[go: up one dir, main page]

JP2013032764A - Method and apparatus for obtaining steam by injecting water into underground heat source - Google Patents

Method and apparatus for obtaining steam by injecting water into underground heat source Download PDF

Info

Publication number
JP2013032764A
JP2013032764A JP2011179232A JP2011179232A JP2013032764A JP 2013032764 A JP2013032764 A JP 2013032764A JP 2011179232 A JP2011179232 A JP 2011179232A JP 2011179232 A JP2011179232 A JP 2011179232A JP 2013032764 A JP2013032764 A JP 2013032764A
Authority
JP
Japan
Prior art keywords
water
steam
power generation
underground
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011179232A
Other languages
Japanese (ja)
Inventor
Isamu Fukushima
勇 福島
Kazuo Murakami
和男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011179232A priority Critical patent/JP2013032764A/en
Publication of JP2013032764A publication Critical patent/JP2013032764A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for obtaining steam for geothermal power generation without limitation of site location and without causing an unusual state in underground pressure, water veins, water volume or the like and losing a balance of the underground structure.SOLUTION: Through a water injection pipe 1 and a steam discharge pipe 2 installed together with the water injection pipe toward an underground heat source at a depth of about 200 m or more, underground water source or rain water is used to be injected into the water injection pipe to obtain steam through the steam discharge pipe and the obtained steam is used for power generation. Thereby performing the connection and utilization according to the purpose of the other existing apparatuses, devices or the like. The steam discharge pipe has a diameter of about 100 m/m or more and a water reservoir 5 is provided at a bottom near an underground heat source 4. Water injected through the water injection pipe flows into the water reservoir via a damper valve 3 that is set to sink or float, and remains in a given amount at the bottom.

Description

発電方法の多様化が求められている今日、地熱発電はその一つとして注目を浴びている。しかし、これまでに考えられている地熱発電方式は温泉源等に向けて穴を掘り、そこから蒸気、熱水等を採取し、タービンを動かして発電するものである。しかし、この方法では温泉地等に立地が限定されるとともに、大規模な蒸気や温泉等の採取は地下の圧力、水脈、水量等の変調を招き、地下の構造のバランスを崩す恐れがある。  Today, where diversification of power generation methods is required, geothermal power generation is attracting attention as one of them. However, the geothermal power generation method that has been considered so far involves digging a hole toward a hot spring source, collecting steam, hot water, etc., and moving the turbine to generate electricity. However, with this method, the location is limited to hot springs and the like, and the collection of large-scale steam and hot springs may cause changes in underground pressure, water veins, water volume, etc., and may disrupt the balance of the underground structure.

地熱の回収方法には、噴出する熱水や蒸気をそのまま利用する方法と、熱水から沸点の低い流体に熱交換して利用する方法、地下に水を流し込んで地熱により蒸気に変える方法などが有る。地熱は二酸化炭素を出さず一年を通して安定した供給が得られるため、次世代のクリーンエネルギーとして注目され、現在効率的な利用について研究が進められている。
また、地上の温度と地下の温度の温度差を利用する方法(地中熱)もあり、この場合は地下の温度が特に高くなくてもよいのでどこでも利用できる。
Geothermal recovery methods include the method of using the hot water and steam as they are jetted, the method of exchanging heat from hot water to a fluid with a low boiling point, and the method of pouring water into the basement and changing it to steam by geothermal heat. Yes. Geothermal heat is attracting attention as the next generation of clean energy because it provides a stable supply throughout the year without producing carbon dioxide, and research is currently underway on its efficient use.
There is also a method (ground heat) that uses the temperature difference between the ground temperature and the underground temperature. In this case, the underground temperature does not have to be particularly high, and can be used anywhere.

地熱発電は、地下から噴出する天然の、または地上からの注水による蒸気又は熱水を利用してタービン・発電機を回し、発電を行うものである。また、地下の温度や圧力が低く熱水しか得られない場合でも、アンモニアやペンタン・フロンなど水よりも低沸点の媒体を、熱水で沸騰させタービンを回して発電させる方式もある。石油などの化石燃料を使わないクリーンエネルギーのひとつである。
地熱源としては、地熱の発生源は地球の中心部。地球内部は、外から順に、固体岩石の地殻、固体岩石のマントル、鉄やニッケルを主成分とする溶融金属でできた外殻、鉄やニッケルを主成分とする固体金属の内殻に分かれている。
● 地球内部で発生する熱の大半は、天然放射性元素が崩壊する時の熱に由来する。
地熱の45から85パーセントは地殻に含まれる元素の放射性崩壊から発生している。
● 落下した隕石がもともとの地球の構成中に取り込まれるときの衝撃および圧縮の熱。
● 過剰な重金属(鉄、ニッケル、銅)が地核に沈降していくときに放出される摩擦熱。
● 地磁気が作る電磁気的効果によって生み出されるジュール熱。
地核で発生している熱量は4〜10テラワットの範囲と推定されている。この地熱は地表近くまで及び、地表から1kmぐらい掘り進めば200〜300℃の地熱帯に達する。浅いところでは200〜500mでこの地熱帯に達する。
Geothermal power generation is to generate electricity by turning a turbine / generator using steam or hot water that is spouted from the ground or injected from the ground. In addition, even when the underground temperature and pressure are low and only hot water can be obtained, there is also a method in which a medium having a lower boiling point than water such as ammonia, pentane, and chlorofluorocarbon is boiled with hot water and a turbine is rotated to generate electricity. It is one of the clean energy that does not use fossil fuels such as oil.
As a geothermal source, the source of geothermal heat is the center of the earth. The inside of the earth is divided into the crust of solid rock, the mantle of solid rock, the outer shell made of molten metal mainly composed of iron and nickel, and the inner shell composed of solid metal mainly composed of iron and nickel. Yes.
● Most of the heat generated within the earth is derived from the heat generated when natural radioactive elements decay.
45 to 85 percent of geothermal heat comes from radioactive decay of elements contained in the crust.
● The heat of shock and compression as the fallen meteorite is taken into the original Earth structure.
● Frictional heat released when excess heavy metals (iron, nickel, copper) sink to the earth's core.
● Joule heat generated by the electromagnetic effect produced by geomagnetism.
The amount of heat generated at the Earth's core is estimated to be in the range of 4-10 terawatts. This geothermal heat reaches near the surface of the earth and reaches the geotropics of 200-300 ° C if it is dug about 1 km from the surface. It reaches the tropics in this shallow area at 200-500m.

地熱発電の長所としては、
排出する二酸化炭素の量が少ない(火力発電にくらべ単位発電量当たりの二酸化炭素排出量が約20分の1)。
燃料を必要とせず、燃料の枯渇や高騰の心配が少ない。
他の新エネルギー発電より出力が安定している。
需要に応じて安定した発電量を得られる。
As an advantage of geothermal power generation,
The amount of carbon dioxide emitted is small (the amount of carbon dioxide emitted per unit power generation is about 1/20 that of thermal power generation).
There is no need for fuel, and there is little concern about fuel depletion or soaring.
The output is more stable than other new energy generation.
Stable power generation can be obtained according to demand.

地熱発電の短所としては、
探査・開発に多大な費用・時間がかかる。
開発リスクが高い(掘ってみるまで、利用可能かわからない)。
建設中のボ−リング作業による騒音・振動、噴気の騒音などがある。
熱水・蒸気採取による地盤沈下や土壌汚染の可能性がある。
硫化水素の放出による大気汚染がある。
泥水の温泉への混入や温泉の減衰といった既存の地熱利用施設に影響が出る可能性がある。
日本の地熱地帯は、国立公園内で開発が規制されている区域が多く簡単に開発できない。
The disadvantages of geothermal power generation are:
Exploration / development is very expensive and time consuming.
Development risk is high (unknown until you dig)
There are noise and vibration due to boring work under construction, and noise of fumarole.
There is a possibility of land subsidence and soil contamination due to hot water and steam sampling.
There is air pollution due to the release of hydrogen sulfide.
This may affect existing geothermal facilities such as mud water entering and hot spring decay.
Japan's geothermal field is not easily developed because there are many areas where development is regulated in national parks.

地熱発電の現在の状況としては、
現在の発電原価は21円/kWh(補助金を受ける場合は15円/kWh)である。
日本の発電量は3,369×106kWhである(国内発電能力の0.2%)
ただ、発電出力換算で2000万キロワットを超える未利用資源をすべて活用した場合、原子力発電所15基分以上に相当するとの試算もある
蒸気発電には使用できない熱水が大量に出てくるが、地熱発電所のある市町村の多くでは、この熱水のもつエネルギーの有効利用を図るため、河川水と熱交換して造成熱水をつくり近くの地域へ供給し、地域開発に役立てており、これも再生可能エネルギーの利用形態の一つと言える。
[文献]特開2001−355566(JP,A) [文献]ウィキペディア フリー百科事典 地熱
As for the current situation of geothermal power generation,
The current power generation cost is 21 yen / kWh (15 yen / kWh for subsidies).
The amount of power generation in Japan is 3,369 x 106 kWh (0.2% of domestic power generation capacity)
However, when all unused resources exceeding 20 million kilowatts in terms of power generation output are used, a large amount of hot water that cannot be used for steam power generation, which is estimated to be equivalent to 15 nuclear power plants, In many municipalities where geothermal power plants are located, in order to make effective use of the energy of this hot water, heat is exchanged with river water, and the generated hot water is produced and supplied to nearby areas for use in regional development. It can be said that this is one of the forms of using renewable energy.
[Literature] Japanese Patent Laid-Open No. 2001-355566 (JP, A) [Reference] Wikipedia Free Encyclopedia Geothermal

地熱発電のこれからについては、
・深部地熱資源採取技術の開発(現在、地熱発電容量の増大を図る上で深部地熱資源(深度3,000〜4,000m、温度350℃程度)の開発が望まれているが、浅部地熱資源に比べて高温・高圧でかつ硬質の地層環境にあると想定されている)
・高温岩体発電の開発→簡単に言うと地底の水を含まない高温の岩体中に地表から水を循環させて蒸気や熱水を回収して発電を行う方式の開発
・調査をより、確実で短時間で行える技術の開発
・新たな地域の調査・開発
・国立公園内などの区域内における地熱発電に対する法整備などが課題である。
また、発電量は日本の消費電力からみると、微々たるものであるが、他の新エネルギーと比べると出力が安定しており、供給の調節も可能なので安定した出力源として普及していく可能性は高いと思われる。
For the future of geothermal power generation,
・ Development of deep geothermal resource extraction technology (Currently, development of deep geothermal resources (depth 3,000-4,000m, temperature around 350 ° C) is desired to increase geothermal power generation capacity. (It is assumed that it is in a hard geological environment with higher temperature and pressure than resources)
・ Development of high-temperature rock power generation → To put it simply, we will develop and investigate a method of generating electricity by collecting steam and hot water by circulating water from the ground surface in a high-temperature rock body that does not contain water from the ground. The challenge is to develop technology that can be performed reliably and in a short time, to investigate and develop new areas, and to establish laws for geothermal power generation in areas such as national parks.
In addition, the amount of power generation is insignificant in terms of power consumption in Japan, but the output is stable compared to other new energies and the supply can be adjusted, so it can spread as a stable output source. The nature seems to be high.

そこで、地下の熱源付近まで穴を掘り、このパイプシステムを伏設し、地上からこの穴に注水して、その水を蒸気として同パイプの蒸気収集口から収集して、発電、暖房等に使用しようとするものである.  Therefore, a hole is dug to the vicinity of the underground heat source, this pipe system is laid down, water is poured into this hole from the ground, and the water is collected from the steam collection port of the pipe and used for power generation, heating, etc. This is what you are trying to do.

およそ200メートル以上の深さの地中の熱源に向けてパイプを挿入してこれに河川や地下水源または雨水を利用して注水することにより、地中に注水パイプと併設する蒸気収集口を通して蒸気を収得する方法と装置。
蒸気収集パイプの径は100m/m程度以上として、地中の熱源に近い底部に水溜り部を設け、注水パイプから注入された水が底部に一定量滞留させるために、浮沈するように設定されたダンパーベンを介して水溜り部に流入することを特徴とする。収得した蒸気は発電、その他の既存の装置や機器等の目的に合わせて接続、活用することを特徴とする。
Steam is inserted into the ground through a steam collection port attached to the water injection pipe by inserting a pipe toward the underground heat source at a depth of about 200 meters or more and injecting water into the ground using a river, groundwater source or rainwater. To obtain the method and equipment.
The diameter of the steam collecting pipe is set to about 100 m / m or more, and a water reservoir is provided at the bottom near the heat source in the ground, so that a fixed amount of water injected from the water injection pipe stays at the bottom so that it floats and sinks. It flows into the water reservoir through a damper bend. The obtained steam is connected and utilized according to the purpose of power generation and other existing devices and equipment.

日本は火山国であり、地下500メートルぐらいでは、ほとんどの地域で200℃以上の熱があり、立地場所が得やすい。また、注水による熱源だけの利用なので、地下の変調はなく、バランスを崩すことはない。硫化水素の放出による大気汚染もない。さらに、開発リスクが低く、小規模分散型立地が可能である、等々が言える。  Japan is a volcanic country, and at about 500 meters underground, it has a heat of 200 ° C or above in most areas, making it easy to get a location. In addition, since only the heat source by water injection is used, there is no underground modulation and the balance is not lost. There is no air pollution caused by the release of hydrogen sulfide. Furthermore, it can be said that development risk is low and small-scale decentralized locations are possible.

およそ200メートル以上の深さの地中の熱源に向けてパイプを挿入して、これに河川や地下水源または雨水等を利用して注水することにより、地中に注水パイプと併設する蒸気収集パイプを通して蒸気を収得する方法と装置に関する。
蒸気抜きパイプの径は100m/m程度以上として、地中の熱源に近い底部に水溜り部を設け、注水パイプから注入された水が底部に一定量滞留させるために、浮沈するように設定されたダンパーベンを介して水溜り部に流入することを特徴とする。収得した蒸気は発電、その他の既存の装置や機器等の目的に合わせて接続、活用することを特徴とする。
ダンパーベンは上下に移動式であり、これにより水圧の問題を注水パイプの水圧とダンパーベンを含む水溜り部との重量バランスの関係に置き換える。地下の深度により、注入水の底部における重量と水圧が異なるので、それに合わせてダンパーベンの重量設定を変える。
A steam collecting pipe that is connected to the underground water injection pipe by inserting a pipe into the underground heat source at a depth of about 200 meters or more and injecting water into it using rivers, groundwater sources, or rainwater. The present invention relates to a method and apparatus for obtaining steam through.
The diameter of the steam release pipe is about 100 m / m or more, and a water reservoir is provided at the bottom near the heat source in the ground, so that a certain amount of water injected from the water injection pipe stays at the bottom so that it floats and sinks. It flows into the water reservoir through a damper bend. The obtained steam is connected and utilized according to the purpose of power generation and other existing devices and equipment.
The damper bend is movable up and down, thereby replacing the water pressure problem with the relationship between the water pressure of the water injection pipe and the weight balance between the reservoir and the damper bend. Depending on the depth of the underground, the weight and water pressure at the bottom of the injected water will be different, so change the weight setting of the damper bend accordingly.

およそ200メートル以上の深さの地中の熱源に向けて注水パイプ1を挿入してこれに河川や地下水源または雨水等を利用して注水することにより、地中に注水パイプ1と併設する蒸気収集パイプ2を通して蒸気8を収得する方法と装置に関する。
蒸気抜きパイプ2の径は100m/m程度以上として、地中の熱源に近い底部に水溜り部5を設け、注水パイプ1から注入された水6が底部に一定量滞留させるために、浮沈するように設定されたダンパーベン3を介して水溜り部5に流入することを特徴とする。収得した蒸気は発電、その他の既存の装置や機器等の目的に合わせて接続、活用することを特徴とする。
図1は注水中の図である。
注入水6の底部水圧は深度によって異なる。従って、ダンパーベン3と水溜り部5の水量によって調整する。すなわち、
注入水重量=ダンパーベン重量+水溜り部の水の重量
水溜り部5の水は、地熱によって加熱され蒸気8となって減少するので、
注入水重量 > ダンパーベン重量+水溜り部の水の重量
となり、ダンパーベン3が上昇して、注水6を開始する。
図2は注水停止中の図である。注入水6により、水溜り部5の水量が増加すると
注入水重量 < ダンパーベン重量+水溜り部の水の重量
となり、注水は停止する。
注水中であっても注水停止中であっても蒸気8は連続して発生する。ダンパーベンは上下に移動式であり、最下部に設けた水圧調整部12により水圧の問題を注水パイプの水圧とダンパーベンを含む水溜り部の重量バランスの関係に置き換える。例えば、鉄製(比重7.8)のダンパ−ベンでは、10m程度の水溜り部を確保するためには、30cm程度の厚さが必要となり、注水パイプを挿通して浮沈させるためにはそれぞれのパイプとの間に適度のクリアランスを設ける。
Steam inserted in the ground with the water injection pipe 1 by inserting the water injection pipe 1 toward the underground heat source with a depth of about 200 meters or more and injecting water into the ground using a river, groundwater source or rainwater. The invention relates to a method and an apparatus for obtaining steam 8 through a collecting pipe 2.
The diameter of the steam release pipe 2 is set to about 100 m / m or more, and a water reservoir 5 is provided at the bottom near the underground heat source, and the water 6 injected from the water injection pipe 1 floats and sinks in order to retain a certain amount at the bottom. It flows into the water reservoir 5 through the damper bend 3 set as described above. The obtained steam is connected and utilized according to the purpose of power generation and other existing devices and equipment.
FIG. 1 is a view of water injection.
The bottom water pressure of the injection water 6 varies depending on the depth. Therefore, the amount of water in the damper ben 3 and the water reservoir 5 is adjusted. That is,
Injected water weight = Damper ben weight + Water in the water reservoir The water in the water reservoir 5 is heated by geothermal heat and decreases to become steam 8.
The weight of injected water> the weight of the damper ben + the weight of the water in the water reservoir, the damper ben 3 rises and water injection 6 is started.
FIG. 2 is a diagram when water injection is stopped. When the amount of water in the reservoir 5 increases due to the injected water 6, the weight of injected water becomes less than the weight of the damper bend + the water in the reservoir, and water injection stops.
The steam 8 is continuously generated regardless of whether the water is being poured or stopped. The damper bend is movable up and down, and the water pressure adjusting unit 12 provided at the lowermost part replaces the problem of water pressure with the relationship between the water pressure of the water injection pipe and the weight balance of the water reservoir including the damper bend. For example, an iron damper (specific gravity 7.8) damper ben must have a thickness of about 30 cm in order to secure a water reservoir of about 10 m. Provide appropriate clearance between pipes.

● 温泉は昔から使われている地熱利用法で、人が温まる(浴用)以外にも、高温の温泉では卵(温泉卵)や野菜をゆでたり、蒸気熱を利用した地獄釜で蒸したりしている。各家庭でも職場でも比較的狭いスペースでも、できることになる。
● 地熱発電:各家庭でも職場でもできることになる。
● 暖房:古くからの湯治場では部屋暖房に温泉蒸気が利用されている。
● 園芸:花卉栽培では野菜・花卉の温泉熱利用による栽培、育種が可能となる。
● その他、冷房、養殖、融雪、食品・木材加工等に活用される。
尚、図示はしないが、この原理のその他の実施例として、図2のパイプ部を短縮して水溜り部を大径として全体を地上に設定して、この水溜り部をガスや重油などで加熱して、言わば蒸気発生ボイラーとして活用することもできる。
● Hot springs are a traditional method of using geothermal heat. In addition to warming people (for bathing), hot springs boil eggs (hot spring eggs) and vegetables, and steam in a hell kettle that uses steam heat. ing. You can do it in a relatively small space at home or at work.
● Geothermal power generation: It can be done at home and at work.
● Heating: Hot spring steam is used for room heating in old hot springs.
● Horticulture: In flower gardening, vegetables and flowers can be cultivated and bred using hot spring heat.
● Other applications include cooling, aquaculture, snow melting, food and wood processing.
Although not shown in the drawings, as another embodiment of this principle, the pipe portion in FIG. 2 is shortened so that the sump portion has a large diameter and the whole is set on the ground, and this sump portion is made of gas or heavy oil. It can be heated and used as a steam generating boiler.

注水停止中の図である。注水6により、水溜り部5の水量が増加すると注水は停止する。注水中であっても注水停止中であっても蒸気は連続して発生する。It is a figure when water injection is stopped. When the amount of water in the water reservoir 5 increases due to the water injection 6, the water injection stops. Steam is continuously generated regardless of whether water is being poured or stopped. 注水中の図である。注入水6の底部水圧は深度によって異なる。従ってダンパーベン3と水溜り部5の水量によって調整する。水溜り部5の水は、地熱によって加熱され蒸気8となって減少するので、ダンパーベン3が上昇して、注水を開始する。A−A断面図とB−B断面図に示すように、中央部に中心が一致するように注水口を設け、その周囲に位置をずらして複数の注水口を配置する。FIG. The bottom water pressure of the injection water 6 varies depending on the depth. Accordingly, the amount of water in the damper ben 3 and the water reservoir 5 is adjusted. Since the water in the water reservoir 5 is heated by geothermal heat and decreases to become steam 8, the damper ben 3 rises and water injection is started. As shown to AA sectional drawing and BB sectional drawing, a water inlet is provided so that a center may correspond to a center part, and a some water inlet is arrange | positioned around that position.

1 注水パイプ 2 蒸気抜きパイプ 3 ダンパーベン
4 地下熱源 5 水溜り部 6 注入水
7 水 8 蒸気 9 地表
10 蒸気収集口 11 底部注水板(固定) 12 水圧調整部
DESCRIPTION OF SYMBOLS 1 Water injection pipe 2 Steam vent pipe 3 Damper ben 4 Underground heat source 5 Water reservoir 6 Injection water 7 Water 8 Steam 9 Surface 10 Steam collection port 11 Bottom water injection plate (fixed) 12 Water pressure adjustment part

Claims (3)

およそ200メートル以上の深さの地中の熱源に向けて注水パイプを挿入して、これに河川や地下水源、または雨水を利用して注水することにより、併設する蒸気収集パイプを通して蒸気を収得する方法と装置。  By inserting a water injection pipe toward the underground heat source at a depth of about 200 meters or more and injecting water using a river, a groundwater source, or rainwater, the steam is acquired through the steam collection pipe attached to it. Method and apparatus. 蒸気収集パイプの径は100m/m程度以上として、地中の熱源に近い底部に水溜り部を設け、注水パイプから注入された水が底部に浮沈するように設定されたダンパーベンを介して水溜り部へ流入する水量を調整することを特徴とする、請求項1に記載の蒸気を収得する方法と装置。  The diameter of the steam collecting pipe is about 100 m / m or more, a water reservoir is provided at the bottom near the underground heat source, and water is injected through a damper bend that is set so that water injected from the water injection pipe floats and sinks to the bottom. The method and apparatus for obtaining steam according to claim 1, wherein the amount of water flowing into the reservoir is adjusted. 収得した蒸気は発電、その他の既存の装置や機器等の目的に合わせて接続、活用することを特徴とする、請求項1および2に記載の蒸気を収得する方法と装置。  3. The method and apparatus for acquiring steam according to claim 1 or 2, characterized in that the acquired steam is connected and utilized in accordance with the purpose of power generation and other existing devices and equipment.
JP2011179232A 2011-08-02 2011-08-02 Method and apparatus for obtaining steam by injecting water into underground heat source Pending JP2013032764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179232A JP2013032764A (en) 2011-08-02 2011-08-02 Method and apparatus for obtaining steam by injecting water into underground heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179232A JP2013032764A (en) 2011-08-02 2011-08-02 Method and apparatus for obtaining steam by injecting water into underground heat source

Publications (1)

Publication Number Publication Date
JP2013032764A true JP2013032764A (en) 2013-02-14

Family

ID=47788813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179232A Pending JP2013032764A (en) 2011-08-02 2011-08-02 Method and apparatus for obtaining steam by injecting water into underground heat source

Country Status (1)

Country Link
JP (1) JP2013032764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227962A (en) * 2013-05-24 2014-12-08 株式会社大林組 Steam generator for geothermal generation, steam generation method for geothermal generation, and geothermal generation system
JP2020519835A (en) * 2017-05-02 2020-07-02 エー.オン、スベリゲ、アクチボラグE.ON Sverige Aktiebolag Regional energy distribution system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPH09112407A (en) * 1995-10-17 1997-05-02 Keiji Sugano Steam extraction method and extraction device utilizing geothermy
US20090126923A1 (en) * 2007-11-16 2009-05-21 Conocophillips Company Closed loop energy production from geothermal reservoirs
JP2011052621A (en) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk Geothermal power generator
US20110067399A1 (en) * 2009-09-22 2011-03-24 7238703 Canada Inc. Geothermal power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPH09112407A (en) * 1995-10-17 1997-05-02 Keiji Sugano Steam extraction method and extraction device utilizing geothermy
US20090126923A1 (en) * 2007-11-16 2009-05-21 Conocophillips Company Closed loop energy production from geothermal reservoirs
JP2011052621A (en) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk Geothermal power generator
US20110067399A1 (en) * 2009-09-22 2011-03-24 7238703 Canada Inc. Geothermal power system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227962A (en) * 2013-05-24 2014-12-08 株式会社大林組 Steam generator for geothermal generation, steam generation method for geothermal generation, and geothermal generation system
JP2020519835A (en) * 2017-05-02 2020-07-02 エー.オン、スベリゲ、アクチボラグE.ON Sverige Aktiebolag Regional energy distribution system
US11624510B2 (en) 2017-05-02 2023-04-11 E.On Sverige Ab District energy distributing system

Similar Documents

Publication Publication Date Title
Hepbasli et al. Development of geothermal energy utilization in Turkey: a review
Galgaro et al. Feasibility analysis of a Borehole Heat Exchanger (BHE) array to be installed in high geothermal flux area: The case of the Euganean Thermal Basin, Italy
Berrizbeitia Environmental impacts of geothermal energy generation and utilization
CN201909483U (en) Induced convection device for extracting terrestrial heat through underground heat exchange
Eyinla et al. An overview of geothermal energy resources in Nigeria
Sowa-Watrak et al. The criteria for suitable location of geothermal power plant
JP2013032764A (en) Method and apparatus for obtaining steam by injecting water into underground heat source
Kakkar et al. Geothermal energy: new prospects
Faizal et al. An overview of ocean thermal and geothermal energy conversion technologies and systems
Lukawski et al. Geothermal Energy, Nature, Use, and Expectations
Ikshvaku et al. Geothermal Energy: An Effective Means of Renewable Energy Source
Tousif et al. Producing electricity from geothermal energy
Зуй Great expectations for geothermal to 2100–messages for now
Watson How Geothermal Energy Works
Zui Geothermal resources of Belarus and their utilization
Nkinyam et al. Unconventional Resources
Barbacki Geological and technical aspects of geothermal energy utilization in South-East Poland
Fang et al. The Ground-Coupled Heat Pump Technology in China
Madjoudj et al. Alliance of renewable energy resources for sustainable building-algerian case
Nayan et al. An Introduction and Prospect of Geothermal(Qergy in power Sector of Bangladesh
Setel et al. Aspects about the conversion of geothermal energy into electricity in the north west of Romania
Blanco Ilzarbe et al. Recent patents on geothermal power extraction devices
Hasan Possibilities of Geothermal Energy and its Competitiveness with Other Energy Sources
Monteiro et al. An overview of geothermal energy as technology and its use in the current and modern context
Yang Geothermal Power and Heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215