[go: up one dir, main page]

JP2013053368A - Steel product for high heat input welding - Google Patents

Steel product for high heat input welding Download PDF

Info

Publication number
JP2013053368A
JP2013053368A JP2012168398A JP2012168398A JP2013053368A JP 2013053368 A JP2013053368 A JP 2013053368A JP 2012168398 A JP2012168398 A JP 2012168398A JP 2012168398 A JP2012168398 A JP 2012168398A JP 2013053368 A JP2013053368 A JP 2013053368A
Authority
JP
Japan
Prior art keywords
mass
less
steel
heat input
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168398A
Other languages
Japanese (ja)
Inventor
Seiji Nabeshima
誠司 鍋島
Tomoyuki Yokota
智之 横田
Yoshiaki Murakami
善明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012168398A priority Critical patent/JP2013053368A/en
Publication of JP2013053368A publication Critical patent/JP2013053368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

【課題】造船、建築、土木等の各種構造物で使用される鋼材、特に溶接入熱量が300kJ/cmを超える大入熱溶接に適した鋼材を提供する。
【解決手段】鋼成分組成がmass%でC:0.03〜0.10%、Si:0.01〜0.15%、Mn:0.2〜2.5%、P:0.008%以下、S:0.0005〜0.0040%、Al:0.003%以下、Nb:0.003〜0.03%、Ti:0.010〜0.080%、Cr:2.5〜6.0%、N:0.0020〜0.0100%、B:0.0003〜0.0025%、O:0.0025〜0.0120%、必要に応じてCu、Ni、Mo、V、Ca、Mg、Zr、REMの一種または二種以上を含有し、残部Fe及び不可避的不純物からなり、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm以上で、溶接入熱量300kJ/cm超えのボンド近傍の熱影響部組織における旧オーステナイト粒径が150μm以下である鋼材。
【選択図】なし
The present invention provides a steel material used in various structures such as shipbuilding, construction, and civil engineering, particularly a steel material suitable for high heat input welding with a heat input of welding exceeding 300 kJ / cm.
SOLUTION: Steel composition is mass%, C: 0.03-0.10%, Si: 0.01-0.15%, Mn: 0.2-2.5%, P: 0.008% Hereinafter, S: 0.0005 to 0.0040%, Al: 0.003% or less, Nb: 0.003 to 0.03%, Ti: 0.010 to 0.080%, Cr: 2.5 to 6 0.0%, N: 0.0020 to 0.0100%, B: 0.0003 to 0.0025%, O: 0.0025 to 0.0120%, Cu, Ni, Mo, V, Ca as necessary Number of oxide-containing inclusions containing Ti oxide and / or Ti having a particle size of 1 μm or less in steel, containing one or more of Mg, Zr, REM, balance Fe and inevitable impurities a density of 300 pieces / mm 2 or more, the thermal influence of the bond near beyond the welding heat input 300 kJ / cm Steel prior austenite grain size in a tissue is 150μm or less.
[Selection figure] None

Description

本発明は、造船、建築、土木等の各種構造物で使用される鋼材、特に溶接入熱量が300kJ/cmを超える大入熱溶接に適した鋼材に関する。   The present invention relates to a steel material used in various structures such as shipbuilding, construction, and civil engineering, and more particularly to a steel material suitable for high heat input welding with a welding heat input exceeding 300 kJ / cm.

造船、建築、土木等の分野で使用される鋼材は、一般に、溶接接合により所望の形状の構造物に仕上げられる。これらの構造物においては、安全性の観点から、使用される鋼材の母材靱性はもちろんのこと、溶接部の靱性に優れることが要請されている。   Steel materials used in the fields of shipbuilding, construction, civil engineering and the like are generally finished into a structure having a desired shape by welding. In these structures, from the viewpoint of safety, not only the base material toughness of the steel material used but also the toughness of the welded portion is required to be excellent.

一方で、これら構造物や船舶はますます大型化し、使用される鋼材の高強度化・厚肉化に伴い、溶接施工にはサブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの高能率な大入熱溶接が適用されている。このため、大入熱溶接により溶接施工したときに、溶接部の靱性に優れた鋼材が必要となっている。
しかし、一般に、溶接入熱量が大きくなると、溶接熱影響部(熱影響部、HAZということもある)の組織が粗大化するために、溶接熱影響部の靱性(HAZ靭性ということもある)は低下することが知られている。このような大入熱溶接による靱性の低下に対して、これまでにも多くの対策が提案されてきた。例えば、TiNの微細分散によるオーステナイト粒の粗大化抑制やフェライト変態核としての作用を利用する技術はすでに実用化されている。
On the other hand, these structures and ships are becoming larger and more efficient, such as submerged arc welding, electrogas welding, and electroslag welding, as the steel materials used become stronger and thicker. Heat input welding is applied. For this reason, when welding is performed by high heat input welding, a steel material excellent in toughness of the welded portion is required.
However, generally, when the heat input of welding becomes large, the structure of the weld heat affected zone (heat affected zone, sometimes HAZ) becomes coarse, so the toughness of the weld heat affected zone (sometimes called HAZ toughness) It is known to decline. Many countermeasures have been proposed for the reduction of toughness due to such high heat input welding. For example, a technology that uses austenite grain coarsening suppression and action as a ferrite transformation nucleus by fine dispersion of TiN has already been put into practical use.

しかしながら、TiNを主体に利用する技術では、TiNが溶解する温度域に加熱される溶接熱影響部においてはTiが有する上記のオーステナイト粒粗大化抑制効果がなくなり、さらには地の組織が固溶Tiおよび固溶Nにより脆化して靱性が著しく低下するという問題があった。   However, in the technique mainly using TiN, the above-described austenite grain coarsening suppressing effect of Ti is lost in the weld heat affected zone heated to a temperature range where TiN dissolves, and the ground structure is dissolved in Ti. Further, there is a problem that the toughness is remarkably lowered due to embrittlement by the solute N.

また、Ti酸化物を利用する技術として、Alを無添加とし、微量のTiを添加することにより、Ti酸化物を分散させて熱影響部靭性を改善することが特許文献1、特許文献2、特許文献3に記載されているが、Ti酸化物を均一微細に分散させることが困難で、現在に至るまで解決されていない。   Further, as a technique using Ti oxide, it is possible to disperse Ti oxide and improve heat-affected zone toughness by adding no trace of Al and adding a small amount of Ti. Although described in Patent Document 3, it is difficult to uniformly and finely disperse the Ti oxide, and it has not been solved until now.

特開昭57−51243号公報JP 57-51243 A 特開平7−278738号公報Japanese Patent Laid-Open No. 7-278738 特開平6−293935号公報JP-A-6-293935

本発明は、上記の現状に鑑みてなされたものであり、Ti酸化物、Tiを含む酸化物含有介在物を鋼中に数多く微細分散させ、微細酸化物によるピニング効果によりオーステナイト粒の粗大化を抑制し、溶接熱影響部のHAZ靭性を向上させた、溶接入熱量が300kJ/cmを超える大入熱溶接で優れたHAZ靭性を備える大入熱溶接用鋼材を提供することを目的とする。   The present invention has been made in view of the above situation, and Ti oxides and many oxide-containing inclusions containing Ti are finely dispersed in steel, and austenite grains are coarsened by the pinning effect of the fine oxides. An object of the present invention is to provide a steel material for high heat input welding that has excellent HAZ toughness in high heat input welding in which the amount of welding heat input exceeds 300 kJ / cm and suppresses and improves the HAZ toughness of the weld heat affected zone.

本発明者らは、降伏強度が460N/mmの高強度鋼を対象に、溶接入熱量が300kJ/cmを超える大入熱溶接熱影響部の靭性を向上させるべく鋭意検討を行い、その結果、1.HAZ靭性を向上させるオーステナイト粒の粗大化抑制には、Ti酸化物および/またはTiを含む酸化物含有介在物(Ti含有酸化物とも言う)によるオーステナイト粒のピニングが効果的であり、2.その効果を十分に発揮するためにはTi酸化物、Ti含有酸化物を300個/mm以上に微細分散させる必要があり、3.そのためには鋼中Cr濃度を高めることが有効であることを見出した。本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.鋼成分組成が、C:0.03〜0.10mass%、Si:0.01〜0.15mass%、Mn:0.2〜2.5mass%、P:0.008mass%以下、S:0.0005〜0.0040mass%、Al:0.003mass%以下、Nb:0.003〜0.03mass%、Ti:0.010〜0.080mass%、Cr:2.5〜6.0mass%、N:0.0020〜0.0100mass%、B:0.0003〜0.0025mass%、O:0.0025〜0.0120mass%を含有し、残部Fe及び不可避的不純物からなり、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm以上で、溶接入熱量300kJ/cm超えのボンド近傍の熱影響部組織における旧オーステナイト粒径が150μm以下であることを特徴とする大入熱溶接用鋼材。
2.上記成分組成に加えてさらに、Cu:1.0mass%以下、Ni:1.0mass%以下、Mo:0.4mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする1に記載の大入熱溶接用鋼材。
3.上記成分組成に加えてさらに、V:0.03mass%以下を含有することを特徴とする1または2に記載の大入熱溶接用鋼材。
4.上記成分組成に加えてさらにCa:0.0003〜0.0030mass%、Mg:0.0002〜0.0020mass%、Zr:0.001〜0.02mass%、REM:0.001〜0.02mass%のうちから選ばれる1種または2種以上を含有することを特徴とする1乃至3のいずれか一つに記載の大入熱溶接用鋼材。
The present inventors conducted intensive studies to improve the toughness of the high heat input heat affected zone where the welding heat input exceeds 300 kJ / cm, targeting high strength steel with a yield strength of 460 N / mm 2. 1. Pinning of austenite grains by Ti oxide and / or oxide-containing inclusions containing Ti (also referred to as Ti-containing oxides) is effective in suppressing the coarsening of austenite grains to improve HAZ toughness. In order to exhibit the effect sufficiently, it is necessary to finely disperse Ti oxide and Ti-containing oxide to 300 pieces / mm 2 or more. For this purpose, it was found that increasing the Cr concentration in the steel is effective. The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. Steel composition is C: 0.03-0.10 mass%, Si: 0.01-0.15 mass%, Mn: 0.2-2.5 mass%, P: 0.008 mass% or less, S: 0.00. 0005 to 0.0040 mass%, Al: 0.003 mass% or less, Nb: 0.003 to 0.03 mass%, Ti: 0.010 to 0.080 mass%, Cr: 2.5 to 6.0 mass%, N: 0.0020 to 0.0100 mass%, B: 0.0003 to 0.0025 mass%, O: 0.0025 to 0.0120 mass%, consisting of the remainder Fe and unavoidable impurities, particle size in steel of 1 μm the following Ti oxide and / or the number density of the oxide-containing inclusions containing Ti is 300 / mm 2 or more, the weld heat input 300 kJ / cm beyond the vicinity of the bond of the heat-affected zone structure Definitive large heat input welding steel material, wherein the prior austenite grain size is 150μm or less.
2. In addition to the above component composition, it further comprises Cu: 1.0 mass% or less, Ni: 1.0 mass% or less, Mo: 0.4 mass% or less, which is selected from one or more. The steel material for large heat input welding according to 1.
3. The steel material for high heat input welding according to 1 or 2, further containing V: 0.03 mass% or less in addition to the above component composition.
4). In addition to the above component composition, Ca: 0.0003 to 0.0030 mass%, Mg: 0.0002 to 0.0020 mass%, Zr: 0.001 to 0.02 mass%, REM: 0.001 to 0.02 mass% The steel material for high heat input welding according to any one of 1 to 3, wherein the steel material contains one or more selected from among the above.

本発明によれば、300kJ/cmを超える大入熱溶接を行っても優れた溶接熱影響部靱性を有する鋼材が得られるので、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの大入熱溶接により施工される大型の構造物の品質向上に寄与するところ大である。   According to the present invention, a steel material having excellent weld heat-affected zone toughness can be obtained even when high heat input welding exceeding 300 kJ / cm is performed. Therefore, high heat input such as submerged arc welding, electrogas welding, electroslag welding, etc. It greatly contributes to improving the quality of large structures constructed by welding.

本発明では、成分組成とミクロ組織を規定する。
[成分組成]
C:0.03〜0.10mass%
C量は、構造用鋼として必要な強度を得るために0.03mass%以上が必要であるが、一方、0.10mass%を超えると溶接時のHAZ部に島状マルテンサイトの生成量が増加し靭性が劣化するため、0.03〜0.10mass%とする。
In the present invention, the component composition and the microstructure are defined.
[Ingredient composition]
C: 0.03-0.10 mass%
The amount of C needs to be 0.03 mass% or more in order to obtain the strength required for structural steel. On the other hand, if it exceeds 0.10 mass%, the amount of island martensite generated in the HAZ part during welding increases. Since the toughness deteriorates, the content is set to 0.03 to 0.10 mass%.

Si:0.01〜0.15mass%
Siは、製鋼上0.01mass%以上が必要であるが、一方、0.15mass%を超えると、母材の靱性、大入熱溶接熱影響部の靱性を劣化させるため、0.01〜0.15mass%とする。
Si: 0.01-0.15 mass%
Si needs to be 0.01 mass% or more on steel making. On the other hand, if it exceeds 0.15 mass%, the toughness of the base metal and the heat-affected zone of the high heat input welding are deteriorated. .15 mass%.

Mn:0.2〜2.5mass%
Mnは母材の強度を確保するために必要な元素であり、その効果を発揮させるためには0.2mass%以上含有させる。しかし、2.5mass%を超えると逆に溶接部の靱性を劣化させるようになるため、0.2〜2.5mass%とする。好ましくは、0.5〜2.5mass%とする。
Mn: 0.2 to 2.5 mass%
Mn is an element necessary for securing the strength of the base material, and is contained in an amount of 0.2 mass% or more in order to exert its effect. However, if it exceeds 2.5 mass%, the toughness of the welded portion is deteriorated conversely, so 0.2 to 2.5 mass%. Preferably, it is 0.5 to 2.5 mass%.

P:0.008mass%以下、S:0.0005〜0.0040mass%
Pは本発明において不可避的不純物で、Pを0.008mass%を超えて含有すると鋼材の靱性が劣化するため、0.008mass%以下とする。Sは、本発明において不可避的不純物であるが、所要のMnSあるいはCaSを生成するために0.0005mass%以上を含有させるが、0.0040mass%を超えると母材の靱性を劣化させるため、0.0005〜0.0040mass%とする。
P: 0.008 mass% or less, S: 0.0005 to 0.0040 mass%
P is an unavoidable impurity in the present invention, and if P is contained in excess of 0.008 mass%, the toughness of the steel material deteriorates, so the content is made 0.008 mass% or less. Although S is an unavoidable impurity in the present invention, S is contained in an amount of 0.0005 mass% or more in order to produce the required MnS or CaS, but if it exceeds 0.0040 mass%, the toughness of the base material is deteriorated. 0005 to 0.0040 mass%.

Al:0.003mass%以下
Alは本発明において不可避的不純物で、Ti酸化物、Ti含有酸化物を生成させ、凝固時に微細に酸化物を分散させるため、極力含有しないようにするが、0.003mass%までなら含有してもよい。
Al: 0.003 mass% or less Al is an unavoidable impurity in the present invention, and Ti oxide and Ti-containing oxide are generated and the oxide is finely dispersed during solidification. It may be contained up to 003 mass%.

Cr:2.5〜6.0mass%
Crは、平均粒径1μm以下の酸化物個数を増加し、介在物を微細に分散させる上で重要であり、2.5mass%以上、望ましくは3.0mass%以上含有させることが重要である。一方、6.0mass%以上に添加すると靱性に悪影響を与えるために上限を6.0mass%とする。
Cr: 2.5-6.0 mass%
Cr is important for increasing the number of oxides having an average particle size of 1 μm or less and finely dispersing inclusions, and it is important to contain 2.5 mass% or more, preferably 3.0 mass% or more. On the other hand, if added to 6.0 mass% or more, the toughness is adversely affected, so the upper limit is made 6.0 mass%.

Ti脱酸系成分組成を基本成分系とし、Cr添加量を変化させた供試鋼を用いて溶鋼中のCr濃度と酸化物個数の関係を調査した。その結果、溶鋼中のCr濃度を増加させると、凝固前の溶存酸素濃度が増加し、凝固時に生成する酸化物個数が著しく増加し、大入熱溶接時においてTi酸化物によるピニングの効果が働き、溶接ボンド部近傍のオーステナイト粒の成長が抑制される結果を得た。   The relationship between the Cr concentration in the molten steel and the number of oxides was investigated using a test steel in which the Ti deoxidation component composition was the basic component system and the Cr addition amount was changed. As a result, when the Cr concentration in the molten steel is increased, the dissolved oxygen concentration before solidification is increased, the number of oxides generated during solidification is remarkably increased, and the effect of pinning by Ti oxide works during high heat input welding. As a result, the growth of austenite grains in the vicinity of the weld bond was suppressed.

Cr濃度が高くなると、溶鋼中の酸素の活量係数が増大し、溶鋼中Ti濃度と平衡する酸素活量に対する溶存酸素濃度が増加する。その結果、凝固時に生成する脱酸生成物量は増加し、鋼中に存在するTi酸化物、Tiを含む酸化物含有介在物の個数密度が増大し、酸化物含有介在物を微細分散するものと推測される。   When the Cr concentration increases, the activity coefficient of oxygen in the molten steel increases, and the dissolved oxygen concentration with respect to the oxygen activity in equilibrium with the Ti concentration in the molten steel increases. As a result, the amount of deoxidation products produced during solidification increases, the number density of Ti-containing oxides and oxide-containing inclusions containing Ti increases, and the oxide-containing inclusions are finely dispersed. Guessed.

Nb:0.003〜0.03mass%
Nbは、母材の強度・靱性および継手の強度を確保するのに有効な元素であるが、0.003mass%未満ではその効果が小さい。一方、0.03mass%を超えて含有すると溶接熱影響部の靱性が劣化する。望ましくは0.02mass%以下とする。
Nb: 0.003 to 0.03 mass%
Nb is an element effective for ensuring the strength and toughness of the base material and the strength of the joint, but the effect is small at less than 0.003 mass%. On the other hand, when it contains exceeding 0.03 mass%, the toughness of a heat affected zone will deteriorate. Desirably, it is 0.02 mass% or less.

Ti:0.010〜0.080mass%
本発明においてTiは脱酸のために0.010mass%以上を添加し、凝固時の二次脱酸生成物であるTi酸化物、Ti含有複合酸化物を分散させ、さらにTiNの析出により、溶接熱影響部でのオーステナイト粒の粗大化を抑制する。また、TiNはフェライト変態核となって靱性を向上させる。0.010mass%に満たないとその効果が少なく、一方、0.080mass%を超えると凝固前の鋼中溶存酸素濃度の低下によるTi酸化物量の減少、TiN粒子の粗大化によって期待する効果が得られなくなるため、0.010〜0.080mass%とする。
Ti: 0.010-0.080 mass%
In the present invention, Ti is added in an amount of 0.010 mass% or more for deoxidation, and the secondary deoxidation product during solidification is dispersed in Ti oxide and Ti-containing composite oxide. Suppresses the coarsening of austenite grains in the heat affected zone. TiN also becomes a ferrite transformation nucleus and improves toughness. If the amount is less than 0.010 mass%, the effect is small. On the other hand, if it exceeds 0.080 mass%, the expected effect is obtained by reducing the amount of Ti oxide due to the decrease in dissolved oxygen concentration in the steel before solidification, and coarsening of TiN particles. Therefore, it is set to 0.010 to 0.080 mass%.

B:0.0003〜0.0025mass%
Bは、溶接熱影響部でBNを生成して、固溶Nを低減するとともにフェライト変態核として作用する元素で溶接熱影響部靭性を向上させる。このような効果を得るため0.0003mass%以上を含有させるが、一方、0.0025mass%を超えて含有すると焼入れ性が増して靱性が劣化するため、0.0003〜0.0025mass%とする。
B: 0.0003 to 0.0025 mass%
B generates BN in the weld heat affected zone, reduces solid solution N, and improves the weld heat affected zone toughness with an element that acts as a ferrite transformation nucleus. In order to acquire such an effect, 0.0003 mass% or more is contained. On the other hand, if it exceeds 0.0025 mass%, the hardenability is increased and the toughness is deteriorated, so that the content is set to 0.0003 to 0.0025 mass%.

O:0.0025〜0.0120mass%
Oは、微細酸化物を確保するために必要で、300個/mm以上の酸化物含有介在物の個数密度にするため0.0025mass%以上、望ましくは0.0035mass%以上を含有させることが必要であるが、0.0120mass%を超えて含有させると粗大介在物が生成し、靭性の低下を招くため、0.0025〜0.0120mass%とする。
O: 0.0025 to 0.0120 mass%
O is necessary for securing a fine oxide, and is 0.0025 mass% or more, preferably 0.0035 mass% or more in order to obtain a number density of oxide-containing inclusions of 300 / mm 2 or more. Although it is necessary, if it is contained in excess of 0.0120 mass%, coarse inclusions are generated and the toughness is reduced, so 0.0025 to 0.0120 mass%.

N:0.0020〜0.0100mass%
Nは、TiNの必要量を確保するうえで必要な元素で鋼中に含有されるが、0.0020mass%未満の含有では十分なTiN量が得られず、一方、0.0100mass%超えると、TiNが溶解する領域での固溶N量の増加によって靱性が著しく低下するため、0.0020〜0.0100mass%、好ましくは0.0020〜0.0080mass%とする。
N: 0.0020 to 0.0100 mass%
N is an element necessary for securing the necessary amount of TiN, but is contained in the steel, but if the content is less than 0.0020 mass%, a sufficient amount of TiN cannot be obtained. On the other hand, if it exceeds 0.0100 mass%, Since the toughness is remarkably lowered by increasing the amount of solid solution N in the region where TiN is dissolved, the content is set to 0.0020 to 0.0100 mass%, preferably 0.0020 to 0.0080 mass%.

以上が基本成分組成であるが、本発明では、さらに強度向上などの機能を有するCu、Ni、Moから選ばれる少なくとも1種または2種以上、および/またはVを含有させることができる。   The above is the basic component composition, but in the present invention, at least one or more selected from Cu, Ni, and Mo having functions such as strength improvement, and / or V can be contained.

Cu:1.0mass%以下
Cuは、母材の高強度化に有効な元素であるが、多量に添加すると靱性に悪影響を与えるために添加する場合は、上限を1.0 mass%とする。
Cu: 1.0 mass% or less Cu is an element effective for increasing the strength of the base material. However, when added in a large amount, it has an adverse effect on toughness, so the upper limit is set to 1.0 mass%.

Ni:1.0mass%以下
Niは、母材の高強度化に有効な元素であるが、多量に添加すると靱性に悪影響を与えるために添加する場合は、上限を1.0mass%とする。
Ni: 1.0 mass% or less Ni is an element effective for increasing the strength of the base material. However, if added in a large amount, the upper limit is set to 1.0 mass% when added in order to adversely affect toughness.

Mo:0.4mass%以下
Moは、母材の高強度化に有効な元素であるが、多量に添加すると靱性に悪影響を与えるために添加する場合は、上限を0.4mass%とする。望ましくは0.1mass%以下である。
Mo: 0.4 mass% or less Mo is an element effective for increasing the strength of the base material. However, when added in a large amount, it has an adverse effect on toughness, so the upper limit is made 0.4 mass%. Desirably, it is 0.1 mass% or less.

V:0.03mass%以下
Vは、母材の強度・靱性の向上およびVNを形成してフェライト生成核として作用するが、0.03mass%を超えると靱性の低下を招くようになるため添加する場合は、0.03mass%以下、望ましくは0.02mass%以下とする。
V: 0.03 mass% or less V increases the strength and toughness of the base metal and acts as a ferrite nucleation by forming VN. However, if it exceeds 0.03 mass%, V is added because it causes a decrease in toughness. In this case, it is 0.03 mass% or less, preferably 0.02 mass% or less.

また本発明では、さらにCa、Mg、Zr、REMから選ばれる少なくとも1種または2種以上を含有させることができる。   In the present invention, at least one selected from Ca, Mg, Zr, and REM can be further contained.

Ca:0.0003〜0.0030mass%
Caは、Sの固定、酸硫化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0003mass%以上の含有が必要で、一方、0.0030mass%を超えて含有しても効果が飽和するため、含有させる場合は、0.0003〜0.0030mass%とする。
Ca: 0.0003 to 0.0030 mass%
Ca is an element having an effect of improving toughness by fixing S and dispersing oxysulfides. In order to exert such an effect, it is necessary to contain at least 0.0003 mass% or more. On the other hand, even if contained over 0.0030 mass%, the effect is saturated. .0030 mass%.

Mg:0.0002〜0.0020mass%
Mgは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0002mass%以上の含有が必要で、一方、0.0020mass%を超えて含有しても効果が飽和するため、含有させる場合は、0.0002〜0.0020mass%とする。
Mg: 0.0002 to 0.0020 mass%
Mg is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is necessary to contain at least 0.0002 mass% or more. On the other hand, the effect is saturated even if contained in excess of 0.0020 mass%. 0020 mass%.

Zr:0.001〜0.02mass%
Zrは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.001mass%以上の含有が必要で、一方、0.02mass%を超えて含有しても効果が飽和するため、含有させる場合は、0.001〜0.02mass%とする。
Zr: 0.001 to 0.02 mass%
Zr is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is necessary to contain at least 0.001 mass% or more. On the other hand, the effect is saturated even if contained in excess of 0.02 mass%. .02 mass%.

REM:0.001〜0.02mass%
REMは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.001mass%以上の含有が必要で、一方、0.02mass%を超えて含有しても効果が飽和するため、含有させる場合は、0.001〜0.02mass%とする。
[ミクロ組織]
本発明では、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度を300個/mm以上とする。鋼中のTi酸化物および/またはTiを含む酸化物含有介在物が粒径1μm超えでは、オーステナイトのピニングに寄与しないため、粒径1μm以下とする。粒径は最大粒径とし、光学顕微鏡で観察可能な0.2μm以上とする。
REM: 0.001-0.02 mass%
REM is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is necessary to contain at least 0.001 mass% or more. On the other hand, the effect is saturated even if contained in excess of 0.02 mass%. .02 mass%.
[Microstructure]
In the present invention, the number density of Ti-containing oxides having a particle diameter of 1 μm or less and / or oxide-containing inclusions containing Ti in the steel is set to 300 pieces / mm 2 or more. When the oxide-containing inclusions containing Ti oxide and / or Ti in the steel have a particle size exceeding 1 μm, they do not contribute to austenite pinning, so the particle size is set to 1 μm or less. The particle size is the maximum particle size, 0.2 μm or more that can be observed with an optical microscope.

Ti酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm未満では、オーステナイトのピニングに寄与しないため、300個/mm以上とする。
また、溶接入熱量300kJ/cm超えで溶接された際のボンド部近傍の熱影響部組織における旧オーステナイト粒径を150μm以下とする。ボンド部近傍の熱影響部組織における旧オーステナイト粒径が150μm超えでは、ボンド部近傍の熱影響部で優れた靭性が得られないため、150μm以下とする。
If the number density of the oxide-containing inclusions containing Ti oxide and / or Ti is less than 300 pieces / mm 2 , it does not contribute to austenite pinning, so it is set to 300 pieces / mm 2 or more.
In addition, the prior austenite grain size in the heat affected zone structure in the vicinity of the bond portion when welding is performed with a welding heat input exceeding 300 kJ / cm is set to 150 μm or less. If the prior austenite grain size in the heat-affected zone structure near the bond portion exceeds 150 μm, excellent toughness cannot be obtained in the heat-affected zone near the bond portion.

ボンド部近傍の熱影響部とは、ボンド部から500μm以内の範囲の熱影響部を指す。ボンド部近傍の熱影響部の旧オーステナイト粒径は、溶接部の断面を研磨・エッチングし、光学顕微鏡で観察することで確認することができる。なお、ボンド部近傍の熱影響部の組織は、島状マルテンサイトやアシキュラーフェライトやベイナイトを主とし、フェライトやパーライトなどが含まれる組織である。   The heat-affected zone in the vicinity of the bond portion refers to a heat-affected zone in the range of 500 μm or less from the bond portion. The prior austenite grain size of the heat-affected zone in the vicinity of the bond portion can be confirmed by polishing / etching the cross section of the weld and observing with an optical microscope. The structure of the heat-affected zone in the vicinity of the bond portion is a structure mainly composed of island martensite, acicular ferrite, and bainite, and includes ferrite, pearlite, and the like.

本発明に係る大入熱溶接用鋼材は、Ti酸化物および/またはTiを含む酸化物含有介在物を鋼中に微細分散させるため、溶鋼をTi脱酸して、以下のように製造することが可能である。   The steel material for high heat input welding according to the present invention is manufactured as follows in order to finely disperse Ti oxide and / or oxide-containing inclusions containing Ti in the steel, and Ti deoxidize the molten steel. Is possible.

まず高炉から出銑した溶銑を溶銑予備処理にて(溶銑鍋、トーピードカー、または、転炉)脱P処理、脱S処理を行った後、転炉で精錬して脱炭、脱Pを行う。
その後、炉下、2次精錬での合金添加、Ti合金添加にて脱酸を行い、連続鋳造または造塊−分塊工程を経て鋼片とする。
First, hot metal discharged from the blast furnace is subjected to de-P treatment and de-S treatment in a hot metal pretreatment (hot metal ladle, torpedo car, or converter), and then refined in a converter to perform decarburization and de-P.
Then, deoxidation is performed by addition of an alloy in the secondary refining and addition of a Ti alloy in the furnace, and a steel slab is obtained through a continuous casting or ingot-bundling process.

得られた鋼片を再加熱し、熱間圧延後放冷するか、あるいは、また、前記熱間圧延後に、加速冷却、直接焼入れ−焼戻し、再加熱焼入れ−焼戻し、再加熱焼準−焼戻しなどの工程で製造する。熱間圧延後の冷却方法は所望する特性に応じて適宜選定する。   The obtained slab is reheated and allowed to cool after hot rolling, or after the hot rolling, accelerated cooling, direct quenching-tempering, reheating quenching-tempering, reheating normalizing-tempering, etc. It is manufactured by the process. The cooling method after hot rolling is appropriately selected according to the desired characteristics.

以下、本発明の作用効果を実施例を用いて具体的に説明する。   Hereinafter, the function and effect of the present invention will be specifically described with reference to examples.

150kgの高周波誘導溶解炉にて、種々の組成の鋼を溶製し、供試鋼を製造した。溶鋼中のC、P、S調整後、主要元素であるMn、Si、Cr、Ni、Cu、Vを添加した後、Tiにより溶鋼を脱酸した。その後Nb、Bなど添加した後に、Zr、REM、Ca、Mを添加した。   In a 150 kg high frequency induction melting furnace, steels of various compositions were melted to produce test steels. After adjusting C, P, and S in the molten steel, the main elements Mn, Si, Cr, Ni, Cu, and V were added, and then the molten steel was deoxidized with Ti. Then, after adding Nb, B, etc., Zr, REM, Ca, and M were added.

なお、N濃度を増加させる際には窒化Cr、窒化Mnにて調整を行った。得られた溶鋼を厚さ100mmの水冷鋳型で鋳造して鋼塊とした後、熱間圧延により厚さ50mmのスラブとし、1150℃に2時間加熱後、熱間圧延で板厚中心温度で850℃において30mmに仕上げた後、板厚中心で8℃/secの冷却速度で加速冷却した。   In addition, when increasing the N concentration, adjustment was performed with Cr nitride and Mn nitride. The obtained molten steel was cast into a steel ingot by casting with a water-cooled mold having a thickness of 100 mm, then a slab having a thickness of 50 mm was formed by hot rolling, heated to 1150 ° C. for 2 hours, and then hot-rolled at a sheet thickness center temperature of 850. After finishing to 30 mm at 0 ° C., accelerated cooling was performed at a cooling rate of 8 ° C./sec at the center of the plate thickness.

8℃/secの冷却速度は、60mmの板厚の1/4位置の冷却速度に相当する。得られた鋼板の一部からミクロ観察用の試料を採取し、圧延方向に対して垂直な横断面を、EPMAを用いて1000倍で観察し(観察視野面積は300mmに相当)、最大径が0.2μm以上、1μm以下の介在物について定性分析を行い、Tiと酸素を含有した介在物(窒化物、硫化物を含む)をTi酸化物、Tiを含む酸化物含有介在物としてその個数を数えて、個数密度(/mm)を求めた。 The cooling rate of 8 ° C./sec corresponds to the cooling rate at the 1/4 position of the plate thickness of 60 mm. A sample for micro observation was taken from a part of the obtained steel sheet, and a cross section perpendicular to the rolling direction was observed with a magnification of 1000 using EPMA (the observation visual field area was equivalent to 300 mm 2 ), and the maximum diameter Qualitative analysis is performed on inclusions of 0.2 μm or more and 1 μm or less, and the number of inclusions containing Ti and oxygen (including nitrides and sulfides) as Ti oxides and oxide-containing inclusions containing Ti The number density (/ mm 2 ) was determined.

また、鋼板の一部を500℃で10分焼き戻した後、溶接熱サイクル後の特性を測定するため、幅80mm×長さ80mm×厚み15mmの試験片を採取し、1450℃に加熱後800〜500℃を270secで冷却(エレクトロガス溶接での入熱量400kJ/cmのボンド部近傍の溶接熱影響部に相当)する再現溶接熱サイクルを付与し、靱性を2mmVノッチシャルピー試験にて評価した。   In addition, after tempering a part of the steel plate at 500 ° C. for 10 minutes, a test piece having a width of 80 mm × length of 80 mm × thickness of 15 mm was taken and measured after heating to 1450 ° C. in order to measure the characteristics after the welding heat cycle. A reproducible welding heat cycle was applied to which cooling was performed at ˜500 ° C. at 270 sec (corresponding to a weld heat affected zone in the vicinity of a bond portion having an input heat amount of 400 kJ / cm in electrogas welding), and toughness was evaluated by a 2 mm V notch Charpy test.

再現溶接熱影響部における旧オーステナイト粒径は、ナイタールエッチングによりミクロ組織を現出したのち、5箇所について光学顕微鏡で100倍で撮影した写真における旧オーステナイト粒径をトレースし、画像解析によりその平均値を求めることを行い、5箇所分の平均値を旧オーステナイト粒径とした。   The prior austenite grain size in the reproducible weld heat-affected zone is obtained by tracing the old austenite grain size in photographs taken at 100 times with an optical microscope after revealing the microstructure by nital etching, and the average by image analysis The value was obtained, and the average value for five locations was defined as the prior austenite grain size.

表1に、供試鋼の化学成分、1μm以下のTi酸化物、Tiを含む酸化物含有介在物(表中、介在物個数(個/mm))、旧オーステナイト粒径(表中、旧γ粒径)、溶接熱影響部の靱性(表中、vTrs(℃))を示す。 Table 1 shows the chemical composition of the test steel, Ti oxide of 1 μm or less, oxide-containing inclusions containing Ti (in the table, the number of inclusions (pieces / mm 2 )), the prior austenite grain size (in the table, the old γ grain size) and toughness of weld heat-affected zone (vTrs (° C.) in the table).

表1から、発明例(No.1〜16)ではいずれも旧オーステナイト粒径が150μm以下となっており、vTrs(℃)が−55℃以下と良好な溶接熱影響部靱性が得られた。これに対し、比較例(No.17〜28)では化学成分が本発明範囲外で、旧オーステナイト粒径および/または、Ti酸化物、Tiを含む酸化物含有介在物の個数が本発明範囲外でvTrs(℃)が−30℃以上と溶接熱影響部の靱性が劣っている。   From Table 1, in the inventive examples (Nos. 1 to 16), the prior austenite grain size was 150 μm or less, and vTrs (° C.) was −55 ° C. or less and good weld heat affected zone toughness was obtained. On the other hand, in the comparative examples (Nos. 17 to 28), the chemical components are outside the scope of the present invention, and the prior austenite grain size and / or the number of Ti-containing oxide-containing inclusions are outside the scope of the present invention. And vTrs (° C.) is −30 ° C. or higher, and the toughness of the weld heat affected zone is inferior.

Figure 2013053368
Figure 2013053368

Claims (4)

鋼成分組成が、C:0.03〜0.10mass%、Si:0.01〜0.15mass%、Mn:0.2〜2.5mass%、P:0.008mass%以下、S:0.0005〜0.0040mass%、Al:0.003mass%以下、Nb:0.003〜0.03mass%、Ti:0.010〜0.080mass%、Cr:2.5〜6.0mass%、N:0.0020〜0.0100mass%、B:0.0003〜0.0025mass%、O:0.0025〜0.0120mass%を含有し、残部Fe及び不可避的不純物からなり、鋼中の、粒径1μm以下のTi酸化物および/またはTiを含む酸化物含有介在物の個数密度が300個/mm以上で、溶接入熱量300kJ/cm超えのボンド部近傍の熱影響部組織における旧オーステナイト粒径が150μm以下であることを特徴とする大入熱溶接用鋼材。 Steel composition is C: 0.03-0.10 mass%, Si: 0.01-0.15 mass%, Mn: 0.2-2.5 mass%, P: 0.008 mass% or less, S: 0.00. 0005 to 0.0040 mass%, Al: 0.003 mass% or less, Nb: 0.003 to 0.03 mass%, Ti: 0.010 to 0.080 mass%, Cr: 2.5 to 6.0 mass%, N: 0.0020 to 0.0100 mass%, B: 0.0003 to 0.0025 mass%, O: 0.0025 to 0.0120 mass%, consisting of the remainder Fe and unavoidable impurities, particle size in steel of 1 μm the following Ti oxide and / or the number density of the oxide-containing inclusions containing Ti is at 300 / mm 2 or more, the weld heat input 300 kJ / cm beyond the bond portion near the heat affected zone assembly Steel for high heat input welding, wherein the prior austenite grain size is 150μm or less in. 上記成分組成に加えてさらに、Cu:1.0mass%以下、Ni:1.0mass%以下、Mo:0.4mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の大入熱溶接用鋼材。   In addition to the above component composition, it further comprises Cu: 1.0 mass% or less, Ni: 1.0 mass% or less, Mo: 0.4 mass% or less, which is selected from one or more. The steel for high heat input welding according to claim 1. 上記成分組成に加えてさらに、V:0.03mass%以下を含有することを特徴とする請求項1または請求項2に記載の大入熱溶接用鋼材。   The steel material for high heat input welding according to claim 1 or 2, further comprising V: 0.03 mass% or less in addition to the above component composition. 上記成分組成に加えてさらにCa:0.0003〜0.0030mass%、Mg:0.0002〜0.0020mass%、Zr:0.001〜0.02mass%、REM:0.001〜0.02mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の大入熱溶接用鋼材。   In addition to the above component composition, Ca: 0.0003 to 0.0030 mass%, Mg: 0.0002 to 0.0020 mass%, Zr: 0.001 to 0.02 mass%, REM: 0.001 to 0.02 mass% The steel material for high heat input welding according to any one of claims 1 to 3, comprising one or more selected from among the above.
JP2012168398A 2011-08-10 2012-07-30 Steel product for high heat input welding Pending JP2013053368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168398A JP2013053368A (en) 2011-08-10 2012-07-30 Steel product for high heat input welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011174440 2011-08-10
JP2011174440 2011-08-10
JP2012168398A JP2013053368A (en) 2011-08-10 2012-07-30 Steel product for high heat input welding

Publications (1)

Publication Number Publication Date
JP2013053368A true JP2013053368A (en) 2013-03-21

Family

ID=48130620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168398A Pending JP2013053368A (en) 2011-08-10 2012-07-30 Steel product for high heat input welding

Country Status (1)

Country Link
JP (1) JP2013053368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150226A (en) * 2021-12-06 2022-03-08 东北大学 Large heat input welding resistant steel plate and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150226A (en) * 2021-12-06 2022-03-08 东北大学 Large heat input welding resistant steel plate and production method thereof

Similar Documents

Publication Publication Date Title
JP5076658B2 (en) Steel material for large heat input welding
DK2434027T3 (en) Steel materials for welding with high heat input
JP5079793B2 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
KR20190134704A (en) High Mn steel and its manufacturing method
JPWO2011065479A1 (en) High-strength ultra-thick H-section steel and its manufacturing method
KR101612660B1 (en) Process for producing tapered plate
CN103987869B (en) High heat input welding steel
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP6418418B2 (en) Steel material for large heat input welding
JP5849892B2 (en) Steel material for large heat input welding
JP5772620B2 (en) Tapered plate manufacturing method
JP5233365B2 (en) Steel material for large heat input welding
JP2009242852A (en) Steel member for high-heat input welding
JP5126375B2 (en) Steel material for large heat input welding
CN104145038B (en) High input energy welding steel material
JP2013053368A (en) Steel product for high heat input welding
JP2013036102A (en) Steel material for heavy heat input welding
JP5493557B2 (en) Steel material for large heat input welding
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
JP7205067B2 (en) Non-heat treated steel for induction hardening
TWI551387B (en) Large heat into the welding steel
JP2019157195A (en) Non-modified steel for high frequency induction hardening
JP2014189803A (en) Thick high strength steel plate for large heat- input welding