[go: up one dir, main page]

JP2013056803A - METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM - Google Patents

METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM Download PDF

Info

Publication number
JP2013056803A
JP2013056803A JP2011196431A JP2011196431A JP2013056803A JP 2013056803 A JP2013056803 A JP 2013056803A JP 2011196431 A JP2011196431 A JP 2011196431A JP 2011196431 A JP2011196431 A JP 2011196431A JP 2013056803 A JP2013056803 A JP 2013056803A
Authority
JP
Japan
Prior art keywords
crystal film
single crystal
added
annealing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011196431A
Other languages
Japanese (ja)
Inventor
Kohei Sasaki
公平 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2011196431A priority Critical patent/JP2013056803A/en
Publication of JP2013056803A publication Critical patent/JP2013056803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a β-GaOsingle crystal film by which a β-GaOsingle crystal film excellent in conduction properties is formed by using a homoepitaxial growth method.SOLUTION: An Sn-added β-GaOsingle crystal film is produced by a method including: a step of forming an Sn-added β-GaOcrystal film by homoepitaxially growing a β-GaOcrystal on a β-GaOsubstrate 2 or on a β-GaO-based crystal layer formed on the β-GaOsubstrate 2 while adding Sn by a molecular beam epitaxy process; and a step of applying first annealing treatment to the Sn-added β-GaOcrystal film in a first inert atmosphere.

Description

本発明は、β−Ga系単結晶膜の製造方法に関する。 The present invention relates to a method for producing a β-Ga 2 O 3 single crystal film.

従来のGa単結晶膜の形成方法として、サファイア基板上にSnを添加しながらβ−Ga結晶をヘテロエピタキシャル成長させる方法が知られている(例えば、特許文献1参照)。 As a conventional method of forming a Ga 2 O 3 single crystal film, a method of heteroepitaxially growing a β-Ga 2 O 3 crystal while adding Sn on a sapphire substrate is known (see, for example, Patent Document 1).

特許文献1に記載の方法によれば、SnのドーピングによりGa単結晶膜に導電性を与えることができる。 According to the method described in Patent Document 1, conductivity can be imparted to the Ga 2 O 3 single crystal film by doping Sn.

特許第4083396号公報Japanese Patent No. 4083396

しかしながら、特許文献1に記載のSnを添加する方法により、Snの原料として単体のSnを用いてβ−Ga基板上にβ−Ga結晶をホモエピタキシャル成長させる場合、0〜1×1021/cmの範囲内のSnの濃度によらずGa単結晶膜は良好な伝導性を示さない。 However, when the β-Ga 2 O 3 crystal is homoepitaxially grown on the β-Ga 2 O 3 substrate using Sn as a raw material of Sn by the method of adding Sn described in Patent Document 1, 0-1 Regardless of the Sn concentration within the range of × 10 21 / cm 3, the Ga 2 O 3 single crystal film does not exhibit good conductivity.

したがって、本発明の目的は、ホモエピタキシャル成長法を用いて伝導特性に優れたβ−Ga系単結晶膜を形成することができるβ−Ga系単結晶膜の製造方法を提供することにある。 Accordingly, an object of the present invention, provides a method for producing a β-Ga 2 O 3 single crystal film which can form a β-Ga 2 O 3 single crystal film having excellent conductive properties with homoepitaxial growth method There is to do.

本発明の一態様は、上記目的を達成するために、[1]〜[9]のβ−Ga系単結晶膜の製造方法を提供する。 In order to achieve the above object, one embodiment of the present invention provides a method for producing a β-Ga 2 O 3 single crystal film of [1] to [9].

[1]分子線エピタキシー法により、Snを添加しながらβ−Ga結晶をβ−Ga基板上、又は前記β−Ga基板上に形成されたβ−Ga系結晶層上にホモエピタキシャル成長させ、Sn添加β−Ga結晶膜を形成する工程と、第1の不活性雰囲気中で前記Sn添加β−Ga結晶膜に第1のアニール処理を施す工程と、を含むβ−Ga系単結晶膜の製造方法。 [1] by molecular beam epitaxy, while adding β-Ga 2 O 3 crystal β-Ga 2 O 3 substrate and Sn, or the β-Ga 2 O 3 β- Ga 2 O formed on a substrate Forming a Sn-doped β-Ga 2 O 3 crystal film by homoepitaxial growth on the 3- system crystal layer, and first annealing the Sn-added β-Ga 2 O 3 crystal film in a first inert atmosphere; A process for performing the treatment, and a method for producing a β-Ga 2 O 3 single crystal film.

[2]前記Snの原料として単体のSnが用いられる、前記[1]に記載のβ−Ga系単結晶膜の製造方法。 [2] The method for producing a β-Ga 2 O 3 -based single crystal film according to [1], wherein single Sn is used as the raw material of the Sn.

[3]前記β−Ga結晶を酸素系ガス雰囲気中でホモエピタキシャル成長させる、前記[1]又は[2]に記載のβ−Ga系単結晶膜の製造方法。 [3] The method for producing a β-Ga 2 O 3 single crystal film according to [1] or [2], wherein the β-Ga 2 O 3 crystal is homoepitaxially grown in an oxygen-based gas atmosphere.

[4]前記第1の不活性雰囲気は窒素雰囲気である、前記[1]〜[3]のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。 [4] The method for producing a β-Ga 2 O 3 -based single crystal film according to any one of [1] to [3], wherein the first inert atmosphere is a nitrogen atmosphere.

[5]前記第1のアニール処理の温度を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、前記[1]〜[4]のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。 [5] In any one of [1] to [4], the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film is controlled by controlling the temperature of the first annealing treatment. β-Ga 2 O 3 system method for producing a single crystal film according.

[6]前記第1のアニール処理の後、前記Sn添加β−Ga結晶膜に第2の不活性雰囲気又は酸素雰囲気中で第2のアニール処理を施す、前記[1]〜[5]のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。 [6] After the first annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a second annealing treatment in a second inert atmosphere or an oxygen atmosphere, [1] to [5] β-Ga 2 O 3 system method for producing a single crystal film according to any one of.

[7]前記第2のアニール処理の温度及び時間の少なくとも一方を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、前記[6]に記載のβ−Ga系単結晶膜の製造方法。 [7] The β− according to [6], wherein the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film is controlled by controlling at least one of the temperature and time of the second annealing treatment. A method for producing a Ga 2 O 3 single crystal film.

[8]前記第1のアニール処理の後、前記Sn添加β−Ga結晶膜に酸素雰囲気中で第2のアニール処理を施し、前記第1のアニール処理の後、かつ前記第2のアニール処理の前又は後、前記Sn添加β−Ga結晶膜に第2の不活性雰囲気中で第3のアニール処理を施し、前記第2のアニール処理の温度及び時間の少なくとも一方及び前記第3のアニール処理の温度及び時間の少なくとも一方を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、前記[1]〜[5]のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。 [8] After the first annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a second annealing treatment in an oxygen atmosphere, and after the first annealing treatment, the second annealing treatment is performed. Before or after the annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a third annealing treatment in a second inert atmosphere, and at least one of the temperature and time of the second annealing treatment and the above-mentioned Any one of [1] to [5], wherein the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film is controlled by controlling at least one of the temperature and time of the third annealing treatment. β-Ga 2 O 3 system method for producing a single crystal film according to.

[9]前記Sn添加β−Ga結晶膜中のSn濃度は1×1015〜1×1021/cmである、前記[1]〜[8]のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。 [9] The Sn concentration in the Sn-added β-Ga 2 O 3 crystal film is 1 × 10 15 to 1 × 10 21 / cm 3 , according to any one of [1] to [8] A method for producing a β-Ga 2 O 3 -based single crystal film.

本発明によれば、ホモエピタキシャル成長法を用いて伝導特性に優れたβ−Ga系単結晶膜を形成することができるβ−Ga系単結晶膜の製造方法を提供することができる。 According to the present invention, to provide a method for producing a β-Ga 2 O 3 single crystal film which can form a β-Ga 2 O 3 single crystal film having excellent conductive properties with homoepitaxial growth method Can do.

本発明の実施の形態に係るMBE装置の構成を概略的に示す構成図The block diagram which shows schematically the structure of the MBE apparatus which concerns on embodiment of this invention (a)本実施の形態に係るβ−Ga基板及びSn添加β−Ga単結晶膜の断面図、(b)本実施の形態に係るβ−Ga基板、β−Ga系結晶層、及びSn添加β−Ga単結晶膜の断面図(A) Sectional view of β-Ga 2 O 3 substrate and Sn-doped β-Ga 2 O 3 single crystal film according to the present embodiment, (b) β-Ga 2 O 3 substrate according to the present embodiment, β sectional view of -ga 2 O 3 based crystal layer, and Sn added β-Ga 2 O 3 single crystal film 窒素雰囲気中でのアニール処理を施した場合の、Sn添加β−Ga単結晶膜の電気伝導性の変化を表すグラフWhen subjected to annealing in a nitrogen atmosphere, a graph representing the electrical conductivity change of Sn added β-Ga 2 O 3 single crystal film Sn添加β−Ga単結晶膜の電気伝導性のアニール処理温度依存性を表すグラフGraph showing annealing treatment temperature dependence of electrical conductivity of Sn-added β-Ga 2 O 3 single crystal film Sn添加β−Ga単結晶膜の電気伝導性のアニール処理時間依存性を表すグラフGraph showing the annealing treatment time dependence of the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 窒素アニールと酸素アニールを連続的に施した場合の、Sn添加β−Ga単結晶膜の電気伝導性の変化を表すグラフA graph showing a change in electrical conductivity of a Sn-added β-Ga 2 O 3 single crystal film when nitrogen annealing and oxygen annealing are continuously performed 高温の窒素アニール後、低温の酸素アニール及び窒素アニールを施した場合の、Sn添加β−Ga単結晶膜の電気伝導性の変化を表すグラフA graph showing a change in electrical conductivity of a Sn-added β-Ga 2 O 3 single crystal film when a low-temperature oxygen anneal and a nitrogen anneal are performed after a high-temperature nitrogen anneal

〔実施の形態〕
本実施の形態によれば、ホモエピタキシャル成長法を用いて高品質なβ−Ga系単結晶膜を形成することができる。本発明者等は、Snを添加したβ−Ga単結晶膜に不活性雰囲気中でアニール処理を施すことにより、電気伝導性を付与できることを見出した。以下、その実施の形態の一例について詳細に説明する。
Embodiment
According to this embodiment, a high-quality β-Ga 2 O 3 single crystal film can be formed using a homoepitaxial growth method. The present inventors have found that electrical conductivity can be imparted by annealing the β-Ga 2 O 3 single crystal film to which Sn is added in an inert atmosphere. Hereinafter, an example of the embodiment will be described in detail.

β−Ga系単結晶膜の製造方法としては、PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法、スパッタリング法、分子線エピタキシー(MBE;Molecular Beam Epitaxy)法等があるが、本実施の形態では、MBE法を用いた薄膜成長法を採用する。MBE法は、単体あるいは化合物の固体をセルと呼ばれる蒸発源で加熱し、加熱により生成された蒸気を分子線として基板表面に供給する結晶成長方法である。 As a method for producing a β-Ga 2 O 3 -based single crystal film, there are a PLD (Pulsed Laser Deposition) method, a CVD (Chemical Vapor Deposition) method, a sputtering method, a molecular beam epitaxy (MBE) method, and the like. In this embodiment, a thin film growth method using the MBE method is employed. The MBE method is a crystal growth method in which a simple substance or a compound solid is heated by an evaporation source called a cell, and vapor generated by heating is supplied as a molecular beam to a substrate surface.

図1は、β−Ga系単結晶膜の形成に用いられるMBE装置の一例を示す構成図である。このMBE装置1は、真空槽10と、この真空槽10内に支持され、β−Ga基板2を保持する基板ホルダ11と、基板ホルダ11に保持されたβ−Ga基板2を加熱するための加熱装置12と、薄膜を構成する原子又は分子ごとに設けられた複数のセル13(13a,13b)と、複数のセル13を加熱するためのヒータ14(14a,14b)と、真空槽10内にオゾン(O)及び酸素(O)を含むガス(以下、「オゾン混合酸素ガス」という)等の酸素系ガスを供給するガス供給パイプ15と、真空槽10内の空気を排出するための真空ポンプ16とを備えている。基板ホルダ11は、シャフト110を介して図示しないモータにより回転可能に構成されている。 FIG. 1 is a configuration diagram illustrating an example of an MBE apparatus used for forming a β-Ga 2 O 3 -based single crystal film. The MBE apparatus 1 includes a vacuum chamber 10, is supported on the vacuum chamber 10, β-Ga 2 O 3 substrate holder 11 for holding a substrate 2, β-Ga 2 O 3 substrate held by the substrate holder 11 2, a plurality of cells 13 (13 a, 13 b) provided for each atom or molecule constituting the thin film, and a heater 14 (14 a, 14 b) for heating the plurality of cells 13. A gas supply pipe 15 for supplying an oxygen-based gas such as a gas containing ozone (O 3 ) and oxygen (O 2 ) (hereinafter referred to as “ozone mixed oxygen gas”) into the vacuum chamber 10; And a vacuum pump 16 for discharging the air. The substrate holder 11 is configured to be rotatable by a motor (not shown) via a shaft 110.

第1のセル13aには、Ga粉末等のβ−Ga系単結晶膜のGa原料が充填されている。この粉末のGaの純度は、6N以上であることが望ましい。第2のセル13bには、ドナーとしてドーピングされるSnの原料としてSn粉末等の単体のSn材料が充填されている。 The first cell 13a is filled with a Ga raw material of a β-Ga 2 O 3 single crystal film such as Ga powder. As for the purity of Ga of this powder, it is desirable that it is 6N or more. The second cell 13b is filled with a single Sn material such as Sn powder as a raw material of Sn doped as a donor.

基板ホルダ11には、予め作製されたβ−Ga基板2が取り付けられ、このβ−Ga基板2上にβ−Ga結晶をSnを添加しつつホモエピタキシャル成長させることにより、β−Ga系単結晶膜を形成する。 A β-Ga 2 O 3 substrate 2 prepared in advance is attached to the substrate holder 11, and β-Ga 2 O 3 crystal is homoepitaxially grown on the β-Ga 2 O 3 substrate 2 while adding Sn. Thus, a β-Ga 2 O 3 single crystal film is formed.

このβ−Ga基板2は、例えば次のような手順で作製する。まず、EFG(Edge-defined Film-fed Growth)法によって製造されたバルク状のβ−Gaを所望の面方位、寸法に切り出し、その表面に機械的研磨又は化学的研磨を施す。その後、メタノール、アセトン、メタノールの順で2分間ずつの有機洗浄を行い、さらに超純水を用いた流水洗浄を行う。次に、15分間のフッ酸浸漬洗浄後、超純水を用いた流水洗浄を行い、さらに5分間の硫酸過水浸漬洗浄を行った後、再度超純水を用いた流水洗浄を行う。最後に、600℃で10分間のサーマルクリーニングを行う。 The β-Ga 2 O 3 substrate 2 is produced by the following procedure, for example. First, bulk β-Ga 2 O 3 produced by an EFG (Edge-defined Film-fed Growth) method is cut into a desired plane orientation and dimensions, and the surface is subjected to mechanical polishing or chemical polishing. Thereafter, organic cleaning is performed for 2 minutes in order of methanol, acetone, and methanol, and further, running water cleaning using ultrapure water is performed. Next, after washing with hydrofluoric acid for 15 minutes, washing with running ultrapure water is performed, followed by washing with sulfuric acid in water for 5 minutes, and then washing with running pure water again. Finally, thermal cleaning is performed at 600 ° C. for 10 minutes.

(β−Ga系単結晶膜の製造方法)
次に、β−Ga系単結晶膜の製造方法について説明する。まず、上記の手順によって作製されたβ−Ga基板2をMBE装置1の基板ホルダ11に取り付ける。次に、真空ポンプ16を作動させ、真空槽10内の気圧を10−10Torr程度まで減圧する。そして、加熱装置12によってβ−Ga基板2を加熱する。なお、β−Ga基板2の加熱は、加熱装置12の黒鉛ヒータ等の発熱源の輻射熱が基板ホルダ11を介してβ−Ga基板2に熱伝導することにより行われる。
(Method for producing β-Ga 2 O 3 -based single crystal film)
Next, a method for manufacturing a β-Ga 2 O 3 single crystal film will be described. First, the β-Ga 2 O 3 substrate 2 produced by the above procedure is attached to the substrate holder 11 of the MBE apparatus 1. Next, the vacuum pump 16 is operated, and the atmospheric pressure in the vacuum chamber 10 is reduced to about 10 −10 Torr. Then, the β-Ga 2 O 3 substrate 2 is heated by the heating device 12. Note that the β-Ga 2 O 3 substrate 2 is heated by the heat conduction of the radiant heat of a heat source such as a graphite heater of the heating device 12 to the β-Ga 2 O 3 substrate 2 through the substrate holder 11.

β−Ga基板2が所定の温度に加熱された後、ガス供給パイプ15から真空槽10内に、酸素系ガスとして、例えば、図示しないオゾン発生器によって生成したオゾン混合酸素ガスを供給する。 After the β-Ga 2 O 3 substrate 2 is heated to a predetermined temperature, for example, an ozone mixed oxygen gas generated by an ozone generator (not shown) is supplied from the gas supply pipe 15 into the vacuum chamber 10 as an oxygen-based gas. To do.

真空槽10内にオゾン混合酸素ガス等の酸素系ガスを供給した後、真空槽10内のガス圧が安定するのに必要な時間(例えば5分間)経過後、基板ホルダ11を回転させながら第1のセル13aの第1のヒータ14a及び第2のセル13bの第2のヒータ14bを加熱し、Ga及びSnを蒸発させて分子線としてβ−Ga基板2の表面に照射する。 After supplying an oxygen-based gas such as ozone-mixed oxygen gas into the vacuum chamber 10, after the time required for the gas pressure in the vacuum chamber 10 to stabilize (for example, 5 minutes) has elapsed, the substrate holder 11 is rotated while the substrate holder 11 is rotated. The first heater 14a of one cell 13a and the second heater 14b of the second cell 13b are heated to evaporate Ga and Sn to irradiate the surface of the β-Ga 2 O 3 substrate 2 as molecular beams.

例えば、第1のセル13aは900℃に加熱され、Ga蒸気のビーム等価圧力(BEP;Beam Equivalent Pressure)は1×10−4Paである。また、Sn蒸気のビーム等価圧力は、任意の濃度のSnをβ−Ga結晶に添加するため、第1のセル13aの温度により制御される。 For example, the first cell 13a is heated to 900 ° C., and the beam equivalent pressure (BEP; Beam Equivalent Pressure) of Ga vapor is 1 × 10 −4 Pa. Further, the beam equivalent pressure of Sn vapor is controlled by the temperature of the first cell 13a in order to add Sn of an arbitrary concentration to the β-Ga 2 O 3 crystal.

これにより、β−Ga基板2の主面上にβ−Ga結晶がSnを添加されながらホモエピタキシャル成長し、n型のβ−Ga系単結晶膜であるSn添加β−Ga単結晶膜が形成される。β−Ga結晶の成長温度は、例えば、700℃である。 Thus, β-Ga 2 O 3 homoepitaxial growth while β-Ga 2 O 3 crystal on the main surface of the substrate 2 is added to Sn, Sn added is β-Ga 2 O 3 single crystal film of n-type A β-Ga 2 O 3 single crystal film is formed. The growth temperature of the β-Ga 2 O 3 crystal is 700 ° C., for example.

酸素系ガスとしてオゾン混合酸素ガスを用いる場合、オゾンガス雰囲気中でβ−Ga結晶を成長させることにより、酸素欠損の少ない高品質のβ−Ga結晶が得られる。オゾン混合酸素ガスのオゾン混合率は、例えば、5質量%である。また、オゾン混合酸素ガスのオゾン分圧は、5×10−5Pa以上であり、例えば2×10−4Paである。 When ozone mixed oxygen gas is used as the oxygen-based gas, high-quality β-Ga 2 O 3 crystals with few oxygen vacancies can be obtained by growing β-Ga 2 O 3 crystals in an ozone gas atmosphere. The ozone mixing rate of the ozone mixed oxygen gas is, for example, 5% by mass. The ozone partial pressure of the ozone-mixed oxygen gas is 5 × 10 −5 Pa or more, for example, 2 × 10 −4 Pa.

なお、Sn添加β−Ga単結晶膜は、β−Ga基板2上にβ−Ga系結晶層を介して形成されてもよい。この場合、β−Ga基板2上にβ−Ga系結晶をホモエピタキシャル成長させることによりβ−Ga系結晶層を形成し、続いてβ−Ga系結晶層上にSn添加β−Ga単結晶膜を上記のMBE法により形成する。ここで、β−Ga系結晶とは、β−Ga単結晶、及びAl、In等が添加されたβ−Ga単結晶、例えば(GaAlIn(1−x−y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶をいう。 Note that the Sn-added β-Ga 2 O 3 single crystal film may be formed on the β-Ga 2 O 3 substrate 2 via a β-Ga 2 O 3 based crystal layer. In this case, β-Ga 2 O 3 substrate 2 on the β-Ga 2 O 3 based crystal to form a β-Ga 2 O 3 system crystal layer by homoepitaxial growth, followed by β-Ga 2 O 3 based crystals An Sn-added β-Ga 2 O 3 single crystal film is formed on the layer by the MBE method. Here, the β-Ga 2 O 3 -based crystal is a β-Ga 2 O 3 single crystal and a β-Ga 2 O 3 single crystal to which Al, In, or the like is added, for example, (Ga x Al y In (1 −xy) ) 2 O 3 (0 <x ≦ 1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) A single crystal.

図2(a)、(b)は、本実施の形態に係るSn添加β−Ga単結晶膜3の断面図である。図2(a)のSn添加β−Ga単結晶膜3は、β−Ga基板2の主面2a上に上記のMBE法によって形成される。図2(b)のSn添加β−Ga単結晶膜3は、β−Ga基板2の主面2a上に形成されたβ−Ga系結晶層4上に上記のMBE法によって形成される。Sn添加β−Ga単結晶膜3のSn濃度は、例えば、1×1015〜1×1021/cmであり、このSn濃度は、成膜時の第1のセル13aの温度により制御することができる。 2A and 2B are cross-sectional views of the Sn-added β-Ga 2 O 3 single crystal film 3 according to the present embodiment. The Sn-added β-Ga 2 O 3 single crystal film 3 in FIG. 2A is formed on the main surface 2 a of the β-Ga 2 O 3 substrate 2 by the MBE method. The Sn-added β-Ga 2 O 3 single crystal film 3 in FIG. 2B is formed on the β-Ga 2 O 3 based crystal layer 4 formed on the main surface 2 a of the β-Ga 2 O 3 substrate 2. The MBE method is used. The Sn concentration of the Sn-added β-Ga 2 O 3 single crystal film 3 is, for example, 1 × 10 15 to 1 × 10 21 / cm 3 , and this Sn concentration is the temperature of the first cell 13a during film formation. Can be controlled.

その後、不活性雰囲気中でSn添加β−Ga単結晶膜3にアニール処理を施し、Sn添加量に応じた電気伝導性を付与する。ここで、不活性雰囲気は、例えば、窒素雰囲気である。また、Sn添加β−Ga単結晶膜3に効果的に伝導性を付与するためには、アニール処理の温度が800℃以上であることが好ましい。また、アニール処理の温度を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御することができる。 Thereafter, the Sn-added β-Ga 2 O 3 single crystal film 3 is annealed in an inert atmosphere to impart electrical conductivity according to the amount of Sn added. Here, the inert atmosphere is, for example, a nitrogen atmosphere. In order to effectively impart conductivity to the Sn-added β-Ga 2 O 3 single crystal film 3, it is preferable that the annealing temperature is 800 ° C. or higher. Moreover, the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film can be controlled by controlling the annealing temperature.

アニール処理は、ランプアニール装置等の熱処理用装置内で実施される。また、MBE装置1内でアニール処理が実施されてもよい。   The annealing process is performed in a heat treatment apparatus such as a lamp annealing apparatus. An annealing process may be performed in the MBE apparatus 1.

図3は、窒素雰囲気中のアニール処理を施した場合の、Sn添加β−Ga単結晶膜3の電気伝導性の変化を表すグラフである。図3の縦軸は、Sn添加β−Ga単結晶膜3の単位立方センチ当たりのドナー密度とアクセプタ密度の差(Nd−Na)、すなわちn型半導体であるSn添加β−Ga単結晶膜3の電気伝導性の高さを相対的に表す。図3の横軸は、Sn添加β−Ga単結晶膜3の単位立方センチ当たりのSn濃度を表す。アニール処理は、1000℃、30分の条件下で実施された。 FIG. 3 is a graph showing a change in electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 when the annealing treatment is performed in a nitrogen atmosphere. 3 represents the difference (Nd—Na) between the donor density and the acceptor density per unit cubic centimeter of the Sn-doped β-Ga 2 O 3 single crystal film 3, that is, Sn-doped β-Ga 2 that is an n-type semiconductor. The electrical conductivity height of the O 3 single crystal film 3 is relatively represented. The horizontal axis in FIG. 3 represents the Sn concentration per unit cubic centimeter of the Sn-added β-Ga 2 O 3 single crystal film 3. The annealing process was performed at 1000 ° C. for 30 minutes.

図3中の◇はアニール前のNd−Naの値を示し、●はアニール後のNd−Naの値を示す。図3の左側の◇及び●は、Sn濃度が2×1018/cmであるSn添加β−Ga単結晶膜3(第1結晶膜とする)の測定値を示す。図3の右側の◇及び●は、Sn濃度が2×1020/cmであるSn添加β−Ga単結晶膜3(第2結晶膜とする)の測定値を示す。 ◇ in FIG. 3 indicates the value of Nd—Na before annealing, and ● indicates the value of Nd—Na after annealing. ◇ and ● on the left side of FIG. 3 indicate measured values of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as the first crystal film) having an Sn concentration of 2 × 10 18 / cm 3 . ◇ and ● on the right side of FIG. 3 indicate measured values of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as a second crystal film) having an Sn concentration of 2 × 10 20 / cm 3 .

図3は、第1結晶膜と第2結晶膜のいずれも、窒素雰囲気中のアニール処理により電気伝導性が増加することを示している。第1結晶膜及び第2結晶膜のアニール処理前のNd−Naは、いずれも測定下限である1×1015/cm未満であり、アニール処理後のNd−Naは、それぞれ1×1018/cm、1×1019/cmである。なお、Sn濃度が他の値であるSn添加β−Ga単結晶膜3においても、アニール処理により電気伝導性は増加する。 FIG. 3 shows that the electrical conductivity of both the first crystal film and the second crystal film is increased by the annealing process in the nitrogen atmosphere. Nd-Na before annealing of the first crystal film and the second crystal film is both less than 1 × 10 15 / cm 3, which is the lower limit of measurement, and Nd—Na after annealing is 1 × 10 18 , respectively. / Cm 3 , 1 × 10 19 / cm 3 . Even in the Sn-added β-Ga 2 O 3 single crystal film 3 having other values of Sn concentration, the electrical conductivity is increased by the annealing treatment.

図4は、Sn添加β−Ga単結晶膜3の電気伝導性のアニール処理温度依存性を表すグラフである。図4の縦軸は、単位立方センチ当たりのドナー密度とアクセプタ密度の差(Nd−Na)を表す。図4の横軸は、アニール処理温度を表す。アニール処理は、窒素雰囲気中で30分間実施された。 FIG. 4 is a graph showing the annealing temperature dependency of the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3. The vertical axis in FIG. 4 represents the difference between the donor density and the acceptor density per unit cubic centimeter (Nd-Na). The horizontal axis in FIG. 4 represents the annealing temperature. The annealing process was performed for 30 minutes in a nitrogen atmosphere.

図4中の○はアニール前のNd−Naの値を示し、●はアニール後のNd−Naの値を示す。図4の左側の○及び●は、アニール処理温度が800℃であるSn添加β−Ga単結晶膜3(第3結晶膜とする)の測定値を示す。図3の右側の○及び●は、アニール処理温度が1000℃であるSn添加β−Ga単結晶膜3(第4結晶膜とする)の測定値を示す。 In FIG. 4, ◯ indicates the value of Nd—Na before annealing, and ● indicates the value of Nd—Na after annealing. The circles and ● on the left side of FIG. 4 indicate measured values of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as a third crystal film) having an annealing temperature of 800 ° C. ◯ and ● on the right side of FIG. 3 indicate measured values of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as a fourth crystal film) having an annealing temperature of 1000 ° C.

図4は、第3結晶膜よりも第4結晶膜の方が、アニール処理後の電気伝導性が高いことを示している。第3結晶膜及び第4結晶膜のアニール処理後のNd−Naは、それぞれ3×1017/cm、5×1017/cmである。第3、4結晶膜の例で示したように、アニール処理温度を高くするほど、Sn添加β−Ga単結晶膜3の電気伝導性が高くなる。 FIG. 4 shows that the fourth crystal film has higher electrical conductivity after annealing than the third crystal film. Nd-Na after the annealing treatment of the third crystal film and the fourth crystal film is 3 × 10 17 / cm 3 and 5 × 10 17 / cm 3 , respectively. As shown in the examples of the third and fourth crystal films, the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 increases as the annealing temperature increases.

図5は、Sn添加β−Ga単結晶膜3の電気伝導性のアニール処理時間依存性を表すグラフである。図5の縦軸は、単位立方センチ当たりのドナー密度とアクセプタ密度の差(Nd−Na)を表す。図5の横軸は、アニール処理時間を表す。アニール処理は、窒素雰囲気中で1000℃、150分の条件下で実施された。 FIG. 5 is a graph showing the annealing treatment time dependence of the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3. The vertical axis in FIG. 5 represents the difference between the donor density and the acceptor density per unit cubic centimeter (Nd-Na). The horizontal axis in FIG. 5 represents the annealing time. The annealing treatment was performed in a nitrogen atmosphere at 1000 ° C. for 150 minutes.

図5中の▲は成膜時の第2のセル13bの温度が430℃であるSn添加β−Ga単結晶膜3(第5結晶膜とする)の測定値を表す。図5中の□は成膜時の第2のセル13bの温度が460℃であるSn添加β−Ga単結晶膜3(第6結晶膜とする)の測定値を表す。図5中の●は成膜時の第2のセル13bの温度が500℃であるSn添加β−Ga単結晶膜3(第7結晶膜とする)の測定値を表す。 In FIG. 5, ▲ represents a measured value of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as a fifth crystal film) in which the temperature of the second cell 13b during film formation is 430 ° C. 5 represents a measured value of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as a sixth crystal film) in which the temperature of the second cell 13b during film formation is 460 ° C. 5 represents the measured value of the Sn-added β-Ga 2 O 3 single crystal film 3 (referred to as the seventh crystal film) in which the temperature of the second cell 13b during film formation is 500 ° C.

図5によれば、第5〜7結晶膜のいずれも、30分間のアニール処理によりSn添加β−Ga単結晶膜3の電気伝導性が大きく増加した後、電気伝導性の増加が止まる。すなわち、図5は、30分以降のアニール処理はSn添加β−Ga単結晶膜3の電気伝導性にほとんど影響を与えないことを示している。 According to FIG. 5, in any of the fifth to seventh crystal films, the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 is greatly increased by the annealing process for 30 minutes, and then the increase in electrical conductivity is observed. Stop. That is, FIG. 5 shows that the annealing process after 30 minutes hardly affects the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3.

図6は、窒素雰囲気中のアニール処理(窒素アニール)と酸素雰囲気中のアニール処理(酸素アニール)を連続的に施した場合の、Sn添加β−Ga単結晶膜3の電気伝導性の変化を表すグラフである。図6の縦軸は、単位立方センチ当たりのドナー密度とアクセプタ密度の差(Nd−Na)を表す。図6の横軸は、アニール処理時間を表す。窒素アニール及び酸素アニールは、それぞれ1000℃、30分の条件下で実施された。 FIG. 6 shows the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 when an annealing process in a nitrogen atmosphere (nitrogen annealing) and an annealing process in an oxygen atmosphere (oxygen annealing) are successively performed. It is a graph showing the change of. The vertical axis in FIG. 6 represents the difference between the donor density and the acceptor density per unit cubic centimeter (Nd-Na). The horizontal axis in FIG. 6 represents the annealing time. Nitrogen annealing and oxygen annealing were performed under conditions of 1000 ° C. and 30 minutes, respectively.

図6によれば、窒素アニールにより電気伝導性が増加した後、酸素アニールにより電気伝導性が低下する。さらに、酸素アニールにより電気伝導性が低下した後、再度の窒素アニールにより電気伝導性が増加する。すなわち、図6は、窒素アニールと酸素アニールを連続的に実施することにより、Sn添加β−Ga単結晶膜3の電気伝導性を制御できることを示している。 According to FIG. 6, after the electrical conductivity is increased by nitrogen annealing, the electrical conductivity is decreased by oxygen annealing. Furthermore, after the electrical conductivity is reduced by oxygen annealing, the electrical conductivity is increased by re-nitrogen annealing. That is, FIG. 6 shows that the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 can be controlled by continuously performing nitrogen annealing and oxygen annealing.

図7は、1回目の窒素アニール後、酸素アニール及び窒素アニールを施した場合の、Sn添加β−Ga単結晶膜3の電気伝導性の変化を表すグラフである。図7の縦軸は、単位立方センチ当たりのドナー密度とアクセプタ密度の差(Nd−Na)を表す。図7の横軸は、アニール処理時間を表す。まず、Sn添加β−Ga単結晶膜3に800℃、30分の条件下で1回目の窒素アニールを施した後、1000℃、30分の条件下で2回目の窒素アニールを施し、さらに、800℃、30分の条件下での酸素アニール、及び800℃、30分の条件下での窒素アニールを数回ずつ施した。 FIG. 7 is a graph showing a change in electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film 3 when oxygen annealing and nitrogen annealing are performed after the first nitrogen annealing. The vertical axis | shaft of FIG. 7 represents the difference (Nd-Na) of the donor density per unit cubic centimeter and an acceptor density. The horizontal axis in FIG. 7 represents the annealing time. First, after the first nitrogen annealing was performed on the Sn-added β-Ga 2 O 3 single crystal film 3 at 800 ° C. for 30 minutes, the second nitrogen annealing was performed at 1000 ° C. for 30 minutes. Furthermore, oxygen annealing under conditions of 800 ° C. and 30 minutes and nitrogen annealing under conditions of 800 ° C. and 30 minutes were performed several times.

図7によれば、800℃の1回目の窒素アニールにより電気伝導性が付与された後、1000℃の2回目の窒素アニールにより電気伝導性が増加し、800℃の酸素アニールにより電気伝導性が少しずつ減少し、さらに800度の窒素アニールにより電気伝導性が少しずつ増加している。すなわち、図7は、1回目の窒素アニールにより電気伝導性を付与した後、更なるアニール処理として酸素アニール及び窒素アニールの一方又は両方を実施することにより電気伝導性を細かく制御できることを示している。   According to FIG. 7, after electrical conductivity is imparted by the first nitrogen annealing at 800 ° C., the electrical conductivity increases by the second nitrogen annealing at 1000 ° C., and the electrical conductivity is enhanced by the oxygen annealing at 800 ° C. The electrical conductivity decreases little by little, and further, the electrical conductivity increases little by little by 800 degree nitrogen annealing. That is, FIG. 7 shows that the electrical conductivity can be finely controlled by performing one or both of oxygen annealing and nitrogen annealing as further annealing treatment after imparting electrical conductivity by the first nitrogen annealing. .

また、本実施の形態においては、Snの原料として単体のSnが用いられるが、SnO等のSn化合物を用いてもよい。 In the present embodiment, a single Sn is used as a Sn raw material, but a Sn compound such as SnO 2 may be used.

(実施の形態の効果)
β−Gaは4.8〜5.0eVという大きなバンドギャップを持っており、その絶縁破壊電界強度も非常に大きいと予想される。Gaパワーデバイスが実現されれば、SiCやGaNを用いたデバイスを超える高効率パワーデバイスが実現されることとなり、我が国の将来の省エネルギー化へ大きく貢献すると期待されている。β−Gaを用いて高性能デバイスを作製する場合、β−Ga基板上にホモエピタキシャル成長させた高品質単結晶膜が非常に有用である。
(Effect of embodiment)
β-Ga 2 O 3 has a large band gap of 4.8 to 5.0 eV, and its dielectric breakdown field strength is expected to be very large. If a Ga 2 O 3 power device is realized, a high-efficiency power device that exceeds devices using SiC or GaN will be realized, and it is expected to greatly contribute to future energy saving in Japan. When fabricating a high-performance device with β-Ga 2 O 3, high-quality single crystal film obtained by homo-epitaxial growth on β-Ga 2 O 3 substrate is very useful.

本実施の形態によれば、ホモエピタキシャル成長法により、伝導特性に優れた高品質のβ−Ga単結晶膜を形成することができる。さらに、β−Ga単結晶膜の電気伝導性を制御することが可能である。このため、Gaパワーデバイスの実現のために非常に有用である。 According to the present embodiment, a high-quality β-Ga 2 O 3 single crystal film having excellent conduction characteristics can be formed by homoepitaxial growth. Furthermore, the electrical conductivity of the β-Ga 2 O 3 single crystal film can be controlled. Therefore, it is very useful for realizing a Ga 2 O 3 power device.

また、本実施の形態によれば、単体のSnを添加するSnの原料として用いて、伝導特性に優れた高品質のβ−Ga単結晶膜を形成することができる。 Further, according to the present embodiment, it is possible to form a high-quality β-Ga 2 O 3 single crystal film having excellent conduction characteristics by using Sn as a raw material for adding Sn alone.

また、本実施の形態のSn添加β−Ga単結晶膜を酸素ガスセンサー及び窒素ガスセンサーとして用いることができる。Sn添加β−Ga単結晶膜を酸素ガスセンサーとして用いる場合は、Sn添加β−Ga単結晶膜を窒素雰囲気で十分にアニール処理し、電気伝導性を付与した後に、例えばTi電極を2つ設ける。それを例えば800℃以上の温度で酸素の存在しない空間(監視したい空間)で保持し、Ti電極間の電気抵抗を監視する。酸素ガスに晒されるとSn添加β−Ga単結晶膜の電気伝導性が低下するため、Ti電極間の電気抵抗に変化が生じ、酸素ガスの混入を検知することができる。 In addition, the Sn-added β-Ga 2 O 3 single crystal film of this embodiment can be used as an oxygen gas sensor and a nitrogen gas sensor. In the case where the Sn-added β-Ga 2 O 3 single crystal film is used as an oxygen gas sensor, the Sn-added β-Ga 2 O 3 single crystal film is sufficiently annealed in a nitrogen atmosphere to impart electrical conductivity, for example, Two Ti electrodes are provided. It is held in a space where oxygen does not exist (a space to be monitored) at a temperature of 800 ° C. or higher, for example, and the electrical resistance between the Ti electrodes is monitored. When exposed to oxygen gas, the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film is lowered, so that the electrical resistance between the Ti electrodes is changed, and mixing of oxygen gas can be detected.

窒素ガスセンサーとして用いる場合は、Sn添加β−Ga単結晶膜を酸素雰囲気で十分にアニール処理し、高抵抗化させた後に、例えばTi電極を2つ設ける。それを例えば800℃以上の温度で窒素の存在しない空間(監視したい空間)で保持し、Ti電極間の電気抵抗を監視する。窒素ガスに晒されるとSn添加β−Ga単結晶膜の電気伝導性が上昇するため、Ti電極間の電気抵抗に変化が生じ、窒素ガスの混入を検知することができる。 When used as a nitrogen gas sensor, the Sn-added β-Ga 2 O 3 single crystal film is sufficiently annealed in an oxygen atmosphere to increase the resistance, and then, for example, two Ti electrodes are provided. It is held in a space where nitrogen does not exist (a space to be monitored) at a temperature of 800 ° C. or higher, for example, and the electrical resistance between the Ti electrodes is monitored. When exposed to nitrogen gas, the electrical conductivity of the Sn-added β-Ga 2 O 3 single crystal film is increased, so that the electrical resistance between the Ti electrodes changes, and mixing of nitrogen gas can be detected.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1…MBE装置、2…β−Ga基板、3…Sn添加β−Ga単結晶膜 1 ... MBE apparatus, 2 ... β-Ga 2 O 3 substrate, 3 ... Sn added β-Ga 2 O 3 single crystal film

Claims (9)

分子線エピタキシー法により、Snを添加しながらβ−Ga結晶をβ−Ga基板上、又は前記β−Ga基板上に形成されたβ−Ga系結晶層上にホモエピタキシャル成長させ、Sn添加β−Ga結晶膜を形成する工程と、
第1の不活性雰囲気中で前記Sn添加β−Ga結晶膜に第1のアニール処理を施す工程と、
を含むβ−Ga系単結晶膜の製造方法。
By molecular beam epitaxy, β-Ga 2 O 3 crystal β-Ga 2 O 3 substrate with the addition of Sn, or the β-Ga 2 O 3 formed on a substrate a β-Ga 2 O 3 based crystals Homoepitaxial growth on the layer to form a Sn-added β-Ga 2 O 3 crystal film;
Applying a first annealing treatment to the Sn-added β-Ga 2 O 3 crystal film in a first inert atmosphere;
For producing a β-Ga 2 O 3 -based single crystal film.
前記Snの原料として単体のSnが用いられる、
請求項1に記載のβ−Ga系単結晶膜の製造方法。
Single Sn is used as a raw material of the Sn.
Β-Ga 2 O 3 system method for producing a single crystal film according to claim 1.
前記β−Ga結晶を酸素系ガス雰囲気中でホモエピタキシャル成長させる、
請求項1又は2に記載のβ−Ga系単結晶膜の製造方法。
Homoepitaxially growing the β-Ga 2 O 3 crystal in an oxygen-based gas atmosphere;
Method for producing a β-Ga 2 O 3 single crystal film according to claim 1 or 2.
前記第1の不活性雰囲気は窒素雰囲気である、
請求項1〜3のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。
The first inert atmosphere is a nitrogen atmosphere;
Β-Ga 2 O 3 system method for producing a single crystal film according to any one of claims 1 to 3.
前記第1のアニール処理の温度を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、
請求項1〜4のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。
Controlling the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film by controlling the temperature of the first annealing treatment;
Β-Ga 2 O 3 system method for producing a single crystal film according to any one of claims 1 to 4.
前記第1のアニール処理の後、前記Sn添加β−Ga結晶膜に第2の不活性雰囲気又は酸素雰囲気中で第2のアニール処理を施す、
請求項1〜5のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。
After the first annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a second annealing treatment in a second inert atmosphere or oxygen atmosphere.
Β-Ga 2 O 3 system method for producing a single crystal film according to any one of claims 1 to 5.
前記第2のアニール処理の温度及び時間の少なくとも一方を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、
請求項6に記載のβ−Ga系単結晶膜の製造方法。
Controlling the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film by controlling at least one of the temperature and time of the second annealing treatment;
Β-Ga 2 O 3 system method for producing a single crystal film according to claim 6.
前記第1のアニール処理の後、前記Sn添加β−Ga結晶膜に酸素雰囲気中で第2のアニール処理を施し、
前記第1のアニール処理の後、かつ前記第2のアニール処理の前又は後、前記Sn添加β−Ga結晶膜に第2の不活性雰囲気中で第3のアニール処理を施し、
前記第2のアニール処理の温度及び時間の少なくとも一方及び前記第3のアニール処理の温度及び時間の少なくとも一方を制御することにより、前記Sn添加β−Ga結晶膜の電気伝導性を制御する、
請求項1〜5のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。
After the first annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a second annealing treatment in an oxygen atmosphere,
After the first annealing treatment and before or after the second annealing treatment, the Sn-added β-Ga 2 O 3 crystal film is subjected to a third annealing treatment in a second inert atmosphere,
By controlling at least one of the temperature and time of the second annealing treatment and at least one of the temperature and time of the third annealing treatment, the electrical conductivity of the Sn-added β-Ga 2 O 3 crystal film is controlled. To
Β-Ga 2 O 3 system method for producing a single crystal film according to any one of claims 1 to 5.
前記Sn添加β−Ga結晶膜中のSn濃度は1×1015〜1×1021/cmである、
請求項1〜8のいずれか1つに記載のβ−Ga系単結晶膜の製造方法。
The Sn concentration in the Sn-added β-Ga 2 O 3 crystal film is 1 × 10 15 to 1 × 10 21 / cm 3 .
Β-Ga 2 O 3 system method for producing a single crystal film according to any one of claims 1 to 8.
JP2011196431A 2011-09-08 2011-09-08 METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM Pending JP2013056803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196431A JP2013056803A (en) 2011-09-08 2011-09-08 METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196431A JP2013056803A (en) 2011-09-08 2011-09-08 METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM

Publications (1)

Publication Number Publication Date
JP2013056803A true JP2013056803A (en) 2013-03-28

Family

ID=48133029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196431A Pending JP2013056803A (en) 2011-09-08 2011-09-08 METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM

Country Status (1)

Country Link
JP (1) JP2013056803A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397305A (en) * 2013-08-06 2013-11-20 深圳先进技术研究院 Selenylation/sulfuration processing device
WO2015046006A1 (en) 2013-09-30 2015-04-02 株式会社タムラ製作所 METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
WO2016031633A1 (en) * 2014-08-29 2016-03-03 株式会社タムラ製作所 Semiconductor element and crystalline laminate structure
US10199512B2 (en) 2015-03-20 2019-02-05 Tamura Corporation High voltage withstand Ga2O3-based single crystal schottky barrier diode
CN110323291A (en) * 2019-04-22 2019-10-11 湖北大学 Based on (GaY)2O3High-gain solar blind UV detector of noncrystal membrane and preparation method thereof
US10538862B2 (en) 2015-03-20 2020-01-21 Tamura Corporation Crystal laminate structure
US11054793B2 (en) 2018-07-25 2021-07-06 Asahi Kasei Microdevices Corporation Learning processor, learning processing method, production method of compound semiconductor, and recording medium
CN113643960A (en) * 2021-06-07 2021-11-12 西安电子科技大学 A kind of β-Ga2O3 film based on pulse method and preparation method thereof
CN113871303A (en) * 2021-08-16 2021-12-31 西安电子科技大学 beta-Ga2O3Method for producing thin film and beta-Ga2O3Film(s)
JP2022051379A (en) * 2020-09-18 2022-03-31 株式会社デンソー Semiconductor devices and their manufacturing methods
US11347203B2 (en) 2018-07-24 2022-05-31 Asahi Kasei Microdevices Corporation Learning processor, learning processing method, production method of compound semiconductor, and recording medium
CN114574824A (en) * 2018-03-30 2022-06-03 Jx金属株式会社 Sputtering target member and method for producing same
CN114823977A (en) * 2022-04-25 2022-07-29 中国科学技术大学 Preparation method of gallium oxide photoelectric detector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397305A (en) * 2013-08-06 2013-11-20 深圳先进技术研究院 Selenylation/sulfuration processing device
US11982016B2 (en) 2013-09-30 2024-05-14 Tamura Corporation Method for growing beta-Ga2O3-based single crystal film, and crystalline layered structure
WO2015046006A1 (en) 2013-09-30 2015-04-02 株式会社タムラ製作所 METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
JP2016051794A (en) * 2014-08-29 2016-04-11 株式会社タムラ製作所 Semiconductor device and crystal laminate structure
CN107078063A (en) * 2014-08-29 2017-08-18 株式会社田村制作所 Semiconductor element and crystal stacked structure
US10861945B2 (en) 2014-08-29 2020-12-08 Tamura Corporation Semiconductor element and crystalline laminate structure
WO2016031633A1 (en) * 2014-08-29 2016-03-03 株式会社タムラ製作所 Semiconductor element and crystalline laminate structure
US10199512B2 (en) 2015-03-20 2019-02-05 Tamura Corporation High voltage withstand Ga2O3-based single crystal schottky barrier diode
EP3933935A1 (en) 2015-03-20 2022-01-05 Tamura Corporation High withstand voltage schottky barrier diode
US10538862B2 (en) 2015-03-20 2020-01-21 Tamura Corporation Crystal laminate structure
US11047067B2 (en) 2015-03-20 2021-06-29 Tamura Corporation Crystal laminate structure
CN114592175A (en) * 2018-03-30 2022-06-07 Jx金属株式会社 Sputtering target component and method of manufacturing the same
CN114574824A (en) * 2018-03-30 2022-06-03 Jx金属株式会社 Sputtering target member and method for producing same
US11347203B2 (en) 2018-07-24 2022-05-31 Asahi Kasei Microdevices Corporation Learning processor, learning processing method, production method of compound semiconductor, and recording medium
US11054793B2 (en) 2018-07-25 2021-07-06 Asahi Kasei Microdevices Corporation Learning processor, learning processing method, production method of compound semiconductor, and recording medium
CN110323291A (en) * 2019-04-22 2019-10-11 湖北大学 Based on (GaY)2O3High-gain solar blind UV detector of noncrystal membrane and preparation method thereof
JP2022051379A (en) * 2020-09-18 2022-03-31 株式会社デンソー Semiconductor devices and their manufacturing methods
CN113643960A (en) * 2021-06-07 2021-11-12 西安电子科技大学 A kind of β-Ga2O3 film based on pulse method and preparation method thereof
CN113643960B (en) * 2021-06-07 2024-03-19 西安电子科技大学 beta-Ga based on pulse method 2 O 3 Film and method for producing the same
CN113871303A (en) * 2021-08-16 2021-12-31 西安电子科技大学 beta-Ga2O3Method for producing thin film and beta-Ga2O3Film(s)
CN114823977A (en) * 2022-04-25 2022-07-29 中国科学技术大学 Preparation method of gallium oxide photoelectric detector
CN114823977B (en) * 2022-04-25 2024-02-23 中国科学技术大学 Preparation method of gallium oxide photoelectric detector

Similar Documents

Publication Publication Date Title
JP2013056803A (en) METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM
JP6108366B2 (en) Ga2O3 semiconductor device
CN103781948B (en) Crystal laminate structure and its manufacture method
JP6082700B2 (en) Method for producing Ga2O3-based crystal film
JP5866727B2 (en) Method for producing β-Ga2O3 single crystal film and crystal laminated structure
EP2765612B1 (en) Ga2O3 SEMICONDUCTOR ELEMENT
JP6142358B2 (en) Ga2O3 semiconductor device
CN110071170B (en) Crystal laminated structure
JP5176254B2 (en) p-type single crystal ZnO
JP6705962B2 (en) Ga2O3-based crystal film growth method and crystal laminated structure
WO2013035841A1 (en) Ga2O3 HEMT
JP2020189781A (en) Manufacturing procedure of p-type gallium oxide thin film by defect doping and its use
CN1133761C (en) Open pipe tellurium cadmium mercury epitaxial material heat treatment method
JP2013056804A (en) METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM AND LAMINATED CRYSTAL STRUCTURE
JP5382742B2 (en) Method for manufacturing single crystal substrate having off-angle
CN102534767B (en) Na-mixing method for growing p-type ZnO single crystal film
CN103031597A (en) The method of growing p-ZnO film by Na-Be co-doping
KR101040138B1 (en) Method for forming zinc oxide based thin films doped with silver and group II elements and thin films formed using the same
CN101691670B (en) Method for growing P-type zinc oxide film by using target doped with zinc phosphate
CN102586867A (en) Method for preparing zinc oxide single crystal film by using iron oxide buffer layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405