の内縁部と外縁部とに突出部を有する駆動用反発部材を用いた場合の磁界分布の一例を示す図である。It is a figure which shows an example of magnetic field distribution at the time of using the drive repulsion member which has a protrusion part in the inner edge part and outer edge part of a ring part. 実施の形態2における駆動用コイルと駆動用反発部材との間の距離と推力との関係を示す図である。It is a figure which shows the relationship between the distance between the drive coil and drive repulsion member in Embodiment 2, and thrust. 実施の形態2における駆動電流とレンズホルダーの変位量との関係を示す図である。FIG. 10 is a diagram illustrating a relationship between a driving current and a lens holder displacement amount in the second embodiment. コア部材の内側壁部と外側壁部とを駆動用反発部材に対向するようにした場合の磁界分布の一例を示す図である。It is a figure which shows an example of the magnetic field distribution at the time of making the inner wall part and outer wall part of a core member oppose a drive repulsion member. 図15の構成における駆動用コイルと駆動用反発部材との間の距離と推力との関係を示す図である。It is a figure which shows the relationship between the distance between the drive coil and drive repulsion member in the structure of FIG. 15, and thrust. 本発明の実施の形態3に係るレンズ駆動装置の構成を示す図である。It is a figure which shows the structure of the lens drive device which concerns on Embodiment 3 of this invention. 本発明によるレンズ駆動装置の他の構成を示す図である。It is a figure which shows the other structure of the lens drive device by this invention. 本発明の実施の形態4に係る電磁駆動装置の構成を示す図である。It is a figure which shows the structure of the electromagnetic drive device which concerns on Embodiment 4 of this invention. 本発明による簡易構造の電磁駆動装置の構成を示す図である。It is a figure which shows the structure of the electromagnetic drive device of the simple structure by this invention. 本実施の形態5に係る電磁駆動装置の構成を示す図である。It is a figure which shows the structure of the electromagnetic drive device which concerns on this Embodiment 5. FIG. 本実施の形態6に係る手振れ抑制装置の構成を示す図である。It is a figure which shows the structure of the camera-shake suppression apparatus which concerns on this Embodiment 6. FIG. 本実施の形態7に係る電磁駆動装置の構成を示す図である。It is a figure which shows the structure of the electromagnetic drive device which concerns on this Embodiment 7. FIG.

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

実施の形態1.
図1は、本発明の実施の形態1に係る電磁駆動装置としてのレンズ駆動装置10の構成を示す縦断面図で、図2は分解斜視図である。
レンズ駆動装置10は、固定部材としてのケース11と、可動部材としてのレンズホルダー12と、ケース11にレンズホルダー12を懸架する支持手段としてのバネ部材13A,13Bと、駆動用コイル14と、駆動用反発部材15とを備える。
以下、レンズホルダー12の軸線方向、すなわち、レンズホルダー12にレンズ16を搭載した時の被写体側をZ軸方向前方(+Z側)とし、Z軸に直交する2方向をそれぞれX軸及びY軸とする。なお、図1ではレンズ16を省略している。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a configuration of a lens driving device 10 as an electromagnetic driving device according to Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view.
The lens drive device 10 includes a case 11 as a fixed member, a lens holder 12 as a movable member, spring members 13A and 13B as support means for suspending the lens holder 12 on the case 11, a drive coil 14, and a drive. A repulsion member 15.
Hereinafter, the axial direction of the lens holder 12, that is, the subject side when the lens 16 is mounted on the lens holder 12, is defined as the front in the Z-axis direction (+ Z side), and the two directions orthogonal to the Z-axis are the X-axis and Y-axis, respectively. To do. In FIG. 1, the lens 16 is omitted.

ケース11は円筒状の枠体11aと、枠体11aの被写体側(+Z側)に配置される+Z側に開口部が形成されレンズホルダー12側が開放された筒状のカバー部11bと、枠体11aの−Z側に配置される後方側(−Z側)に開口部が形成されレンズホルダー12側が開放された基部11cとを備える。基部11cの開口部の周縁部には駆動用コイル14を取付けるための段差部11kが設けられている。
レンズホルダー12は、例えば円筒状の本体12aを備え、本体12aの内側に対物レンズや接眼レンズの組み合わせから成るレンズを保持する。本例では、本体12aの後方側(−Z側)に径が本体12aの径よりも小さな段差部12bを設け、この段差部12bに駆動用反発部材15を装着するようにしている。
バネ部材13A,13Bは、内側と外側とにそれぞれ配置された円環状の外周部13aと内周部13bと、外周部13aと内周部13bとを連結する略円弧状の4本の腕部13cとを備えている。外周部13aがケース11に固定され、内周部13bがレンズホルダー12に固定される。4本の腕部13cがレンズホルダー12をケース11に懸架するバネとして機能する。
The case 11 includes a cylindrical frame 11a, a cylindrical cover 11b that is disposed on the subject side (+ Z side) of the frame 11a, an opening is formed on the + Z side, and the lens holder 12 side is open. A base portion 11c having an opening formed on the rear side (-Z side) disposed on the -Z side of 11a and the lens holder 12 side being opened. A step portion 11k for attaching the drive coil 14 is provided at the peripheral edge of the opening of the base portion 11c.
The lens holder 12 includes, for example, a cylindrical main body 12a, and holds a lens formed of a combination of an objective lens and an eyepiece lens inside the main body 12a. In this example, a step portion 12b having a diameter smaller than the diameter of the main body 12a is provided on the rear side (−Z side) of the main body 12a, and the driving repulsion member 15 is attached to the step portion 12b.
The spring members 13A and 13B have four substantially arc-shaped arm portions that connect the annular outer peripheral portion 13a and the inner peripheral portion 13b, and the outer peripheral portion 13a and the inner peripheral portion 13b, which are arranged on the inner side and the outer side, respectively. 13c. The outer peripheral portion 13 a is fixed to the case 11, and the inner peripheral portion 13 b is fixed to the lens holder 12. The four arm portions 13 c function as springs that suspend the lens holder 12 from the case 11.

駆動用コイル14は、Z軸周りに巻き回されてケース11の基部11cに設けられた段差部11kに装着される。この駆動用コイル14には、駆動用反発部材15の材質と厚さとにより決まる周波数の交流電流が供給される。
駆動用反発部材15は、レンズホルダー12の段差部12bに設けられて厚さ方向がZ軸方向になるように取付けられた非磁性導電材料から成る円環状の部材で、駆動用コイル14の巻線端面においてZ軸方向に対向するように配置される。駆動用反発部材15に好適に用いられる非磁性導電材料としては、例えば、銅やアルミニウムなどのような、比抵抗が小さな非磁性材料が用いられる。
渦電流の届く表皮深さは周波数と非磁性導電材料の比抵抗により決まるので、駆動用反発部材15の厚さを表皮深さ以上にすれば渦電流を有効に発生させることができる。駆動用反発部材15を、例えば、銅から構成した場合、駆動用コイル14に供給する交流電流の周波数と駆動用反発部材15の厚さとの関係は、例えば、1kHzなら2mm以上、100kHzなら0.2mm以上、10MHzなら20μm以上とすればよい。
また、アルミニウムの場合には、比抵抗が銅の約1.7倍なので、厚さとしては銅の場合の1.3倍厚くすればよい。
The driving coil 14 is wound around the Z axis and attached to a step portion 11k provided on the base portion 11c of the case 11. An alternating current having a frequency determined by the material and thickness of the driving repulsion member 15 is supplied to the driving coil 14.
The drive repulsion member 15 is an annular member made of a non-magnetic conductive material provided on the step portion 12b of the lens holder 12 and attached so that the thickness direction is the Z-axis direction. It arrange | positions so that it may oppose in a Z-axis direction in a line end surface. As the nonmagnetic conductive material suitably used for the driving repulsion member 15, for example, a nonmagnetic material having a small specific resistance, such as copper or aluminum, is used.
Since the skin depth to which the eddy current reaches is determined by the frequency and the specific resistance of the nonmagnetic conductive material, the eddy current can be effectively generated by making the thickness of the driving repulsion member 15 equal to or greater than the skin depth. When the drive repulsion member 15 is made of, for example, copper, the relationship between the frequency of the alternating current supplied to the drive coil 14 and the thickness of the drive repulsion member 15 is, for example, 2 mm or more at 1 kHz and 0. If it is 2 mm or more and 10 MHz, it may be 20 μm or more.
In the case of aluminum, the specific resistance is about 1.7 times that of copper, so the thickness may be 1.3 times that of copper.

駆動用コイル14に交流電流を供給すると駆動用反発部材15には渦電流が発生する。この渦電流により駆動用コイル14の作る磁界を弱めようとする磁界(反磁界)が生じ、その結果、駆動用コイル14と駆動用反発部材15との間には斥力が発生する。
本例では、駆動用コイル14を固定部材であるケース11に装着し、駆動用反発部材15を可動部材であるレンズホルダー12に取付けているので、駆動用コイル14に交流電流を供給すると、前記斥力がレンズホルダー12をZ軸方向前方(+Z側)に押し出す推力となり、レンズホルダー12を前側及び後側のバネ部材13A,13Bの復元力と釣り合う位置まで移動させることができる。なお、レンズホルダー12には常に−Z方向にバネ部材13A,13Bの復元力が作用しているので、駆動用コイル14に通電する電流値を小さくすれば、レンズホルダー12を−Z方向に移動させることができる。
したがって、簡単な構成で、永久磁石を使用することなく、レンズホルダー12を被写体方向に自動焦点駆動させることのできるレンズ駆動装置10を得ることができる。
When an alternating current is supplied to the driving coil 14, an eddy current is generated in the driving repulsion member 15. This eddy current generates a magnetic field (demagnetizing field) that tends to weaken the magnetic field generated by the driving coil 14, and as a result, repulsive force is generated between the driving coil 14 and the driving repulsion member 15.
In this example, the driving coil 14 is attached to the case 11 that is a fixed member, and the driving repulsion member 15 is attached to the lens holder 12 that is a movable member. Therefore, when an alternating current is supplied to the driving coil 14, The repulsive force is a thrust that pushes the lens holder 12 forward in the Z-axis direction (+ Z side), and the lens holder 12 can be moved to a position that balances with the restoring force of the front and rear spring members 13A and 13B. Since the restoring force of the spring members 13A and 13B always acts on the lens holder 12 in the -Z direction, the lens holder 12 can be moved in the -Z direction if the current value supplied to the driving coil 14 is reduced. Can be made.
Therefore, it is possible to obtain the lens driving device 10 that can automatically focus drive the lens holder 12 in the subject direction with a simple configuration and without using a permanent magnet.

なお、実施の形態1では、駆動用コイル14をケース11に装着し駆動用反発部材15をレンズホルダー12に取付けたが、駆動用コイル14をレンズホルダー12に装着し駆動用反発部材15をケース11に取付けても同様の効果を得ることができる。この場合にも、駆動用反発部材15の円環部を駆動用コイル14の巻線端面においてZ軸方向に対向するように配置することが肝要で、これにより、駆動用反発部材15に効率よく渦電流を発生させてレンズホルダー12を被写体方向に移動させることができる。
また、前記例では、駆動用コイル14の巻線部のZ軸方向から見た大きさである内径及び外径と駆動用反発部材15のZ軸方向から見た大きさである内径及び外径とを同じとしたが、駆動用反発部材15の円環部が駆動用コイル14の巻線部に対向するように配置されていれば、駆動用コイル14の大きさと駆動用反発部材15の大きさが異なっていてもよい。
また、前記例では、駆動用反発部材15を、図3(a)に示すような円環状の部材としたが、図3(b)に示すような円板状や、図3(c)に示すような、複数の円弧状の部材を環状に配列したものであってもよい。また、駆動用コイル14の形状が角型である場合には、駆動用反発部材15を、図3(d)に示すような角型の環状部材や、図3(e)に示すような矩形板状や、図3(f)に示すような、複数の棒状の部材を矩形状に配列したものを用いるなど、駆動用コイル14の形状に合わせて適宜選択すればよい。
あるいは、図3(g)に示すように、駆動用反発部材15を凹部15sが形成された円環状の部材として、前記凹部15sに配置された駆動用コイル14の巻線部を囲うようにしてもよい。また、駆動用反発部材15を、図3(g)と同様の凹部15sが形成された複数の円弧状の部材を円環状に配置した構成としてもよい。
In the first embodiment, the driving coil 14 is attached to the case 11 and the driving repulsion member 15 is attached to the lens holder 12. However, the driving coil 14 is attached to the lens holder 12 and the driving repulsion member 15 is attached to the case. The same effect can be obtained even if it is attached to 11. Also in this case, it is important to arrange the annular portion of the drive repulsion member 15 so as to face the Z-axis direction on the winding end face of the drive coil 14. An eddy current can be generated to move the lens holder 12 toward the subject.
In the above example, the inner and outer diameters of the winding portion of the driving coil 14 as viewed from the Z-axis direction and the inner and outer diameters of the driving repulsion member 15 as viewed from the Z-axis direction. However, if the annular portion of the drive repulsion member 15 is arranged to face the winding portion of the drive coil 14, the size of the drive coil 14 and the size of the drive repulsion member 15 are the same. May be different.
Further, in the above example, the driving repulsion member 15 is an annular member as shown in FIG. 3A. However, as shown in FIG. As shown, a plurality of arc-shaped members may be annularly arranged. Further, when the shape of the drive coil 14 is a square shape, the drive repulsion member 15 may be a square annular member as shown in FIG. 3D or a rectangular shape as shown in FIG. What is necessary is just to select suitably according to the shape of the coil 14 for a drive, such as using the plate shape and what used several rod-shaped members arranged in a rectangular shape as shown in FIG.3 (f).
Alternatively, as shown in FIG. 3G, the drive repulsion member 15 is formed as an annular member having a recess 15s so as to surround the winding portion of the drive coil 14 disposed in the recess 15s. Also good. Further, the drive repulsion member 15 may have a configuration in which a plurality of arc-shaped members formed with recesses 15s similar to those in FIG.

[実験例1]
図4は、駆動用コイル14に交流電流を供給した場合の磁界分布の一例を示す図で、駆動用コイル14としては、内径が6mm、外径が14mm、厚さが0.6mmの領域内に被覆導線を巻回したものを用いた。交流電流の周波数は100kHzである。また、駆動用反発部材15としては、銅から成る、内径が6mm、外径が14mm、厚さが0.3mmの円環状のものを用いた。
本発明のレンズ駆動装置10では、駆動用反発部材15をその環状部が駆動用コイル14の巻線端面に対向するように配置するとともに、駆動用コイル14に交流電流を供給することで、非磁性導電部材である駆動用反発部材15を通る磁界を変化させて駆動用反発部材15に渦電流を発生させる。その結果、可動部材であるレンズホルダー12に装着された駆動用反発部材15と固定部材であるケース11に取付けられた駆動用コイル14との間には渦電流による斥力が発生し、この斥力が可動部材であるレンズホルダー12をZ軸方向に移動させるための推力となる。
図5は、駆動用コイル14に100kHz、約720AT(アンペア・ターン)の交流電流を供給して駆動用コイル14と駆動用反発部材15との隙間の大きさ(図4に示すギャップ長g)を変化させたときの、レンズホルダー12に作用する1AT当たりの推力(mN)の大きさの変化を示す図で、図6は駆動電流の大きさ(AT)とレンズホルダー12の変位量(mm)との関係を示す図である。なお、このときのバネ部材13A,13Bのバネ係数は0.04N/mmである。
図5及び図6に示すように、駆動用反発部材15に生じた渦電流により、レンズホルダー12に十分な推力を与えることができるので、永久磁石を使用することなく、レンズホルダーを電磁駆動できる実用的なレンズ駆動装置を得ることができることが確認された。
[Experimental Example 1]
FIG. 4 is a diagram showing an example of a magnetic field distribution when an alternating current is supplied to the driving coil 14. The driving coil 14 has an inner diameter of 6 mm, an outer diameter of 14 mm, and a thickness of 0.6 mm. The one in which a coated conductor was wound was used. The frequency of the alternating current is 100 kHz. Further, as the driving repelling member 15, an annular member made of copper and having an inner diameter of 6 mm, an outer diameter of 14 mm, and a thickness of 0.3 mm was used.
In the lens driving device 10 of the present invention, the driving repulsion member 15 is disposed so that the annular portion thereof faces the winding end surface of the driving coil 14, and an alternating current is supplied to the driving coil 14, thereby An eddy current is generated in the drive repulsion member 15 by changing the magnetic field passing through the drive repulsion member 15 which is a magnetic conductive member. As a result, a repulsive force due to an eddy current is generated between the driving repulsion member 15 attached to the lens holder 12 as a movable member and the driving coil 14 attached to the case 11 as a fixed member. This is a thrust for moving the lens holder 12 as a movable member in the Z-axis direction.
FIG. 5 shows the size of the gap between the driving coil 14 and the driving repulsion member 15 by supplying an alternating current of 100 kHz and about 720 AT (ampere turn) to the driving coil 14 (gap length g shown in FIG. 4). FIG. 6 is a diagram showing a change in the magnitude of thrust (mN) per AT acting on the lens holder 12 when the angle is changed. FIG. 6 shows the magnitude of the drive current (AT) and the displacement amount (mm) of the lens holder 12. FIG. Note that the spring coefficient of the spring members 13A and 13B at this time is 0.04 N / mm.
As shown in FIGS. 5 and 6, since the eddy current generated in the driving repulsion member 15 can give a sufficient thrust to the lens holder 12, the lens holder can be electromagnetically driven without using a permanent magnet. It was confirmed that a practical lens driving device can be obtained.

なお、図5に示す駆動用コイル14の巻線部の幅Xwと厚さYwとの比は、周囲の部材との関係を考慮して扁平や縦長等適宜決めてもよいが、電流効率を重視して幅Xwと厚さYwとを決めることが好ましい。
図7は巻線部の断面積(Xw・Yw)を2.4mm2に保って、幅Xwと厚さYwとを変えた場合の推力の変化を示した例で、横軸はコイル幅Xw(mm)、縦軸は推力(mN/AT)である。なお、図7において、駆動用反発部材15の寸法は図4〜図6の場合と同じである。図7に示すように、駆動用コイル14の形状としては、縦長よりも扁平の方が大きな推力が得られることがわかる。また、扁平でかつコイル幅Xwが2mm以上では、推力はコイル幅の変化に対する推力の変化が小さいことも分かる。
また、図4の磁界分布図に示すように、駆動用反発部材15の外側の磁界が駆動用コイル14の駆動用反発部材15とは反対側の磁界よりも弱まっていることから、非磁性導電部材である駆動用反発部材15は、駆動用コイル14の発生する磁界を遮断する磁気シールド効果を有することがわかる。
The ratio of the width X w and thickness Y w of the winding portion of the driving coil 14 shown in FIG. 5, it may be determined flattened or elongated, or the like as appropriate in consideration of the relationship with the surrounding member, the current it is preferred that emphasizes efficiency determines the width X w and thickness Y w.
FIG. 7 shows an example of changes in thrust when the cross-sectional area (X w · Y w ) of the winding portion is maintained at 2.4 mm 2 and the width X w and the thickness Y w are changed. Is the coil width X w (mm), and the vertical axis is the thrust (mN / AT). In FIG. 7, the dimensions of the drive repulsion member 15 are the same as those in FIGS. As shown in FIG. 7, as the shape of the driving coil 14, it can be seen that a larger thrust can be obtained when the driving coil 14 is flat than when it is vertically long. It can also be seen that when the coil is flat and the coil width Xw is 2 mm or more, the thrust has a small change in the thrust with respect to the change in the coil width.
Also, as shown in the magnetic field distribution diagram of FIG. 4, the magnetic field outside the drive repulsion member 15 is weaker than the magnetic field on the opposite side of the drive coil 14 from the drive repulsion member 15, so It can be seen that the drive repulsion member 15, which is a member, has a magnetic shield effect that blocks the magnetic field generated by the drive coil 14.

実施の形態2.
前記実施の形態1では、駆動用コイル14を空芯コイルとしたが、図8に示すように、駆動用コイル14の内周側と外周側と駆動用反発部材とは反対側(以下、背面側という)とに軟磁性材料から成るコア部材17を配置する構成とすれば、駆動用コイル14からの交流磁界を駆動用反発部材15に有効に導くことができる。
本例のレンズ駆動装置10Yでは、レンズホルダー12の本体12aのほぼ中央に径方向外側に突出するフランジ部12cを設け、このフランジ部12cの被写体側とは反対側に駆動用反発部材15を取り付けるとともに、段差部11kに代えて凹部11jを設け、この凹部11jに駆動用コイル14とコア部材17とを装着する構成としている。なお、本例のケース11では、基部11cの側面のZ軸方向の長さを長くして枠体11aを省略している。
コア部材17は円環状の基部17aと、基部17aの内縁部と外縁部からそれぞれ前方に突出する内側壁部17bと外側壁部17cとを備えたもので、これら基部17aと内側壁部17bと外側壁部17cとにより駆動用コイル14の巻線部を収納するための収納凹部17kが形成される。本例では、駆動用反発部材15の環状部も前記凹部17kに収納されるように、コア部材17の凹部17kの深さを深くしている。
これにより、駆動用コイル14の巻線端面は駆動用反発部材15の環状部に対向するように配置されるとともに、駆駆動用コイル14の内周側と外周側とZ軸方向後側、及び、駆動用反発部材15の環状部の内周側と外周側とに軟磁性材料が配置される。その結果、駆動用コイル14からの磁界は軟磁性材料から成るコア部材17に導かれて駆動用反発部材15に導かれるので、駆動用反発部材15に印加される磁界の磁束密度を高めることができる。したがって、コア部材17がない場合と同じ大きさの交流電流を駆動用コイル14に通電しても、駆動用コイル14と駆動用反発部材15との間に作用する斥力、すなわち、レンズホルダー12に作用する推力を大きくできるので、駆動効率を大幅に高めることができる。
なお、コア部材17を構成する材料としては、フェライトや珪素鋼等の比抵抗の比較的大きな材料を使用することが好ましい。
Embodiment 2. FIG.
In the first embodiment, the driving coil 14 is an air-core coil. However, as shown in FIG. 8, the inner and outer peripheral sides of the driving coil 14 are opposite to the driving repulsion member (hereinafter referred to as the rear surface). If the core member 17 made of a soft magnetic material is disposed on the side, the AC magnetic field from the drive coil 14 can be effectively guided to the drive repulsion member 15.
In the lens driving device 10Y of this example, a flange portion 12c that protrudes radially outward is provided in the approximate center of the main body 12a of the lens holder 12, and a driving repulsion member 15 is attached to the opposite side of the flange portion 12c from the subject side. In addition, a recess 11j is provided instead of the stepped portion 11k, and the driving coil 14 and the core member 17 are attached to the recess 11j. In the case 11 of this example, the length of the side surface of the base portion 11c in the Z-axis direction is increased, and the frame body 11a is omitted.
The core member 17 includes an annular base portion 17a, and an inner wall portion 17b and an outer wall portion 17c that protrude forward from the inner edge portion and the outer edge portion of the base portion 17a. The base portion 17a, the inner wall portion 17b, A housing recess 17k for housing the winding portion of the driving coil 14 is formed by the outer wall portion 17c. In this example, the depth of the concave portion 17k of the core member 17 is increased so that the annular portion of the driving repulsion member 15 is also accommodated in the concave portion 17k.
Thereby, the winding end face of the driving coil 14 is disposed so as to face the annular portion of the driving repulsion member 15, and the inner and outer peripheral sides of the driving driving coil 14, the rear side in the Z-axis direction, and The soft magnetic material is disposed on the inner peripheral side and the outer peripheral side of the annular portion of the drive repulsion member 15. As a result, since the magnetic field from the driving coil 14 is guided to the core member 17 made of a soft magnetic material and guided to the driving repulsion member 15, the magnetic flux density of the magnetic field applied to the driving repulsion member 15 can be increased. it can. Therefore, even if an AC current having the same magnitude as that without the core member 17 is applied to the driving coil 14, the repulsive force acting between the driving coil 14 and the driving repulsion member 15, that is, the lens holder 12 is applied. Since the acting thrust can be increased, the driving efficiency can be greatly increased.
In addition, as a material which comprises the core member 17, it is preferable to use a material with comparatively large specific resistance, such as a ferrite and silicon steel.

なお、前記実施の形態2では、駆動用コイル14とコア部材17とをケース11に装着し、駆動用反発部材15をレンズホルダー12に取付けたが、駆動用反発部材15をケース11に取付け、駆動用コイル14とコア部材17とをレンズホルダー12に取付けてもよい。
また、コア部材17の形状も前記例に限定されるものではなく、例えば、図9(a)に示すように、コア部材17を駆動用コイル14の内径よりも小さな径を有する環状の部材とし、このコア部材17を駆動用コイル14の内周側のみに配置しても駆動用反発部材15に印加される磁界の磁束密度を高めることができる。逆に、図9(b)に示すように、コア部材17を駆動用コイル14の外径よりも大きな径を有する環状の部材とし、このコア部材17を駆動用コイル14の外周側のみに配置してもよい。なお、図9(a),(b)において、コア部材17のZ軸方向の長さを、駆動用コイル14の内周側から延長して駆動用反発部材15に到達する長さとしてもよい。
また、図9(c)に示すような、凹部17kの深さの浅いコア部材17を用いてもよい。
あるいは、図9(d)に示すような、駆動用コイル14の巻線部と駆動用反発部材15とを包含する中空部17sを有するコア部材17を用いてもよい。
また、図9(e)に示すような、駆動用コイル14の背面側のみに円環状のコア部材17を配置する構成としてもよい。
更には、図9(f)に示すような、内側壁部17bと外側壁部17cとが駆動用反発部材15に対向する構成のコア部材17を用いてもよい。
In the second embodiment, the driving coil 14 and the core member 17 are attached to the case 11 and the driving repulsion member 15 is attached to the lens holder 12. However, the driving repulsion member 15 is attached to the case 11, The driving coil 14 and the core member 17 may be attached to the lens holder 12.
Further, the shape of the core member 17 is not limited to the above example. For example, as shown in FIG. 9A, the core member 17 is an annular member having a diameter smaller than the inner diameter of the driving coil 14. Even if the core member 17 is disposed only on the inner peripheral side of the driving coil 14, the magnetic flux density of the magnetic field applied to the driving repulsion member 15 can be increased. Conversely, as shown in FIG. 9B, the core member 17 is an annular member having a diameter larger than the outer diameter of the driving coil 14, and the core member 17 is disposed only on the outer peripheral side of the driving coil 14. May be. 9A and 9B, the length of the core member 17 in the Z-axis direction may be a length that extends from the inner peripheral side of the driving coil 14 and reaches the driving repulsion member 15. .
Moreover, you may use the core member 17 with a shallow depth of the recessed part 17k as shown in FIG.9 (c).
Alternatively, a core member 17 having a hollow portion 17s including the winding portion of the drive coil 14 and the drive repulsion member 15 as shown in FIG. 9D may be used.
Moreover, it is good also as a structure which arrange | positions the annular | circular shaped core member 17 only to the back side of the drive coil 14 as shown in FIG.9 (e).
Furthermore, a core member 17 having a configuration in which the inner wall portion 17b and the outer wall portion 17c face the driving repulsion member 15 as shown in FIG. 9 (f) may be used.

[実験例2]
図10は、駆動用コイル14の背面側のみに軟磁性部材が配置した場合の磁界分布の一例を示す図である。駆動用コイル14の寸法と駆動用反発部材15の寸法及び材質は前記実験例1と同じである。また、コア部材17の寸法は、駆動用コイル14の寸法と同じく、内径が6mm、外径が14mmのものを用いた。図10と図4とを比較して明らかなように、コア部材17を配置することで駆動用反発部材15に印加される磁界の磁束密度が高くなり、推力も図4の空芯コイルを用いた場合の約1.3倍になることが確認された。
また、背面側に軟磁性部材を配置することにより、交流磁界の遮蔽効果はより効果的となり、コア部材17の背面側の磁界が大幅に弱められる。
図11は、レンズ駆動装置10Yに記載の、内周側と外周側と背面側とに軟磁性材料が配置された駆動用コイル14に交流電流を供給した場合の磁界分布の一例を示す図である。駆動用コイル14の寸法と駆動用反発部材15の寸法及び材質は前記実験例1と同じである。また、コア部材17としては、外径が14.8mm、内径が5.2mm、凹部深さが1.35mm、肉厚が0.3mmのものを用いた。図11と図10とを比較して明らかなように、背面側に加えて内周側と外周側とに軟磁性材料を配置することで駆動用反発部材15に印加される磁界の磁束密度が更に高くなっていることが確認された。なお、推力も図10の背面側に軟磁性部材を配置した場合よりも更に大きく、図4の空芯コイルを用いた場合の約1.5倍になることが確認された。
また、図12に示すように、駆動用コイル14の背面側に円環状のコア部材17を配置するとともに、駆動用反発部材15の円環部の内縁部と外縁部から駆動用コイル14とコア部材17の内周側と外周側とにそれぞれ突出する突出部15m,15nを設けるようにしても、駆動用反発部材15に印加される磁界の磁束密度を高めることができるとともに、駆動用コイル14の周囲の交流磁界を低減することができる。
なお、この場合には、シールド効果については、図10の駆動用コイル14の背面側に円環状のコア部材17を配置した場合よりも大きいが、推力は図10の場合よりも小さかった。
[Experiment 2]
FIG. 10 is a diagram illustrating an example of a magnetic field distribution when a soft magnetic member is disposed only on the back side of the driving coil 14. The dimensions of the drive coil 14 and the dimensions and material of the drive repulsion member 15 are the same as in the first experimental example. In addition, the core member 17 has the same inner diameter of 6 mm and an outer diameter of 14 mm as that of the driving coil 14. As is clear from comparison between FIG. 10 and FIG. 4, the arrangement of the core member 17 increases the magnetic flux density of the magnetic field applied to the drive repulsion member 15 and uses the air-core coil of FIG. 4 for the thrust. It was confirmed that it was about 1.3 times that of
Further, by arranging the soft magnetic member on the back side, the AC magnetic field shielding effect becomes more effective, and the magnetic field on the back side of the core member 17 is greatly weakened.
FIG. 11 is a diagram illustrating an example of a magnetic field distribution when an alternating current is supplied to the driving coil 14 in which the soft magnetic material is disposed on the inner peripheral side, the outer peripheral side, and the back side, which is described in the lens driving device 10Y. is there. The dimensions of the drive coil 14 and the dimensions and material of the drive repulsion member 15 are the same as in the first experimental example. The core member 17 used had an outer diameter of 14.8 mm, an inner diameter of 5.2 mm, a recess depth of 1.35 mm, and a wall thickness of 0.3 mm. As is clear from comparison between FIG. 11 and FIG. 10, the magnetic flux density of the magnetic field applied to the drive repulsion member 15 is increased by arranging soft magnetic materials on the inner and outer peripheral sides in addition to the back side. It was confirmed that it was even higher. In addition, it was confirmed that the thrust is further larger than that in the case where the soft magnetic member is arranged on the back side in FIG. 10 and is about 1.5 times that in the case where the air-core coil in FIG. 4 is used.
In addition, as shown in FIG. 12, an annular core member 17 is disposed on the back side of the driving coil 14, and the driving coil 14 and the core are formed from the inner edge and the outer edge of the annular portion of the driving repulsion member 15. Even if the projecting portions 15m and 15n projecting on the inner peripheral side and the outer peripheral side of the member 17 are provided, the magnetic flux density of the magnetic field applied to the driving repulsion member 15 can be increased and the driving coil 14 can be increased. The alternating magnetic field around can be reduced.
In this case, the shielding effect is larger than when the annular core member 17 is arranged on the back side of the driving coil 14 in FIG. 10, but the thrust is smaller than in the case of FIG.

また、図13は、図11に示した駆動用コイル14の内周側と外周側と後方側とに軟磁性材料を配置した構成(実施の形態2の構成)において、駆動用コイル14と駆動用反発部材15との間のギャップ長gを変化させたときの、駆動用反発部材15に作用する推力の大きさの変化を示す図で、図14は、駆動電流の大きさとレンズホルダー12の変位量との関係を示す図である。なお、バネ部材13A,13Bのバネ係数は実験例1と同じで0.04N/mmである。
図13に示すように、駆動用コイル14の内周側と外周側と後方側とに軟磁性材料を配置することで、レンズホルダー12に与える推力を大きくできることが確認された。また、キャップ長gが大きくなっても推力の変化が少ないので、コア部材17がない場合に比較して安定した推力を得ることができる。また、図14に示すように、変位感度も向上するので、空芯コイルを用いた場合に比較して装置を小型化することが可能となる。
また、図15に示すように、コア部材17の内側壁部17bと外側壁部17cとが駆動用反発部材15に対向する構成とすれば、内側壁部17bと外側壁部17cとが駆動用反発部材15の円環部の内縁部と外縁部に位置した場合(図11;実施の形態2の構成)と比較してレンズホルダー12に与える推力を更に大きくできる。
図16は、コア部材17の内側壁部17bと外側壁部17cとを駆動用反発部材15に対向させたときの駆動用コイルと駆動用反発部材間の距離と推力との関係を示す図で、図15,16において、駆動用反発部材15の寸法は、外径が14mm、内径が6mm、厚さが0.3mmで、駆動用コイル14の寸法は、外径が12.4mm、内径が7.6mm、厚さが1mm、巻線部の断面積が2.4mm2のものを用いた。また、コア部材17としては、外径が14mm、内径が6mm、凹部深さが1.1mm、肉厚が0.7mmのものを用いた。
図16から明らかなように、図13に示した実施の形態2の構成に比較してレンズホルダー12に与える推力が更に大きくなっていることがわかる。
Further, FIG. 13 shows the drive coil 14 and the drive in the configuration (configuration of the second embodiment) in which soft magnetic materials are arranged on the inner peripheral side, the outer peripheral side, and the rear side of the drive coil 14 shown in FIG. FIG. 14 is a diagram showing a change in the magnitude of the thrust acting on the drive repulsion member 15 when the gap length g with the repulsion member 15 is changed. FIG. It is a figure which shows the relationship with a displacement amount. The spring coefficients of the spring members 13A and 13B are the same as those in Experimental Example 1 and are 0.04 N / mm.
As shown in FIG. 13, it was confirmed that the thrust applied to the lens holder 12 can be increased by arranging soft magnetic materials on the inner circumferential side, outer circumferential side, and rear side of the driving coil 14. Further, since the change in thrust is small even when the cap length g is increased, a stable thrust can be obtained as compared with the case where the core member 17 is not provided. Further, as shown in FIG. 14, since the displacement sensitivity is also improved, the apparatus can be downsized as compared with the case where an air-core coil is used.
As shown in FIG. 15, if the inner wall 17b and the outer wall 17c of the core member 17 are opposed to the driving repulsion member 15, the inner wall 17b and the outer wall 17c are for driving. The thrust applied to the lens holder 12 can be further increased as compared with the case where the repulsion member 15 is positioned at the inner edge and the outer edge of the annular portion (FIG. 11; configuration of the second embodiment).
FIG. 16 is a diagram illustrating the relationship between the distance between the driving coil and the driving repulsion member and the thrust when the inner wall portion 17b and the outer wall portion 17c of the core member 17 are opposed to the driving repulsion member 15. 15 and 16, the drive repulsion member 15 has an outer diameter of 14 mm, an inner diameter of 6 mm, and a thickness of 0.3 mm. The drive coil 14 has an outer diameter of 12.4 mm and an inner diameter of 15 mm. A 7.6 mm, 1 mm thick, and 2.4 mm 2 cross-sectional area winding portion was used. The core member 17 used had an outer diameter of 14 mm, an inner diameter of 6 mm, a recess depth of 1.1 mm, and a wall thickness of 0.7 mm.
As can be seen from FIG. 16, the thrust applied to the lens holder 12 is further increased as compared with the configuration of the second embodiment shown in FIG.

実施の形態3.
図17は、本発明の実施の形態3に係るレンズ駆動装置20の構成を示す縦断面図で、同図において、21は固定部材としてのケース、22は可動部材としてのレンズホルダー、24Aは前方駆動用コイル、24Bは後方駆動用コイル、25は駆動用反発部材、26はガイド孔、27はガイドピンである。
ケース21は被写体側(+Z側)に配置される+Z側に開口部が形成されレンズホルダー22側)が開放された筒状のカバー部21bと、カバー部21bの−Z側に配置される後方側(−Z側)に開口部が形成されレンズホルダー22側が開放された基部21cとを備える。
レンズホルダー22は本体22aと取付部22bと取付凹部22cとガイド孔26とを備える。本体22aは内側に対物レンズや接眼レンズの組み合わせから成るレンズを保持する円筒状の部材で、取付部22bは、本体22aの+Z側の外周から径方向外側に突出するように設けられる。取付凹部22cは、取付部22bの外周のほぼ中央に形成された凹部で、この取付凹部22cに駆動用反発部材25が取付けられる。
また、ガイド孔26は、レンズホルダー22の軸方向に延長するようにレンズホルダー22を貫通する孔で、取付凹部22cと本体22aとの間に形成される。
一方、ガイドピン27は、ガイド孔26を貫通する棒状の部材で、両端がそれぞれケース21のカバー部21bと基部21cに固定される。
Embodiment 3 FIG.
FIG. 17 is a longitudinal sectional view showing the configuration of the lens driving device 20 according to Embodiment 3 of the present invention. In FIG. 17, 21 is a case as a fixed member, 22 is a lens holder as a movable member, and 24A is the front. A driving coil, 24B is a rear driving coil, 25 is a driving repulsion member, 26 is a guide hole, and 27 is a guide pin.
The case 21 is disposed on the subject side (+ Z side), a cylindrical cover portion 21b having an opening formed on the + Z side and the lens holder 22 side being opened, and a rear side disposed on the −Z side of the cover portion 21b. A base portion 21c having an opening formed on the side (−Z side) and an open side on the lens holder 22 side.
The lens holder 22 includes a main body 22a, an attachment portion 22b, an attachment recess 22c, and a guide hole 26. The main body 22a is a cylindrical member that holds a lens composed of a combination of an objective lens and an eyepiece lens on the inner side, and the attachment portion 22b is provided so as to protrude radially outward from the outer periphery on the + Z side of the main body 22a. The attachment recess 22c is a recess formed substantially at the center of the outer periphery of the attachment portion 22b, and the drive repulsion member 25 is attached to the attachment recess 22c.
The guide hole 26 is a hole that penetrates the lens holder 22 so as to extend in the axial direction of the lens holder 22, and is formed between the mounting recess 22c and the main body 22a.
On the other hand, the guide pin 27 is a rod-shaped member that penetrates the guide hole 26, and both ends thereof are fixed to the cover portion 21b and the base portion 21c of the case 21, respectively.

前方及び後方駆動用コイル24A,24Bは、実施の形態1,2の駆動用コイル14と同様の構成で、Z軸周りに巻き回されて、カバー部21bの−Z側と基部21cの+Z側とにそれぞれ配置される。
駆動用反発部材25は、実施の形態1,2の駆動用反発部材15と同様に、非磁性導電材料から成る円環状の部材で、レンズホルダー22の取付凹部22cに厚さ方向がZ軸方向になるように取付けられる。
すなわち、本例では、駆動用反発部材25を厚さ方向が可動部材であるレンズホルダー22の軸線方向を向くようにレンズホルダー22の外周側に取付けるとともに、前方駆動用コイル24Aを駆動用反発部材25の+Z側に配置し、後方駆動用コイル24Bを−Z側に配置する構成としている。なお、駆動用反発部材25と前方及び後方駆動用コイル24A,24Bとは、駆動用反発部材25の円環部と前方及び後方駆動用コイル24A,24Bの巻線端面とがそれぞれ対向するようにレンズホルダー22とケース21とにそれぞれ装着される。
The front and rear drive coils 24A and 24B have the same configuration as that of the drive coil 14 of the first and second embodiments, and are wound around the Z axis so that the −Z side of the cover portion 21b and the + Z side of the base portion 21c. And are arranged respectively.
The drive repulsion member 25 is an annular member made of a nonmagnetic conductive material, like the drive repulsion member 15 of the first and second embodiments, and the thickness direction of the mounting recess 22c of the lens holder 22 is the Z-axis direction. Mounted to become.
That is, in this example, the drive repulsion member 25 is attached to the outer peripheral side of the lens holder 22 so that the thickness direction thereof is directed to the axial direction of the lens holder 22 which is a movable member, and the front drive coil 24A is attached to the drive repulsion member. 25 is arranged on the + Z side, and the rear drive coil 24B is arranged on the −Z side. The drive repulsion member 25 and the front and rear drive coils 24A and 24B are arranged such that the annular portion of the drive repulsion member 25 and the winding end faces of the front and rear drive coils 24A and 24B face each other. The lens holder 22 and the case 21 are respectively attached.

このような構成を採ることにより、駆動用反発部材25には、前方駆動用コイル24Aから−Z方向の斥力が作用し、後方駆動用コイル24Bから+Z方向の斥力が作用するので、前方及び後方駆動用コイル24A,24Bに通電するとともに、一方の電流値を他方の電流値より大きくすれば、駆動用反発部材25は電流値の小さな方の駆動用コイル側へ向かう推力が作用することになる。したがって、レンズホルダー22はガイドピン27に沿って電流値の小さな方の駆動用コイル側へ移動する。
ところで、前方及び後方駆動用コイル24A,24Bと駆動用反発部材25との間に作用する斥力は、前方及び後方駆動用コイル24A,24Bと駆動用反発部材25との間の距離が近いほど大きくなるので、レンズホルダー22が電流値の小さな方の駆動用コイル側へ移動すると、電流値の小さな方の駆動用コイルからの斥力が増大する。その結果、レンズホルダー22は、電流値の大きな方の駆動用コイルからの斥力と電流値の小さな方の駆動用コイルからの斥力とが釣り合う位置まで移動し静止する。したがって、バネ部材を用いることなく、レンズホルダー22を所望の位置まで移動させることができる。
なお、レンズホルダー22には、通常、−Z方向と+Z方向の斥力しか作用しないが、レンズ駆動装置20の向きによっては、ガイドピン27がガイド孔26の内側に接触しながら移動する恐れがあるので、ガイド孔26の内側に潤滑材を塗ったり、ガイドピン27として潤滑性のある樹脂などを用いて接触摩擦によるロスを少なくするようにすることが好ましい。
By adopting such a configuration, a repulsive force in the −Z direction acts on the driving repulsion member 25 from the front drive coil 24A, and a repulsive force in the + Z direction acts on the rear drive coil 24B. When the drive coils 24A and 24B are energized and one current value is made larger than the other current value, the drive repulsion member 25 is subjected to a thrust toward the drive coil having the smaller current value. . Accordingly, the lens holder 22 moves along the guide pin 27 toward the driving coil having the smaller current value.
By the way, the repulsive force acting between the front and rear drive coils 24A and 24B and the drive repulsion member 25 increases as the distance between the front and rear drive coils 24A and 24B and the drive repulsion member 25 decreases. Therefore, when the lens holder 22 moves toward the driving coil having the smaller current value, the repulsive force from the driving coil having the smaller current value increases. As a result, the lens holder 22 moves to a position where the repulsive force from the driving coil having the larger current value and the repulsive force from the driving coil having the smaller current value balance, and stops. Therefore, the lens holder 22 can be moved to a desired position without using a spring member.
The lens holder 22 normally has only a repulsive force in the −Z direction and the + Z direction. However, depending on the direction of the lens driving device 20, the guide pin 27 may move while contacting the inside of the guide hole 26. Therefore, it is preferable to reduce a loss due to contact friction by applying a lubricant inside the guide hole 26 or using a resin having lubricity as the guide pin 27.

なお、前記実施の形態3では、駆動用反発部材25をレンズホルダー22に取付け、前方及び後方駆動用コイル24A,24Bをケース21に装着した構成としたが、駆動用コイルをレンズホルダー22の外周側に取付け、駆動用反発部材をケース21に取付ける構成としてもよい。この場合には、前方及び後方駆動用コイル24A,24Bをレンズホルダー22の+Z側と−Z側とにそれぞれ配置し、駆動用反発部材25をケース21の中央で、前方及び後方駆動用コイル24A,24Bと駆動用反発部材25との間に配置する。これにより、前方駆動用コイル24Aには+Z方向の推力が作用し、後方駆動用コイル24Bには−Z方向の推力が作用するので、前記実施の形態3と同様に、レンズホルダー22を、電流値の大きな方の駆動用コイルからの斥力と電流値の小さな方の駆動用コイルからの斥力とが釣り合う位置まで移動させることができる。   In the third embodiment, the drive repulsion member 25 is attached to the lens holder 22 and the front and rear drive coils 24A and 24B are attached to the case 21. However, the drive coil is the outer periphery of the lens holder 22. It is good also as a structure attached to the side and attaching the repulsion member for a drive to the case 21. FIG. In this case, the front and rear driving coils 24A and 24B are arranged on the + Z side and the −Z side of the lens holder 22, respectively, and the driving repulsion member 25 is arranged at the center of the case 21 at the front and rear driving coils 24A. , 24B and the drive repulsion member 25. As a result, a thrust in the + Z direction acts on the front drive coil 24A, and a thrust in the −Z direction acts on the rear drive coil 24B. Therefore, as in the third embodiment, the lens holder 22 is connected to the current The repulsive force from the driving coil having the larger value can be moved to a position where the repulsive force from the driving coil having the smaller current value is balanced.

また、前記例では、レンズホルダー22はガイドピン27に沿って摺動しながら移動する形態としたが、図18に示すように、ガイドピン27を非磁性導電材料で構成するとともに、ガイド孔26にZ軸周りに巻き回されたピン用コイル28を設ける構成とし、レンズホルダー22の駆動時にピン用コイル28に交流電流を供給するようにすれば、レンズホルダー22をガイドピン27に沿ってスムーズに移動させることができる。
すなわち、ピン用コイル28を巻線がガイドピン27を囲むように配置し、このピン用コイル28に交流電流を供給することで、非磁性導電部材であるガイドピン27にはピン用コイル28の中心に向う斥力が作用する。ガイドピン27は固定部材であるケース21に固定され、ピン用コイル28は可動部材であるレンズホルダー22に取付けられているので、レンズホルダー22はガイドピン27から反発力を受けながら移動する。したがって、ガイド孔26とガイドピン27との間に接触摩擦がなくなるので、レンズホルダー22をガイドピン27に沿ってスムーズに移動させることができる。
In the above example, the lens holder 22 is configured to move while sliding along the guide pin 27. However, as shown in FIG. 18, the guide pin 27 is made of a nonmagnetic conductive material, and the guide hole 26 is formed. If the pin coil 28 wound around the Z-axis is provided and an alternating current is supplied to the pin coil 28 when the lens holder 22 is driven, the lens holder 22 can be smoothly moved along the guide pin 27. Can be moved to.
That is, the pin coil 28 is disposed so that the winding surrounds the guide pin 27, and an alternating current is supplied to the pin coil 28. A repulsive force toward the center acts. Since the guide pin 27 is fixed to the case 21 that is a fixed member and the pin coil 28 is attached to the lens holder 22 that is a movable member, the lens holder 22 moves while receiving a repulsive force from the guide pin 27. Accordingly, there is no contact friction between the guide hole 26 and the guide pin 27, so that the lens holder 22 can be smoothly moved along the guide pin 27.

実施の形態4.
図19(a),(b)は、本発明の実施の形態4に係る電磁駆動装置30の構成を示す図で、(a)図は縦断面図、(b)図は分解斜視図である。
電磁駆動装置30は、固定部材31と、可動部材32と、前方及び後方駆動用コイル33A,33Bと、前方及び後方支持用コイル34A,34Bと、前方及び後方駆動用反発部材35A,35Bと、駆動用コア部材36と、前方及び後方支持用コア部材37A,37Bとを備える。
固定部材31は円筒状の部材で、可動部材32は固定部材31の内側に固定部材31と同軸に配置される円筒状もしくは円柱状の部材である。以下、固定部材31と可動部材32の軸線方向をZ軸方向とし図19の上方向をZ軸前方(+Z側)とする。
固定部材31は、−Z側に+Z側の内径よりも内径の大きな段差部31pが形成された筒状の上側固定部材31aと、+Z側に−Z側の内径よりも内径の大きな段差部31qが形成された筒状の下側固定部材31bとを備える。
可動部材32は非磁性導電材料から成る円筒状の部材で、本例では、図19に示すように、可動部材32を上側部32a、中間部32b、及び、下側部32cの3つの円筒部に分け、上側部32aの−Z側の端部に円環状の前方駆動用反発部材35Aを取付けた部品と、下側部32cの+Z側の端部と中間部32bとの間に円環状の後方駆動用反発部材35Bを取付けた部品とを作製して組み立てている。
Embodiment 4 FIG.
19 (a) and 19 (b) are diagrams showing the configuration of the electromagnetic drive device 30 according to Embodiment 4 of the present invention. FIG. 19 (a) is a longitudinal sectional view, and FIG. 19 (b) is an exploded perspective view. .
The electromagnetic drive device 30 includes a fixed member 31, a movable member 32, front and rear drive coils 33A and 33B, front and rear support coils 34A and 34B, front and rear drive repulsion members 35A and 35B, A drive core member 36 and front and rear support core members 37A and 37B are provided.
The fixed member 31 is a cylindrical member, and the movable member 32 is a cylindrical or columnar member disposed coaxially with the fixed member 31 inside the fixed member 31. Hereinafter, the axial direction of the fixed member 31 and the movable member 32 is the Z-axis direction, and the upward direction in FIG. 19 is the Z-axis front (+ Z side).
The fixing member 31 includes a cylindrical upper fixing member 31a in which a step portion 31p having a larger inner diameter than the inner diameter on the + Z side is formed on the −Z side, and a step portion 31q having a larger inner diameter on the + Z side than the inner diameter on the −Z side. And a cylindrical lower fixing member 31b.
The movable member 32 is a cylindrical member made of a non-magnetic conductive material. In this example, as shown in FIG. 19, the movable member 32 is composed of three cylindrical portions, that is, an upper portion 32a, an intermediate portion 32b, and a lower portion 32c. Divided between the end portion on the −Z side of the upper side portion 32a and the annular front drive repulsion member 35A and the end portion on the + Z side of the lower side portion 32c and the intermediate portion 32b. The parts to which the rear drive repulsion member 35B is attached are fabricated and assembled.

前方及び後方駆動用コイル33A,33Bは、いずれも、+Z軸方向に巻き回されて、所定距離隔てて駆動用コア部材36に取付けられ、駆動用コア部材36とともに、固定部材31に形成された段差部31p,31qに装着される。駆動用コア部材36は、前方及び後方駆動用コイル33A,33Bの内側及び外側及び挟間に配置されて前方及び後方駆動用コイル33A,33Bの発生する磁界を前方及び後方駆動用反発部材35A,35Bに有効に導くことで、前方及び後方駆動用反発部材35A,35Bに印加される磁界の磁束密度を高める機能を有する。
一方、前方支持用コイル34Aは、+Z軸方向に巻き回されて上側固定部材31aの上部の内側に取付けられた前方支持用コア部材37Aの内周側に取付けられ、後方支持用コイル34Bは、+Z軸方向に巻き回されて下側固定部材31bの下部の内側に取付けられた後方支持用コア部材37Bの内周側に取付けられる。前方及び後方支持用コア部材37A,37Bは、前方及び後方支持用コイル34A,34Bの+Z側、−Z側、及び、外周側に配置されて前方及び後方支持用コイル34A,34Bの発生する磁界を可動部材32の上側部32aと下側部32cとにそれぞれ有効に導くことで、可動部材32に印加される磁界の磁束密度を高める機能を有する。
可動部材32と駆動用コア部材36との間、及び、可動部材32と前方及び後方支持用コイル34A,34Bとの間には、可動部材32が移動可能な隙間が設けられている。ここで、可動部材32と前方及び後方支持用コイル34A,34Bとの間の隙間の大きさをsとする。なお、可動部材32と駆動用コア部材36との間の隙間の大きさについてはs以上あればよい。
前方及び後方駆動用反発部材35A,35Bは、いずれも、非磁性導電材料から成り、内周側が可動部材32に取付けられて固定部材の内周側に突出する円環状の部材で、前記実施の形態1〜3と同様に、円環部がそれぞれ前方及び後方駆動用コイル33A,33Bの巻線部に対向するように配置されている。具体的には、前方駆動用反発部材35Aの円環部が、前方駆動用コイル33Aの+Z側にて、前方駆動用コイル33Aの巻線部に対向するように配置され、後方駆動用反発部材35Bの円環部が、後方駆動用コイル33Bの−Z側にて、後方駆動用コイル33Bの巻線部に対向するように配置される。
The front and rear drive coils 33A and 33B are both wound around the + Z-axis direction and attached to the drive core member 36 at a predetermined distance, and are formed on the fixed member 31 together with the drive core member 36. It is attached to the step portions 31p and 31q. The driving core member 36 is disposed between the inside and outside of the front and rear driving coils 33A and 33B and between the front and rear driving coils 33A and 33B, and generates a magnetic field generated by the front and rear driving coils 33A and 33B. By effectively leading to the above, the magnetic flux density of the magnetic field applied to the front and rear driving repulsion members 35A and 35B is increased.
On the other hand, the front support coil 34A is attached to the inner peripheral side of the front support core member 37A that is wound in the + Z-axis direction and attached to the inner side of the upper portion of the upper fixing member 31a. It is attached to the inner peripheral side of the rear support core member 37B that is wound in the + Z-axis direction and attached to the inside of the lower portion of the lower fixing member 31b. The front and rear support core members 37A and 37B are arranged on the + Z side, the -Z side, and the outer peripheral side of the front and rear support coils 34A and 34B, and are generated by the front and rear support coils 34A and 34B. Is effectively guided to the upper part 32 a and the lower part 32 c of the movable member 32, respectively, so that the magnetic flux density of the magnetic field applied to the movable member 32 is increased.
Clearances are provided between the movable member 32 and the driving core member 36, and between the movable member 32 and the front and rear support coils 34A and 34B. Here, s is the size of the gap between the movable member 32 and the front and rear support coils 34A and 34B. The size of the gap between the movable member 32 and the driving core member 36 may be s or more.
Both the front and rear drive repulsion members 35A and 35B are made of a non-magnetic conductive material, and are annular members whose inner peripheral side is attached to the movable member 32 and protrudes to the inner peripheral side of the fixed member. Similar to the first to third embodiments, the annular portions are arranged so as to face the winding portions of the front and rear drive coils 33A and 33B, respectively. Specifically, the annular portion of the front drive repulsion member 35A is disposed on the + Z side of the front drive coil 33A so as to face the winding portion of the front drive coil 33A, and the rear drive repulsion member The annular portion of 35B is arranged on the −Z side of the rear drive coil 33B so as to face the winding portion of the rear drive coil 33B.

次に、電磁駆動装置30の動作について説明する。
まず、前方及び後方支持用コイル34A,34Bに交流電流を印加することで、前方及び後方支持用コイル34A,34Bに対向して配置されている非磁性導電材料から成る可動部材32に渦電流を発生させる。前方及び後方支持用コイル34A,34Bからの磁界は、それぞれ、前方及び後方支持用コア部材37A,37Bにより、可動部材32の上側部32aと下側部32cとに有効に導かれるので、可動部材32の上側部32aと下側部32cとには可動部材32の中心に向かう斥力が作用する。前方及び後方支持用コイル34A,34Bと非磁性導電材料から成る可動部材32との間に作用する斥力は同軸位置で釣り合っていて、前方及び後方支持用コイル34A,34Bと可動部材32との間の距離が近いほど大きくなる。したがって、可動部材32が中心軸から偏心して前方支持用コイル34Aまたは後方支持用コイル34Bの何れか一方に近づくと、その部分の斥力が大きくなって可動部材32は中心に押し戻される。
このように、可動部材32の上側部32aと下側部32cに生じる渦電流による斥力がバネのように可動部材32の支持姿勢を維持して可動部材32を中心軸上に保持するので、バネ部材やガイドピンがなくても、可動部材32を中心軸上に保持することができる。すなわち、可動部材32を、前方及び後方支持用コイル34A,34Bの内周面と予め設定された隙間sを保って空中に浮遊させることができる。
Next, the operation of the electromagnetic drive device 30 will be described.
First, by applying an alternating current to the front and rear support coils 34A and 34B, an eddy current is applied to the movable member 32 made of a nonmagnetic conductive material disposed to face the front and rear support coils 34A and 34B. generate. The magnetic fields from the front and rear support coils 34A and 34B are effectively guided to the upper part 32a and the lower part 32c of the movable member 32 by the front and rear support core members 37A and 37B, respectively. A repulsive force toward the center of the movable member 32 acts on the upper side portion 32 a and the lower side portion 32 c of the 32. The repulsive forces acting between the front and rear support coils 34A and 34B and the movable member 32 made of a nonmagnetic conductive material are balanced at the coaxial position, and between the front and rear support coils 34A and 34B and the movable member 32. The closer the distance, the larger. Therefore, when the movable member 32 is decentered from the central axis and approaches either one of the front support coil 34A or the rear support coil 34B, the repulsive force at that portion increases and the movable member 32 is pushed back to the center.
Thus, the repulsive force caused by the eddy current generated in the upper side portion 32a and the lower side portion 32c of the movable member 32 maintains the support posture of the movable member 32 like a spring and holds the movable member 32 on the central axis. Even without a member or guide pin, the movable member 32 can be held on the central axis. That is, the movable member 32 can be floated in the air while maintaining a predetermined gap s from the inner peripheral surfaces of the front and rear support coils 34A and 34B.

次に、前方及び後方駆動用コイル33A,33Bにそれぞれ交流電流を印加すると、前方駆動用コイル33Aの+Z側に配置されている前方駆動用反発部材35Aには+Z方向の斥力が作用し、後方駆動用コイル33Bの−Z側に配置されている後方駆動用反発部材35Bには−Z方向の斥力が作用する。そこで、前方及び後方駆動用コイル33A,33Bの一方に通電する電流値を他方に通電する電流値より大きくすれば、可動部材32には電流値の小さな方の駆動用コイル側へ向かう推力が作用するので、可動部材32は電流値の小さな方の駆動用コイル側へ移動した後、電流値の大きな方の駆動用コイルからの斥力と電流値の小さな方の駆動用コイルからの斥力とが釣り合う位置で静止する。
このとき、可動部材32は、前方及び後方支持用コイル34A,34Bからの斥力により中心軸上に保持されているので、可動部材32を摩擦なくZ軸方向に移動させることができる。
なお、駆動用コア部材36、及び、前方及び後方支持用コア部材37A,37Bについては省略してもよいが、本例のように、駆動用コア部材36、及び、前方及び後方支持用コア部材37A,37Bを設けるようにすれば、駆動効率を向上させることができる。
Next, when an alternating current is applied to each of the front and rear drive coils 33A and 33B, a repulsive force in the + Z direction acts on the front drive repulsion member 35A disposed on the + Z side of the front drive coil 33A. A repulsive force in the -Z direction acts on the rear drive repulsion member 35B disposed on the -Z side of the drive coil 33B. Therefore, if the current value applied to one of the front and rear drive coils 33A and 33B is made larger than the current value applied to the other, a thrust toward the drive coil with the smaller current value acts on the movable member 32. Therefore, after the movable member 32 moves to the driving coil having the smaller current value, the repulsive force from the driving coil having the larger current value is balanced with the repulsive force from the driving coil having the smaller current value. Still at position.
At this time, since the movable member 32 is held on the central axis by the repulsive force from the front and rear support coils 34A and 34B, the movable member 32 can be moved in the Z-axis direction without friction.
The drive core member 36 and the front and rear support core members 37A and 37B may be omitted, but as in this example, the drive core member 36 and the front and rear support core members If 37A and 37B are provided, driving efficiency can be improved.

ところで、前方駆動用コイル33Aに供給する電流値と後方駆動用コイル33Bに供給する電流値との和である合計の電流値が小さい場合は、バネ的な性質としては弱いバネとなるので、静止時の振動等が収まって静止するまでに要する時間は長くなる。一方、合計の電流値が大きい場合は、バネ的な性質としては強いバネとなるので、静止するまでに要する時間は短くなる。
すなわち、本実施の形態4の電磁駆動装置30では、従来のバネ懸架の電磁駆動装置とは異なり、前方及び後方駆動用コイル33A,33Bの合計の電流値を制御することでバネ特性を変化させることができる。したがって、必要に応じてバネ強さを強めたり弱めたりできるので、合計の電流値を増減させつつ可動部材32を移動させれば、緩やかに移動させた後急激に静止させるなど、可動部材32に様々な動作を行わせることができる。
By the way, when the total current value, which is the sum of the current value supplied to the front drive coil 33A and the current value supplied to the rear drive coil 33B, is small, the spring-like property is a weak spring. The time required for the vibrations of the time to settle and rest becomes longer. On the other hand, when the total current value is large, the spring-like property is a strong spring, so that the time required to stop is shortened.
That is, in the electromagnetic drive device 30 of the fourth embodiment, unlike the conventional spring-suspended electromagnetic drive device, the spring characteristics are changed by controlling the total current value of the front and rear drive coils 33A and 33B. be able to. Accordingly, the spring strength can be increased or decreased as necessary, so if the movable member 32 is moved while increasing / decreasing the total current value, the movable member 32 can be moved to a gentle state and then suddenly stopped. Various operations can be performed.

なお、前記実施の形態4では、前方及び後方駆動用コイル33A,33Bと前方及び後方支持用コイル34A,34Bの4つのコイルを用いて可動部材32を中心軸上に保持しながらZ軸方向に移動させるようにしたが、駆動用コイルと支持用コイルを共用する構成としてもよい。
図20(a)は、その一例である簡易構造の電磁駆動装置30Dの構成を示す図で、同図において、31は円筒状の固定部材、32は非磁性導電材料から成る円筒状の可動部材、33U,33DはそれぞれZ軸周りに巻き回された前方コイルと後方コイル、35は非磁性導電材料から成る円環状の反発部材、36は軟磁性体から成るコア部材である。
簡易構造の電磁駆動装置30Dにおいては、可動部材32の外周部の中央に反発部材35を取付けるともに、反発部材35の+Z側に前方コイル33Uを配置し、−Z側に後方コイル33Dを配置している。前方コイル33Uと後方コイル33Dとは、固定部材31の内壁に取付けられたコア部材36の凹部に装着される。
図20(b)は、前方コイル33Uと後方コイル33Dに交流電流を通電したときに発生する磁界分布の一例を示す図である。図20(b)から、前方コイル33Uと後方コイル33Dの作る磁界の磁束流の中心が非磁性導電材料から構成されている可動部材32と反発部材35から離れ、Z軸前方、Z軸後方、及び、可動部材の中心軸に向けて斥力が作用する状態となっていることが理解できる。
このように、簡易構造の電磁駆動装置30Dにおいても、前方及び後方コイル33D,34Uに交流電流を印加することで、可動部材32には中心軸方向を向く斥力が作用するとともに、反発部材35には前方コイル33Uから−Z方向の斥力が作用し、後方コイル33Dには+Z方向の斥力が作用するので、前方及び後方コイル33U,33Dに通電する電流値を制御することで、可動部材32を中心軸上に保持しつつZ軸方向に移動させることができる。
なお、前方及び後方コイル33U,33Dのそれぞれに印加する交流電流はどのような位相関係にあってもよく、また、周波数が異なっていてもよい。
In Embodiment 4, the front and rear drive coils 33A and 33B and the front and rear support coils 34A and 34B are used to hold the movable member 32 on the central axis in the Z-axis direction. Although it was made to move, it is good also as a structure which shares a drive coil and a support coil.
FIG. 20A is a diagram showing the configuration of an electromagnetic drive device 30D having a simple structure as an example, in which 31 is a cylindrical fixed member, and 32 is a cylindrical movable member made of a nonmagnetic conductive material. 33U and 33D are front and rear coils wound around the Z axis, 35 is an annular repulsion member made of a nonmagnetic conductive material, and 36 is a core member made of a soft magnetic material.
In the electromagnetic drive device 30D having a simple structure, the repulsion member 35 is attached to the center of the outer peripheral portion of the movable member 32, the front coil 33U is disposed on the + Z side of the repulsion member 35, and the rear coil 33D is disposed on the −Z side. ing. The front coil 33U and the rear coil 33D are mounted in a recess of the core member 36 attached to the inner wall of the fixing member 31.
FIG. 20B is a diagram illustrating an example of a magnetic field distribution generated when an alternating current is applied to the front coil 33U and the rear coil 33D. From FIG. 20B, the center of the magnetic flux generated by the front coil 33U and the rear coil 33D is separated from the movable member 32 and the repulsion member 35 made of a nonmagnetic conductive material. And it can be understood that a repulsive force acts toward the central axis of the movable member.
As described above, also in the electromagnetic drive device 30D having a simple structure, by applying an alternating current to the front and rear coils 33D and 34U, a repulsive force directed to the central axis direction acts on the movable member 32 and the repulsive member 35 is also affected. Since a repulsive force in the −Z direction acts from the front coil 33U and a repulsive force in the + Z direction acts on the rear coil 33D, the movable member 32 is controlled by controlling the current value supplied to the front and rear coils 33U and 33D. It can be moved in the Z-axis direction while being held on the central axis.
The alternating current applied to each of the front and rear coils 33U and 33D may have any phase relationship, and may have different frequencies.

なお、前記実施の形態4の電磁駆動装置30及び前記簡易構造の電磁駆動装置30Dにおいて、可動部材32をレンズホルダーとし、固定部材をケースとすれば、バネ部材やガイドピンを用いない、空中浮遊型のレンズ駆動装置を構成することができる。
また、可動部材32を固定部材31の前後まで伸ばしこれを可動シャフトとすれば、ストロークは短いものの、摺動抵抗のないリニアアクチュエータを構成することができる。
また、前記実施の形態4の電磁駆動装置30及び前記簡易構造の電磁駆動装置30Dは、個々に製作した各部品を組み上げて製造してもよいが、MEMS(Micro Electro Mechanical Systems)として、シリコン等の基板上に、集積回路の製造技術と同様の技術を用いたウェハレベルの電磁駆動装置として製造してもよい。
In the electromagnetic drive device 30 of the fourth embodiment and the electromagnetic drive device 30D having the simple structure, if the movable member 32 is a lens holder and the fixed member is a case, a spring member or a guide pin is not used, and the air floating A mold lens driving device can be configured.
Further, if the movable member 32 is extended to the front and rear of the fixed member 31, and this is used as a movable shaft, a linear actuator having a short stroke but no sliding resistance can be configured.
Further, the electromagnetic drive device 30 of the fourth embodiment and the electromagnetic drive device 30D having the simple structure may be manufactured by assembling individually manufactured parts, but as MEMS (Micro Electro Mechanical Systems), silicon or the like It may be manufactured as a wafer level electromagnetic driving device using a technique similar to that of the integrated circuit.

実施の形態5.
前記簡易構造の電磁駆動装置30Dでは、前方及び後方コイル33U,33Dと非磁性導電材料から成る可動部材32により可動部材32を中心軸上に保持し、前方及び後方コイル33U,33Dと反発部材35とにより可動部材32をZ軸方向に移動させるようにしたが、図21(a),(b)に示すように、円錐台側面形状(コニカル形)の前方及び後方コイル33P,33Qと円錐台側面形状の反発部材35Rとを用いれば、非磁性導電材料から成る可動部材を用いることなく、可動部材32を中心軸上に保持しながらZ軸方向に駆動することができる電磁駆動装置30Cを構成することができる。
このとき、反発部材35Rの円環部を前方コイル33Pの巻線部と後方コイル33Qとの間に前記巻線部とそれぞれ対向するように配置することが肝要で、これにより、前方コイル33P、反発部材35R、及び、後方コイル33Qの各側面の法線と可動部材32の軸線とが交差するので、前方コイル33Pと、後方コイル33Qとに通電すると、反発部材35Rには、図21(a)の矢印に示すように、可動部材32の軸線と交差する方向の斥力が作用する。この斥力のZ軸方向成分が可動部材32をZ軸方向に沿って移動させる推力となり、前記Z軸に垂直な方向の成分が可動部材32を可動部材32の中心軸に保持する保持力となるので、可動部材32が非磁性導電部材でなくても、可動部材32を中心軸上に保持しながらZ軸方向に駆動することができる。
なお、前方コイル33P、反発部材35R、及び、後方コイル33Qの内径及び外径は、図21(a)に示すように、前方コイル33P、反発部材35R、後方コイル33Qの順に大きくしてもよいし、図21(c)に示すように、同じにしてもよい。
また、本例の電磁駆動装置30Cにおいても、可動部材32をレンズホルダーとし固定部材31をケースとすれば、バネ部材やガイドピンを用いない、空中浮遊型のレンズ駆動装置を構成することができる。
Embodiment 5 FIG.
In the electromagnetic drive device 30D having the simple structure, the movable member 32 is held on the central axis by the front and rear coils 33U and 33D and the movable member 32 made of a nonmagnetic conductive material, and the front and rear coils 33U and 33D and the repulsion member 35 are retained. The movable member 32 is moved in the Z-axis direction as shown in FIGS. 21 (a) and 21 (b). As shown in FIGS. 21 (a) and 21 (b), the front and rear coils 33P and 33Q having a truncated cone side shape (conical shape) and the truncated cone are used. If the side-shaped repulsive member 35R is used, an electromagnetic drive device 30C that can be driven in the Z-axis direction while holding the movable member 32 on the central axis without using a movable member made of a nonmagnetic conductive material is configured. can do.
At this time, it is important to dispose the annular portion of the repulsion member 35R so as to face the winding portion between the winding portion of the front coil 33P and the rear coil 33Q. Since the normal line of each side surface of the repulsion member 35R and the rear coil 33Q and the axis line of the movable member 32 intersect, when the front coil 33P and the rear coil 33Q are energized, the repulsion member 35R is shown in FIG. ), A repulsive force in a direction intersecting the axis of the movable member 32 acts. The Z-axis direction component of this repulsive force becomes a thrust force that moves the movable member 32 along the Z-axis direction, and a component in a direction perpendicular to the Z-axis becomes a holding force that holds the movable member 32 on the central axis of the movable member 32. Therefore, even if the movable member 32 is not a nonmagnetic conductive member, it can be driven in the Z-axis direction while holding the movable member 32 on the central axis.
The inner diameter and outer diameter of the front coil 33P, the repulsion member 35R, and the rear coil 33Q may be increased in the order of the front coil 33P, the repulsion member 35R, and the rear coil 33Q, as shown in FIG. However, they may be the same as shown in FIG.
Also in the electromagnetic drive device 30C of this example, if the movable member 32 is a lens holder and the fixed member 31 is a case, an airborne lens drive device that does not use a spring member or a guide pin can be configured. .

実施の形態6.
図22(a),(b)は、本発明の実施の形態6に係る電磁駆動装置としての手振れ抑制装置40の構成を示す図で、(a)図は縦断面図、(b)図は分解斜視図である。
手振れ抑制装置40は、固定部材41と、可動部材としてのレンズ駆動装置42と、固定部材41にレンズ駆動装置を懸架する揺動用バネ部材43と、第1〜第4の揺動用コイル441〜444と、第1〜第4の揺動用反発部材451〜454とを備える。なお、図を簡単にするため、レンズ駆動装置42についてはレンズホルダーを支持するケースのみを図示した。
以下、レンズ駆動装置42の軸線方向をZ軸方向前方(+Z側)とし、Z軸に直交する2方向をそれぞれX軸及びY軸とする。
固定部材41はZ軸方向から見た時に、X軸及びY軸にそれぞれ直交する側面411〜414を備えた筒状の枠体で、前記4つの側面411〜414の内壁に、それぞれ、第1〜第4の揺動用コイル441〜444が取付けられている。具体的には、第1の揺動用コイル441はX軸周りに巻き回されて固定部材41の+X側の側面411の内壁に取付けられ、第2の揺動用コイル442はX軸周りに巻き回されて−X側の側面412の内壁に取付けられる。また、第3の揺動用コイル443はY軸周りに巻き回されて固定部材41の+Y側の側面413の内壁に取付けられ、第4の揺動用コイル444はY軸周りに巻き回されて−Y側の側面414の内壁に取付けられる。
第1〜第4の揺動用反発部材451〜454は、それぞれが非磁性導電材料から成る板状の部材で、それぞれレンズ駆動装置42の外周面に第1〜第4の揺動用コイル441〜444と対向するように取付けられる。なお、第1〜第4の揺動用反発部材451〜454は正方形枠状の部材であってもよい。
また、揺動用バネ部材43としては、例えば、図22(b)に示すような、外周枠43aと、内周枠43bと、外周枠43aと内周枠43bとの間に位置する可動枠43cと、外周枠43aと可動枠43cを+X側及び−X側の中央部において連結する連結片43pと、可動枠43cと内周枠43bとを+Y側及び−Y側の中央部において連結する連結片43qとを備えた板バネが好適に用いられる。
Embodiment 6 FIG.
22 (a) and 22 (b) are diagrams showing a configuration of a camera shake suppression device 40 as an electromagnetic drive device according to Embodiment 6 of the present invention. FIG. 22 (a) is a longitudinal sectional view, and FIG. It is a disassembled perspective view.
The camera shake suppression device 40 includes a fixed member 41, a lens driving device 42 as a movable member, a swinging spring member 43 that suspends the lens driving device on the fixed member 41, and first to fourth swinging coils 441 to 444. And first to fourth swinging repulsion members 451 to 454. For the sake of simplicity, only the case for supporting the lens holder is shown for the lens driving device 42.
Hereinafter, the axial direction of the lens driving device 42 is defined as the front (+ Z side) in the Z-axis direction, and the two directions orthogonal to the Z-axis are defined as the X-axis and the Y-axis, respectively.
The fixing member 41 is a cylindrical frame provided with side surfaces 411 to 414 orthogonal to the X axis and the Y axis, respectively, when viewed from the Z-axis direction. ˜Fourth swinging coils 441 to 444 are attached. Specifically, the first swing coil 441 is wound around the X axis and attached to the inner wall of the + X side surface 411 of the fixing member 41, and the second swing coil 442 is wound around the X axis. And attached to the inner wall of the side surface 412 on the -X side. The third swing coil 443 is wound around the Y axis and attached to the inner wall of the + Y side surface 413 of the fixing member 41, and the fourth swing coil 444 is wound around the Y axis. It is attached to the inner wall of the side 414 on the Y side.
The first to fourth swinging repulsion members 451 to 454 are plate-like members each made of a nonmagnetic conductive material, and the first to fourth swinging coils 441 to 444 are arranged on the outer peripheral surface of the lens driving device 42, respectively. It is attached so as to face. The first to fourth swinging repulsion members 451 to 454 may be square frame members.
As the swinging spring member 43, for example, as shown in FIG. 22B, an outer peripheral frame 43a, an inner peripheral frame 43b, and a movable frame 43c positioned between the outer peripheral frame 43a and the inner peripheral frame 43b. And a connecting piece 43p for connecting the outer peripheral frame 43a and the movable frame 43c at the central part on the + X side and the −X side, and a connection for connecting the movable frame 43c and the inner peripheral frame 43b at the central part on the + Y side and the −Y side. A leaf spring provided with the piece 43q is preferably used.

次に手振れ抑制装置40の動作について説明する。
揺動用コイル441に交流電流を供給すると、レンズ駆動装置42に第1の揺動用コイル441に対向して取付けられた第1の揺動用反発部材451には渦電流による反磁界が生じ、その結果、第1の揺動用コイル441と第1の揺動用反発部材451との間には斥力が発生し、この斥力により、レンズ駆動装置42は−X方向に移動しながらY軸周りに右回転する。したがって、レンズ駆動装置42に+X方向に移動しながらY軸周りに左回転する手振れが生じた場合には、第1の揺動用コイル441に交流電流を流すことで前記手振れを抑制することができる。また、レンズ駆動装置42に−X方向に移動しながらY軸周りに右回転する手振れが生じた場合には、第2の揺動用コイル442に交流電流を供給することで前記手振れを抑制することができる。
Y方向に移動しながらX軸周りに回転する手振れが生じた場合には、第3の揺動用コイル443もしくは第4の揺動用コイル444に交流電流を供給することで前記手振れを抑制することができる。
Next, the operation of the camera shake suppression device 40 will be described.
When an alternating current is supplied to the oscillating coil 441, a demagnetizing field due to the eddy current is generated in the first oscillating repulsive member 451 attached to the lens driving device 42 so as to face the first oscillating coil 441, and as a result. A repulsive force is generated between the first oscillating coil 441 and the first oscillating repulsive member 451, and this repulsive force causes the lens driving device 42 to rotate clockwise around the Y axis while moving in the −X direction. . Therefore, when a camera shake that rotates left about the Y axis while moving in the + X direction occurs in the lens driving device 42, the camera shake can be suppressed by flowing an alternating current through the first swinging coil 441. . In addition, when a camera shake that rotates clockwise around the Y axis while moving in the −X direction occurs in the lens driving device 42, the camera shake is suppressed by supplying an alternating current to the second swing coil 442. Can do.
When camera shake that rotates around the X axis while moving in the Y direction occurs, the camera shake can be suppressed by supplying an alternating current to the third swing coil 443 or the fourth swing coil 444. it can.

実施の形態7.
図23(a),(b)は、本発明の実施の形態7に係る電磁駆動装置としてのレンズ駆動装置50の構成を示す図で、(a)図は縦断面図、(b)図は分解斜視図である。
レンズ駆動装置50は、ケース51と、可動部材としてのレンズホルダー52と、前方及び後方駆動用コイル53A,53Bと、前方及び後方駆動用反発部材54A,54Bと、第1〜第4の支持用コイル551〜554と、第1〜第4の支持用反発部材561〜564とを備える。
レンズホルダー52は、例えば、平面視正方形の筒状の部材で、軸線方向、すなわち、レンズホルダー52に図示しないレンズを搭載した時の被写体側をZ軸方向前方(+Z側)とし、Z軸に直交する2方向をそれぞれX軸及びY軸とする。
Embodiment 7 FIG.
FIGS. 23A and 23B are diagrams showing a configuration of a lens driving device 50 as an electromagnetic driving device according to Embodiment 7 of the present invention. FIG. 23A is a longitudinal sectional view, and FIG. It is a disassembled perspective view.
The lens driving device 50 includes a case 51, a lens holder 52 as a movable member, front and rear driving coils 53A and 53B, front and rear driving repulsion members 54A and 54B, and first to fourth supporting members. Coils 551 to 554 and first to fourth supporting repulsion members 561 to 564 are provided.
The lens holder 52 is, for example, a cylindrical member having a square shape in plan view, and the subject side when a lens (not shown) is mounted on the lens holder 52 is the front side in the Z-axis direction (+ Z side). Two directions orthogonal to each other are defined as an X axis and a Y axis, respectively.

ケース51は、+Z側に配置される正方形の枠形状のカバー51aと、−Z側に配置される正方形の枠形状の台座51bと、カバー51aと台座51bとの間に配置される枠部51cとを備えており、カバー51aの開口部のレンズホルダー52側(−Z側)の周縁部にZ軸周りに巻き回された前方駆動用コイル53Aが装着され、台座51bの開口部のレンズホルダー52側(+Z側)の周縁部にZ軸周りに巻き回された後方駆動用コイル53Bが装着される。枠部51cは、詳細には、Z軸方向から見た時に、X軸及びY軸にそれぞれ直交する側面511〜514を備え、前記4つの側面511〜514の内壁に、それぞれ、第1〜第4の支持用コイル551〜554が取付けられている。具体的には、第1の支持用コイル551はX軸周りに巻き回されて枠部51cの+X側の側面511の内壁に取付けられ、第2の支持用コイル552はX軸周りに巻き回されて−X側の側面512の内壁に取付けられる。また、第3の支持用コイル553はY軸周りに巻き回されて枠部51cの+Y側の側面513の内壁に取付けられ、第4の支持用コイル554はY軸周りに巻き回されて−Y側の側面514の内壁に取付けられる。
第1〜第4の支持用反発部材561〜564は、それぞれが非磁性導電材料から成る板状の部材で、それぞれレンズホルダー52の外周面に第1〜第4の支持用コイル551〜554と対向するように取付けられる。なお、第1〜第4の支持用反発部材561〜564は正方形枠状の部材であってもよい。
前方及び後方駆動用反発部材54A,54Bは非磁性導電材料から成る円環状の部材で、レンズホルダー52の+Z側の端部と−Z側の端部とに、前方及び後方駆動用コイル53A,53Bと対向するように取り付けられる。
The case 51 includes a square frame-shaped cover 51a disposed on the + Z side, a square frame-shaped base 51b disposed on the −Z side, and a frame portion 51c disposed between the cover 51a and the base 51b. A front driving coil 53A wound around the Z axis is attached to the periphery of the opening of the cover 51a on the lens holder 52 side (-Z side), and the lens holder of the opening of the base 51b A rear drive coil 53B wound around the Z-axis is attached to the peripheral portion on the 52 side (+ Z side). Specifically, the frame portion 51c includes side surfaces 511 to 514 that are orthogonal to the X axis and the Y axis, respectively, when viewed from the Z-axis direction, and the inner walls of the four side surfaces 511 to 514 are first to first, respectively. Four supporting coils 551 to 554 are attached. Specifically, the first support coil 551 is wound around the X axis and attached to the inner wall of the side surface 511 on the + X side of the frame 51c, and the second support coil 552 is wound around the X axis. And attached to the inner wall of the side surface 512 on the −X side. Further, the third support coil 553 is wound around the Y axis and attached to the inner wall of the side surface 513 on the + Y side of the frame 51c, and the fourth support coil 554 is wound around the Y axis − It is attached to the inner wall of the side 514 on the Y side.
The first to fourth support repulsion members 561 to 564 are plate-like members each made of a nonmagnetic conductive material, and the first to fourth support coils 551 to 554 are respectively formed on the outer peripheral surface of the lens holder 52. Mounted to face each other. The first to fourth support repelling members 561 to 564 may be square frame members.
The front and rear driving repulsion members 54A and 54B are annular members made of a non-magnetic conductive material. The front and rear driving coils 53A and 54A are provided at the + Z side end and the −Z side end of the lens holder 52, respectively. It is attached so as to face 53B.

次に、レンズ駆動装置50の動作について説明する。
まず、第1〜第4の支持用コイル551〜554に交流電流を印加することで、第1〜第4の支持用コイル551〜554に対向して配置されている非磁性導電材料から成る第1〜第4の支持用反発部材561〜564に渦電流を発生させ、レンズホルダー52に+X方向、−X方向、+Y方向、及び−Y方向の斥力を作用させる。これにより、バネ部材やガイドピンがなくても、レンズホルダー52を中心軸上に保持することができる。すなわち、レンズホルダー52を空中に浮遊させることができる。
次に、前方及び後方駆動用コイル53A,53Bにそれぞれ交流電流を印加すると、前方駆動用コイル53Aの−Z側に配置されている前方駆動用反発部材54Aには−Z方向の斥力が作用し、後方駆動用コイル53Bの+Z側に配置されている後方駆動用反発部材54Bには+Z方向の斥力が作用する。したがって、前方及び後方駆動用コイル53A,53Bの一方に通電する電流値を他方に通電する電流値より大きくすれば、レンズホルダー52には電流値の小さな方の駆動用コイル側へ向かう推力が作用するので、レンズホルダー52は電流値の小さな方の駆動用コイル側へ移動した後、電流値の大きな方の駆動用コイルからの斥力と電流値の小さな方の駆動用コイルからの斥力とが釣り合う位置で静止する。このとき、レンズホルダー52は、第1〜第4の支持用コイル551〜554からの斥力により中心軸上に保持されているので、レンズホルダー52を摩擦なくZ軸方向に移動させることができる。
Next, the operation of the lens driving device 50 will be described.
First, by applying an alternating current to the first to fourth support coils 551 to 554, a first magnetic material made of a nonmagnetic conductive material arranged to face the first to fourth support coils 551 to 554 is used. Eddy currents are generated in the first to fourth support repulsion members 561 to 564, and repulsive forces in the + X direction, −X direction, + Y direction, and −Y direction are applied to the lens holder 52. Thereby, the lens holder 52 can be held on the central axis without the spring member and the guide pin. That is, the lens holder 52 can be suspended in the air.
Next, when an alternating current is applied to each of the front and rear drive coils 53A and 53B, a repulsive force in the -Z direction acts on the front drive repulsion member 54A disposed on the -Z side of the front drive coil 53A. A repulsive force in the + Z direction acts on the rear driving repulsion member 54B disposed on the + Z side of the rear driving coil 53B. Therefore, if the current value applied to one of the front and rear drive coils 53A and 53B is made larger than the current value applied to the other, a thrust toward the drive coil having the smaller current value acts on the lens holder 52. Therefore, after the lens holder 52 moves to the driving coil side with the smaller current value, the repulsive force from the driving coil with the larger current value is balanced with the repulsive force from the driving coil with the smaller current value. Still at position. At this time, since the lens holder 52 is held on the central axis by the repulsive force from the first to fourth supporting coils 551 to 554, the lens holder 52 can be moved in the Z-axis direction without friction.

なお、前記実施の形態7では、第1〜第4の支持用コイル551〜554と第1〜第4の支持用反発部材561〜564とを用いてレンズホルダー52を中心軸上に空中浮遊させたが、レンズホルダー52を中心軸上に空中浮遊させるには、必ずしも+X方向、−X方向、+Y方向、及び−Y方向の斥力を作用させる必要はなく、少なくとも、Z軸方向に直交する3方向から斥力を作用させればよい。したがって、レンズホルダー52の外径は四角筒の他に三角筒、六角筒、八角筒等の多面筒でもよいし、円筒形であってもよい。
また、前記例では、レンズホルダー52を中心軸上に空中浮遊させたが、第1〜第4の支持用コイル551〜554に印加する交流電流の大きさを変化させることで、レンズホルダー52をX軸方向またはY軸方向に移動させることができる。したがって、レンズ駆動装置50にX軸方向またはY軸方向の手振れが生じた場合には、第1〜第4の支持用コイル551〜554に通電する交流電流の大きさを制御することで、前記手振れを抑制することができる。すなわち、本例のレンズ駆動装置50を手振れ抑制機能付きのレンズ駆動装置として使用することができる。
また、前記実施の形態7において、レンズホルダー52をレンズ駆動装置に置き換え、ケース51を固定部材とすれば、バネ部材やガイドピンを用いることなく、レンズ駆動装置を空中浮遊させながら手振れを抑制することのできる手振れ抑制装置を構成することができる。
In the seventh embodiment, the lens holder 52 is suspended in the air on the central axis using the first to fourth support coils 551 to 554 and the first to fourth support repulsion members 561 to 564. However, in order to float the lens holder 52 in the air on the central axis, it is not always necessary to apply repulsive forces in the + X direction, the −X direction, the + Y direction, and the −Y direction, and at least 3 orthogonal to the Z axis direction. A repulsive force may be applied from the direction. Therefore, the outer diameter of the lens holder 52 may be a polygonal cylinder such as a triangular cylinder, a hexagonal cylinder, an octagonal cylinder, etc. in addition to a square cylinder, or a cylindrical shape.
In the above example, the lens holder 52 is suspended in the air on the central axis. However, by changing the magnitude of the alternating current applied to the first to fourth support coils 551 to 554, the lens holder 52 is moved. It can be moved in the X-axis direction or the Y-axis direction. Therefore, when the camera shake in the X-axis direction or the Y-axis direction occurs in the lens driving device 50, the magnitude of the alternating current supplied to the first to fourth support coils 551 to 554 is controlled, thereby Camera shake can be suppressed. That is, the lens driving device 50 of this example can be used as a lens driving device with a camera shake suppression function.
In the seventh embodiment, if the lens holder 52 is replaced with a lens driving device and the case 51 is a fixing member, camera shake is suppressed while the lens driving device is suspended in the air without using a spring member or a guide pin. Therefore, it is possible to configure a hand vibration suppression device that can perform the above-described operation.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 レンズ駆動装置、11 ケース、11a 枠体、11b カバー部、
11c 基部、11k 段差部、12 レンズホルダー、12a 本体、
12b 段差部、13A,13B バネ部材、14 駆動用コイル、
15 駆動用反発部材、16 レンズ、17 コア部材。
10 lens driving device, 11 case, 11a frame, 11b cover part,
11c base, 11k step, 12 lens holder, 12a body,
12b Stepped portion, 13A, 13B Spring member, 14 Driving coil,
15 Repulsion member for driving, 16 lens, 17 core member.

Claims (9)

柱状もしくは筒状の可動部材と、前記可動部材を揺動可能に支持する固定部材と、前記可動部材を前記固定部材に対して揺動させる駆動手段とを備えた電磁駆動装置であって、
前記駆動手段は、
非磁性導電材料から成る板状もしくは環状の駆動用反発部材と、
前記駆動用反発部材の厚さ方向の一方の側と他方の側のいずれか一方または両方に、巻線の軸線方向が前記駆動用反発部材の厚さ方向を向くように配置された駆動用コイルとを備え、
前記駆動用反発部材及び前記駆動用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする電磁駆動装置。
An electromagnetic drive device comprising: a columnar or cylindrical movable member; a fixed member that supports the movable member in a swingable manner; and drive means that swings the movable member relative to the fixed member.
The driving means includes
A plate-like or annular driving repulsion member made of a nonmagnetic conductive material;
A driving coil disposed on one or both of one side and the other side in the thickness direction of the driving repulsion member so that the axial direction of the winding faces the thickness direction of the driving repulsion member And
One of the drive repulsion member and the drive coil is attached to the movable member, and the other is attached to the fixed member.
前記可動部材がバネ部材により前記固定部材に対して揺動可能に支持されていることを特徴とする請求項1に記載の電磁駆動装置。   The electromagnetic drive device according to claim 1, wherein the movable member is supported by a spring member so as to be swingable with respect to the fixed member. 前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、前記駆動用コイルを前記駆動用反発部材の一方の側と他方の側とにそれぞれ配置するとともに、
前記可動部材に設けられて前記可動部材の軸線方向に延長するガイド孔と、
両端がそれぞれ前記固定部材に固定されて前記ガイド孔を貫通するガイドピンとを更に備えたことを特徴とする請求項1に記載の電磁駆動装置。
The thickness direction of the drive repulsion member is the axial direction of the movable member, and the drive coil is disposed on one side and the other side of the drive repulsion member, respectively.
A guide hole provided in the movable member and extending in an axial direction of the movable member;
The electromagnetic drive device according to claim 1, further comprising a guide pin having both ends fixed to the fixing member and penetrating the guide hole.
前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、
前記駆動用反発部材と前記駆動用コイルとの組を前記可動部材の軸線方向に沿って複数組配置するとともに、
厚さ方向が前記可動部材の軸線方向とは直交する方向になるように配置された非磁性導電材料から成る板状もしくは環状の支持用反発部材と、前記支持用反発部材の厚さ方向に、巻線の軸線方向が前記支持用反発部材の厚さ方向を向くように配置された支持用コイルとの組を少なくとも3組備え、
前記支持用反発部材及び前記支持用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする請求項1に記載の電磁駆動装置。
The thickness direction of the drive repulsion member is the axial direction of the movable member,
While arranging a plurality of sets of the drive repulsion member and the drive coil along the axial direction of the movable member,
In the thickness direction of the support repulsion member, a plate-like or annular support repulsion member made of a nonmagnetic conductive material disposed so that the thickness direction is perpendicular to the axial direction of the movable member, Comprising at least three sets of supporting coils arranged so that the axial direction of the winding faces the thickness direction of the supporting repulsive member;
2. The electromagnetic drive device according to claim 1, wherein one of the support repulsion member and the support coil is attached to the movable member, and the other is attached to the fixed member.
前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向とし、前記駆動用コイルを前記駆動用反発部材の一方の側と他方の側とにそれぞれ配置するとともに、
前記駆動用コイルの内周側に、厚さ方向が前記可動部材の軸線方向とは直交する方向になるように配置された非磁性導電材料から成る板状もしくは環状の支持用反発部材を更に備え、
前記2種類の反発部材及び前記駆動用コイルのいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着されることを特徴とする請求項1に記載の電磁駆動装置。
The thickness direction of the drive repulsion member is the axial direction of the movable member, and the drive coil is disposed on one side and the other side of the drive repulsion member, respectively.
A plate-like or annular supporting repulsion member made of a nonmagnetic conductive material is further provided on the inner peripheral side of the drive coil so that the thickness direction is a direction perpendicular to the axial direction of the movable member. ,
2. The electromagnetic drive device according to claim 1, wherein one of the two types of repulsion members and the drive coil is attached to the movable member, and the other is attached to the fixed member.
前記駆動用反発部材を、円錐台側面を有し前記可動部材と同軸に配置された環状の部材とし、前記駆動用コイルを前記環状の駆動用反発部材の厚さ方向の一方の側と他方の側とにそれぞれ配置するととともに、前記駆動用反発部材の円環部がそれぞれ前記2つの駆動用コイルの巻線部に対向するように配置されていることを特徴とする請求項1に記載の電磁駆動装置。   The driving repulsion member is an annular member having a truncated cone side surface and arranged coaxially with the movable member, and the driving coil is arranged on one side and the other side in the thickness direction of the annular driving repulsion member. 2. The electromagnetic wave according to claim 1, wherein each of the driving repulsion members is arranged so that a ring portion thereof faces each of a winding portion of each of the two driving coils. Drive device. 前記可動部材をバネ部材により前記固定部材に対して揺動可能に支持するとともに、
前記駆動用反発部材の厚さ方向を前記可動部材の軸線方向と直交する方向とし、前記駆動用反発部材の厚さ方向に、巻線の軸線方向が前記駆動用反発部材の厚さ方向を向くように前記駆動用コイルを配置したことを特徴とする請求項1に記載の電磁駆動装置。
The movable member is supported by a spring member so as to be swingable with respect to the fixed member, and
The thickness direction of the driving repulsion member is a direction orthogonal to the axial direction of the movable member, and the axial direction of the winding is directed to the thickness direction of the driving repulsion member in the thickness direction of the driving repulsion member. The electromagnetic drive device according to claim 1, wherein the drive coil is arranged as described above.
前記駆動用コイルの内周側、外周側、及び、前記駆動用反発部材とは反対側の面である背面側のいずれか1つまたは複数または全部に軟磁性材料から成るコア部材を配置したことを特徴とする請求項1〜請求項7のいずれかに記載の電磁駆動装置。   A core member made of a soft magnetic material is disposed on any one or a plurality or all of the inner peripheral side, the outer peripheral side, and the back side which is the surface opposite to the driving repulsion member of the driving coil. The electromagnetic drive device according to claim 1, wherein: 前記駆動用反発部材の外縁部から前記駆動用コイルの外周側に突出する突出部、もしくは、前記駆動用反発部材の内周部から前記駆動用コイルの内周側に突出する突出部のいずれか1つまたは両方を前記駆動用反発部材に設けたことを特徴とする請求項1〜請求項8のいずれかに記載の電磁駆動装置。
Either a protrusion that protrudes from the outer edge of the drive repulsion member to the outer periphery of the drive coil, or a protrusion that protrudes from the inner periphery of the drive repulsion member to the inner periphery of the drive coil The electromagnetic drive device according to any one of claims 1 to 8, wherein one or both of the drive repulsion members are provided.
JP2011197132A 2011-09-09 2011-09-09 Electromagnetic driving device Withdrawn JP2013057872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197132A JP2013057872A (en) 2011-09-09 2011-09-09 Electromagnetic driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197132A JP2013057872A (en) 2011-09-09 2011-09-09 Electromagnetic driving device

Publications (1)

Publication Number Publication Date
JP2013057872A true JP2013057872A (en) 2013-03-28

Family

ID=48133791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197132A Withdrawn JP2013057872A (en) 2011-09-09 2011-09-09 Electromagnetic driving device

Country Status (1)

Country Link
JP (1) JP2013057872A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170018136A (en) * 2015-08-05 2017-02-16 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Camera lens module capable of optical image stabilization with the same
JP2018022076A (en) * 2016-08-04 2018-02-08 大日本印刷株式会社 Through electrode substrate and electronic device
JP2020038294A (en) * 2018-09-04 2020-03-12 キヤノン株式会社 Lens apparatus and camera system having the same
US10713044B2 (en) 2014-09-25 2020-07-14 Intel Corporation Bit shuffle processors, methods, systems, and instructions
US10855898B2 (en) 2018-09-04 2020-12-01 Canon Kabushiki Kaisha Lens apparatus and imaging system including the same
US11256071B2 (en) 2018-09-04 2022-02-22 Canon Kabushiki Kaisha Lens apparatus and imaging system including the same
US11729555B2 (en) 2021-01-12 2023-08-15 Sound Solutions International Co., Ltd. Adjustable magnetic spring for actuator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10713044B2 (en) 2014-09-25 2020-07-14 Intel Corporation Bit shuffle processors, methods, systems, and instructions
KR20170018136A (en) * 2015-08-05 2017-02-16 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Camera lens module capable of optical image stabilization with the same
KR101717206B1 (en) 2015-08-05 2017-03-17 에이에이씨 어쿠스틱 테크놀로지스(심천)컴퍼니 리미티드 Camera lens module capable of optical image stabilization with the same
JP2018022076A (en) * 2016-08-04 2018-02-08 大日本印刷株式会社 Through electrode substrate and electronic device
JP2020038294A (en) * 2018-09-04 2020-03-12 キヤノン株式会社 Lens apparatus and camera system having the same
US10855898B2 (en) 2018-09-04 2020-12-01 Canon Kabushiki Kaisha Lens apparatus and imaging system including the same
US11256071B2 (en) 2018-09-04 2022-02-22 Canon Kabushiki Kaisha Lens apparatus and imaging system including the same
US11586095B2 (en) 2018-09-04 2023-02-21 Canon Kabushiki Kaisha Lens apparatus and camera system having the same
JP7321686B2 (en) 2018-09-04 2023-08-07 キヤノン株式会社 LENS DEVICE AND CAMERA SYSTEM INCLUDING THE SAME
US11729555B2 (en) 2021-01-12 2023-08-15 Sound Solutions International Co., Ltd. Adjustable magnetic spring for actuator

Similar Documents

Publication Publication Date Title
JP2013057872A (en) Electromagnetic driving device
US9638929B2 (en) Electromagnetic driving device
JP4642053B2 (en) Lens drive device
US8849106B1 (en) Shake correction device
JP6187906B2 (en) Lens driving device, camera device, and electronic device
JP6273491B2 (en) Lens driving device, camera device, and electronic device
JP2013025035A (en) Lens drive device
US10018800B2 (en) Lens driving apparatus
JP2018120072A (en) Lens drive device
KR101081631B1 (en) Voice coil motor
JP2006195452A (en) Focus adjustment apparatus with improved vibration and impact-resistance properties
JP2013125080A (en) Swing device support mechanism of photographing optical device
JP2016188989A (en) Lens drive device
JP2012237895A (en) Lens driving device
JP2013041026A (en) Camera shake suppression device
CN102437706B (en) Method for implementing object linear motion driving device and linear motor
US20160202446A1 (en) Lens driving apparatus
KR20110076063A (en) Voice coil motor
JP6346963B2 (en) Voice coil motor and focus lens
JP2006259032A (en) Lens driving device
JP6006045B2 (en) Lens drive device
JP2010282222A (en) Lens driving device
JP5827923B2 (en) Lens drive magnetic circuit
JP2011200752A (en) Vibration motor
JP2011027947A (en) Optical unit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202