[go: up one dir, main page]

JP2013035741A - Silicon carbide heating element for raw material gas supply - Google Patents

Silicon carbide heating element for raw material gas supply Download PDF

Info

Publication number
JP2013035741A
JP2013035741A JP2011285125A JP2011285125A JP2013035741A JP 2013035741 A JP2013035741 A JP 2013035741A JP 2011285125 A JP2011285125 A JP 2011285125A JP 2011285125 A JP2011285125 A JP 2011285125A JP 2013035741 A JP2013035741 A JP 2013035741A
Authority
JP
Japan
Prior art keywords
silicon carbide
gas
raw material
heating element
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285125A
Other languages
Japanese (ja)
Inventor
Masataka Yamamoto
将隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP2011285125A priority Critical patent/JP2013035741A/en
Publication of JP2013035741A publication Critical patent/JP2013035741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【課題】通気性の良好な原料ガス供給用炭化けい素発熱体を提供する。
【解決手段】炭化けい素からなり通電により発熱する気体透過性発熱部材2と該気体透過性発熱部材2への通電を行う端部部材3からなり、一端が閉じられた構造のパイプ形状を有する原料ガス供給用炭化けい素発熱体1であって、該気体透過性発熱部材の気孔率が20%以上35%未満かつ気体透過性が、0.04slpm・cm/torr・cm2以上であることを特徴とする原料ガス供給用炭化けい素発熱体1。
【選択図】図1
Disclosed is a silicon carbide heating element for supplying a raw material gas having good air permeability.
A gas permeable heating member 2 made of silicon carbide that generates heat when energized and an end member 3 that energizes the gas permeable heating member 2 have a pipe shape with one end closed. A silicon carbide heating element 1 for supplying raw material gas, wherein the gas permeable heating member has a porosity of 20% or more and less than 35% and a gas permeability of 0.04 slpm · cm / torr · cm 2 or more. A silicon carbide heating element 1 for supplying a raw material gas.
[Selection] Figure 1

Description

本発明は、電気炉用の原料ガス供給用炭化けい素発熱体に関するものである。更に詳しくは、パイプ状の炭化けい素発熱体の片端から半導体原料などを投入して加熱して高温ガス化すると共に発熱部表面からガスを供給することができる原料ガス供給用炭化けい素発熱体に関するものである。   The present invention relates to a silicon carbide heating element for supplying a source gas for an electric furnace. More specifically, a silicon carbide heating element for supplying a raw material gas capable of supplying a gas from the surface of the heating portion while supplying a semiconductor raw material from one end of a pipe-like silicon carbide heating element and heating it to heat it into a high temperature gas. It is about.

太陽電池等、半導体を基板上に成膜する工程における原料ガスの供給は、一般にインジェクターと呼ばれ、二重パイプ状の構造となっている。この内側パイプに原料ガス吹き出し口を設け、外側パイプにスリットまたは丸穴を内側パイプの吹き出し口と対抗する側に設けた形状になっている。内側パイプと外側パイプの間の空間がバッファとなって外側パイプから均等の流速で原料ガスが流れ出る構造になっている(特許文献1:特開2007-63575号公報)。   The supply of the source gas in the step of forming a semiconductor film on a substrate such as a solar cell is generally called an injector and has a double pipe structure. The inner pipe is provided with a raw material gas outlet, and the outer pipe is provided with a slit or a round hole on the side facing the outlet of the inner pipe. A space between the inner pipe and the outer pipe serves as a buffer so that the source gas flows out from the outer pipe at a uniform flow rate (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-63575).

また、内側パイプに、ガス透過性炭化けい素発熱体を用い通電して原料ガスを加熱しながら外側パイプへ放出させることが、特許文献2:特許第3504613号公報に開示されている。   Further, Patent Document 2: Japanese Patent No. 3504613 discloses that an inner pipe is energized using a gas-permeable silicon carbide heating element and heated to discharge the raw material gas to the outer pipe.

しかし、一般に炭化けい素発熱体は電気炉の熱源として使用され、(1)式により劣化するため発熱体内部への酸素拡散を防ぐ目的で、気孔率はできるだけ小さいことが求められている。通常炭化けい素発熱体の気孔率は25%程度である。(非特許文献1)
(1) SiC+2O→SiO2+CO2
炭化けい素発熱体の気孔率が25%程度であると内径から原料ガスを放出させるためには圧力損失が大きく片端と他端との圧力差が生じ、原料ガスが均一に放出できないという問題があった。
However, in general, a silicon carbide heating element is used as a heat source of an electric furnace, and is deteriorated by the equation (1), so that the porosity is required to be as small as possible for the purpose of preventing oxygen diffusion into the heating element. Usually, the porosity of a silicon carbide heating element is about 25%. (Non-Patent Document 1)
(1) SiC + 2O 2 → SiO 2 + CO 2
If the porosity of the silicon carbide heating element is about 25%, in order to release the source gas from the inner diameter, the pressure loss is large and a pressure difference occurs between one end and the other end, and the source gas cannot be released uniformly. there were.

原料ガスを加熱供給する炭化けい素発熱体に求められる気体透過性として、0.04slpm・cm/torr・cm2以上であり、好ましくは0.07slpm・cm/torr・cm2以上である。炭化けい素発熱体の気孔率が25%程度であると気体透過性は0.01〜0.02slpm・cm/torr・cm2であり、気体透過性が低いという問題点があった。 The gas permeability required for the silicon carbide heating element for heating and supplying the raw material gas is 0.04 slpm · cm / torr · cm 2 or more, preferably 0.07 slpm · cm / torr · cm 2 or more. When the porosity of the silicon carbide heating element is about 25%, the gas permeability is 0.01 to 0.02 slpm · cm / torr · cm 2 , and the gas permeability is low.

また、気体を透過させる炭化けい素発熱体として、排気ガス浄化用ハニカムヒーター(例えば特許文献3:特開2010-106735号公報)が提案されている。しかし、このハニカムヒーターは気孔率が90%以上であり単位断面積当たりの電流容量が小さく、したがって、発熱量(kW)が小さいため、電気炉用の原料ガス供給用発熱体とはなりえない。   Further, an exhaust gas purifying honeycomb heater (for example, Patent Document 3: Japanese Patent Application Laid-Open No. 2010-106735) has been proposed as a silicon carbide heating element that transmits gas. However, this honeycomb heater has a porosity of 90% or more, a small current capacity per unit cross-sectional area, and thus a small calorific value (kW), so it cannot be a heating element for supplying a raw material gas for an electric furnace. .

特開2007−63575号公報JP 2007-63575 A 特許第3504613号公報Japanese Patent No. 3504613 特開2010−106735号公報JP 2010-106735 A

新版工業炉ハンドブック(日本工業炉協会) p707〜p709New edition industrial furnace handbook (Japan Industrial Furnace Association) p707-p709

発明が解決しようとする課題は、通気性の良好な原料ガス供給用炭化けい素発熱体を提供することである。   The problem to be solved by the invention is to provide a silicon carbide heating element for supplying a raw material gas having good air permeability.

本発明の要旨は下記のとおりである。
(1) 炭化けい素からなり通電により発熱する気体透過性発熱部材と該気体透過性発熱部材への通電を行う端部部材からなり、一端が閉じられた構造のパイプ形状を有する原料ガス供給用炭化けい素発熱体であって、該気体透過性発熱部材の気孔率が20%以上35%未満かつ気体透過性が、0.04slpm・cm/torr・cm2以上であることを特徴とする原料ガス供給用炭化けい素発熱体。
(2) 気体透過性が、0.07slpm・cm/torr・cm2以上であることを特徴とする(1)項に記載の原料ガス供給用炭化けい素発熱体。
(3) 炭化けい素原料粉に、平均粒子径が50〜150ミクロンの二酸化けい素粉末0.5〜7重量%を混合し、パイプ状に成形・焼成して気体透過性発熱部材を製造し、端部部材を接合することを特徴とする(1)項または(2)項に記載の気体透過性炭化けい素発熱部材の製造方法。
(4) さらに、二酸化けい素粉末に対し20〜60重量%の炭素質粉末を混合することを特徴とする(3)項に記載の気体透過性炭化けい素発熱部材の製造方法。
(5) 炭化けい素原料粉に、平均粒子径が80〜150ミクロンのアクリル樹脂系球状微粒子を混合し、パイプ状に成形・焼成して気体透過性発熱部材を製造し、端部部材を接合することを特徴とする(1)項または(2)項に記載の気体透過性炭化けい素発熱部材の製造方法。
The gist of the present invention is as follows.
(1) For supplying a raw material gas having a pipe shape having a structure in which one end is made of silicon carbide, which includes a gas permeable heating member that generates heat by energization and an end member that energizes the gas permeable heating member. A raw material gas characterized by being a silicon carbide heating element, wherein the porosity of the gas permeable heating member is 20% or more and less than 35% and the gas permeability is 0.04 slpm · cm / torr · cm 2 or more. Silicon carbide heating element for supply.
(2) The silicon carbide heating element for supplying a source gas as described in the item (1), wherein the gas permeability is 0.07 slpm · cm / torr · cm 2 or more.
(3) Mixing silicon carbide raw material powder with 0.5 to 7% by weight of silicon dioxide powder having an average particle size of 50 to 150 microns, and forming and firing into a pipe shape to produce a gas permeable heating member. The method for producing a gas-permeable silicon carbide heating member according to item (1) or (2), wherein end members are joined.
(4) The method for producing a gas-permeable silicon carbide heating member according to item (3), further comprising mixing 20 to 60% by weight of carbonaceous powder with respect to the silicon dioxide powder.
(5) Mixing silicon carbide raw material powder with acrylic resin spherical fine particles having an average particle size of 80 to 150 microns, forming and firing into a pipe shape to produce a gas permeable heating member, and joining end members A method for producing a gas-permeable silicon carbide heating member as described in (1) or (2).

本発明の原料ガス供給用炭化けい素発熱体は、太陽電池等、半導体を基板上に成膜する工程における原料ガスの加熱供給に適している。   The silicon carbide heating element for supplying source gas according to the present invention is suitable for heating and supplying source gas in a step of forming a semiconductor film on a substrate such as a solar cell.

本発明の原料ガス供給用発熱体の正面図である。It is a front view of the heat generating body for source gas supply of this invention. 本発明の原料ガス供給用発熱体の断面図である。It is sectional drawing of the heat generating body for source gas supply of this invention.

図1及び図2は、本発明の実施の形態に係る原料ガス供給用炭化けい素発熱体の構成を示す図であり、図1は正面図、図2は断面図である。   1 and 2 are views showing a configuration of a silicon carbide heating element for supplying a source gas according to an embodiment of the present invention. FIG. 1 is a front view and FIG. 2 is a cross-sectional view.

図1において、原料ガス供給用炭化けい素発熱体1はパイプ状であり、図2から明らかなようにその一端が閉じられている。   In FIG. 1, a silicon carbide heating element 1 for supplying a source gas has a pipe shape, and one end thereof is closed as is apparent from FIG.

原料ガス供給用炭化けい素発熱体1の長手方向中央部に位置する炭化けい素発熱部材2は気体透過性である。   The silicon carbide heating member 2 located at the center in the longitudinal direction of the raw material gas supply silicon carbide heating element 1 is gas permeable.

気体透過性炭化けい素発熱部材2に通電を行うための端部部材3は、原料ガス供給用炭化けい素発熱体1の長手方向両端部に位置する。   End members 3 for energizing the gas permeable silicon carbide heating member 2 are located at both ends in the longitudinal direction of the raw material gas supply silicon carbide heating element 1.

パイプ状の原料ガス供給用炭化けい素発熱体1の解放端から供給された原料ガスは、気体透過性発熱部材を透過し加熱供給される。   The source gas supplied from the open end of the pipe-shaped silicon carbide heating element 1 for supplying source gas passes through the gas-permeable heating member and is supplied by heating.

気体透過性発熱部材は、気孔率が20%以上35%未満かつ気体透過性が0.04slpm・cm/torr・cm2以上好ましくは0.07slpm・cm/torr・cm2以上である。 The gas permeable heating member has a porosity of 20% or more and less than 35% and a gas permeability of 0.04 slpm · cm / torr · cm 2 or more, preferably 0.07 slpm · cm / torr · cm 2 or more.

気体透過性発熱部材の気孔率が20%未満であると、気体透過性が0.01slpm・cm/torr・cm以下になるので、好ましくなく、気孔率が35%を超えると、発熱部の強度が低下してハンドリングに問題が出てくるので好ましくない。 If the porosity of the gas permeable heat generating member is less than 20%, the gas permeability is 0.01 slpm · cm / torr · cm 2 or less, which is not preferable. If the porosity exceeds 35%, the strength of the heat generating part This is not preferable because of a decrease in the quality of the system and a problem in handling.

また気体透過性発熱部材の気体透過性が0.04slpm・cm/torr・cm2未満であると、圧力損失が大きくなり原料ガスが均一に供給できなくなるので好ましくない。 Further, if the gas permeability of the gas permeable heating member is less than 0.04 slpm · cm / torr · cm 2 , the pressure loss becomes large and the raw material gas cannot be supplied uniformly, which is not preferable.

気孔率が20%以上35%未満かつ気体透過性が0.04slpm・cm/torr・cm2以上の気体透過性発熱部材を製造するには、再結晶用炭化けい素原料粉に、平均粒子径が50〜150ミクロンの二酸化けい素粉末0.5〜7重量%を混合成形するか、再結晶用炭化けい素原料粉に、平均粒子径が80〜150ミクロンのアクリル樹脂系球状微粒子を混合形成すればよい。 In order to produce a gas permeable heating member having a porosity of 20% or more and less than 35% and a gas permeability of 0.04 slpm · cm / torr · cm 2 or more, the average particle size of the recrystallized silicon carbide raw material powder is Either mix and mold 0.5 to 7% by weight of silicon dioxide powder of 50 to 150 microns, or mix and form acrylic resin spherical fine particles with an average particle size of 80 to 150 microns in silicon carbide raw material powder for recrystallization. That's fine.

二酸化けい素粉末を配合して、気体透過性発熱部材を製造する方法において、二酸化けい素粉末の平均粒子径が50ミクロン未満であると、気体透過性炭化けい素発熱部材に形成される気孔径が小さくなり気体透過性の改善効果が小さくなるので好ましくなく、平均粒子径が150ミクロンを超えると、気孔径が大きくなり、発熱部の強度低下が大きくなるので好ましくない。   In the method of manufacturing a gas permeable heating member by blending silicon dioxide powder, if the average particle size of the silicon dioxide powder is less than 50 microns, the pore diameter formed in the gas permeable silicon carbide heating member And the effect of improving the gas permeability is reduced, and the average particle diameter is more than 150 microns. This is not preferable because the pore diameter increases and the strength of the heat generating part decreases greatly.

また二酸化けい素粉末の添加率が0.5重量%未満であると、気体透過性の改善効果が小さくなるので好ましくなく、添加率が7重量%を超えると、発熱部の強度低下が大きくなるので好ましくない。   Further, if the addition rate of silicon dioxide powder is less than 0.5% by weight, the effect of improving gas permeability is reduced, which is not preferable. If the addition rate exceeds 7% by weight, the strength reduction of the heat generating portion increases. Therefore, it is not preferable.

気体透過性発熱部材の成形には、バインダーを配合すればよく、バインダーとは、例えば、PVAやセルロース系の有機バインダーなど、通常のセラミックスの成形に使われるものでよい。   In forming the gas permeable heat generating member, a binder may be blended, and the binder may be one used for ordinary ceramic molding, such as PVA or cellulose organic binder.

気体透過性発熱体部材の強度を向上させる目的で、気体透過性発熱部材の成形の際に、二酸化けい素粉末に炭素質粉末を配合しても良い。   For the purpose of improving the strength of the gas permeable heating element, carbonaceous powder may be added to the silicon dioxide powder when the gas permeable heating element is molded.

炭素質粉末の配合量は、二酸化けい素粉末に対して20〜60重量%である。炭素質粉末の配合量が20重量%未満であると、気体透過性発熱体部材の強度の向上が認められず、60重量%を超えて配合しても、炭素が残留するだけである。   The compounding quantity of carbonaceous powder is 20 to 60 weight% with respect to silicon dioxide powder. When the blending amount of the carbonaceous powder is less than 20% by weight, no improvement in the strength of the gas permeable heating element is observed, and even if the blending exceeds 60% by weight, only carbon remains.

二酸化けい素粉末を配合して、気体透過性発熱部材を製造する方法の場合、成形後の焼成は、2200〜2600℃の範囲内で行えばよい。   In the case of a method for producing a gas-permeable heating member by blending silicon dioxide powder, the firing after molding may be performed within a range of 2200 to 2600 ° C.

アクリル樹脂系球状微粒子を配合して気体透過性発熱部材を製造する方法は、アクリル樹脂系球状微粒子は、形状が真球状にそろっているためアクリル樹脂系球状微粒子が仮焼または焼成によって消失して形成される空孔の形状も真球状になる。すなわち、気体透過性炭化けい素発熱部材の気体透過性が均一となる。   The method for producing a gas-permeable heat generating member by blending acrylic resin spherical fine particles is that acrylic resin spherical fine particles disappear due to calcination or firing because acrylic resin spherical fine particles have a perfect spherical shape. The shape of the holes formed is also a perfect sphere. That is, the gas permeability of the gas permeable silicon carbide heating member becomes uniform.

さらに、200〜400℃の比較的低温で消失することから、焼成温度付近で焼成を阻害するガスを発生しないので、焼成が容易になる。   Furthermore, since it disappears at a relatively low temperature of 200 to 400 ° C., no gas that inhibits firing is generated near the firing temperature, and thus firing is facilitated.

本発明におけるアクリル樹脂系球状微粒子とは、ポリメタクリル酸メチル(PMMA)、ポリアクリロニトリル(PAN)などを主成分とする樹脂である。架橋PMMA系微粒子、ポリアクリロニトリル系微粒子などがあり、塗料・インキの艶消し剤、流動性改良剤に使用されている。特にPMMAには真球状で水に対する分散性が高い物がある。   The acrylic resin-based spherical fine particles in the present invention are resins mainly composed of polymethyl methacrylate (PMMA), polyacrylonitrile (PAN) or the like. There are cross-linked PMMA fine particles, polyacrylonitrile fine particles, etc., and they are used as matting agents and fluidity improvers for paints and inks. In particular, PMMA has a spherical shape and high water dispersibility.

例えば、東洋紡績株式会社製「タフチック AR650」シリーズを挙げることができる。   For example, “Tough Tick AR650” series manufactured by Toyobo Co., Ltd. can be mentioned.

配合するアクリル樹脂系球状微粒子の平均粒子径が80ミクロン未満では、気体透過性炭化けい素発熱部材に形成される気孔径が小さくなり気体透過性の改善効果が小さくなるので好ましくなく、また、アクリル樹脂系球状微粒子の平均粒子径が150μmを超えると、気孔径が大きくなり、発熱部の強度低下が大きくなるので好ましくない。   When the average particle diameter of the acrylic resin-based spherical fine particles to be blended is less than 80 microns, the pore diameter formed in the gas-permeable silicon carbide heating member is reduced, and the effect of improving gas permeability is reduced. If the average particle diameter of the resin-based spherical fine particles exceeds 150 μm, the pore diameter increases and the strength of the heat generating part decreases greatly, which is not preferable.

アクリル樹脂系球状微粒子は、炭化けい素原料粉末に対して、1〜7重量%配合すればよい。   The acrylic resin spherical fine particles may be blended in an amount of 1 to 7% by weight with respect to the silicon carbide raw material powder.

アクリル樹脂系球状微粒子の配合量が1重量%未満のときは、添加率が1重量%未満であると、気体透過性の改善効果が小さくなるので好ましくなく、7重量%を超える場合は、発熱部の強度低下が大きくなるので好ましくない。   When the blending amount of the acrylic resin-based spherical fine particles is less than 1% by weight, it is not preferable that the addition rate is less than 1% by weight because the effect of improving gas permeability is reduced, and when it exceeds 7% by weight, heat is generated. This is not preferable because the strength of the part is greatly reduced.

アクリル樹脂系球状微粒子を配合して、気体透過性発熱部材を製造する方法の場合、成形後の焼成は、2200〜2600℃で行えばよい。   In the case of a method for producing a gas-permeable heat generating member by blending acrylic resin spherical fine particles, firing after molding may be performed at 2200 to 2600 ° C.

また、焼成前に仮焼してもよい。   Moreover, you may calcine before baking.

本発明の端子部材は、反応焼結炭化けい素(炭化けい素とけい素の複合材料)や再結晶炭化けい素にけい素を含浸したものなど、非特許文献1に記載の通常の炭化けい素発熱体の端部材質であればよい。   The terminal member of the present invention is a normal silicon carbide described in Non-Patent Document 1, such as a reaction sintered silicon carbide (composite material of silicon carbide and silicon) or a recrystallized silicon carbide impregnated with silicon. What is necessary is just the end member quality of a heat generating body.

二酸化けい素を用いて原料ガス供給用炭化けい素発熱体を成形するには、再結晶用炭化けい素原料粉末に所定の二酸化けい素、炭素および有機バインダーを加え、乾式混合した後、適量の水を加え湿式混錬する。その後、押出成形によりパイプ状に成形し、乾燥する。乾燥した成形体を非酸化性雰囲気にて2200℃から2600℃で焼成し、再結晶炭化けい素発熱部、すなわち、気体透過性発熱部材とすることができる。添加した二酸化けい素は、焼成により消失する。   In order to form a silicon carbide heating element for supplying a raw material gas using silicon dioxide, a predetermined amount of silicon dioxide, carbon and an organic binder are added to a silicon carbide raw material powder for recrystallization, followed by dry mixing, and then an appropriate amount. Add water and knead. Thereafter, it is formed into a pipe shape by extrusion and dried. The dried molded body can be fired at 2200 ° C. to 2600 ° C. in a non-oxidizing atmosphere to form a recrystallized silicon carbide heating portion, that is, a gas permeable heating member. The added silicon dioxide disappears upon firing.

気体透過性発熱部材として好適な物性として、比抵抗は0.06〜0.12Ωcmであり、曲げ強さは20MPa以上好ましくは30MPa以上である。   As physical properties suitable for the gas permeable heating member, the specific resistance is 0.06 to 0.12 Ωcm, and the bending strength is 20 MPa or more, preferably 30 MPa or more.

再結晶炭化けい素発熱部(気体透過性発熱部材)を所定の長さに切断し、端部を溶接することによって、原料ガス供給用炭化けい素発熱体とすることができる。   By cutting the recrystallized silicon carbide heating part (gas permeable heating member) to a predetermined length and welding the ends, a silicon carbide heating element for supplying raw material gas can be obtained.

実施例1
常法による再結晶用炭化けい素原料粉末に対し、平均粒子径80ミクロンの二酸化けい素粉末を1重量%と有機バインダー2.5重量%を添加し乾式混合後、添加水を8.5%加え混練後、外径50mm、内径33mmのパイプ状に成形した。
Example 1
1% by weight of silicon dioxide powder with an average particle diameter of 80 microns and 2.5% by weight of organic binder are added to the recrystallized silicon carbide raw material powder for recrystallization and dry-mixed. In addition, after kneading, it was formed into a pipe shape having an outer diameter of 50 mm and an inner diameter of 33 mm.

成形体を乾燥後、2400℃で焼成し、再結晶炭化けい素発熱体の気体透過性炭化けい素発熱部材を作成した。発熱部材の比抵抗は0.08Ωcmであった。   The molded body was dried and then fired at 2400 ° C. to prepare a gas-permeable silicon carbide heating member as a recrystallized silicon carbide heating element. The specific resistance of the heat generating member was 0.08 Ωcm.

また、図2に示したように、同一の外径、内径の炭化けい素/けい素質端部と接合し、原料ガス供給用炭化けい素発熱体50×1200×350(外径×発熱部長さ×端部長さ)とした。この原料ガス供給用炭化けい素発熱体の1,000℃定格は146V、186Aであった。   Further, as shown in FIG. 2, silicon carbide heating elements 50 × 1200 × 350 (outer diameter × heat generation section length) for supplying a raw material gas are bonded to silicon carbide / silicon end portions having the same outer diameter and inner diameter. X end length). The 1,000 ° C rating of this silicon carbide heating element for supplying raw material gas was 146V, 186A.

評価は、発熱部の気孔率、曲げ強さ、外観(亀裂の有無)および原料ガス供給用炭化けい素発熱体の気体透過性試験を実施した。結果を表1に示した。   For the evaluation, the porosity, bending strength, appearance (presence or absence of cracks) of the heat generating portion and the gas permeability test of the silicon carbide heating element for supplying the raw material gas were conducted. The results are shown in Table 1.

Figure 2013035741
Figure 2013035741

実施例2
二酸化けい素の添加量を7重量%とした他は、実施例1と同様に原料ガス供給用炭化けい素発熱体を作成した。
Example 2
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 1 except that the amount of silicon dioxide added was 7% by weight.

比較例1
二酸化けい素を添加しないで、実施例1と同様に原料ガス供給用炭化けい素発熱体を作成した。
Comparative Example 1
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 1 without adding silicon dioxide.

比較例2
二酸化けい素の添加量を10重量%とした他は実施例1と同様に原料ガス供給用炭化けい素発熱体を作成した。
Comparative Example 2
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 1 except that the amount of silicon dioxide added was 10% by weight.

実施例3
二酸化けい素の添加量を0.6重量%とし、炭素質粉末を二酸化けい素に対して50重量%(炭化けい素に対して0.3重量%)添加とした他は、実施例1と同様にして原料ガス供給用炭化けい素発熱体を作成した。
Example 3
Example 1 is the same as in Example 1 except that the addition amount of silicon dioxide was 0.6% by weight and the carbonaceous powder was added by 50% by weight to silicon dioxide (0.3% by weight with respect to silicon carbide). Similarly, a silicon carbide heating element for supplying raw material gas was prepared.

実施例4、5、比較例3、4
二酸化けい素と炭素の配合を表1とした他は実施例1と同様にして原料ガス供給用炭化けい素発熱体を作成した。
Examples 4 and 5 and Comparative Examples 3 and 4
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 1 except that the composition of silicon dioxide and carbon was changed to Table 1.

実施例1、2、3、4、5は、気体透過性が0.04slpm・cm/torr・cm2以上であり、気孔率も20〜35%であり原料ガス供給用炭化けい素発熱部材として好適なものであった。 Examples 1, 2, 3, 4, and 5 have a gas permeability of 0.04 slpm · cm / torr · cm 2 or more and a porosity of 20 to 35%, which is suitable as a silicon carbide heating member for supplying raw material gas. It was something.

比較例1、3は、気体透過性が低く、原料ガス供給用炭化けい素発熱体としては不適なものであった。   Comparative Examples 1 and 3 had low gas permeability and were not suitable as silicon carbide heating elements for supplying raw material gas.

比較例2、4は気体透過性が高いが、亀裂を経由して気体が漏れたものであり、曲げ強さも低く電気炉に装着しての使用に耐えないものであった。   In Comparative Examples 2 and 4, the gas permeability was high, but the gas leaked through the crack, the bending strength was low, and it was unbearable for use in an electric furnace.

実施例6
常法による再結晶用炭化けい素原料粉末に対し、平均粒子径80ミクロンのアクリル樹脂系球状微粒子を7重量%と有機バインダー2.5重量%を添加し乾式混合後、添加水を7.3%加え混練後、外径50mm、内径33mmのパイプ状に成形した。
Example 6
7% by weight of acrylic resin spherical fine particles with an average particle size of 80 microns and 2.5% by weight of organic binder are added to dry-crystallized silicon carbide raw material powder by a conventional method and dry-mixed. % And kneaded, and formed into a pipe shape having an outer diameter of 50 mm and an inner diameter of 33 mm.

成形体を乾燥後、2350℃で焼成し、再結晶炭化けい素発熱体の気体透過性炭化けい素発熱部材を作成した。発熱部材の比抵抗は0.09Ωcmであった。
その他は、実施例1と同様にして、原料ガス供給用炭化けい素発熱体を作成した。この原料ガス供給用炭化けい素発熱体の1,000℃定格は146V、173Aであった。
The molded body was dried and then fired at 2350 ° C. to prepare a gas-permeable silicon carbide heating member as a recrystallized silicon carbide heating element. The specific resistance of the heat generating member was 0.09 Ωcm.
Other than that, a silicon carbide heating element for supplying a source gas was prepared in the same manner as in Example 1. The 1,000 ° C rating of this silicon carbide heating element for supplying raw material gas was 146V, 173A.

なお、気体透過性の値がほぼ同等の実施例6のサンプルと実施例5のサンプルを用い、目視にてスモークテストを行なったところ、実施例6の方が一端を封じた側の発熱部境界近くまでスモークが均一に噴出していた。   In addition, when the smoke test was visually performed using the sample of Example 6 and the sample of Example 5 having substantially the same gas permeability values, the boundary of the heat generating portion on the side where Example 6 was sealed at one end Smoke erupted uniformly to near.

実施例7
平均粒子径100ミクロンのアクリル樹脂系球状微粒子を3重量%、添加水を7.6%とした他は、実施例6と同様に原料ガス供給用炭化けい素発熱体を作成した。
Example 7
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 6 except that 3% by weight of acrylic resin spherical fine particles having an average particle size of 100 microns was added and 7.6% of added water was used.

実施例8
平均粒子径160ミクロンのアクリル樹脂系球状微粒子を1重量%、添加水を8.0%とし、500℃で仮焼した他は、実施例6と同様に原料ガス供給用炭化けい素発熱体を作成した。
Example 8
A silicon carbide heating element for supplying a raw material gas was prepared in the same manner as in Example 6 except that acrylic resin spherical fine particles having an average particle size of 160 microns were 1% by weight, added water was 8.0%, and calcined at 500 ° C. Created.

Figure 2013035741
Figure 2013035741

実施例6、7、8は、気体透過性が0.04slpm・cm/torr・cm2以上かつ、気孔率20〜35%であり原料ガス供給用炭化けい素発熱部材として好適なものであった。 In Examples 6, 7, and 8, the gas permeability was 0.04 slpm · cm / torr · cm 2 or more and the porosity was 20 to 35%, which was suitable as a silicon carbide heating member for supplying raw material gas.

また、二酸化けい素添加より低い温度で焼成可能であり、ガスの透過が均一であった。   In addition, firing was possible at a temperature lower than that of addition of silicon dioxide, and gas permeation was uniform.

太陽電池等、半導体を基板上に成膜する工程における原料ガスの供給に適した原料ガス供給用炭化けい素発熱体を提供できる。   A silicon carbide heating element for supplying a source gas suitable for supplying a source gas in a step of forming a semiconductor film on a substrate such as a solar cell can be provided.

1 原料ガス供給用発熱体
2 気体透過性炭化けい素発熱部材
3 端部部材
DESCRIPTION OF SYMBOLS 1 Heating element for source gas supply 2 Gas-permeable silicon carbide heating member 3 End member

Claims (5)

炭化けい素からなり通電により発熱する気体透過性発熱部材と該気体透過性発熱部材への通電を行う端部部材からなり、一端が閉じられた構造のパイプ形状を有する原料ガス供給用炭化けい素発熱体であって、該気体透過性発熱部材の気孔率が20%以上35%未満かつ気体透過性が、0.04slpm・cm/torr・cm2以上であることを特徴とする原料ガス供給用炭化けい素発熱体。 A silicon carbide for supplying a raw material gas having a pipe shape having a structure in which one end is closed, comprising a gas permeable heating member made of silicon carbide and generating heat by energization and an end member for energizing the gas permeable heating member Carbonization for supplying raw material gas, characterized in that the gas permeable heating member has a porosity of 20% to less than 35% and gas permeability of 0.04 slpm · cm / torr · cm 2 or more. Silicon heating element. 気体透過性が、0.07slpm・cm/torr・cm2以上であることを特徴とする請求項1に記載の原料ガス供給用炭化けい素発熱体。 2. The silicon carbide heating element for supplying a raw material gas according to claim 1, wherein the gas permeability is 0.07 slpm · cm / torr · cm 2 or more. 炭化けい素原料粉に、平均粒子径が50〜150ミクロンの二酸化けい素粉末0.5〜7重量%を混合し、パイプ状に成形・焼成することを特徴とする請求項1または2に記載の気体透過性炭化けい素発熱部材の製造方法。   3. The silicon carbide raw material powder is mixed with 0.5 to 7% by weight of silicon dioxide powder having an average particle size of 50 to 150 microns, and molded and fired into a pipe shape. Of manufacturing a gas-permeable silicon carbide heating member. さらに、二酸化けい素粉末に対し20〜60重量%の炭素質粉末を混合することを特徴とする請求項3に記載の気体透過性炭化けい素発熱部材の製造方法。   The method for producing a gas-permeable silicon carbide heating member according to claim 3, further comprising mixing 20 to 60% by weight of carbonaceous powder with respect to the silicon dioxide powder. 炭化けい素原料粉に、平均粒子径が80〜150ミクロンのアクリル樹脂系球状微粒子を混合し、パイプ状に成形・焼成することを特徴とする請求項1または2に記載の気体透過性炭化けい素発熱部材の製造方法。   3. The gas permeable silicon carbide according to claim 1, wherein acrylic resin-based spherical fine particles having an average particle size of 80 to 150 microns are mixed with silicon carbide raw material powder, and are molded and fired into a pipe shape. A method for producing an elementary heating member.
JP2011285125A 2011-07-11 2011-12-27 Silicon carbide heating element for raw material gas supply Pending JP2013035741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285125A JP2013035741A (en) 2011-07-11 2011-12-27 Silicon carbide heating element for raw material gas supply

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011152877 2011-07-11
JP2011152877 2011-07-11
JP2011285125A JP2013035741A (en) 2011-07-11 2011-12-27 Silicon carbide heating element for raw material gas supply

Publications (1)

Publication Number Publication Date
JP2013035741A true JP2013035741A (en) 2013-02-21

Family

ID=47885708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285125A Pending JP2013035741A (en) 2011-07-11 2011-12-27 Silicon carbide heating element for raw material gas supply

Country Status (1)

Country Link
JP (1) JP2013035741A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268085A (en) * 1996-03-30 1997-10-14 Asahi Glass Co Ltd Method for producing porous silicon carbide body
JPH11335172A (en) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd Method for producing porous silicon carbide sintered body
JP2002504745A (en) * 1998-02-19 2002-02-12 ファースト・ソーラー・リミテッド・ライアビリティー・カンパニー Apparatus and method for depositing semiconductor material
JP2002356384A (en) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd Silicon carbide porous body and method for producing the same
JP2005162538A (en) * 2003-12-03 2005-06-23 Noritake Co Ltd Method of manufacturing silicon carbide porous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268085A (en) * 1996-03-30 1997-10-14 Asahi Glass Co Ltd Method for producing porous silicon carbide body
JP2002504745A (en) * 1998-02-19 2002-02-12 ファースト・ソーラー・リミテッド・ライアビリティー・カンパニー Apparatus and method for depositing semiconductor material
JPH11335172A (en) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd Method for producing porous silicon carbide sintered body
JP2002356384A (en) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd Silicon carbide porous body and method for producing the same
JP2005162538A (en) * 2003-12-03 2005-06-23 Noritake Co Ltd Method of manufacturing silicon carbide porous body

Similar Documents

Publication Publication Date Title
CN100522879C (en) Porous, fired ceramic foam
JP6906343B2 (en) Method for manufacturing silicon carbide sintered body
CN105884394B (en) Method for preparing porous silicon carbide support body at low temperature
CN103467072B (en) A kind of preparation method of light microporous corundum ceramic
EP2105424B1 (en) Method for manufacturing a honeycomb structured body
WO2012043749A1 (en) Silicon carbide ceramic and honeycomb structure
US8475906B2 (en) Silicon carbide based porous material and method for preparation thereof
CN101747078B (en) Making method for sintering high-purity silicon carbide honeycomb ceramics by using nanometer silicon carbide as auxiliary
CN101765253B (en) Method for preparing SiC heating element having long service life
JP4980299B2 (en) Silicon carbide based porous material
JP4991636B2 (en) Method for producing silicon carbide based porous material
CN104311134A (en) Method for preparing silicon nitride bonding silicon carbide foamed ceramics
CN110496967A (en) Method for preparing FeCrAl metal honeycomb carrier for infrared burner by plasticizing extrusion
Song et al. Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics
JP2009256175A (en) Method for producing honeycomb structure
JP2009143763A (en) Silicon carbide-based porous body
JP5916255B2 (en) Ceramic filter
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
JP2013035741A (en) Silicon carbide heating element for raw material gas supply
CN103482981A (en) Preparation method of porous silicon nitride ceramic material
JP6257968B2 (en) Porous material, honeycomb structure and honeycomb filter
JP5053981B2 (en) Silicon carbide based porous material and method for producing the same
JP2001151579A (en) Silicon carbide porous body and method of producing the same
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
CN107673774B (en) A kind of Al8B4C7 reinforced silicon carbide honeycomb ceramic and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705