[go: up one dir, main page]

JP2013042681A - Wiring board for analyzing gene - Google Patents

Wiring board for analyzing gene Download PDF

Info

Publication number
JP2013042681A
JP2013042681A JP2011181195A JP2011181195A JP2013042681A JP 2013042681 A JP2013042681 A JP 2013042681A JP 2011181195 A JP2011181195 A JP 2011181195A JP 2011181195 A JP2011181195 A JP 2011181195A JP 2013042681 A JP2013042681 A JP 2013042681A
Authority
JP
Japan
Prior art keywords
insulating layer
wiring board
layer
gene analysis
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011181195A
Other languages
Japanese (ja)
Inventor
Toshihiro Hiwatari
俊弘 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2011181195A priority Critical patent/JP2013042681A/en
Publication of JP2013042681A publication Critical patent/JP2013042681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board for analyzing a gene which is suitable for use in a method for gene analysis using nanopores.SOLUTION: The wiring board for analyzing a gene includes: a first electrical insulation layer 2; a plurality of detective electrodes 9 disposed in matrix on the top surface of the first electrical insulation layer 2; a second electrical insulation layer 3 laminated on the first electrical insulation layer 2, and formed with detective recesses 10 formed by laser beam machining with the detective electrodes 9 serving as the bottom surface; and an externally connective terminal 13 formed on the top surface of the second electrical insulation layer 3 and electrically connected to the detective electrodes 9. Because of having the detective recesses 10 of high dimensional accuracy formed by laser beam machining along with effecting good connection to the outside, the wiring board with nanopores, suitable for use in a method for gene analysis using nanopores, can be provided.

Description

本発明は、遺伝子を解析するために用いれらる遺伝子解析用配線基板に関するものである。   The present invention relates to a wiring board for gene analysis used for analyzing genes.

近年、遺伝子を解析する技術は、急速な進歩を遂げている。このような遺伝子を解析する技術の中で、ナノポアを用いた遺伝子の解析方法が注目されている。このナノポアを用いた遺伝子の解析方法は、遺伝子の分子よりも僅かに大きなサイズの細孔であるナノポアを遺伝子が通過する際の電流の変化を検出して塩基配列を読み取るものである。   In recent years, techniques for analyzing genes have made rapid progress. Among such techniques for analyzing genes, gene analysis methods using nanopores are attracting attention. This gene analysis method using nanopores is a method for detecting a change in current when a gene passes through a nanopore that is a pore having a size slightly larger than that of a gene molecule to read a base sequence.

特開2001−242135号公報JP 2001-242135 A

本発明が解決しようとする課題は、ナノポアを用いた遺伝子の解析方法に用いられるのに好適な遺伝子解析用配線基板を提供することにある。   The problem to be solved by the present invention is to provide a wiring board for gene analysis suitable for use in a gene analysis method using nanopores.

本発明の遺伝子解析用配線基板は、第1の絶縁層と、この第1の絶縁層の上面にマトリックス状に配設された複数の検出用電極と、第1の絶縁層上に積層されており、検出用電極を底面とする検出用凹部がレーザ加工により形成された第2の絶縁層と、第2の絶縁層の上面に形成されており、検出用電極に電気的に接続された外部接続用端子とを具備して成ることを特徴とするものである。   The wiring board for gene analysis of the present invention is laminated on a first insulating layer, a plurality of detection electrodes arranged in a matrix on the upper surface of the first insulating layer, and the first insulating layer. And a detection recess having a detection electrode as a bottom surface is formed on the second insulating layer formed by laser processing and an upper surface of the second insulation layer, and is electrically connected to the detection electrode. And a connection terminal.

また本発明の遺伝子解析用配線基板は、前記第1の絶縁層と第2の絶縁層とが同じ絶縁材料から形成されていることを特徴とするものである。   The wiring board for gene analysis of the present invention is characterized in that the first insulating layer and the second insulating layer are formed of the same insulating material.

さらに本発明の遺伝子解析用配線基板は、前記第2の絶縁層が前記第1の絶縁層よりも薄いことを特徴とするものである。   Furthermore, the wiring board for gene analysis of the present invention is characterized in that the second insulating layer is thinner than the first insulating layer.

またさらに本発明の遺伝子解析用配線基板は、前記第1の絶縁層と第2の絶縁層との間に少なくとも前記外部接続用端子を投影した部分を占有するダミーの電極が配設されていることを特徴とするものである。   Furthermore, in the wiring board for gene analysis of the present invention, a dummy electrode that occupies at least a portion where the external connection terminal is projected is disposed between the first insulating layer and the second insulating layer. It is characterized by this.

本発明の遺伝子解析用配線基板によれば、第1の絶縁層と、第1の絶縁層の上面にマトリックス状に配設された複数の検出用電極と、第1の絶縁層上に積層されており、検出用電極を底面とする検出用凹部がレーザ加工により形成された第2の絶縁層と、第2の絶縁層の上面に形成されており、検出用電極に電気的に接続された外部接続用端子とを具備して成ることから、レーザ加工により形成された寸法制度の高い微小な検出用凹部を有するとともに外部との接続が良好となるので、ナノポアを用いた遺伝子の解析方法に用いられるのに好適な遺伝子解析用配線基板を提供することができる。   According to the wiring board for gene analysis of the present invention, the first insulating layer, the plurality of detection electrodes arranged in a matrix on the upper surface of the first insulating layer, and the first insulating layer are stacked. A detection recess having a detection electrode as a bottom surface is formed on the second insulating layer formed by laser processing and the upper surface of the second insulation layer, and is electrically connected to the detection electrode. Since it has a terminal for external connection, it has a small concave part for detection with a high dimensional system formed by laser processing and has good connection with the outside, so it can be used for gene analysis using nanopores. A wiring board for gene analysis suitable for use can be provided.

また、第1の絶縁層と第2の絶縁層とを同じ絶縁材料で形成すると、基板の反りを低減できるとともに第1の絶縁層と第2の絶縁層とを強固に積層することができる。   In addition, when the first insulating layer and the second insulating layer are formed using the same insulating material, warpage of the substrate can be reduced and the first insulating layer and the second insulating layer can be firmly stacked.

さらに、第2の絶縁層を第1の絶縁層よりも薄くすると、第2の絶縁層にレーザ加工により微細で寸法制度に優れる検出用凹部を容易に形成することができる。   Further, when the second insulating layer is made thinner than the first insulating layer, a detection recess that is fine and excellent in dimensional system can be easily formed in the second insulating layer by laser processing.

またさらに、第1の絶縁層と第2の絶縁層との間に少なくとも外部接続用端子を投影した部分を占有するダミーの電極を配設すると、外部接続用端子における平坦性を良好に保つことができ、それにより外部との接続をより良好なものとすることができる。   Furthermore, when a dummy electrode that occupies at least a portion where the external connection terminal is projected is disposed between the first insulating layer and the second insulating layer, the flatness of the external connection terminal is kept good. Thus, the connection with the outside can be improved.

図1は、本発明の遺伝子解析用配線基板の実施形態の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a wiring board for gene analysis of the present invention. 図2は、図1に示す遺伝子解析用配線基板の上面図である。2 is a top view of the wiring board for gene analysis shown in FIG. 図3は、本発明の遺伝子解析用配線基板の使用方法を説明するための要部拡大概略断面図である。FIG. 3 is an enlarged schematic cross-sectional view of a main part for explaining a method for using the wiring board for gene analysis of the present invention.

次に、本発明の遺伝子解析用配線基板の実施形態の一例を図1、図2を基にして説明する。図1に示すように、本例の遺伝子解析用配線基板10は、コア基板1の上下面に絶縁層2および絶縁層3を積層して成る。   Next, an example of an embodiment of the wiring board for gene analysis of the present invention will be described with reference to FIGS. As shown in FIG. 1, the wiring board 10 for gene analysis of this example is formed by laminating an insulating layer 2 and an insulating layer 3 on the upper and lower surfaces of the core substrate 1.

コア基板1は、例えばガラス繊維束を縦横に織ったガラスクロスにビスマレイミドトリアジン樹脂やエポキシ樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料から成る。コア基板1の厚みは100〜1000μm程度であり、コア基板1の上面から下面にかけては直径が100〜300μm程度のスルーホール4が形成されている。   The core substrate 1 is made of, for example, an electrically insulating material obtained by impregnating a glass cloth obtained by weaving glass fiber bundles vertically and horizontally with a thermosetting resin such as a bismaleimide triazine resin or an epoxy resin. The core substrate 1 has a thickness of about 100 to 1000 μm, and a through hole 4 having a diameter of about 100 to 300 μm is formed from the upper surface to the lower surface of the core substrate 1.

コア基板1の上下面およびスルーホール4の内壁にはコア導体層5が被着されている。コア導体層5は、例えば厚みが5〜25μm程度の銅箔や銅めっき層等の良導電性の金属材料から成る。さらに、コア導体層5が被着されたスルーホール4の内部はエポキシ樹脂等の熱硬化性樹脂から成る孔埋め樹脂6が充填されている。   Core conductor layers 5 are attached to the upper and lower surfaces of the core substrate 1 and the inner walls of the through holes 4. The core conductor layer 5 is made of a highly conductive metal material such as a copper foil having a thickness of about 5 to 25 μm or a copper plating layer. Furthermore, the inside of the through hole 4 to which the core conductor layer 5 is attached is filled with a hole filling resin 6 made of a thermosetting resin such as an epoxy resin.

このようなコア基板1は、以下のようにして形成される。先ず、ガラスクロスに熱硬化性樹脂を含浸させた絶縁板の上下両面に厚みが5〜35μm程度の銅箔が被着された両面銅張板を準備する。次に、両面銅張板にドリル加工やレーザ加工によりスルーホール4を穿孔する。次に、スルーホール4内をデスミア処理した後、スルーホール4内および上下の銅箔表面に無電解銅めっき層および電解銅めっき層を順次被着させる。無電解銅めっき層の厚みは0.1〜1μm程度、電解銅めっき層の厚みは5〜25μm程度とする。次に、電解銅めっき層が施されたスルーホール4の内部に孔埋め樹脂6を充填する。孔埋め樹脂6の充填は、ペースト状の熱硬化性樹脂をスクリーン印刷法によりスルーホール4内に充填した後、それを熱硬化させることにより行なう。充填された孔埋め樹脂6は、その上下端を上下面の銅めっき層とともに研磨により平坦化する。次に、平坦化された孔埋め樹脂6の上下端面および上下面の銅めっき層上に無電解銅めっき層および電解銅めっき層を順次被着する。無電解銅めっき層の厚みは0.1〜1μm程度、電解銅めっき層の厚みは5〜25μm程度とする。最後に、銅箔およびその上の銅めっき層を周知のサブトラクティブ法によりパターン加工してコア導体層5を得る。   Such a core substrate 1 is formed as follows. First, a double-sided copper-clad plate is prepared in which a copper foil having a thickness of about 5 to 35 μm is deposited on both upper and lower surfaces of an insulating plate obtained by impregnating glass cloth with a thermosetting resin. Next, the through-hole 4 is drilled in the double-sided copper-clad plate by drilling or laser processing. Next, after desmearing the inside of the through hole 4, an electroless copper plating layer and an electrolytic copper plating layer are sequentially deposited in the through hole 4 and the upper and lower copper foil surfaces. The thickness of the electroless copper plating layer is about 0.1 to 1 μm, and the thickness of the electrolytic copper plating layer is about 5 to 25 μm. Next, a hole-filling resin 6 is filled in the through hole 4 provided with the electrolytic copper plating layer. The filling of the hole filling resin 6 is performed by filling the through hole 4 with a paste-like thermosetting resin by a screen printing method and then thermosetting it. The filled hole-filling resin 6 is flattened by polishing together with upper and lower copper plating layers. Next, an electroless copper plating layer and an electrolytic copper plating layer are sequentially deposited on the upper and lower end surfaces and the upper and lower copper plating layers of the planarized hole filling resin 6. The thickness of the electroless copper plating layer is about 0.1 to 1 μm, and the thickness of the electrolytic copper plating layer is about 5 to 25 μm. Finally, the core conductor layer 5 is obtained by patterning the copper foil and the copper plating layer thereon by a known subtractive method.

絶縁層2は、エポキシ樹脂等の熱硬化性樹脂を含む絶縁材料から成る。絶縁層2の厚みは30〜50μm程度であり、絶縁層2の上面から下面にかけては直径が50〜100μm程度のビアホール7が形成されている。このような絶縁層2は、例えば以下のようにして形成される。まず、コア基板1の上下面に熱硬化性の樹脂フィルムを積層する。積層には真空プレス機を用いる。樹脂フィルムは、未硬化の熱硬化性樹脂成分と無機絶縁フィラーとを含んでいる。最後に、樹脂フィルムを熱硬化させた後、その表面からレーザ加工を施してビアホール7を穿孔する。なお、ビアホール7を穿孔した後は、必要に応じてデスミア処理やソフトエッチング処理を施す。   The insulating layer 2 is made of an insulating material containing a thermosetting resin such as an epoxy resin. The insulating layer 2 has a thickness of about 30 to 50 μm, and via holes 7 having a diameter of about 50 to 100 μm are formed from the upper surface to the lower surface of the insulating layer 2. Such an insulating layer 2 is formed as follows, for example. First, a thermosetting resin film is laminated on the upper and lower surfaces of the core substrate 1. A vacuum press is used for lamination. The resin film contains an uncured thermosetting resin component and an inorganic insulating filler. Finally, after the resin film is thermally cured, laser processing is performed from the surface to drill the via hole 7. In addition, after drilling the via hole 7, a desmear process or a soft etching process is performed as needed.

絶縁層2の表面およびビアホール7内には導体層8が被着されている。導体層8は、厚みが5〜25μm程度の銅めっき層等の良導電性の金属材料から成る。導体層8の一部は、絶縁層2の上面で遺伝子の塩基配列に応じた電流を検出するための検出用電極9を形成している。検出用電極9は直径が50〜100μm程度の円形であり、100〜200μm程度のピッチでマトリックス状に配設されている。   A conductor layer 8 is deposited on the surface of the insulating layer 2 and in the via hole 7. The conductor layer 8 is made of a highly conductive metal material such as a copper plating layer having a thickness of about 5 to 25 μm. A part of the conductor layer 8 forms a detection electrode 9 for detecting a current corresponding to the base sequence of the gene on the upper surface of the insulating layer 2. The detection electrodes 9 have a circular shape with a diameter of about 50 to 100 μm, and are arranged in a matrix at a pitch of about 100 to 200 μm.

このような導体層8は、以下のようにして形成される。まず、絶縁層2の表面およびビアホール7内に、無電解銅めっき層を被着させる。無電解銅めっき層の厚みは0.1〜1μm程度とする。次に、無電解銅めっき層の上に、導体層8のパターンに対応した開口部を有するめっきレジスト層を被着する。めっきレジスト層は感光性を有する熱硬化性の樹脂フィルムを無電解めっき層上に貼着するとともに周知のフォトリソグラフィ技術を採用して所定のパターンに露光および現像することにより形成する。次にめっきレジスト層の開口内に露出する無電解銅めっき層の上に電解銅めっき層を被着する。電解銅めっき層の厚みは、5〜25μm程度とする。最後に、めっきレジスト層を剥離除去した後、電解銅めっき層から露出する無電解銅めっき層をエッチング除去することにより導体層8が形成される。   Such a conductor layer 8 is formed as follows. First, an electroless copper plating layer is deposited on the surface of the insulating layer 2 and the via hole 7. The thickness of the electroless copper plating layer is about 0.1 to 1 μm. Next, a plating resist layer having an opening corresponding to the pattern of the conductor layer 8 is deposited on the electroless copper plating layer. The plating resist layer is formed by adhering a photosensitive thermosetting resin film on the electroless plating layer and using a well-known photolithography technique to expose and develop a predetermined pattern. Next, an electrolytic copper plating layer is deposited on the electroless copper plating layer exposed in the opening of the plating resist layer. The thickness of the electrolytic copper plating layer is about 5 to 25 μm. Finally, after the plating resist layer is peeled and removed, the electroless copper plating layer exposed from the electrolytic copper plating layer is removed by etching to form the conductor layer 8.

絶縁層3は、絶縁層2と同じ電気絶縁材料から成る。絶縁層3の厚みは、20〜30μm程度であり、絶縁層2よりも5〜25μm程度薄い。絶縁層3には、検出用電極9を底面とする検出用凹部10がレーザ加工により形成されている。検出用凹部10の開口径は30〜50μm程度である。さらに絶縁層3には、ビアホール11が形成されている。ビアホール11の直径は、50〜100μm程度である。   The insulating layer 3 is made of the same electrically insulating material as the insulating layer 2. The thickness of the insulating layer 3 is about 20 to 30 μm, and is about 5 to 25 μm thinner than the insulating layer 2. In the insulating layer 3, a detection recess 10 having a detection electrode 9 as a bottom surface is formed by laser processing. The opening diameter of the detection recess 10 is about 30 to 50 μm. Furthermore, a via hole 11 is formed in the insulating layer 3. The diameter of the via hole 11 is about 50 to 100 μm.

このような絶縁層3は、以下のようにして形成される。先ず、導体層8が被着された絶縁層2の表面に熱硬化性の樹脂フィルムを積層する。積層には真空プレス機を用いる。最後に、樹脂フィルムを熱硬化させた後、その表面からレーザ加工を施して検出用凹部10およびビアホール11を穿孔する。なお検出用凹部10およびビアホール11を穿孔した後は、必要に応じてデスミア処理やソフトエッチング処理を施す。   Such an insulating layer 3 is formed as follows. First, a thermosetting resin film is laminated on the surface of the insulating layer 2 to which the conductor layer 8 is applied. A vacuum press is used for lamination. Finally, after the resin film is thermally cured, laser processing is performed from the surface to punch the detection recess 10 and the via hole 11. Note that after the detection recess 10 and the via hole 11 are drilled, a desmear process or a soft etching process is performed as necessary.

絶縁層3の表面およびビアホール11内には導体層12が被着されている。導体層12は、厚みが5〜25μm程度の銅めっき層等の良導電性の金属材料から成る。導体層12の一部は、絶縁層3の端部における表面で外部の分析装置に接続される外部接続端子13を形成している。この外部接続端子13と検出用電極9とは、所定のもの同士が導体層8やコア導体層5を介して互いに電気的に接続されている。また、絶縁層2と絶縁層3との間には、少なくとも外部接続用端子13を投影した部分を占有するダミーの電極14が導体層8により配設されている。ダミーの電極14は、外部接続用端子13と実質的に同一のパターンであっも良いし、ベタ状のパターンであっても良い。   A conductor layer 12 is deposited on the surface of the insulating layer 3 and in the via hole 11. The conductor layer 12 is made of a highly conductive metal material such as a copper plating layer having a thickness of about 5 to 25 μm. Part of the conductor layer 12 forms an external connection terminal 13 that is connected to an external analyzer on the surface of the end portion of the insulating layer 3. The external connection terminal 13 and the detection electrode 9 are electrically connected to each other through the conductor layer 8 and the core conductor layer 5. A dummy electrode 14 occupying at least a portion where the external connection terminal 13 is projected is disposed between the insulating layer 2 and the insulating layer 3 by the conductor layer 8. The dummy electrode 14 may be substantially the same pattern as the external connection terminal 13 or may be a solid pattern.

このような導体層12は、導体層8と同様の方法により形成される。まず、絶縁層3の表面およびビアホール11内に無電解銅めっき層を被着させる。無電解銅めっき層の厚みは0.1〜1μm程度とする。次に、無電解銅めっき層の上に、導体層12のパターンに対応した開口部を有するめっきレジスト層を被着する。めっきレジスト層は感光性を有する熱硬化性の樹脂フィルムを無電解めっき層上に貼着するとともに周知のフォトリソグラフィ技術を採用して所定のパターンに露光および現像することにより形成する。次にめっきレジスト層の開口内に露出する無電解銅めっき層の上に電解銅めっき層を被着する。電解銅めっき層の厚みは、5〜25μm程度とする。最後に、めっきレジスト層を剥離除去した後、電解銅めっき層から露出する無電解銅めっき層をエッチング除去することにより導体層12が形成される。   Such a conductor layer 12 is formed by the same method as that for the conductor layer 8. First, an electroless copper plating layer is deposited on the surface of the insulating layer 3 and in the via hole 11. The thickness of the electroless copper plating layer is about 0.1 to 1 μm. Next, a plating resist layer having an opening corresponding to the pattern of the conductor layer 12 is deposited on the electroless copper plating layer. The plating resist layer is formed by adhering a photosensitive thermosetting resin film on the electroless plating layer and using a well-known photolithography technique to expose and develop a predetermined pattern. Next, an electrolytic copper plating layer is deposited on the electroless copper plating layer exposed in the opening of the plating resist layer. The thickness of the electrolytic copper plating layer is about 5 to 25 μm. Finally, after removing the plating resist layer, the conductive layer 12 is formed by etching away the electroless copper plating layer exposed from the electrolytic copper plating layer.

そして、本例の遺伝子解析用配線基板によれば、図3に要部拡大模式断面図で示すように、検出用凹部10を覆うようにしてナノポアPを有する膜Mを被着するとともに遺伝子GがナノポアPを通過する際にその塩基配列に応じて発生する電流を検出し、その電流を外部接続端子13に接続された外部の解析装置で解析することによって遺伝子Gの塩基配列を特定することができる。   Then, according to the wiring board for gene analysis of this example, as shown in the enlarged schematic sectional view of the main part in FIG. 3, the film M having the nanopore P is deposited so as to cover the detection recess 10 and the gene G The base sequence of gene G is detected by detecting the current generated according to its base sequence when passing through the nanopore P and analyzing the current with an external analyzer connected to the external connection terminal 13 Can do.

なお、外部接続端子13と外部の解析装置との接続は、外部解析装置に外部接続端子13に対応したソケットを設けておき、そのソケットに外部接続端子13が形成された端部を挿入することによって行なわれる。   In addition, the connection between the external connection terminal 13 and the external analysis device is performed by providing a socket corresponding to the external connection terminal 13 in the external analysis device and inserting the end portion on which the external connection terminal 13 is formed into the socket. Is done by.

このとき、検出用凹部10は、レーザ加工により絶縁層3に形成されているので、開口径が30〜50μmの微細な検出用凹部10における寸法精度が高いものとなり、それによりナノポアPを通過する遺伝子Gの塩基配列に応じて発生する電流を正確に検出することができる。また、外部接続端子13は最表層の絶縁層3の表面に形成されていることから、外部の解析装置に設けられたソケットに挿入した際に外部の解析装置との接続を良好なものとすることができる。したがって、本例の遺伝子解析用配線基板によれば、ナノポアを用いた遺伝子の解析方法に用いられるのに好適な遺伝子解析用配線基板を提供することができる。   At this time, since the detection concave portion 10 is formed in the insulating layer 3 by laser processing, the dimensional accuracy in the fine detection concave portion 10 having an opening diameter of 30 to 50 μm is high, and thereby passes through the nanopore P. The current generated according to the base sequence of gene G can be accurately detected. Further, since the external connection terminal 13 is formed on the surface of the outermost insulating layer 3, when it is inserted into a socket provided in the external analyzer, the connection with the external analyzer is good. be able to. Therefore, according to the wiring board for gene analysis of this example, it is possible to provide a wiring board for gene analysis suitable for use in a gene analysis method using nanopores.

なお、絶縁層2と絶縁層3とを同じ絶縁材料で形成すると、基板の反りを低減することができるとともに絶縁層2と絶縁層3との積層を強固なものとすることができる。したがって、絶縁層2と絶縁層3とは、同じ絶縁材料で形成することが好ましい。   Note that when the insulating layer 2 and the insulating layer 3 are formed of the same insulating material, the warpage of the substrate can be reduced and the lamination of the insulating layer 2 and the insulating layer 3 can be strengthened. Therefore, the insulating layer 2 and the insulating layer 3 are preferably formed of the same insulating material.

さらに、絶縁層3の厚みを絶縁層2の厚みよりも薄くすると、絶縁層3にレーザ加工により微細で寸法制度に優れる検出用凹部を容易に形成することができる。したがって、絶縁層3の厚みを絶縁層2の厚みよりも薄くすることが好ましい。   Furthermore, if the thickness of the insulating layer 3 is made thinner than the thickness of the insulating layer 2, a fine detection recess having excellent dimensional accuracy can be easily formed in the insulating layer 3 by laser processing. Therefore, it is preferable to make the thickness of the insulating layer 3 thinner than the thickness of the insulating layer 2.

またさらに、絶縁層2と絶縁層3との間に、少なくとも外部接続用端子13を投影した部分を占有するダミーの電極14を配設すると、外部接続用端子13における平坦性を良好に保つことができ、それにより外部との接続をより確実なものとすることができる。したがって、絶縁層2と絶縁層3との間に、少なくとも外部接続用端子13を投影した部分を占有するダミーの電極14を配設することが好ましい。   Furthermore, when the dummy electrode 14 that occupies at least a portion where the external connection terminal 13 is projected is disposed between the insulating layer 2 and the insulating layer 3, the flatness of the external connection terminal 13 can be kept good. Thus, the connection with the outside can be made more reliable. Therefore, it is preferable to dispose a dummy electrode 14 that occupies at least a portion where the external connection terminal 13 is projected between the insulating layer 2 and the insulating layer 3.

本発明の遺伝子解析用配線基板は、遺伝子以外の物質の解析についても利用可能である。   The wiring board for gene analysis of the present invention can also be used for analysis of substances other than genes.

2 第1の絶縁層
3 第2の絶縁層
10 検出用電極
11 検出用凹部
13 外部接続用端子
14 ダミーの電極
2 First Insulating Layer 3 Second Insulating Layer 10 Detection Electrode 11 Detection Recess 13 External Connection Terminal 14 Dummy Electrode

Claims (4)

第1の絶縁層と、該第1の絶縁層の上面にマトリックス状に配設された複数の検出用電極と、前記第1の絶縁層上に積層されており、前記検出用電極を底面とする検出用凹部がレーザ加工により形成された第2の絶縁層と、前記第2の絶縁層の上面に形成されており、前記検出用電極に電気的に接続された外部接続用端子とを具備して成ることを特徴とする遺伝子解析用配線基板。   A first insulating layer; a plurality of detection electrodes arranged in a matrix on the top surface of the first insulating layer; and the first insulating layer stacked on the first insulating layer, the detection electrode serving as a bottom surface A detection recess formed by laser processing, and an external connection terminal formed on an upper surface of the second insulation layer and electrically connected to the detection electrode. A wiring board for gene analysis, characterized by comprising: 前記第1の絶縁層と第2の絶縁層とが同じ絶縁材料から形成されていることを特徴とする請求項1記載の遺伝子解析用配線基板。   The wiring board for gene analysis according to claim 1, wherein the first insulating layer and the second insulating layer are formed of the same insulating material. 前記第2の絶縁層が前記第1の絶縁層よりも薄いことを特徴とする請求項1または2に記載の配線基板。   The wiring board according to claim 1, wherein the second insulating layer is thinner than the first insulating layer. 前記第1の絶縁層と第2の絶縁層との間に少なくとも前記外部接続用端子を投影した部分を占有するダミーの電極が配設されていることを特徴とする請求項1乃至3のいずれかに記載の遺伝子解析用配線基板。   4. A dummy electrode occupying at least a portion where the external connection terminal is projected is disposed between the first insulating layer and the second insulating layer. A wiring board for gene analysis according to claim 1.
JP2011181195A 2011-08-23 2011-08-23 Wiring board for analyzing gene Pending JP2013042681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181195A JP2013042681A (en) 2011-08-23 2011-08-23 Wiring board for analyzing gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181195A JP2013042681A (en) 2011-08-23 2011-08-23 Wiring board for analyzing gene

Publications (1)

Publication Number Publication Date
JP2013042681A true JP2013042681A (en) 2013-03-04

Family

ID=48007101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181195A Pending JP2013042681A (en) 2011-08-23 2011-08-23 Wiring board for analyzing gene

Country Status (1)

Country Link
JP (1) JP2013042681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board
CN109427697A (en) * 2017-09-01 2019-03-05 京东方科技集团股份有限公司 A kind of gene detecting chip, its production method and detection method
WO2020217330A1 (en) * 2019-04-24 2020-10-29 株式会社日立ハイテク Biopolymer analysis device, biopolymer analysis equipment, and biopolymer analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098146A (en) * 2001-07-16 2003-04-03 Nec Corp Apparatus for recognizing base sequence, its manufacturing method and its using method
JP2008160055A (en) * 2006-11-29 2008-07-10 Kyocera Corp Electronic component storage package, multi-piece electronic component storage package and electronic device, and methods for distinguishing between them
JP2010510476A (en) * 2006-07-19 2010-04-02 バイオナノマトリックス、インク. Nanonozzle device array: fabrication and use in polymer analysis
WO2010132603A1 (en) * 2009-05-12 2010-11-18 Daniel Wai-Cheong So Method and apparatus for the analysis and identification of molecules
WO2011046706A1 (en) * 2009-09-18 2011-04-21 President And Fellows Of Harvard College Bare single-layer graphene membrane having a nanopore enabling high-sensitivity molecular detection and analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098146A (en) * 2001-07-16 2003-04-03 Nec Corp Apparatus for recognizing base sequence, its manufacturing method and its using method
JP2010510476A (en) * 2006-07-19 2010-04-02 バイオナノマトリックス、インク. Nanonozzle device array: fabrication and use in polymer analysis
JP2008160055A (en) * 2006-11-29 2008-07-10 Kyocera Corp Electronic component storage package, multi-piece electronic component storage package and electronic device, and methods for distinguishing between them
WO2010132603A1 (en) * 2009-05-12 2010-11-18 Daniel Wai-Cheong So Method and apparatus for the analysis and identification of molecules
WO2011046706A1 (en) * 2009-09-18 2011-04-21 President And Fellows Of Harvard College Bare single-layer graphene membrane having a nanopore enabling high-sensitivity molecular detection and analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015009669; FOLOGEA, D. et al.: '"Detecting single stranded DNA with a solid state nanopore."' NANO LETTERS Vol.5, No.10, 200510, P.1905-1909 *
JPN6015009671; DEAMER, D.W. et al.: '"Characterization of nucleic acids by nanopore analysis."' ACC. CHEM. RES. Vol.35, No.10, 200210, P.817-825 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board
CN109427697A (en) * 2017-09-01 2019-03-05 京东方科技集团股份有限公司 A kind of gene detecting chip, its production method and detection method
WO2020217330A1 (en) * 2019-04-24 2020-10-29 株式会社日立ハイテク Biopolymer analysis device, biopolymer analysis equipment, and biopolymer analysis method
JPWO2020217330A1 (en) * 2019-04-24 2020-10-29
CN113711022A (en) * 2019-04-24 2021-11-26 株式会社日立高新技术 Biopolymer analysis device, and biopolymer analysis method
GB2596753B (en) * 2019-04-24 2022-11-02 Hitachi High Tech Corp Biopolymer analysis device, biopolymer analysis equipment, and biopolymer analysis method
JP7253045B2 (en) 2019-04-24 2023-04-05 株式会社日立ハイテク Biopolymer analyzer and biopolymer analysis method
CN113711022B (en) * 2019-04-24 2023-09-19 株式会社日立高新技术 Biopolymer analysis device, biopolymer analysis apparatus, and biopolymer analysis method

Similar Documents

Publication Publication Date Title
JP2017143254A (en) Wiring board having lamination and embedded capacitor and manufacturing method
JP2010135720A (en) Printed circuit board comprising metal bump and method of manufacturing the same
JP2009260204A (en) Printed circuit board and method of manufacturing the same
KR100747022B1 (en) Embedded printed circuit board and its manufacturing method
TW201637522A (en) Printed circuit boards having profiled conductive layer and methods of manufacturing same
JP2013168691A (en) Printed circuit board and method for filling via hole thereof
JP2013042681A (en) Wiring board for analyzing gene
JP2013197548A (en) Wiring board and manufacturing method of the same
JP2017084914A (en) Printed wiring board and manufacturing method thereof
KR20160019297A (en) Printed circuit board and manufacturing method thereof
JP2016092052A (en) Manufacturing method of wiring board
JP2020057767A (en) Printed wiring board
JP2017005168A (en) Printed circuit board and method for manufacturing the same
KR100725481B1 (en) Electronic element embedded printed circuit board and its manufacturing method
JP2013206937A (en) Wiring board and manufacturing method thereof
JP2013224907A (en) Method for producing wiring board for gene analysis
JP5725554B2 (en) Wiring board for gene analysis
JP2013131731A (en) Wiring board and method of manufacturing the same
JP2013243948A (en) Manufacturing method of wiring board for genetic analysis
JP5791080B2 (en) Method for producing wiring board for gene analysis
JP2010129997A (en) Printed-circuit board with embedded pattern, and its manufacturing method
JP2016025307A (en) Wiring board manufacturing method and wiring board
JP2014083045A (en) Gene analysis wiring board and manufacturing method for the same
JP2013167473A (en) Method for manufacturing gene analysis wiring board
JP5608262B2 (en) Printed circuit board and printed circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013