[go: up one dir, main page]

JP2013046268A - クロック分周装置 - Google Patents

クロック分周装置 Download PDF

Info

Publication number
JP2013046268A
JP2013046268A JP2011183250A JP2011183250A JP2013046268A JP 2013046268 A JP2013046268 A JP 2013046268A JP 2011183250 A JP2011183250 A JP 2011183250A JP 2011183250 A JP2011183250 A JP 2011183250A JP 2013046268 A JP2013046268 A JP 2013046268A
Authority
JP
Japan
Prior art keywords
circuit
clock
input
frequency dividing
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011183250A
Other languages
English (en)
Inventor
Hiroyuki Ide
裕之 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011183250A priority Critical patent/JP2013046268A/ja
Priority to US13/592,994 priority patent/US20130049820A1/en
Publication of JP2013046268A publication Critical patent/JP2013046268A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/02Input circuits
    • H03K21/026Input circuits comprising logic circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/08Output circuits
    • H03K21/12Output circuits with parallel read-out

Abstract

【課題】緩い制約条件の下で、複数の分周回路の分周動作開始タイミングを揃える。
【解決手段】ゲート信号生成回路14は、分周回路11及び12のリセット信号入力点B及びCに入力されるべきリセット信号を入力点Fにて受け、入力点Fでのリセット信号を数クロックサイクルだけ遅延させた信号をゲート信号として出力する。ゲート回路13は、自身に入力されるソースクロックを出力点hから出力するか否かをゲート信号に応じて制御する。出力点hから出力されたソースクロックは、ゲーテッドクロックとして分周回路11及び12のクロック入力点b及びcに入力される。入力点B及びCへのリセット信号によって各分周回路のリセットが解除され各分周回路の分周動作が許可された後に、ソースクロック(ゲーテッドクロック)が入力点b及びcに入力されるよう、リセット信号の遅延によるゲート信号生成及びゲート回路制御が成される。
【選択図】図1

Description

本発明は、複数の分周回路を有するクロック分周装置に関する。
DLL(Delay-Locked Loop)を使用している回路など、クロックの波形品質に比較的強い制約(例えば、ジッタの大きさを相当に微小にするという制約)が課された回路では、配線がジッタに与える影響をできるだけ小さくするために、その回路が必要とするクロックを生成する分周回路を、対象となる回路になるだけ近づけて配置する。
分周回路にて生成される分周クロック及びそれと同期関係が必要なクロックが、対象となる回路だけで使用される場合においては、分周回路に用いられるリセット回路は非同期リセット回路1つでよい。ところが、別回路でも分周クロックが使用され、且つ、その別回路でもまた、波形品質に比較的強い制約がある場合、同様の分周回路が複数必要になる。この際、複数の分周回路に対するリセット回路が非同期リセット回路のままであると、リセットが解除されて分周動作を開始するときのクロックエッジが、複数の分周回路間で異なる可能性が出てくる。
このことを、図6及び図7を用いて説明する。図6のクロック分周装置では、同一のクロックと同一のリセット信号が、第1分周回路811及び第2分周回路812に共通入力される。ソースクロックは、分岐点aにて分岐した後に、分周回路811及び812のクロック入力点b及びcに入力される。リセット信号は、分岐点Aにて分岐した後に、分周回路811及び812のリセット信号入力点B及びCに入力される。図7は、図6のクロック分周装置におけるタイミングチャートである。図7において、分岐点aでのクロックの立ち上がりタイミングTa2〜Ta5は、夫々、入力点bでのクロックの立ち上がりタイミングTb2〜Tb5に対応し且つ入力点cでのクロックの立ち上がりタイミングTc2〜Tc5に対応している。
クロックエッジ841が遅延したものがクロックエッジ851に相当し、クロックエッジ842が遅延したものがクロックエッジ852に相当する。図7において、クロックエッジ851は、分周回路811のリセットが解除された直後の、入力点bでのクロックエッジを表し、クロックエッジ852は、分周回路812のリセットが解除された直後の、入力点cでのクロックエッジを表している。従って、分周回路811はクロックエッジ851(タイミングTb3)から分周動作を開始する一方で、分周回路812はクロックエッジ852(タイミングTc4)から分周動作を開始する。即ち、図7の例では、分周動作開始に対応するクロックエッジが、分周回路811及び812間で異なっている。
分周動作を開始させるソースクロックのエッジを複数の分周回路間で安定的に同じにするためには、クロックとリセット信号の配線遅延を調整して、各分周回路に到達するリセット信号のタイミングを揃える必要がある。即ち、共通の隣接クロックエッジ間にリセット信号のエッジが到達するように(例えば、入力点Bに対してはクロックエッジタイミングTb2及びTb3間にリセット信号のエッジが到達し、且つ、入力点Cに対してはクロックエッジタイミングTc2及びTc3間にリセット信号のエッジが到達するように)配線遅延を調整する必要がある。ソースクロックが分岐点aから入力点bに到達するための時間T_abと入力点cに到達するための時間T_acとの差T_bcはクロックスキューと呼ばれ、クロックスキューをなるだけ小さく抑える配線設計はデジタル集積回路の分野において通常に行われる。これと同様の配線設計をリセット信号に対しても適用し、リセット信号における点A及びB間の遅延時間T_ABと点A及びC間の遅延時間T_ACとの差T_BCを小さく抑えることも可能ではある。しかしながら、図6の構成において、リセット信号はそもそもクロックとは非同期であり、従って、リセット信号に対し、クロックのエッジとのタイミング関係は規定されていない。
そのため、実質的には不可能ともいえるが、仮に、クロックの遅延差T_bcと非同期リセット信号の遅延差T_BCを共にゼロにすることができたとしても、非同期リセット方式を採用した図6の構成において、分周回路811及び812の分周動作開始タイミングを揃えることを100%保証することはできない(概ね揃うかもしれないが、リセット信号のエッジのタイミングによっては、揃わないこともある)。
これを考慮し、従来では、ソースクロックとは非同期であるリセット信号を同期化する方策がとられていた。即ち、リセット信号とクロックのエッジとのタイミング関係を確定するために、図8に示す如く、リセット信号を同期化するための同期リセット信号生成回路813を設けて、複数の分周回路に対する同期リセット信号を生成していた。
図8のクロック分周装置において、ソースクロックは、分岐点aにて分岐した後に、回路811、812及び813の入力点b、c及びdに入力される。非同期リセット信号は回路813の入力点Aに入力し、回路813にて生成された同期リセット信号は出力点Dから分周回路811及び812の入力点B及びCに出力される。図9は、図8のクロック分周装置におけるタイミングチャートである。図9において、分岐点aでのクロックの立ち上がりタイミングTa2〜Ta5は、夫々、入力点d、b、cでのクロックの立ち上がりタイミングTd2〜Td5、Tb2〜Tb5、Tc2〜Tc5に対応している。上述したように、点aと点d、b及びcとの間の遅延時間T_ad、T_ab及びT_acは、それらの差がなるだけ小さくなるように、クロックツリー(Clock Trees)法などを利用した配線設計によって調整される。
回路813の点Aに入力したリセット信号は、例えば図9に示すように、点dに入力したソースクロックの立ち上がりエッジ862(Td3に対応)にて同期化され、点Dから出力される。エッジ862は、点aでのクロックのエッジ861(Ta3に対応)と同じエッジである。
点Dから出力されたリセット信号は、分周回路811の入力点B及びCに、夫々の経路での遅延時間(図9の遅延時間T_db3及びT_dc3よりも若干短い時間)を経た後で入力する。リセット信号は、エッジ862(Td3に対応)にて同期化されている。このため、共通のエッジタイミングであるタイミングTb4及びTc4の前に分周回路811及び812のリセットが解除されるように、遅延時間T_db3及びT_dc3の調整を含む配線設計を行うことが可能となる。そうすることで、共通のエッジタイミング(共通のエッジ871に基づく、入力点B及びCのクロックエッジ872及び873のタイミングTb4及びTc4)から分周回路811及び812の分周動作を開始することができる。
尚、分周回路の前段にクロックゲートを配置する技術も提案されている(特許文献1及び2参照)。
実開平2−123144号公報 特開2009−288868号公報
近年、デジタル回路の動作周波数は高周波数になってきており、数100MHzで動作する回路も多く存在する。数100MHzの動作クロックの元となるソースクロックの周波数は、数GHzにも達し、ソースクロックの1サイクルの時間は1ns以下になることも多い。更に、分周回路811及び812の配置位置が離れてくると、遅延時間T_ad、T_ab及びT_acの差(クロックスキュー)を小さく抑えることが難しくなり、エッジタイミングTd3からエッジタイミングTb4及びTc4までの時間(図9のT_db4及びT_dc4に相当)はクロックサイクルよりも小さくなることもある。
図8の回路を意図通りに動作させるには、時間T_db3及びT_dc3を時間T_db4及びT_dc4よりも小さく抑える等の必要条件を満たす設計が必要となるが、上述のような厳しい制約条件の下では、このような必要条件を満たす配線設計が困難になることがある。尚、特許文献1及び2に記載された方法は、複数の分周回路を設けた装置に対する上述の課題の解決に寄与するものではない。
そこで本発明は、複数の分周回路の動作開始タイミングを容易に揃えることのできるクロック分周装置を提供することを目的とする。
本発明に係るクロック分周装置は、共通の基準クロックを分周する複数の分周回路と、前記複数の分周回路の前段に配置されたゲート回路と、を備え、各分周回路のリセットが解除され各分周回路の分周動作が許可された後に、前記ゲート回路を介して前記基準クロックを各分周回路に入力するようにしたことを特徴とする。
このように構成することにより、複数の分周回路の分周動作開始タイミングを容易に揃えることが可能となる。各分周回路のリセットが解除されてからゲート回路を介して基準クロックを各分周回路に与えるまでの時間を適切に設定することで、高周波数のソースクロックに対しても、緩い制約条件の下で配線設計が可能となる。
具体的には例えば、各分周回路をリセットさせるか否かを制御するリセット信号に応じてゲート信号を生成し、前記ゲート信号を前記ゲート回路に出力するゲート信号生成回路を当該クロック分周装置に更に設けるとよい。そして例えば、当該クロック分周装置は、前記基準クロックが前記ゲート回路を介して各分周回路に入力されるタイミングを、前記ゲート信号を用いて制御することにより、各分周回路のリセット解除後に前記基準クロックを各分周回路に入力してもよい。
より具体的には例えば、前記ゲート信号生成回路は、前記リセット信号を遅延させた信号を前記ゲート信号として生成してもよい。
更に具体的には例えば、前記ゲート信号生成回路は、自身に入力された前記リセット信号を、遅延素子、シフトレジスタ回路又はカウンタ回路を用いて遅延させることで前記ゲート信号を生成してもよい。
本発明によれば、複数の分周回路の動作開始タイミングを容易に揃えることのできるクロック分周装置を提供することが可能である。
本発明の実施形態に係るクロック分周装置の概略構成図である。 図1のクロック分周装置のタイミングチャートである。 図1のゲート回路の内部構成例を示す図である。 図1のゲート信号生成回路に用いることもできる遅延素子、シフトレジスタ回路及びカウンタ回路を示す図である。 図1のクロック分周装置に適用可能なマイクロコンピュータを示す図である。 従来のクロック分周装置の第1構成例を示す図である。 図6のクロック分周装置のタイミングチャートである。 従来のクロック分周装置の第2構成例を示す図である。 図8のクロック分周装置のタイミングチャートである。
以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。
図1に、本発明の実施形態に係るクロック分周装置(クロック分周回路)1の概略構成図を示す。クロック分周装置1は、共通のソースクロック(基準クロック)を分周する複数の分周回路と、各分周回路の前段に配置され、ソースクロックを各分周回路に出力するか否かをゲート信号に応じて制御するゲート回路13と、ゲート信号を生成するゲート信号生成回路14とを備え、更に、ソースクロックを生成及び出力するソースクロック生成回路21及びリセット信号を生成及び出力するリセット信号生成回路22を備えうる。分周回路の個数は3以上でも良いが、ここでは、2つの分周回路として第1分周回路11及び第2分周回路12が備えられているとする。
ソースクロック生成回路21から出力されたソースクロックは、回路21と回路13及び14との間の共通配線31を伝播した後、分岐点aにて分岐し、回路13及び14のクロック入力点e及びfの夫々に入力される。リセット信号生成回路22から出力されたリセット信号は、回路22と回路11、12及び14との間の共通配線32を伝播した後、分岐点Aにて分岐し、回路11、12及び14のリセット信号入力点B、C及びFの夫々に入力される。ゲート信号生成回路14は出力点G1からゲート信号を出力し、該ゲート信号はゲート回路13の入力点G2に入力される。ゲート回路13は、入力点eに入力されたソースクロックを出力点hから出力するか否かを、入力点G2に入力されたゲート信号に応じて制御するクロックゲート回路である。故に、出力点hから出力されるソースクロックをゲーテッドクロックと呼ぶ。ゲート回路13の出力点hから出力されたゲーテッドクロックは、回路13及び11間の配線及び回路13及び12間の配線を介して、分周回路11のクロック入力点b及び分周回路12のクロック入力点cに入力される。以下、ソースクロック又はゲーテッドクロックを単にクロックと呼ぶこともある。
リセット信号は、各分周回路をリセットさせるか否かを制御する電圧信号であり、ハイレベル又はローレベルの電圧レベルをとる。ローレベルのリセット信号は、分周回路をリセットさせて分周回路の分周動作を停止させるリセット指示信号として機能し、ハイレベルのリセット信号は、分周回路のリセットを解除させて分周回路の分周動作を許可するリセット解除信号として機能する。
従って、ローレベルのリセット信号が分周回路11の入力点Bに入力されているとき、分周回路11はリセットされて分周回路11の分周動作は停止する。入力点Bにおけるリセット信号のレベルがローレベルからハイレベルに切り替わると、分周回路11のリセットは解除され、クロック入力点bへの入力クロックの次回の立ち上がりエッジにて、分周回路11は分周動作を開始する。分周回路12についても同様である。クロックは矩形波であって、クロックの立ち上がりエッジとは、クロックの電圧レベルのローレベルからハイレベルへの変化、又は、その変化のタイミングを指す。リセット信号の立ち上がりエッジも同様である。また、クロックの立ち上がりエッジを、単にクロックエッジとも言う。
分周動作の実行時において、分周回路11及び12は、ゲート回路13からゲーテッドクロックとして入力点b及びcへ供給されるソースクロックを個別に分周し、これによって得た第1及び第2分周信号を出力する。
図2は、クロック分周装置1のタイミングチャートである。図2を参照して、分周動作の開始時点周辺のタイミング関係について説明する。図2において、実線波形301〜312は、夫々、点a、A、f、F、G1、e、G2、h、b、B、c及びCの信号波形である。尚、実線波形308に付与された矩形波状破線は、便宜上に示したものであって、点hにおける実際の信号波形ではない。図2の例では、分岐点Aでのリセット信号が、タイミングtにおいてローレベルからハイレベルに切り替わり、その後、ハイレベルに維持されている(波形302参照)。分岐点Aでのリセット信号は、点A及びF間の配線遅延時間後、入力点Fに現われる(波形304参照)。
ゲート信号生成回路14は、入力点Fにて受けたリセット信号を、所定時間T_FG分だけ遅延させ、遅延後のリセット信号を出力点G1からゲート信号として出力する(波形305参照)。図2の例では、ゲート信号生成回路14が、入力点fに入力されたソースクロックに基づき、入力点Fにて受けたリセット信号をソースクロックの4サイクル(4周期)分だけ遅延させてゲート信号を得ている。即ち例えば、ゲート信号生成回路14は、入力点Fでのリセット信号の立ち上がりエッジの後、入力点fでのクロックエッジの回数をカウントし、該回数が4回に達した時点で出力点G1でのゲート信号をローレベルからハイレベルに切り替え、以後、出力点G1でのゲート信号をハイレベルに維持する。勿論、ゲート信号生成回路14における遅延量は4サイクル以外でも良い。
図2において、矢印321〜323は共通のクロックエッジを表し、クロックエッジ322及び323は、クロックエッジ321が遅延したものである。ゲート回路13は、入力点G2でのゲート信号がハイレベルに切り替わった後、入力点eのソースクロックの次ぎの立ち上がりエッジ(322)から、入力点eのソースクロックを、ゲーテッドクロックとして出力点hより出力する。この結果、ゲート回路13の出力であるゲーテッドクロックは、分岐点Aにおけるリセット信号の立ち上がりエッジ(リセット解除指示)からソースクロックの5サイクル(5周期)後にアクティブとなる。
例えば、ゲート回路13では、ゲート信号をローアクティブのラッチ回路で受けて、ソースクロックのローレベル期間にゲート信号をアクティブにし、出力にグリッチが発生しないようにしつつ、入力点e及び出力点h間のゲートをオン/オフする。より具体的には例えば、図3に示す如く、ラッチ回路31及びアンド回路(論理積回路)32にてゲート回路13を構成することができる。ラッチ回路31は、入力点eでのソースクロックのレベルがローレベルであるときに、入力点G2でのゲート信号をラッチして、ラッチしたゲート信号をアンド回路32の第1入力点に入力する。アンド回路32の第2入力点には入力点eへのソースクロックが入力される。アンド回路32は、第1及び第2入力点への信号の論理積を表す信号をゲーテッドクロックとして出力点hから出力する。
一方、タイミングtから点A及びB間の配線遅延時間が経過したタイミングtにおいて、入力点Bでのリセット信号がローレベルからハイレベルに切り替わり(波形310参照)、これによって分周回路11のリセットが解除されて分周回路11の分周動作が可能な状態(分周回路11の分周動作が許可された状態)になる。同様に、タイミングtから点A及びC間の配線遅延時間が経過したタイミングtにおいて、入力点Cでのリセット信号がローレベルからハイレベルに切り替わり(波形312参照)、これによって分周回路12のリセットが解除されて分周回路12の分周動作が可能な状態(分周回路12の分周動作が許可された状態)になる。
しかしながら、タイミングt及びtにおいては、ゲーテッドクロックがまだアクティブ状態になっていない(即ち、ソースクロックがゲーテッドクロックとしてゲート回路13から出力されていない)。このため、タイミングtにおいて分周回路11は分周動作を開始せず且つタイミングtにおいて分周回路12は分周動作を開始せず、分周回路11及び12はクロックが入力されるのを待つ状態になる。
分周回路11及び12が分周動作を開始するのは、夫々、ゲーテッドクロックがアクティブになった最初のクロックエッジ324及び325(タイミングt及びtに対応)からになる。即ち、分周回路11はタイミングtから分周動作を開始し、分周回路12はタイミングtから分周動作を開始する。タイミングtは、入力点bに入力されたゲーテッドクロックの最初の立ち上がりエッジ324のタイミングであり、タイミングtは、入力点cに入力されたゲーテッドクロックの最初の立ち上がりエッジ325のタイミングである。図2において、矢印321〜325は共通のクロックエッジを表し、クロックエッジ324及び325は、クロックエッジ323が遅延したものである。尚、図2において、T_Abはタイミングt及びt間の時間を表し、T_Acはタイミングt及びt間の時間を表す。
図2に示す状況とは異なるが、分周回路11及び12のリセットが解除されるタイミングt及びtがタイミングt及びtよりも遅かったり、タイミングtからタイミングtまでの時間T_Bb及びタイミングtからタイミングtまでの時間T_Ccが、分周回路11及び12で使用しているフリップフロップのリカバリ時間よりも短かったりすると、ゲーテッドクロックがアクティブになった最初のクロックエッジから分周回路11及び12を動作開始させることに対して保証が得られない。これに鑑み、クロック分周装置1では、この保障に得るのに必要な時間だけ(例えばソースクロックの数サイクル分)リセット信号を遅延させ、この遅延を利用して得たゲーテッドクロックを分周回路11及び12に共通入力するようにしている。このため、時間T_Bb及び時間T_Ccを十分に確保することができる。逆に考えれば、タイミングt及びtが夫々タイミングt及びtよりも早くなるように、且つ、時間T_Bb及びT_Ccが分周回路11及び12で使用しているフリップフロップのリカバリ時間よりも長くなるように、ゲート信号生成回路14における遅延時間T_FGを定めておくとよい。
上述の如く、本実施形態では、各分周回路のリセットが解除されて各分周回路の分周動作が許可された後に(即ち、タイミングt及びtよりも後に)、ゲート回路13を介してソースクロック(ゲーテッドクロック)を各分周回路に入力する。このため、分周回路11及び12は、ソースクロックの同じクロックエッジ(324及び325)から確実に分周動作を開始することが可能となる。各分周回路のリセットが解除されてからゲート回路13が開くまでの時間(各分周回路のリセットが解除されてからソースクロックが出力点hより出力開始されるまでの時間)を十分に長くとることで、高周波数のソースクロックに対しても、緩い制約条件の下で配線設計が可能となる。即ち、複数の分周回路を同じクロックエッジから動作開始させるという同期関係を持たせた回路を、高周波数のソースクロックに対しても、容易に設計することが可能となる。
ゲート信号生成回路14について説明を加える。図1のゲート信号生成回路14では、入力点Fに入力されたリセット信号を遅延させることでゲート信号を生成している。そして、クロック分周装置1では、ソースクロックがゲート回路13を介して分周回路11及び12に入力されるタイミングをゲート信号を用いて制御し、これによって、各分周回路のリセットの解除後にソースクロックが各分周回路に入力されるようにしている。
ゲート信号生成回路14は、リセット信号を遅延させてゲート信号を得るために、任意の素子又は回路を利用することができる。例えば、ゲート信号生成回路14を、遅延素子51、シフトレジスタ回路52又はカウンタ回路53を用いて形成することができる(図4(a)、(b)及び(c)参照)。
遅延素子51は、入力点Fに入力されたリセット信号を、所定時間T_FG分だけ遅延させ、遅延後のリセット信号を出力点G1からゲート信号として出力する。遅延素子51を単純な配線を用いて形成することもでき、この場合、ゲート信号生成回路14へのソースクロックの入力は不要である。但し、ソースクロックを用いて上記遅延を実現する遅延素子51を形成しても良い(この場合、遅延素子51はシフトレジスタ回路52の一種となりうる)。シフトレジスタ回路52及びカウンタ回路53を用いる場合、ソースクロックを用いてリセット信号を遅延させることでゲート信号を生成することができる。図2の例の如く、ソースクロックの4サイクル(4周期)分の遅延を行う場合には、ソースクロックを基準として動作する4段分のフリップフロップを直列接続してシフトレジスタ回路52を形成すれば良く、或いは、ソースクロックのサイクル数をカウントする3ビット以上のカウンタ回路53を形成すればよい。
ゲート信号をソフトウェアの制御の下で生成するようにしてもよい。例えば、クロック分周装置1において、ゲート信号生成回路14の代わりに、図6に示すマイクロコンピュータ61を設けておいても良い。マイクロコンピュータ61は、図1のリセット信号生成回路22を内包し、マイクロコンピュータ61上にて動作するソフトウェアの制御の下で、リセット信号を共通配線32及び分岐点Aを介して入力点B及びCに出力する。一方において、マイクロコンピュータ61は、ゲート信号生成回路14の機能をも内包し、上記ソフトウェアの制御の下で、リセット信号とは独立して、マイクロコンピュータ61における出力点G1からゲート回路13の入力点G2へゲート信号を出力する。
このマイクロコンピュータ61(マイクロコンピュータ61内のゲート信号生成回路)にソースクロックを供給する必要は必ずしも無く、図2の同様のタイミング関係が実現されるように、リセット信号に応じてゲート信号を生成及び出力すればよい(リセット信号を遅延させた信号をゲート信号として生成及び出力すればよい)。即ち、マイクロコンピュータ61は、自身が出力するリセット信号の電圧レベルをローレベルからハイレベルに切り替えた時点から、所定時間T_FG後に、出力点G1のゲート信号の電圧レベルをローレベルからハイレベルに切り替えればよい。尚、マイクロコンピュータ61とは別のリセット信号生成回路から分周回路11及び12に対するリセット信号が出力されていても良い。
本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
各信号におけるローレベルとハイレベルの関係を逆にしてもよい。クロック分周装置1を任意のデジタル回路及びデジタル回路を含む任意の機器(例えば、デジタルカメラ等の撮像装置、パーソナルコンピュータ、携帯電話機などの携帯端末)に搭載することができる。
1 クロック分周装置
11、12 分周回路
13 ゲート回路
14 ゲート信号生成回路
21 ソースクロック生成回路
22 リセット信号生成回路

Claims (4)

  1. 共通の基準クロックを分周する複数の分周回路と、
    前記複数の分周回路の前段に配置されたゲート回路と、を備え、
    各分周回路のリセットが解除され各分周回路の分周動作が許可された後に、前記ゲート回路を介して前記基準クロックを各分周回路に入力するようにした
    ことを特徴とするクロック分周装置。
  2. 各分周回路をリセットさせるか否かを制御するリセット信号に応じてゲート信号を生成し、前記ゲート信号を前記ゲート回路に出力するゲート信号生成回路を更に備え、
    前記基準クロックが前記ゲート回路を介して各分周回路に入力されるタイミングを、前記ゲート信号を用いて制御することにより、各分周回路のリセット解除後に前記基準クロックを各分周回路に入力する
    ことを特徴とする請求項1に記載のクロック分周装置。
  3. 前記ゲート信号生成回路は、前記リセット信号を遅延させた信号を前記ゲート信号として生成する
    ことを特徴とする請求項2に記載のクロック分周装置。
  4. 前記ゲート信号生成回路は、自身に入力された前記リセット信号を、遅延素子、シフトレジスタ回路又はカウンタ回路を用いて遅延させることで前記ゲート信号を生成する
    ことを特徴とする請求項3に記載のクロック分周装置。
JP2011183250A 2011-08-25 2011-08-25 クロック分周装置 Pending JP2013046268A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011183250A JP2013046268A (ja) 2011-08-25 2011-08-25 クロック分周装置
US13/592,994 US20130049820A1 (en) 2011-08-25 2012-08-23 Clock divider unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183250A JP2013046268A (ja) 2011-08-25 2011-08-25 クロック分周装置

Publications (1)

Publication Number Publication Date
JP2013046268A true JP2013046268A (ja) 2013-03-04

Family

ID=47742782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183250A Pending JP2013046268A (ja) 2011-08-25 2011-08-25 クロック分周装置

Country Status (2)

Country Link
US (1) US20130049820A1 (ja)
JP (1) JP2013046268A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8812893B1 (en) * 2012-06-01 2014-08-19 Altera Corporation Apparatus and methods for low-skew channel bonding
US9768757B1 (en) * 2016-06-08 2017-09-19 Altera Corporation Register circuitry with asynchronous system reset
TWI726791B (zh) * 2019-08-14 2021-05-01 創未來科技股份有限公司 訊號除頻器、訊號分佈系統與其相關方法
US11909399B2 (en) * 2022-05-31 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. System and semiconductor device therein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293810A (ja) * 1988-09-30 1990-04-04 Toshiba Corp 信号発生方式
JP2003015762A (ja) * 2001-06-29 2003-01-17 Mitsubishi Electric Corp クロック制御回路
JP2004153642A (ja) * 2002-10-31 2004-05-27 Yamaha Corp 大規模集積回路の初期化回路
JP2008118179A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 半導体集積回路
JP2010268258A (ja) * 2009-05-15 2010-11-25 Mitsumi Electric Co Ltd リセット回路及びリセット用半導体集積回路
JP2010277608A (ja) * 2010-09-01 2010-12-09 Renesas Electronics Corp クロック制御回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262653B (en) * 2004-10-29 2006-09-21 Mediatek Inc Method and apparatus for switching frequency of a system clock

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293810A (ja) * 1988-09-30 1990-04-04 Toshiba Corp 信号発生方式
JP2003015762A (ja) * 2001-06-29 2003-01-17 Mitsubishi Electric Corp クロック制御回路
JP2004153642A (ja) * 2002-10-31 2004-05-27 Yamaha Corp 大規模集積回路の初期化回路
JP2008118179A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 半導体集積回路
JP2010268258A (ja) * 2009-05-15 2010-11-25 Mitsumi Electric Co Ltd リセット回路及びリセット用半導体集積回路
JP2010277608A (ja) * 2010-09-01 2010-12-09 Renesas Electronics Corp クロック制御回路

Also Published As

Publication number Publication date
US20130049820A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5598161B2 (ja) クロック発生回路
KR101893185B1 (ko) 반도체 장치의 데이터 출력 타이밍 제어 회로
US20090016146A1 (en) Latency counter, semiconductor memory device including the same, and data processing system
US6563349B2 (en) Multiplexor generating a glitch free output when selecting from multiple clock signals
US9417655B2 (en) Frequency division clock alignment
TWI591967B (zh) 環形振盪器計時器電路
KR101004665B1 (ko) 반도체 메모리 장치 및 출력 인에이블 신호 생성 방법
US10298382B2 (en) 1-16 and 1.5-7.5 frequency divider for clock synthesizer in digital systems
KR102001692B1 (ko) 멀티 채널 지연 고정 루프
WO2019213654A1 (en) A time-to-digital converter circuit
JP2013046268A (ja) クロック分周装置
US6960942B2 (en) High speed phase selector
US20150091620A1 (en) Reducing current variation when switching clocks
US20130335125A1 (en) Input signal processing device
US9411361B2 (en) Frequency division clock alignment using pattern selection
JP5157461B2 (ja) 分周回路及び分周方法
US9455710B2 (en) Clock enabling circuit
JP2013115529A (ja) クロック分周装置
JP6401533B2 (ja) クロック位相調整回路
TWI552528B (zh) 時脈產生裝置
JP4588435B2 (ja) 出力信号を安定して生成する同期化回路
JP2007537675A (ja) クロック発生器及びその方法
KR101211684B1 (ko) 반도체 장치 및 그 동작방법
JP2005316721A (ja) クロック発生回路及び半導体集積回路
KR20140083367A (ko) 지연 고정 루프 및 이를 포함하는 레이턴시 조절회로

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421